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Abstract

If a convex body K in Rn is contained in a convex body L of elliptic type (a curvature
image), then it is known that the affine surface area of K is not larger than the affine
surface area of L. We prove that the affine surface areas of K and L can only be equal if
K = L.
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1 Introduction

The notion of affine surface area, originally belonging to the realm of affine differential geo-
metry (see the books of Blaschke [4], Salkowski [16], P. and A. Schirokow [17], Li, Simon,
and Zhao [11], and Section 1.4 of Leichtweiß [10]) has in recent decades been extended to
general convex bodies in Euclidean space Rn (n ≥ 2). The affine surface area, denoted by
Ω, is now a real functional on the space Kn

n of n-dimensional convex bodies in Rn, equipped
with the Hausdorff metric, which is invariant under volume preserving affine transformations
of Rn and is an upper semi-continuous valuation. It vanishes on polytopes and is positive
on convex bodies of class C2

+ (i.e., those with twice continuously differentiable boundary and
positive curvatures). We refer to the book of Leichtweiß [10] for introduction, history, and
references. A brief sketch of the development is also found in the introduction to the paper
of Ludwig and Reitzner [12].

Since the affine surface area vanishes on polytopes, it cannot generally be monotonic
under set inclusion. In the early days of affine surface area, a special monotonicity property
was proved by Winternitz [20]: if K ⊂ E, where K is a sufficiently smooth convex body
and E is an ellipsoid, then Ω(K) ≤ Ω(E). This was extended in the following way. If
K,L ∈ Kn

n, where K is arbitrary and L is of elliptic type (as defined below), then K ⊂ L
implies Ω(K) ≤ Ω(L). Proofs were given, independently, by Leichtweiß [9] (Satz 1 (d)) and
by Lutwak [13] (Theorem (8.1)).

Let K ∈ Kn
n. Since the affine surface area is upper semicontinuous, among the convex

bodies contained in K there is at least one, say Ka, of maximal affine surface area. The
nature of Ka (and, possibly, its uniqueness) is of considerable interest. We mention that
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Sheng, Trudinger, and Wang [19] have studied regularity properties of Ka. In the plane,
Ka plays an astonishing role in work of Bárány [1, 2] and of Bárány and Prodromou [3],
on limit shapes of convex hulls of lattice points or random points in K. Motivated by this,
Bárány has asked the following two questions. If K ∈ Kn

n is of elliptic type, is it true that
Ka = K? For any K ∈ Kn

n, is Ka of elliptic type? For n = 2, both questions were answered
affirmatively by Bárány and Prodromou [3]. The method of proof does not seem to extend
to higher dimensions. In this note, we give a positive answer to Bárány’s first question in
Rn, for n ≥ 2.

Acknowledgement. This work was initiated in March 2012 when I was a guest at the Rényi
Institute of Mathematics in Budapest, supported by the ERC Advanced Research Grant no
267165 (DISCONV). I thank Imre Bárány and the Rényi Institute for the great hospitality.

2 Explanations and results

First we have to explain ‘elliptic type’. In affine differential geometry, a sufficiently smooth
closed convex hypersurface is called of elliptic type if its affine principal curvatures are pos-
itive, equivalently, if its Blaschke affine curvature image is convex. Without differentiability
assumptions, one needs the notion of a curvature function. A convex body K ∈ Kn

n has the
curvature function fK (on the unit sphere Sn−1 of Rn) if fK is a density of the surface area
measure Sn−1(K, ·) of K with respect to spherical Lebesgue measure σ, equivalently, if

V (K, . . . ,K, L) =
1

n

∫
Sn−1

hLfK dσ

for all L ∈ Kn
n, where V is the mixed volume and hL denotes the support function of L. We

refer to [18] for these standard notions (and others used below) from the theory of convex
bodies. Following Petty [15], we consider two subclasses

Vn ⊂ Fn ⊂ Kn
n.

Here, Fn is the set of convex bodies K ∈ Kn
n with a positive, continuous curvature function

fK . The set Vn is defined as the set of all convex bodies K ∈ Fn for which the function

f
−1/(n+1)
K

is the restriction to Sn−1 of a support function. The convex bodies in Vn are called of elliptic
type. See Leichtweiß [9] for a proof that this extends the classical notion. Now we can state
the announced result.

Theorem 1. If K ∈ Vn, L ∈ Kn
n, and L ⊂ K, then

Ω(L) ≤ Ω(K), (1)

with equality if and only if L = K.

As already mentioned, inequality (1) was proved by Leichtweiß [9] and Lutwak [13], so the
only new aspect here is the equality condition. Neither of the approaches in [9] or [13] leads
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to an identification of the equality case, although Leichtweiß obtained the equality L = K
under the additional assumption that also L is of elliptic type. A proof of Theorem 1 becomes
possible by combining Petty’s theory of geominimal surface area with the information on the
general affine surface area that is nowadays available. For this, we recall some facts about
curvature images and geominimal surface area.

If K ∈ Vn, then by definition there exists a convex body M with support function

hM = f
−1/(n+1)
K .

Since hM > 0, we have o ∈ intM . Hence, the polar body M◦ is defined. Since its radial
function is given by ρM◦ = h−1M , we get

o =

∫
Sn−1

udSn−1(K,u) =

∫
Sn−1

fK(u)udσ(u) =

∫
Sn−1

ρM◦(u)n+1udσ(u)

and hence (using spherical coordinates)∫
M◦

x dx = o.

Thus, M◦ has centroid o. Conversely, let M ∈ Kn
n be a convex body, containing o in the

interior, such that M◦ has centroid o. Then, as above,∫
Sn−1

hM (u)−(n+1)udσ(u) = o.

By Minkowski’s existence theorem ([18], Theorem 7.1.2), there exists a convex body CM ∈ Kn
n

with curvature function
fCM = h

−(n+1)
M .

It is uniquely determined up to a translation. Every translate of CM is called a curvature
image of M (this notion of curvature image is not to be confused with Blaschke’s affine
curvature image). Thus, Vn is precisely the set of curvature images of convex bodies.

For K ∈ Kn
n, there exists a unique point s(K) in the interior of K, the Santaló point of

K, such that
Vn(Ks) := Vn((K − s(K))◦) = min

p∈intK
Vn((K − p)◦),

where Vn denotes the volume. We have s(K) = o if and only if K◦ has centroid o. Let κn
denote the volume of the n-dimensional unit ball and let

T n := {T ∈ Kn
n : s(T ) = o, Vn(T ◦) = κn}.

Every convex body from Kn
n has a unique homothet in T n. The relative surface area A(K,T )

of a convex body K with respect to T ∈ T n is defined by

A(K,T ) := nV (K, . . . ,K, T ).

Petty [15] has defined the geominimal surface area of K ∈ Kn
n by

G(K) := inf{A(K,T ) : T ∈ T n}.
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We need some of Petty’s results.

Lemma 1 and Definition (Petty [15], Theorems (2.5) and (2.8)). To each K ∈ Kn
n, there

exists a unique T ∈ T n with G(K) = A(K,T ). It is denoted by T = T (K).

Lemma 2 (Petty [15], Corollary (3.13)). If K ∈ Vn and T ∈ T n, then K is a curvature
image of T if and only if T = T (K).

Now we are ready for the following result.

Theorem 2. If K ∈ Kn
n, then

Ω(K)n+1 ≤ nκnG(K)n, (2)

with equality if and only if K ∈ Vn.

The inequality (2) was proved by Petty [15] for K ∈ Fn and was extended by Lutwak [13]
to K ∈ Kn

n. Up to now, the equality condition for (2) was only known under the additional
assumption that K ∈ Fn; see Lutwak [14], Theorem 4.13. We will show in the next section
that this is a consequence of the equality.

Theorem 2 implies Theorem 1, essentially by Petty’s [15] proof of his Theorem (3.21).
Observe that the latter requires that K1 ∈ Fn, since in [15] the affine surface area is only
defined for bodies from Fn.

Proof of Theorem 1. Let K ∈ Vn, L ∈ Kn
n, and L ⊂ K. From Theorem 2, and since the

geominimal surface area is monotonic under set inclusion, we get

Ω(L)n+1 ≤ nκnG(L)n ≤ nκnG(K)n = Ω(K)n+1.

This proves inequality (1). If equality holds here, then the equality condition of Theorem 2
shows that also L is of elliptic type; moreover,

G(K) = G(L) ≤ A(L, T (K)) ≤ A(K,T (K)) = G(K).

The first inequality follows from the inf-definition of the geominimal surface area, the second
from the monotonicity of mixed volumes. It follows that A(L, T (L)) = G(L) = A(L, T (K)).
By the uniqueness result of Lemma 1, we have T (L) = T (K). By Lemma 2, L and K are
curvature images of the same set, thus they are translates and hence identical.

3 Proof of Theorem 2

Of the many equivalent representations of the affine surface area of general convex bodies,
we need here the one by

Ω(K) =

∫
Sn−1

[Dn−1(hK)]n/(n+1) dσ. (3)

Here Dn−1(hK) denotes the sum of the principal minors of the Hessian matrix of the homo-
geneous support function of K. The function Dn−1(hK) exists σ-almost everywhere on Sn−1,
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it is measurable and nonnegative. The representation (3) was first established by Leichtweiß
[8], for his definition of extended affine surface area. Since later all the differently defined
extensions of affine surface area, by Leichtweiß, Lutwak, Schütt and Werner, were shown to
be equivalent (see Leichtweiss [10]), formula (3) can be used for any of these definitions. We
refer also to Hug [6] for an extension of this representation.

Let K ∈ Kn
n. By Lemma 1, there exists a unique convex body T ∈ T n with

G(K) = A(K,T ) =

∫
Sn−1

hT dSn−1(K, ·). (4)

With respect to spherical Lebesgue measure σ, the measure Sn−1(K, ·) has a Lebesgue de-
composition into the sum of an absolutely continuous measure Sa

K and a singular measure
Ss
K . It is known that

Sa
K(ω) =

∫
ω
Dn−1(hK) dσ for Borel sets ω ⊂ Sn−1. (5)

A proof is given, for example, in Hug [7], Section 3. With (4) this gives

G(K) =

∫
Sn−1

hT dSa
K +

∫
Sn−1

hT dSs
K ≥

∫
Sn−1

hTDn−1(hK) dσ. (6)

Hölder’s inequality with a negative exponent reads∫
gḡ ≥

(∫
gk
)1/k (∫

ḡk
′
)1/k′

,

where k < 0, k′ = k/(k − 1) and g, ḡ are nonnegative measurable functions. We apply this
with k = −n, g = hT , ḡ = Dn−1(hK) and obtain (integrations are over the unit sphere)∫

hTDn−1(hK) dσ ≥
(∫

h−nT dσ

)−1/n(∫
[Dn−1(hK)]n/(n+1) dσ

)(n+1)/n

= [nVn(T ◦)]−1/nΩ(K)(n+1)/n

= (nκn)−1/nΩ(K)(n+1)/n.

The inequality (2) follows. Suppose that equality holds here. Then equality holds in Hölder’s
inequality. This implies (see [5], p. 140) that gk and ḡk

′
are proportional outside a set of

measure zero, hence there is a (necessarily positive) constant A with

Ah
−(n+1)
T = Dn−1(hK) σ-almost everywhere on Sn−1. (7)

But since equality holds also in (6), and hT > 0 everywhere on Sn−1, the singular part Ss
K is

the zero measure. Now it follows from (5) and (7) that Ah
−(n+1)
T is a density for Sn−1(K, ·).

Thus, K has the curvature function fK = Ah
−(n+1)
T , and f

−1/(n+1)
K is a support function.

Therefore, K ∈ Vn, that is, K is of elliptic type, which completes the proof.

Remark 1. In retrospect, the use of the geominimal surface area for establishing the equality
case in Theorem 1 seems quite natural, due to the lemmas in Section 2: if K is a curvature
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image, then it is the curvature image of T (K), but the body T (K) exists also if K is not a
curvature image.

Remark 2. The extension of the previous approach to p-affine surface area for p ≥ 1 fails,
since the p-mixed volume is no longer monotonic under set inclusion.
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[2] I. Bárány, Sylvester’s question: the probability that n points are in convex position,
Ann. Probab., 27 (1999), 2020–2034.
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