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Abstract. It is proved that the minimal mean width of all simplices cir-
cumscribed about a convex body of given mean width attains its maximum
precisely if the body is a ball. An analogous result holds for circumscribed
parallelepipeds, with balls replaced by bodies of constant width.
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1. Introduction and main result. For a convex body K (a compact convex set
with interior points) in Euclidean space Rn (n ≥ 2), we denote by M(K) its mean
width and by TK a simplex of minimal mean width circumscribed about K. Let T n be
a regular simplex circumscribed about the unit ball Bn of Rn. In this note, we prove
the following result.

Theorem 1. For any convex body K ⊂ Rn,

M(TK) ≤ 1

2
M(K)M(T n). (1)

Equality holds if and only if K is a ball.

Every simplex of minimal mean width circumscribed about a given ball is regular.
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Remark 1. For n = 2 (where the mean width is the perimeter divided by π), a more
general result is known (see [5]). If Lm(K) denotes the minimum of the perimeters
of all convex m-gons circumscribed about the planar convex body K and L(K) is the
perimeter of K, then

Lm(K) ≤ L(K)
m

π
tan

π

m

for m = 3, 4, . . ., with equality if and only if K is circular; every m-gon of minimal
perimeter circumscribed about a given circle is regular.

Remark 2. The value of M(T n) for n = 2 is given by 6
√

3/π = 3.30797 and for n = 3
by (3

√
6/π) arccos(−1/3) = 4.4691. From these values, one can obtain the value for

n = 4 by using formula (3) in [7]. Further,

M(T n) ∼ 2
√

2n ln n

as n tends to infinity, according to a result obtained in [1].

Remark 3. The ‘dual’ analogue of the last part of Theorem 1 is (for n ≥ 3) a long-
standing open problem: among all simplices contained in a given ball, do the regular
ones have maximal mean width? We refer to the discussion in Gritzmann and Klee [2,
Section 9.10.2].

2. Proof of Theorem 1. We fix some notation. We denote the scalar product of
Rn by 〈·, ·〉 and the induced norm by ‖ · ‖. The set Sn−1 = {x ∈ Rn : ‖x‖ = 1} is the
unit sphere, σ denotes spherical Lebesgue measure on Sn−1, and ωn := σ(Sn−1) is the
total area of the unit sphere. The support function of a convex body K is defined by
hK(u) := maxx∈K〈x, u〉 for u ∈ Sn−1. The mean width of K is given by

M(K) =
1

ωn

∫
Sn−1

[hK(u) + hK(−u)] σ(du) =
2

ωn

∫
Sn−1

hK dσ.

First we deal with the last assertion of Theorem 1. This follows by the same
argument as Hadwiger [3] used it for the isoperimetric quotient. We assume that T is
a simplex circumscribed to the unit ball Bn and with minimal mean width. Suppose
T is not regular, then it has vertices v0, v1, v2 such that ‖v2 − v0‖ 6= ‖v2 − v1‖. Let
T ′ arise from Steiner symmetrization of T with respect to the hyperplane which is the
perpendicular bisector of the segment with endpoints v0 and v1. Then T ′ is a simplex
with M(T ′) < M(T ) ([3], p. 261, Zusatz IV), and T ′ clearly contains a unit ball. This
is a contradiction, hence T is congruent to T n.

To prove the first part of Theorem 1, we need the following lemma.

Lemma. In Rn, let K be a convex body and suppose that T is a regular simplex
circumscribed about K with M(T ) = M(TK). Then each facet F of T touches K in
the centroid of F .

Proof. Let T satisfy the assumption, and let F be a facet of T . We suppose that the
centroid c of F is not contained in K, and seek a contradiction. We may assume that
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the origin o is the vertex of T opposite to F , and that the vectors v1, . . . , vn giving the
vertices of F are unit vectors. Later we will determine numbers s1, . . . , sn ∈ R with
the following properties:

(i) si < 1 for i = 1, . . . , n, and
∑n

i=1 si < 0;

(ii) for all sufficiently small % > 0, the simplex T (%) with vertices o and vi(%) :=
(1 + %si)vi, i = 1, . . . , n, contains K.

Let us assume that (i) and (ii) are satisfied and that % > 0 is so small that 1 + %si > 0
for i = 1, . . . , n. Let Ui(%) denote the spherical image of the vertex vi(%) of T (%), that
is, the intersection of the unit sphere with the normal cone of T (%) at vi(%). It can be
represented by

Ui(%) = {x ∈ Sn−1 : 〈x, vi(%)〉 ≥ 0 and 〈x, vi(%)− vj(%)〉 ≥ 0, j = 1, . . . , n}.

Write Ui := Ui(0) for i = 1, . . . , n. If x ∈ Ui ∩ Uj(%), then

hT (%)(x)− hT (x) = 〈x, (1 + %sj)vj〉 − 〈x, vi〉

≤ (1 + %sj)〈x, vi〉 − 〈x, vi〉 = %sj〈x, vi〉.

Below, the implied constants in O(·) depend on n and s1, . . . , sn. Since σ(Ui ∩ Uj(%))
is a continuously differentiable function of %, we have σ(Ui ∩ Uj(%)) = O(%) for i 6= j
and hence σ(Ui∆Ui(%)) = O(%), where ∆ denotes the symmetric difference. Observing
that

M(T (%)) =
2

ωn

n∑
j=1

∫
Uj(%)

hT (%) dσ =
2

ωn

n∑
j=1

n∑
i=1

∫
Ui∩Uj(%)

hT (%) dσ,

since hT (ρ) = 0 on the spherical image of the vertex o (and this spherical image is
independent of %), and that

∫
Ui
〈x, vi〉σ(dx) is independent of i, we obtain

M(T (%))−M(T ) ≤ 2

ωn

∫
U1

〈x, v1〉σ(dx)

(
n∑

i=1

si

)
% + O(%2).

Therefore, if % > 0 is sufficiently small, then M(T (%)) < M(T ), which is a contradic-
tion.

To finish the proof of the lemma, we have to find s1, . . . , sn satisfying (i) and (ii).
Since c /∈ K, we can choose an (n− 2)-dimensional linear subspace L of Rn such that
c + L ⊂ affF and (c + L) ∩ K = ∅. Let u1, . . . , un ∈ Rn denote the dual basis of
v1, . . . , vn; namely, 〈ui, vj〉 = 1 if i = j, and 〈ui, vj〉 = 0 if i 6= j. Then

∑n
i=1 ui is

orthogonal to affF . We can determine τ1, . . . , τn ∈ R, not all zero, so that
∑n

i=1 τiui is
orthogonal to L and orthogonal to

∑n
i=1 vi = nc. In particular,

∑n
i=1 τi = 0. Without

loss of generality, we suppose that τi < 1 for all i. We may assume that v1 and v2 are
strictly separated by c + L in affF , that v1 and F ∩ K lie on the same side of c + L,
and that τ1 > 0 (hence τ2 < 0).

Let S be any (n − 2)-dimensional affine subspace of affF that does not meet K.
It divides affF into two halfspaces; let w be the unit vector parallel to F and normal
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to S that points into the halfspace not containing F ∩ K. The vector z := c/‖c‖ is
the unit normal vector of F pointing away from o. For ϕ ∈ [0, π], let H(ϕ) denote the
hyperplane with normal vector (cos ϕ)z +(sin ϕ)w and containing S. There is a largest
number ϕ(S) ∈ (0, π) such that H(ϕ) ∩K = ∅ for 0 < ϕ < ϕ(S).

For δ > 0, we define the δ-neighborhood Nδ of c + L as the set of all subspaces S
as above which have distance less than δ from c and for which there exists a vector∑n

i=1 αiui orthogonal to S and with |αi−τi| < δ for i = 1, . . . , n. Elementary continuity
and compactness arguments yield the existence of numbers δ0 > 0 and ϕ0 > 0 such
that ϕ(S) ≥ ϕ0 for all S ∈ Nδ0 .

Let 0 < ε < τ1. For small % > 0, let t%1 := %(τ1− ε) and t%i := %τi, i = 2, . . . , n. Let
H% be the hyperplane passing through (1+t%i)vi for i = 1, . . . , n, and let S% := H%∩affF .
We put β := ε/(τ1 − τ2 − ε) and suppose that ε is so small that β < 1. Let

c% :=
1 + β

n
(1 + t%1)v1 +

1− β

n
(1 + t%2)v2 +

1

n

n∑
i=3

(1 + t%i)vi.

Then c% is a convex combination of (1 + t%i)vi, i = 1, . . . , n, hence c% ∈ H%. Moreover,
c% − c is orthogonal to

∑n
i=1 ui. It follows that c% ∈ S%.

The vector
∑n

i=1(1+ t%i)
−1ui is orthogonal to H%, hence the difference of u and this

vector, namely
∑n

i=1 αiui :=
∑n

i=1 t%i(1 + t%i)
−1ui, is orthogonal to S%. We can now

choose %̃ > 0 so small that for all % ∈ [0, %̃) we have |αi − τi| < δ0 for i = 1, . . . , n.
Next, we can decrease %̃ > 0, if necessary, and choose the number ε > 0 so small that
‖c% − c‖ < δ0 for all % ∈ [0, %̃). With these choices, for % ∈ [0, %̃) we have S% ∈ Nδ0 and,
therefore, ϕ(S%) ≥ ϕ0. Again decreasing %̃ > 0, if necessary, we can achieve that for all
% ∈ [0, %̃) the hyperplane H% makes an angle with the hyperplane H0 = affF which is
smaller than ϕ0. This implies that H% ∩K = ∅ and, hence, that K is contained in the
convex hull of o and (1 + t%i)vi, i = 1, . . . , n. Now we see that the numbers defined by
s1 := τ1 − ε and si := τi for i = 2, . . . , n satisfy (i) and (ii). This concludes the proof
of the lemma.

Now we finish the proof of Theorem 1. Let T be a regular simplex, and let
u1, . . . , un+1 be the exterior unit normal vectors of its facets. Then

M(T ) =
M(T n)

n + 1

n+1∑
i=1

hT (ui),

since this holds if T is circumscribed about Bn, and both sides of the equation are
invariant under translations (since

∑n+1
i=1 ui = o) and homogeneous of degree one under

positive dilatations.

Let SOn be the rotation group of Rn, and denote by ν its normalized Haar measure;
then ∫

SOn

f(ϑu0) ν(dϑ) =
1

ωn

∫
Sn−1

f dσ

for any integrable function f on Sn−1 and arbitrary u0 ∈ Sn−1.
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For ϑ ∈ SOn, let Tϑ be the regular simplex circumscribed about K with exterior
normal vectors ϑu1, . . . , ϑun+1. Then∫

SOn

M(Tϑ) ν(dϑ) =

∫
SOn

M(T n)

n + 1

n+1∑
i=1

hK(ϑui) ν(dϑ) =
1

2
M(K)M(T n).

We conclude that M(TK) ≤ 1
2
M(K)M(T n), and equality implies that M(Tϑ) = M(TK)

for each ϑ ∈ SOn. In particular, we have proved the inequality (1), and the last
assertion of the theorem shows that equality holds for balls.

To prove uniqueness, let us assume that K is a convex body satisfying M(K) =
M(Bn) = 2 (without loss of generality) and M(TK) = M(T n), then M(Tϑ) = M(T n)
for any ϑ ∈ SOn. For u ∈ Sn−1, we denote by Hu the supporting hyperplane of K with
outer unit normal vector u, and we define H̃u := Hu − n+1

n
u. For given u, let T be a

regular simplex circumscribed about K for which u is an exterior normal vector, and
F be the corresponding facet of T . We assume, without loss of generality, that Bn is
the inball of T . Then u is the centroid of F . By the lemma, u ∈ K. We assume first
that Hu ∩ K = {u}. The centroids of the other facets of T are also points of K, by

the lemma, as well as of Bn, and they are contained in the hyperplane H̃u. Let ϑ be a
rotation fixing u. Let u, u2, . . . , un+1 be the unit normal vectors of T . The simplex Tϑ

circumscribed to K with normal vectors u, ϑu2, . . . , ϑun+1 has the same mean width
as T , and its facet with normal u has centroid u, hence Tϑ = ϑT . It follows that
H̃u ∩K = H̃u ∩Bn. This property extends by continuity to all u ∈ Sn−1, since the set
of the vectors u for which Hu ∩K contains only one point is dense in Sn−1. Thus,

(∗) H̃u ∩K is an (n− 1)–ball of radius
√

1− 1/n2, for all u ∈ Sn−1.

Let again u and T (with inball Bn) be as above, and assume that Hu ∩ K = {u}.
If v ∈ H̃u ∩ Sn−1, then v is an exterior normal to K at v ∈ ∂K, hence H̃v ∩ K
contains u and the point of H̃v ∩ Sn−1 opposite to u. The distance of these two points
is 2
√

1− 1/n2, therefore (∗) yields H̃v ∩ K = H̃v ∩ Bn. So far we have proved that

the part of K in the half space bounded by H̃u and containing u coincides with the
corresponding part of Bn. Now choosing u suitably in this part and using (∗) we see
that K is a ball, and this completes the proof of Theorem 1.

3. The Scope of the Averaging Method. As mentioned in Remark 1, the planar
version of Theorem 1 has an extension from circumscribed triangles to circumscribed
m-gons. The proof uses a similar averaging argument, which is not obstructed by the
fact that some egdes of a circumscribed polygon with given normal vectors may have
length zero. In higher dimensions, the averaging argument works only for exceptional
polytopes. Let Q ⊂ Rn be a convex polytope, and let u1, . . . , um be the exterior unit
normal vectors of its facets. For a convex body K ⊂ Rn and for ϑ ∈ SOn, let

Qϑ(K) :=
m⋂

i=1

H−(K, ϑui),

where H−(K, v) denotes the supporting halfspace of K with exterior normal vector v.
Thus, Qϑ(K) is a polytope circumscribed to K with normal vectors in {ϑu1, . . . , ϑum},
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but Qϑ(K) may have fewer than m facets if K has singularities. The mean width of
Qϑ(K) can be represented by

M(Qϑ(K)) =
m∑

i=1

αihK(ϑui), (2)

with coefficients αi that depend only on the strong isomorphism type of the polytope
Qϑ(K) (see [6], p. 100, for the notion of strongly isomorphic polytopes). The existence
of the representation (2) follows from the fact that the mean width of a polytope P
can be written in the form

M(P ) = cn

∑
E∈F1(P )

γ(E, P )V1(E) (3)

(by [6], (4.2.17) and (5.3.12)), where F1(P ) is the set of edges of P , V1(E) is the
length of the edge E, γ(E, P ) is the external angle of P at its edge E, and cn is
a constant depending only on the dimension. Let us now assume that the polytope
Q has the following property: (?) every polytope with the same system of normal
vectors (of facets) as Q is strongly isomorphic to Q. Then the coefficients αi in (2) are
independent of ϑ, and we can conclude, as in the proof of Theorem 1, that∫

SOn

M(Qϑ(K)) ν(dϑ) =
1

2
M(K)M(Qid(B

n)).

This part of the argument, however, breaks down if Q does not satisfy (?).

The polytopes satisfying (?) have been called monotypic polytopes; they were inve-
stigated in [4]. For n > 2, a complete classification has only been achieved for n = 3
or under the assumption of central symmetry. We consider here only the case of
parallelepipeds, where it is easy to obtain a counterpart to Theorem 1.

For a convex body K ⊂ Rn, we denote by PK a parallelepiped of minimal mean
width circumscribed about K. Let Cn be a cube circumscribed about Bn.

Theorem 2. For any convex body K ⊂ Rn,

M(PK) ≤ 1

2
M(K)M(Cn). (4)

Equality holds if and only if K is a body of constant width.

Every parellepiped of minimal mean width circumscribed about a given body of con-
stant width is a cube.

To verify the second assertion of the theorem, we note that an n-dimensional paral-
lelepiped P is a Minkowski sum of n segments, hence its mean width is the sum of the
mean widths of the segments and is thus a constant multiple of the sum of the edge
lengths of P . If the parallelepiped P is circumscribed about a convex body of constant
width b, then the length of a given edge E is not smaller than the distance between
the pair of parallel facets of P through the endpoints of E, which is equal to b, and
equality holds if and only if the edge is orthogonal to the facets. Now the assertion is
clear.
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To prove the first assertion of Theorem 2, we argue precisely as in the proof of
Theorem 1, replacing the set of normal vectors of a regular simplex by the set of
normal vectors of the cube Cn. This yields equality (4), and equality holds if K is
a body of constant width. To prove uniqueness, let K be a convex body satisfying
M(K) = M(Bn) = 2 and M(PK) = M(Cn), then M(Pϑ) = M(Cn) for any ϑ ∈ SOn;
here Pϑ is the rectangular parallelepiped circumscribed about K whose normal vectors
arise from the normal vectors of Cn by applying the rotation ϑ. Let L be a two-
dimensional linear subspace of Rn and L⊥ its orthogonal complement. Let u1, . . . , un

be unit vectors such that (u1, u2) is a basis of L (not necessarily orthogonal) and
(u3, . . . , un) is an orthonormal basis of L⊥. Let P be the parallelepiped circumscribed
about K with normal vectors ±u1, . . . ,±un. Let ·|L denote the orthogonal projection
to L. Then P is the direct orthogonal sum of the parallelogram P |L in L, which
is circumscribed about K|L, and a certain (n − 2)-dimensional cube C. The mean
width of P is obtained from M(P ) = M(P |L) + M(C). Since the minimal mean
width M(PK) is realized by all rectangular parallelepipeds circumscribed about K, the
minimal perimeter of all parallelograms circumscribed about K|L is realized by each
circumscribed rectangle. This property is shared by the centrally symmetric body
S := (K|L−K|L)/2, since parallelograms with the same normals circumscribed about
K|L and S, respectively, are translates of each other. By the argument used in [5], p.
381, modified for centrally symmetric convex sets and cirsumscribed parallelograms,
this implies that K|L is a circular disc. Since L was an arbitrary two-dimensional
linear subspace, it follows that (K − K)/2 is a ball, hence K is a body of constant
width.
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1957.

[4] P. McMullen, R. Schneider, and G.C. Shephard, Monotypic polytopes and their
intersection properties. Geom. Dedicata 3 (1974), 99–129.

[5] R. Schneider, Zwei Extremalaufgaben für konvexe Bereiche. Acta Math. Acad. Sci.
Hung. 22 (1971), 379–383.

[6] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory. Cambridge Univer-
sity Press, Cambridge 1993.

[7] G.C. Shephard, The mean width of a convex polytope. J. London Math. Soc. 43
(1968), 207–209.

7


