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Abstract. The support measures of a convex body are a common generalization
of the curvature measures and the area measures. With respect to the Hausdorff
metric on the space of convex bodies, they are weakly continuous. We provide
a quantitative improvement of this result, by establishing a Hölder estimate for
the support measures in terms of the bounded Lipschitz metric, which metrizes
the weak convergence. Specializing the result to area measures yields a reverse
counterpart to earlier stability estimates, concerning Minkowski’s existence the-
orem for convex bodies with given area measure.
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1. Introduction
In the theory of convex bodies in Euclidean space, the curvature functions (elemen-
tary symmetric functions of principal curvatures or radii of curvature), known from
the differential geometry of hypersurfaces, have been replaced by curvature mea-
sures and area measures. Their common generalization, the support measures, take
into account that a boundary point of a convex body and an outer unit normal vector
at this point in general do not determine each other uniquely. The support measures
of a convex body in Euclidean space Rn are Borel measures on the unit sphere bun-
dle of Rn, with the property that their marginal measures are the curvature measures
on Rn and the area measures on the unit sphere Sn−1. On the space of convex bod-
ies with the Hausdorff metric, the support measures are weakly continuous. In the
present note, we improve this statement by showing that the support measures are
locally Hölder continuous with respect to the bounded Lipschitz metric.

We denote by Kn the space of convex bodies (nonempty compact convex sub-
sets) in Euclidean space Rn, as usual equipped with the Hausdorff metric dH . We
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write Bn for the unit ball in Rn. For ρ ≥ 0, Kρ := K + ρBn is the parallel body
of the convex body K at distance ρ. Let Λi(K, ·) denote the ith support measure of
K ∈ Kn. Its definition, as well as the definition of the bounded Lipschitz metric
dbL, will be recalled in Section 2.

Theorem 1.1. Let K,L ∈ Kn be convex bodies, and let R be the radius of a ball
containing K2 and L2. Then

dbL(Λi(K, ·),Λi(L, ·)) ≤ C(R) dH(K,L)1/2 (1.1)

for i ∈ {0, . . . , n − 1}, where C(R) is a constant which (for given dimension)
depends only on R.

We shall obtain Theorem 1.1 by adapting an approach due to Chazal, Cohen–
Steiner and Mérigot [1]. These authors have obtained similar estimates for local
parallel volumes of compact sets and have deduced estimates for curvature measures
of sets of positive reach. Our restriction to convex bodies, which are the natural sets
for the consideration of support measures, allows a simpler approach which, for this
restricted class of sets, yields a more general result.

In Section 4 we show that the Hölder exponent 1/2 in the estimate (1.1) is best
possible.

A special case of Theorem 1.1 concerns the area measure Sn−1(K, ·). If ω ⊂
Sn−1 is a Borel set, then Sn−1(K,ω) = 2Λn−1(K,Rn × ω). From Theorem 1.1 it
follows under the same assumptions on K and L that

dbL(Sn−1(K, ·), Sn−1(L, ·)) ≤ C ′(R) dH(K,L)1/2. (1.2)

We want to present some motivation for proving such an inequality.
The area measure is the subject of a famous existence and uniqueness theo-

rem due to Minkowski (see, e.g., [8, Sec. 8.2]). The uniqueness assertion has been
improved by some stability results. One of these (going back to Diskant; see [2], [8,
Thm. 8.5.1]) says that for convex bodies K,L ∈ Kn one has

dH(K,L′) ≤ γ ‖Sn−1(K, ·)− Sn−1(L, ·)‖1/nTV (1.3)

for a suitable translate L′ of L, where ‖ · ‖TV denotes the total variation norm. Here
γ > 0 is a constant depending only on the dimension and on a-priori bounds for the
inradius and circumradius of K and L.

The stability result (1.3) has the flaw that the left side can be small even
if the right side is large. For example, a unit cube K and a rotated image L of
K can have arbitrarily small Hausdorff distance and still satisfy ‖Sn−1(K, ·) −
Sn−1(L, ·)‖TV ≥ 1. It seems, therefore, more meaningful to replace the right-hand
side in (1.3) by an expression involving a metric for measures that metrizes the weak
convergence. For the Lévy–Prokhorov metric, such a stability result was proved in
[7]; see also [8, Thm. 8.5.3]. It was deduced from a corresponding stability result
for the bounded Lipschitz metric (which is implicit in the proof, though it was not
stated explicitly), namely

dH(K,L′) ≤ γ dbL(Sn−1(K, ·), Sn−1(L, ·))1/n (1.4)
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for a suitable translate L′ of L, with a constant γ as above. It appears that the Hölder
continuity (1.2) is, in principle, a more elementary fact than its reverse, the stability
estimate (1.4), and should therefore have preceded it.

2. Notation and preliminaries
We recall some notions and notation used in the following. The Hausdorff distance
of two convex bodies K,L ∈ Kn is given by

dH(K,L) = min{ρ ≥ 0 : K ⊂ Lρ, L ⊂ Kρ}.

LetK ∈ Kn. The metric projection p(K, ·) : Rn → K is defined by letting p(K,x),
for x ∈ Rn, be the unique point in K for which |p(K,x) − x| ≤ |y − x| for all
y ∈ K, where | · | denotes the Euclidean norm. Further, d(K,x) = |x− p(K,x)| is
the distance of the point x from K, and for x ∈ Rn \K, the vector u(K,x) = (x−
p(K,x))/d(K,x) is the unit vector pointing from p(K,x) to x. In the following,
we write p(K, ·) =: pK , u(K, ·) =: uK , and d(K, ·) =: dK . For ρ > 0, we set
Kρ := Kρ \K, where Kρ = K + ρBn is the already defined parallel body of K at
distance ρ. The product space Rn × Sn−1, with its standard Euclidean metric as a
subspace of Rn×Rn, is denoted by Σn. For η ⊂ Σn, we consider the local parallel
set

Mρ(K, η) := {x ∈ Kρ : (pK(x), uK(x)) ∈ η}
and define

µK,ρ(η) := Hn(Mρ(K, η)), (2.1)

where Hn denotes the n-dimensional Hausdorff measure. If η is a Borel set, then
Mρ(K, η) is a Borel set, and there is a polynomial expansion

µK,ρ(η) =

n−1∑
i=0

ρn−iκn−iΛi(K, η) for ρ ≥ 0, (2.2)

where the normalizing factor κj is the j-dimensional volume of Bj ; see [8], formu-
las (4.4) and (4.18). This defines the support measures Λ0(K, ·), . . . ,Λn−1(K, ·) of
K. They are finite Borel measures on Σn. The measure Λi(K, ·) is concentrated on
NorK, the normal bundle of K. By definition, this is the subspace of Σn, with the
induced topology, consisting of all pairs (x, u) where x is a boundary point of K
and u is an outer unit normal vector of K at x.

The support measures have the property of weak continuity: if a sequence
(Kj)j∈N of convex bodies converges to a convex body K in the Hausdorff metric,
then the sequence (Λi(Kj , ·))j∈N converges weakly to Λi(K, ·). The topology of
weak convergence can be metrized by the Lévy–Prokhorov metric dLP or by the
bounded Lipschitz metric dbL (see, e.g., Dudley [3, Sec. 11.3]). To define the latter,
for bounded real functions f on Σn let

‖f‖L := sup
a 6=b

|f(a)− f(b)|
|a− b|

, ‖f‖∞ := sup
a
|f(a)|.
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For finite Borel measures µ, ν on Σn, their bounded Lipschitz distance is then de-
fined by

dbL(µ, ν) := sup

{∣∣∣∣∫
Σn
f dµ−

∫
Σn
f dν

∣∣∣∣ : f ∈ FbL
}
,

where FbL is the set of all functions f : Σn → R with ‖f‖L ≤ 1 and ‖f‖∞ ≤ 1.

3. Proof of Theorem 1.1

The following lemma is modeled after Proposition 4.1 of Chazal, Cohen–Steiner
and Mérigot [1]. Under the restriction to convex bodies, it extends the latter to the
measures µK,ρ defined by (2.1).

Lemma 3.1. If K,L ∈ Kn are convex bodies and ρ > 0, then

dbL(µK,ρ, µL,ρ) ≤
∫
Kρ∩Lρ

|pK − pL|dHn +

∫
Kρ∩Lρ

|uK − uL|dHn

+Hn(Kρ4Lρ),

where4 denotes the symmetric difference.

Proof. For K ∈ Kn and ρ > 0, let Fρ : Kρ → Σn be defined by Fρ(x) :=
(pK(x), uK(x)) for x ∈ Kρ. Then Fρ is continuous, and µK,ρ is the image measure
ofHn, restricted to the Borel subsets of Kρ, under Fρ.

Let f : Σn → R be a function with ‖f‖L ≤ 1 and ‖f‖∞ ≤ 1. Applying the
transformation formula for integrals to Fρ and using the properties of f , we obtain,
for K,L ∈ Kn,∣∣∣∣∫

Σn
f dµK,ρ −

∫
Σn
f dµL,ρ

∣∣∣∣
=

∣∣∣∣∫
Kρ

f ◦ (pK , uK) dHn −
∫
Lρ
f ◦ (pL, uL) dHn

∣∣∣∣
≤
∫
Kρ∩Lρ

|f ◦ (pK , uK)− f ◦ (pL, uL)| dHn

+

∫
Kρ\Lρ

|f ◦ (pK , uK)| dHn +

∫
Lρ\Kρ

|f ◦ (pL, uL)| dHn

≤
∫
Kρ∩Lρ

|(pK , uK)− (pL, uL)|dHn +

∫
Kρ\Lρ

1 dHn +

∫
Lρ\Kρ

1 dHn

≤
∫
Kρ∩Lρ

(|pK − pL|+ |uK − uL|) dHn +Hn(Kρ4Lρ),

from which the assertion follows. �

Proof of Theorem 1.1. Let K,L ∈ Kn, and set dH(K,L) =: δ. Let R be the radius
of a ball containing K2 (= K + 2Bn) and L2. We assume that δ < 1; this is not
a loss of generality, since the left side of (1.1) is bounded by a constant depending
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only on R. Let 0 < ρ ≤ 1. We use Lemma 3.1 and estimate the terms on the
right-hand side. First, from Lemma 1.8.11 in [8] we get∫

Kρ∩Lρ
|pK − pL|dHn ≤

√
5DHn(Kρ ∩ Lρ)

√
δ ≤ C1(R)

√
δ, (3.1)

where D = diam(Kρ ∪ Lρ) and the constant C1(R) depends only on R.
Writing g(x) := |uK(x) − uL(x)| if x ∈ Kρ ∩ Lρ and g(x) = 0 otherwise,

we have∫
Kρ∩Lρ

|uK − uL|dHn =

∫
Kρ

g dHn =

∫
Kγ

g dHn +

∫
Kρ\Kγ

g dHn (3.2)

with γ := min{δ, ρ}. Clearly,∫
Kγ

g dHn ≤ C2(R)δ ≤ C2(R)
√
δ.

If δ ≥ ρ, the last integral in (3.2) is zero. Let δ < ρ. Using [8], formula (4.38), we
have∫

Kρ\Kγ

g dHn =

n−1∑
j=0

ωn−j

∫ ρ

δ

tn−j−1

∫
Σn
g(x+ tu) Λj(K,d(x, u)) dt, (3.3)

where ωk = kκk. Let (x, u) ∈ NorK and set y := x+ tu, with δ < t ≤ ρ. Then

g(x+ tu) ≤ 2 sinα, (3.4)

where 2α is the angle between uK(y) and uL(y). In fact, (3.4) holds with equality
if y ∈ Lρ, and g(y) = 0 if y /∈ Lρ.

Since dH(K,L) ≤ δ, the ball B(x, δ) = {z ∈ Rn : |z − x| ≤ δ} contains
a point of L. Therefore d(L, y) ≤ t + δ and hence p(L, y) ∈ B(y, t + δ). Let H−

be the supporting halfspace of K with outer normal vector u. Then L ⊂ H− + δu,
hence p(L, y) ⊂ B(y, t + δ) ∩ (H− + δu). The largest possible angle between
u(K, y) and u(L, y) is attained if p(L, y) ∈ bdB(y, t + δ) ∩ bd (H− + δu). This
gives

sinα ≤
√
δ√

t+ δ
.

Since t ≤ ρ ≤ 1 in (3.3), we conclude that∫
Kρ\Kγ

g dHn ≤ 2
√
δ

n−1∑
j=0

ωn−j

∫ ρ

δ

1√
t+ δ

dt · Λj(K,Σn) ≤ C3(R)
√
δ.

Altogether we get ∫
Kρ∩Lρ

|uK − uL|dHn ≤ C4(R)
√
δ. (3.5)

For the estimation of Hn(Kρ4Lρ), let x ∈ Kρ \ Lρ; then x ∈ Kρ \K and
x /∈ Lρ \ L. If x ∈ L, then d(K,x) ≤ δ, hence x ∈ Kδ \K. If x /∈ L, then x /∈ Lρ
but x ∈ Kρ, Kρ ⊂ (Lδ)ρ = Lρ+δ , and hence x ∈ Lρ+δ \ Lρ. It follows that

Kρ \ Lρ ⊂ (Kδ \K) ∪ (Lρ+δ \ Lρ)
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and hence

Hn(Kρ \ Lρ) ≤ Hn(Kδ)−Hn(K) +Hn(Lρ+δ)−Hn(Lρ)

≤ C5(R)δ ≤ C5(R)
√
δ.

Here K and L can be interchanged, and together with (3.1), (3.5) and Lemma 3.1
this gives

dbL(µK,ρ, µL,ρ) ≤ C6(R)
√
δ. (3.6)

To deduce an estimate for the support measures, we apply the usual procedure
(e.g., [8], p. 213) and choose in (2.2) for ρ each of the n fixed values ρj = j/n,
j = 1, . . . , n, and solve the resulting system of linear equations (which has a non-
zero Vandermonde determinant), to obtain representations

Λi(K, ·) =

n∑
j=1

aijµK,ρj , i = 0, . . . , n− 1,

with constants aij depending only on i, j. Using the definition of the bounded Lip-
schitz metric, we deduce that

dbL(Λi(K, ·),Λi(L, ·)) ≤
n∑
j=1

|aij |dbL(µK,ρj , µL,ρj ) ≤ C(R)
√
δ. (3.7)

This completes the proof of Theorem 1.1. �

4. Optimality
The aim of this section is to show that the Hölder estimate of Theorem 1.1 is gen-
erally best possible, that is, the exponent 1/2 in (1.1) cannot be replaced by a larger
constant. Let i ∈ {1, . . . , n− 1} and recall from [8, (4.11), (4.18)] that

Si(K, ·) =
iκn−i(
n
i

) Λi(K,Rn × ·)

is the i-th area measure of K. For convenience, we use Ψi(K, ·) = Λi(K,Rn × ·)
in the following. Let E be a fixed (i + 1)-dimensional linear subspace of Rn, let
BE := Bn ∩ E be the unit ball and SE := Sn−1 ∩ E the unit sphere in E. For
e ∈ SE , h ∈ (0, π/2) and τ ∈ R, let H−(e, τ) := {z ∈ Rn : z · e ≤ τ} and

BE(e, h) := BE ∩H−(e, cosh).

We assume first that i ≤ n− 2. For s ∈ [0, π/2], t ∈ [0, h], v ∈ SE ∩ e⊥ and
w ∈ E⊥ ∩ Sn−1, we define ϕ(s, t, v, w) ∈ Sn−1 by

ϕ(s, t, v, w) := (cos s cos t)e+ (cos s sin t)v + (sin s)w.

We consider the function f : Sn−1 → [0,∞) given by

f (ϕ(s, t, v, w)) := cos s

(
1− sin t

sinh

)
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if (s, t, v, w) ∈ [0, π/2] × [0, h] × (SE ∩ e⊥) × SE⊥ , and by 0 otherwise. If y =
ϕ(s, t, v, w) and if πE(y) denotes the orthogonal projection of y to E, then

f(y) = cos s− cos s sin t

sinh
= |πE(y)| − |πE(y)− (y · e)e|

sinh
.

This shows that the function f is well-defined. Together with the fact that f is zero
on the boundary of its support, it also shows that there is a constant c1 > 0 such that
‖f‖L ≤ c1/h. Here and in the following, all constants can be chosen independently
of h. Clearly, we have ‖f‖∞ = 1.

For x ∈ SE , we define ν(x) ⊂ Sn−1 by

ν(x) := {(cos s)x+ (sin s)w : w ∈ SE⊥ , s ∈ [0, π/2]} .

By basic properties of area measures, we have

Ψi(BE , ·) =
1

ωn−i

∫
Si

∫
ν(x)

1{u ∈ ·}Hn−i−1(du)Hi(dx)

(a special case of [6], Thm. 6.2) and

Ψi(BE(e, h), ω) =
κi
ωn−i

sini h

∫
ν(e)

1{u ∈ ω}Hn−i−1(du),

if ω is a Borel set contained in the support of f .

Integrating the function f with these two measures, we get

∫
Sn−1

f(u) Ψi(BE(e, h),du)

=
κi sini h

ωn−i

∫
ν(e)

f(u)Hn−i−1(du)

=
κi sini h

ωn−i

∫
S
E⊥

∫ π/2

0

f((cos s)e+ (sin s)w) sinn−i−2 sdsHn−i−2(dw)

=
κi sini h

ωn−i

∫
S
E⊥

∫ π/2

0

cos s sinn−i−2 sdsHn−i−2(dw)

=
κi sini h

ωn−i
ωn−i−1

∫ π/2

0

cos s sinn−i−2 sds

=
κiκn−i−1

ωn−i
sini h
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and ∫
Sn−1

f(u) Ψi(BE ,du)

=
1

ωn−i

∫
SE

∫
ν(x)

f(u)Hn−i−1(du)Hi(dx)

=
1

ωn−i

∫
SE∩e⊥

∫ h

0

∫
S
E⊥

∫ π/2

0

f(ϕ(s, t, v, w)) sini−1 t sinn−i−2 s

× dsHn−i−2(dw) dtHi−1(dv)

=
1

ωn−i

∫
SE∩e⊥

∫ h

0

∫
S
E⊥

∫ π/2

0

cos s

(
1− sin t

sinh

)
sini−1 t sinn−i−2 s

× dsHn−i−2(dw) dtHi−1(dv)

=
ωiωn−i−1

ωn−i

∫ h

0

(
1− sin t

sinh

)
sini−1 tdt

∫ π/2

0

cos s sinn−i−2 sds

=
ωiκn−i−1

ωn−i

[∫ h

0

sini−1 tdt− 1

sinh

∫ h

0

sini tdt

]
.

To estimate the last integrals, we observe that 0 ≤ t− sin t ≤ t3/6 for t ∈ (0, π/2).
Hence, by the mean value theorem,

0 ≤ tk − sink t ≤ k

6
tk+2, k ∈ N0, t ∈ (0, π/2).

For k ≥ 1 this yields

1

k
hk − k − 1

6(k + 2)
hk+2 ≤

∫ h

0

sink−1 tdt ≤ 1

k
hk.

Moreover, since 0 < h ≤
√

5, we also have
1

h
≤ 1

sinh
≤ 1

h− h3/6
≤ 1

h
(1 + h2).

For h tending to zero, we deduce that∫
Sn−1

f(u) Ψi(BE ,du) =

[
κiκn−i−1

ωn−i
− ωiκn−i−1

(i+ 1)ωn−i

]
hi +O(hi+2)

and hence that ∫
Sn−1

f(u) Ψi(BE(e, h),du)−
∫
Sn−1

f(u) Ψi(BE ,du)

=
ωiκn−i−1

(i+ 1)ωn−i
hi +O(hi+2).

Up to now, the vector e ∈ SE was fixed, and the dependence of the function ϕ
on e and of the function f on e and hwas not emphasized. Now we writeϕ = ϕe and
f = fe,h and vary the vector e. We note that h is the geodesic radius of the spherical
cap BE ∩H+(e, cosh), where H+(e, τ) := {z ∈ Rn : z · e ≥ τ}. Therefore, for
given h ∈ (0, π/2), we can choose N = Ni(h) vectors e1, . . . , eN ∈ SE with the
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property that the caps BE ∩H+(ej , cosh), j = 1, . . . , N , are mutually disjoint and
that c2 ≤ Ni(h)hi ≤ c3 with positive constants c2, c3, independent of h.

We define the function fh : Sn−1 → [0, 1] by fh = fej ,h on the image of
[0, π/2] × [0, h] × (SE ∩ ej) × (E⊥ ∩ Sn−1) under ϕej , for j = 1, . . . , N , and as
zero otherwise. It is easy to see that ‖fh‖L ≤ c4/h with a constant c4. Further, let

BE(h) := BE ∩
Ni(h)⋂
j=1

H−(ej , cosh).

Then we obtain∫
Sn−1

fh(u) Ψi(BE(h),du)−
∫
Sn−1

fh(u) Ψi(BE ,du)

=

Ni(h)∑
j=1

(
ωiκn−i−1

(i+ 1)ωn−i
hi +O(hi+2)

)
=

ωiκn−i−1

(i+ 1)ωn−i
Ni(h)hi +O(h2).

Since ‖f‖L ≤ c4/h, we deduce that

dbL (Ψi(BE(h), ·),Ψi(BE , ·)) ≥ c5h− c6h3,

where c5, c6 are positive constants. Since clearly

dH(BE(h), BE) ≤ 1− cosh ≤ h2,

an estimate of the form

dbL (Ψi(BE(h), ·),Ψi(BE , ·)) ≤ c dH(BE(h), BE)α,

with some constant c > 0 and arbitrarily small h > 0, requires that α ≤ 1/2.
So far, we have assumed that i ≤ n − 2. The proof for i = n − 1 follows

the same lines, but is considerably simpler, since E = Rn in this case, and no
dependence on the variable s occurs (or, formally, we put s = 0).
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