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Abstract

Let C be a closed convex cone in Rn, pointed and with interior points. We consider
sets of the form A = C \A•, where A• ⊂ C is a closed convex set. If A has finite volume
(Lebesgue measure), then A is called a C-coconvex set. The family of C-coconvex sets is
closed under the addition ⊕ defined by C \ (A1⊕A2) = (C \A1) + (C \A2). We develop
first steps of a Brunn–Minkowski theory for C-coconvex sets, which relates this addition
to the notion of volume. In particular, we establish the equality conditions for a Brunn–
Minkowski type inequality (with reversed inequality sign), introduce mixed volumes and
their integral representations, and prove a Minkowski-type uniqueness theorem for C-
coconvex sets with equal surface area measures.

1 Introduction

Let C be a pointed closed convex cone with apex o and with interior points in Euclidean
space Rn. This cone will be fixed throughout the following. Let ∆ ⊂ C be a closed convex
set such that C \ ∆ is bounded and nonempty. Khovanskĭı and Timorin [1] call the set
C \ (∆ ∪ {o}) a coconvex body. (The non-inclusion of certain boundary points is relevant for
some of their aims, but not if volumes are considered.) The authors of [1] extend various
results of the classical Brunn–Minkowski theory of convex bodies to the coconvex setting.
These include the Aleksandrov–Fenchel inequalities and the Brunn–Minkowski inequality,
with reversed inequality signs. The derivation of the Aleksandrov–Fenchel inequalities for
coconvex bodies from those for convex bodies is brief and particularly elegant.

In the following, we extend the concept of coconvex bodies, by weakening the requirement
of boundedness to that of finite volume. By a C-close set we understand a closed convex set
A• ⊂ C such that C \A• has positive finite Lebesgue measure. (Note that the boundaries of
A• and C may have empty or nonempty intersection.) The set A = C \ A• is then called a
C-coconvex set, and its Lebesgue measure is denoted by Vn(A) and is called its volume. The
C-coconvex A set determines, conversely, the C-close set A• = C \A.

For C-coconvex sets, we develop in this paper the first steps of a Brunn–Minkowski theory,
that is, a study of the relations between the notion of volume and a notion of addition, based
on vector addition.

Let A0, A1 be C-coconvex sets. Their co-sum is defined by

A0 ⊕A1 = C \ (A•0 +A•1),
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where + denotes the usual Minkowski addition. Note that A•0 + A•1 ⊂ C + C = C. Whereas
the Minkowski sum of two unbounded closed convex sets need not be closed in general, it is
easy to see that A•0 +A•1 is closed, because A•0, A

•
1 are subsets of a pointed cone. That A0⊕A1

has finite volume, is a consequence of the following theorem. Here, λA := {λa : a ∈ A} for
λ ≥ 0 and a C-coconvex set A.

Theorem 1. Let A0, A1 be C-coconvex sets, and let λ ∈ (0, 1). Then

Vn((1− λ)A0 ⊕ λA1)
1
n ≤ (1− λ)Vn(A0)

1
n + λVn(A1)

1
n . (1)

Equality holds if and only if A0 = αA1 with some α > 0.

The essential point here is the equality condition, which will be needed below. While the
inequality (1) itself could be obtained by approximation from the results in [1], and is only
a special case of much more general inequalities due to Milman and Rotem [2], we don’t see
an easy way to get the equality condition in either case. Our proof of (1), which adapts the
classical Kneser–Süss approach to the Brunn–Minkowski inequality for convex bodies, yields
the equality condition for (1) as a consequence of that for the latter inequality.

In the development of the classical Brunn–Minkowski theory for convex bodies, some of
the first steps are the introduction of mixed volumes, their integral representation, and con-
sequences of the Brunn–Minkowski theorem, such as Minkowski’s first and second inequality
for mixed volumes. A first application is the uniqueness result in the Minkowski problem
concerning convex bodies with given surface area measures. We follow a similar line for C-
coconvex sets. In particular, we prove a counterpart to Minkowski’s uniqueness theorem. Let
A be a C-coconvex set. Its area measure is defined as follows. Let

C◦ = {x ∈ Rn : 〈x, y〉 ≤ 0 for all y ∈ C}

be the polar cone of C; here 〈· , ·〉 denotes the scalar product of Rn. Denoting by Sn−1 the
unit sphere of Rn, we define

ΩC := Sn−1 ∩ intC◦.

The spherical image σ(A•, β) of the closed convex set A• at the set β is the set of all outer unit
normal vectors of A• at points of A• ∩β. For the C-close set A•, we have σ(A•, intC) ⊆ ΩC ,
since a supporting hyperplane of A• at a point of intC ∩ bdA• (where bd denotes the
boundary) separates A• and the origin o. For ω ⊆ ΩC , the reverse spherical image τ(A•, ω)
is defined as the set of all points in bdA• at which there exists an outer unit normal vector
belonging to ω. For Borel sets ω ⊆ ΩC one then defines

Sn−1(A,ω) := Sn−1(A•, ω) = Hn−1(τ(A•, ω)),

where Hn−1 is the (n − 1)-dimensional Hausdorff measure (so that Sn−1(A•, ·) is the usual
surface area measure, extended to closed convex sets). Using the theory of surface area
measures of convex bodies (see [3, Sect. 4.2]), it is easily seen that this defines a Borel
measure on ΩC , the surface area measure Sn−1(A, ·) of A. In contrast to the case of convex
bodies, the surface area measure of a C-coconvex set is only defined on the subset ΩC of
Sn−1, and the total measure may be infinite.

Now we can state a counterpart to Minkowski’s uniqueness theorem.

Theorem 2. If A0, A1 are C-coconvex sets with Sn−1(A0, ·) = Sn−1(A1, ·), then A0 = A1.
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Some interesting open questions remain. For example, which are the necessary and suffi-
cient conditions on a Borel measure on ΩC to be the surface area measure of a C-coconvex
set? And does the uniqueness still hold if the condition that C \ A• has finite volume is
replaced by the condition that A• is only ‘asymptotic’ to C, in the sense that the distance of
the boundaries of C and A• outside B(o, r) (ball with center o and radius r) tends to zero,
as r →∞?

2 Notation and Preliminaries

We fix some notation, and collect what has already been introduced. We work in the n-
dimensional Euclidean space Rn, with scalar product 〈· , ·〉 and norm ‖ · ‖. The unit sphere of
Rn is the subspace Sn−1 = {x ∈ Rn : ‖x‖ = 1}. We use the k-dimensional Hausdorff measure
Hk in Rn, for k = n, which on Lebesgue measurable sets coincides with Lebesgue measure,
and for k = n − 1. We use Vn to denote the Lebesgue measure, then called the volume, of
convex bodies or C-coconvex sets. Vn−1(K) will be used to denote the (n − 1)-dimensional
volume of a convex body of dimension n − 1. The definitions of the spherical image σ(K, ·)
and the reverse spherical image τ(K, ·), as given in [3, p. 88], do not require the boundedness
and make sense for nonempty closed convex sets K.

A C-coconvex set A and the C-close set A• := C \A determine each other uniquely, and
we have (λA)• = λA•, since λC = C. Clearly, the volume of C-coconvex sets is homogeneous
of degree n, that is,

Vn(λA) = λnVn(A) for λ ≥ 0.

Since the cone C, fixed throughout this paper, is pointed, we can choose a unit vector w
such that 〈x,w〉 > 0 for all x ∈ C \ {o}. The vector w will be fixed; therefore it does not
appear in the notation used below. We define the hyperplanes

Ht := {x ∈ Rn : 〈x,w〉 = t}

and the closed halfspaces
H−t := {x ∈ Rn : 〈x,w〉 ≤ t},

for t ≥ 0. For a subset M ⊆ C, we define

Mt := M ∩H−t

for t > 0; thus, Mt is always bounded.

We remark that a C-coconvex set A has the property that its boundary inside intC ‘can
be seen’ from o. In other words, every ray with endpoint o and passing through an interior
point of C meets the boundary of A precisely once. This follows easily from the finiteness of
the volume of A.

3 Proof of Theorem 1

The following proof of Theorem 1 has elements from the Kneser–Süss proof of the classical
Brunn–Minkowski inequality (see, e.g., [3, pp. 370–371]).

Let A0, A1 be C-coconvex sets. First we assume that

Vn(A0) = Vn(A1) = 1. (2)
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Let 0 < λ < 1 and define

A•λ := (1− λ)A•0 + λA•1, Aλ := C \A•λ = (1− λ)A0 ⊕ λA1.

In the following, ν ∈ {0, 1}. We write

vν(ζ) := Vn−1(A•ν ∩Hζ), wν(ζ) := Vn(A•ν ∩H−ζ )

for ζ ≥ 0, thus

wν(ζ) =

∫ ζ

αν

vν(s) ds,

where αν is the number for which Hαν supports A•ν . On (αν ,∞), the function vν is continuous,
hence wν is differentiable and

w′ν(ζ) = vν(ζ) > 0 for αν < ζ <∞.

Let zν be the inverse function of wν , then

z′ν(τ) =
1

vν(zν(τ))
for 0 < τ <∞.

With
Dν(τ) := A•ν ∩Hzν(τ), zλ(τ) := (1− λ)z0(τ) + λz1(τ),

the inclusion
A•λ ∩Hzλ(τ) ⊇ (1− λ)D0(τ) + λD1(τ) (3)

holds (trivially). For τ > 0 we have

Vn(Aν ∩H−zν(τ)) = Vn(C ∩H−zν(τ))− Vn(A•ν ∩H−zν(τ))

= Vn(C ∩H−zν(τ))− τ,

Vn(Aλ ∩H−zλ(τ)) = Vn(C ∩H−zλ(τ))− Vn(A•λ ∩H−zλ(τ)). (4)

We write
Vn(A•λ ∩H−zλ(τ)) =: f(τ).

Then, with αλ = (1− λ)α0 + λα1,

f(τ) =

∫ zλ(τ)

αλ

Vn−1(A•λ ∩Hζ) dζ

=

∫ τ

0
Vn−1(A•λ ∩Hzλ(t))z

′
λ(t) dt

≥
∫ τ

0
Vn−1((1− λ)D0(t) + λD1(t))z′λ(t) dt,

by (3). In the integrand, we use the Brunn–Minkowski inequality in dimension n − 1 and
obtain

f(τ) ≥
∫ τ

0

[
(1− λ)v0(z0(t))

1
n−1 + λv1(z1(t))

1
n−1

]n−1
[

1− λ
v0(z0(t))

+
λ

v1(z1(t))

]
dt

≥ τ, (5)
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where the last inequality follows by estimating the integrand according to [3, p. 371].

From (4) we have

Vn(Aλ ∩H−zλ(τ)) = Vn(C ∩H−zλ(τ))− f(τ),

and we intend to let τ →∞. Since C is a cone, for ζ > 0,

C ∩H−ζ = ζC1 with C1 := C ∩H−1

and hence Vn(C ∩H−ζ ) = ζnVn(C1). Therefore,

Vn(C ∩H−zλ(τ)) = [(1− λ)z0(τ) + λz1(τ)]nVn(C1), Vn(C ∩H−zν(τ)) = zν(τ)nVn(C1).

This gives

Vn(Aλ ∩H−zλ(τ))

=
[
(1− λ)Vn(C ∩H−z0(τ))

1
n + λVn(C ∩H−z1(τ))

1
n

]n
− f(τ)

=
[
(1− λ)[Vn(A0 ∩H−z0(τ)) + τ ]

1
n + λ[Vn(A1 ∩H−z1(τ)) + τ ]

1
n

]n
− f(τ)

=
[
(1− λ)[b0(τ) + τ ]

1
n + λ[b1(τ) + τ ]

1
n

]n
− f(τ)

with bν(τ) = Vn(Aν ∩H−zν(τ)) for ν = 0, 1. Note that (2) implies

lim
τ→∞

bν(τ) = 1.

Using the mean value theorem (for each fixed τ), we can write

(b1(τ) + τ)
1
n − (b0(τ) + τ)

1
n = (b1(τ)− b0(τ))

1

n
(b(τ) + τ)

1
n
−1

with b(τ) between b0(τ) and b1(τ), and hence tending to 1 as τ →∞. With 1
n(b(τ)+τ)

1
n
−1 =:

h(τ) = O
(
τ

1−n
n

)
(as τ →∞), we get

Vn(Aλ ∩H−zλ(τ))

=
[
(1− λ)(b0(τ) + τ)

1
n + λ

(
(b0(τ) + τ)

1
n + (b1(τ)− b0(τ))h(τ)

)]n
− f(τ)

=
[
(b0(τ) + τ)

1
n + λ(b1(τ)− b0(τ))h(τ))

]n
− f(τ)

= b0(τ) + τ − f(τ) +

n∑
r=1

(
n

r

)
(b0(τ) + τ)

n−r
n [λ(b1(τ)− b0(τ))]r h(τ)r.

Since b0(τ)→ 1, f(τ) ≥ τ , (b0(τ) + τ)
n−r
n h(τ)r = O(τ1−r), and b1(τ)− b0(τ)→ 0 as τ →∞,

we conclude that
Vn(Aλ) = lim

τ→∞
Vn(Aλ ∩H−zλ(τ)) ≤ 1.

This proves that
Vn((1− λ)A0 ⊕ λA1) ≤ 1. (6)
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If there exists a number τ0 > 0 for which f(τ0) = τ0 + ε with ε > 0, then, for τ > τ0,

f(τ) = Vn(A•λ ∩H−zλ(τ))

= τ0 + ε+

∫ τ

τ0

[
(1− λ)v0(z0(t))

1
n−1 + λv1(z1(t))

1
n−1

]n−1
[

1− λ
v0(z0(t))

+
λ

v1(z1(t))

]
dt

≥ τ0 + ε+ (τ − τ0) = τ + ε,

and as above we obtain that Vn(Aλ) ≤ 1− ε.
Suppose now that (6) holds with equality. Then, as just shown, we have f(τ) = τ for all

τ ≥ 0. Thus, we have equality in (5) and hence equality in (3), for all τ ≥ 0. Explicitly, this
means that

A•λ ∩Hzλ(τ) = (1− λ)(A•0 ∩Hz0(τ)) + λ(A•1 ∩Hz1(τ)) for all τ ≥ 0. (7)

We claim that this implies

A•λ ∩H−zλ(τ) = (1− λ)(A•0 ∩H−z0(τ)) + λ(A•1 ∩H−z1(τ)) (8)

for all τ ≥ 0. For the proof, let x ∈ A•λ ∩H
−
zλ(τ). Then there is a number σ ∈ [0, τ ] such that

x ∈ A•λ ∩Hzλ(σ). By (7),

x ∈ (1− λ)(A•0 ∩Hz0(σ)) + λ(A•1 ∩Hz1(σ))

⊂ (1− λ)(A•0 ∩H−z0(τ)) + λ(A•1 ∩H−z1(τ)),

since σ ≤ τ implies Hzν(σ) ⊂ H−zν(τ). This shows the inclusion ⊆ in (8). The inclusion ⊇ is
trivial.

To (8), we can now apply the Brunn–Minkowski inequality for n-dimensional convex
bodies and conclude that

Vn(A•λ ∩H−zλ(τ)) ≥ τ.

But we know that equality holds here, since equality holds in (5), hence the convex bodies
A•0 ∩H

−
z0(τ) and A•1 ∩H

−
z1(τ), which have the same volume, are translates of each other. The

translation vector might depend on τ , but in fact, it does not, since for 0 < σ < τ , the body
A•ν ∩Hzν(σ) is the intersection of A•ν ∩Hzν(τ) with a closed halfspace. We conclude that A•1
is a translate of A•0, thus there is a vector v with A•0 + v = A•1 ⊂ C. Suppose that v 6= o.
Let M be the set of all points x ∈ intC ∩ bdA•0 for which x + λv /∈ A•0 for λ > 0. The set⋃
x∈M (x, x+ v] is contained in A0 and has infinite Lebesgue measure, a contradiction. Thus,

v = o and hence A•0 = A•1.

This proves Theorem 1 under the assumption (2). Now let A0, A1 be arbitrary C-coconvex
sets. As mentioned, also the volume of C-coconvex sets is homogeneous of degree n. Therefore
(as in the case of convex bodies, see [3, p. 370]), we define

Aν := Vn(Aν)−1/nAν for ν = 0, 1, λ :=
λVn(A1)1/n

(1− λ)Vn(A0)1/n + λVn(A1)1/n
.

Then Vn(Aν) = 1 for ν = 0, 1, hence Vn((1−λ)A0⊕λA1) ≤ 1, as just proved. This gives the
assertion.
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4 A volume representation

The proof of Theorem 2 requires that we develop the initial steps of a theory of mixed volumes
for C-coconvex sets. First we derive an integral representation of the volume of C-coconvex
sets.

Let A be a C-coconvex set, and let u ∈ ΩC . Since o /∈ A• (because A 6= ∅), there is
a supporting halfspace of A• with outer normal vector u and not containing o. Therefore,
the support function h(A•, ·) of A•, defined by h(A•, u) = sup{〈x, u〉 : x ∈ A•} for u ∈ ΩC ,
satisfies

−∞ < h(A•, u) < 0 for u ∈ ΩC .

We set
h(A, u) := −h(A•, u)

and call the function h(A, ·) : ΩC → R+ thus defined the support function of A. The area
measure Sn−1(A, ·) of A was already defined, namely by

Sn−1(A,ω) := Sn−1(A•, ω) = Hn−1(τ(A•, ω))

for Borel sets w ⊆ ΩC . Recall that τ(A•, ω) was defined as the set of boundary points of A•

at which there exists an outer unit normal vector falling in ω.

The volume of the C-coconvex body A has an integral representation similar to that in
the case of convex bodies, as stated in the following lemma.

Lemma 1. The volume of a C-coconvex set A can be represented by

Vn(A) =
1

n

∫
ΩC

h(A, u)Sn−1(A,du). (9)

Proof. Recall that Mt := M ∩ H−t for M ⊆ C, in particular, Ct = C ∩ H−t . We write
(A•)t = A•t , and later also (A•i )t = A•i,t.

Let t > 0 be such that A•t has interior points. Let

ωt := σ(A•t , intCt),

that is, the spherical image of the set of boundary points of A• in the interior of Ct. Further,
let

ηt := σ(A•t , bdC) ∩ bdC◦.

By a standard representation of the volume of convex bodies (formula (5.3) in [3]), we have

Vn(A•t ) =
1

n

∫
Sn−1

h(A•t , u)Sn−1(A•t , du).

Here, ∫
ηt

h(A•t , u)Sn−1(A•t ,du) = 0,

since u ∈ ηt implies h(A•t , u) = 0. We state that

Sn−1(A•t , Sn−1 \ (ωt ∪ ηt ∪ {w})) = 0. (10)

For the proof, let x be a boundary point of A•t where a vector u ∈ Sn−1 \ (ωt ∪ ηt ∪ {w})
is attained as outer normal vector. Then x /∈ intCt and hence x ∈ Ht or x ∈ bdC. If
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x ∈ Ht, then u 6= w implies that x lies in two distinct supporting hyperplanes of A•t . If
x ∈ (bdC) \Ht, then u /∈ ηt implies that x lies in two distinct supporting hyperplanes of A•t .
In each case, x is a singular boundary point of A•t . Now the assertion (10) follows from [3,
(4.32) and Thm. 2.2.5].

As a result, we have

Vn(A•t ) =
1

n

∫
ωt∪{w}

h(A•t , u)Sn−1(A•t , du).

Since
h(A•t , w) = t, Sn−1(A•t , {w}) = Vn−1(A• ∩Ht),

we obtain

Vn(A•t ) = − 1

n

∫
ωt

h(A, u)Sn−1(A,du) +
1

n
tVn−1(A• ∩Ht),

by the definition of h(A, ·) and Sn−1(A, ·). Writing

B(t) := conv((A• ∩Ht) ∪ {o}) \A•t ,

we have

Vn(B(t)) =
1

n
tVn−1(A• ∩Ht)− Vn(A•t )

and thus

Vn(B(t)) =
1

n

∫
ωt

h(A, u)Sn−1(A,du).

On the other hand, writing

q(t) := Vn−1(C ∩Ht)− Vn−1(A• ∩Ht),

we get

Vn(At) = Vn(B(t)) +
1

n
tq(t) =

1

n

∫
ωt

h(A, u)Sn−1(A,du) +
1

n
tq(t).

Given ε > 0, to each t0 > 0 there exists t ≥ t0 with tq(t) < ε. Otherwise, there would
exist t0 with tq(t) ≥ ε for t ≥ t0 and hence

∫∞
t0
q(t)dt = ∞, which yields Vn(A) = ∞, a

contradiction. Therefore, we can choose an increasing sequence (ti)i∈N with ti → ∞ for
i→∞ such that tiq(ti)→ 0. From

Vn(Ati) =
1

n

∫
ωti

h(A, u)Sn−1(A,du) +
1

n
tiq(ti)

and ωti ↑ ΩC we then obtain

Vn(A) =
1

n

∫
ΩC

h(A, u)Sn−1(A,du),

as stated.
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5 Mixed volumes of bounded C-coconvex sets

First we introduce, in this section, mixed volumes and their representations for bounded
coconvex sets. Let A be a bounded C-coconvex set. Then A ⊂ intH−t for all sufficiently
large t. For bounded C-coconvex sets A1, . . . , An−1, we define their mixed area measure by

S(A1, . . . , An−1, ω) = S(A•1,t, . . . , A
•
n−1,t, ω)

for Borel sets ω ⊆ ΩC , where t is chosen sufficiently large. Here S(A•1,t, . . . , A
•
n−1,t, ·) is the

usual mixed area measure of the convex bodies A•1,t, . . . , A
•
n−1,t (see [3, Sect. 5.1]). Clearly,

the definition does not depend on t. It should be noted that the mixed area measure of
bounded C-coconvex sets is only defined on ΩC , and it is finite. For bounded C-coconvex
sets A1, . . . , An, we define their mixed volume by

V (A1, . . . , An) =
1

n

∫
ΩC

h(A1, u)S(A2, . . . , An,du). (11)

Lemma 2. The mixed volume V (A1, . . . , An) is symmetric in A1, . . . , An.

Proof. We choose t so large that Ai ⊂ H−t for i = 1, . . . , n. The mixed volume of the convex
bodies A•1,t, . . . , A

•
n,t is given by

V (A•1,t, . . . , A
•
n,t) =

1

n

∫
Sn−1

h(A•1,t, u)S(A•2,t, . . . , A
•
n,t,du).

The sphere Sn−1 is the disjoint union of the sets

ΩC , Sn−1 ∩ bdC◦, {w}, and the remaining set ω0.

For u ∈ Sn−1 ∩ bdC◦, we have h(A•1,t, u) = 0. Since for each body A•i,t the support set
with outer normal vector w is equal to C ∩ Ht, we get Sn−1(A•i,t, {w}) = Vn−1(C ∩ Ht) for
i = 2, . . . , n and thus, by [3, (5.18)],

S(A•2,t, . . . , A
•
n,t, {w}) = Vn−1(C ∩Ht).

Therefore,

1

n

∫
{w}

h(A•1,t, u)S(A•2,t, . . . , A
•
n,t, du) =

1

n
tVn−1(C ∩Ht) = Vn(Ct).

Further, we have
S(A•2,t, . . . , A

•
n,t, ω0) = 0, (12)

since for λ2, . . . , λn ≥ 0, the convex body λ2A
•
2,t + · · ·+ λnA

•
n,t has the property that any of

its points at which some u ∈ ω0 is an outer normal vector, is a singular point. Equation (12)
then follows from [3, (5.21) and Thm. 2.2.5]. As a result, we obtain

V (A•1,t, . . . , A
•
n,t) = Vn(Ct) +

1

n

∫
ΩC

h(A•1,t, u)S(A•2,t, . . . , A
•
n,t,du)

= Vn(Ct)−
1

n

∫
ΩC

h(A1, u)S(A2, . . . , An,du)

= Vn(Ct)− V (A1, . . . , An).

Since V (A•1,t, . . . , A
•
n,t) is symmetric in its arguments, also V (A1, . . . , An) is symmetric in its

arguments.
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Now let A1, . . . , Am, with m ∈ N, be bounded C-coconvex sets, and choose t > 0 with
Ai ⊂ Ct for i = 1, . . . ,m. By (9), for λ1, . . . , λm ≥ 0,

Vn(λ1A1 ⊕ · · · ⊕ λmAm)

=
1

n

∫
ΩC

h(λ1A1 ⊕ · · · ⊕ λmAm, u)Sn−1(λ1A1 ⊕ · · · ⊕ λmAm, du).

Here, for u ∈ ΩC ,

h(λ1A1 ⊕ · · · ⊕ λmAm, u) = −h((λ1A1 ⊕ · · · ⊕ λmAm)•, u)

= −h(λ1A
•
1 + · · ·+ λmA

•
m, u)

= −[λ1h(A•1, u) + · · ·+ λm(A•m, u)] (13)

and, for t sufficiently large and Borel sets ω ⊆ ΩC ,

Sn−1(λ1A1 ⊕ · · · ⊕ λmAm, ω)

= Sn−1(λ1A
•
t,1 + · · ·+ λmA

•
t,m, ω) (14)

=
m∑

i1,...,in−1=1

λi1 · · ·λin−1S(A•t,i1 , . . . , A
•
t,in−1

, ω),

=
m∑

i1,...,in−1=1

λi1 · · ·λin−1S(Ai1 , . . . , Ain−1 , ω),

by [3, (5.18)]. Using Lemma 2, we conclude that

Vn(λ1A1 ⊕ · · · ⊕ λmAm) =

m∑
i1,...,in=1

λi1 · · ·λinV (Ai1 , . . . , Ain), (15)

in analogy to [3, (5.17)].

6 Mixed volumes of general C-coconvex sets

We extend the mixed volumes to not necessarily bounded C-coconvex sets. For this, we use
approximation by mixed volumes of bounded C-coconvex sets.

Let ω ⊂ ΩC be an open subset whose closure (in Sn−1) is contained in ΩC . Let A be a
C-coconvex set, so that A• = C \A is closed and convex. We define

A•(ω) := C ∩
⋂
u∈ω

H−(A•, u), A(ω) := C \A•(ω),

where H−(A•, u) denotes the supporting halfspace of the closed convex set A• with outer
normal vector u. We claim that A(ω) is bounded. For the proof, we note that the set ω,
whose closure, closω, is contained in ΩC , has a positive distance from the boundary of ΩC

(relative to Sn−1). Therefore, there is a number a0 > 0 such that

〈x, u〉 ≤ −a0 for x ∈ C with ‖x‖ = 1 and u ∈ ω. (16)
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Let x ∈ A(ω). Then there is some u ∈ ω with x /∈ H−(A•, u), hence with 〈x, u〉 > h(A•, u).
Since 〈x, u〉 ≤ −a0‖x‖ by (16), we obtain

‖x‖ ≤ 1

a0
max{−h(A•, u) : u ∈ closω}.

Thus, A(ω) is a bounded C-coconvex set.

With A and ω as above, we associate another set, namely

A[ω] :=
⋃

x∈τ(A•,ω)∩intC

(o, x),

where (o, x) denotes the open line segment with endpoints o and x. We choose an increasing
sequence (ωj)j∈N of open subsets of ΩC with closures in ΩC and with

⋃
j∈N ωj = ΩC . Then

A[ωj ] ↑ intA as j →∞. (17)

In fact, that the set sequence is increasing, follows from the definition. Let y ∈ intA. Then
there is a boundary point x of A• with y ∈ (o, x). Let u be an outer unit normal vector of
A• at x. Then u ∈ ΩC , hence u ∈ ωj for some j. For this j, we have y ∈ A[ωj ].

Lemma 3. If A1, . . . , An are C-coconvex sets and λ1, . . . , λn ≥ 0, then

lim
j→∞

Vn(λ1A1(ωj) ⊕ · · · ⊕ λnAn(ωj)) = Vn(λ1A1 ⊕ · · · ⊕ λnAn). (18)

Proof. We state that

(λ1A1 ⊕ · · · ⊕ λnAn)[ωj ] ⊆ λ1A1(ωj) ⊕ · · · ⊕ λnAn(ωj) ⊆ λ1A1 ⊕ · · · ⊕ λnAn. (19)

For the proof of the first inclusion, let y ∈ (λ1A1⊕· · ·⊕λnAn)[ωj ]. Then there exists a point
x ∈ τ(λ1A

•
1 + · · · + λnA

•
n, ωj) ∩ intC with y ∈ (o, x). Let u ∈ ωj be an outer unit normal

vector of λ1A
•
1 + · · · + λnA

•
n at x. Denoting by F (K,u) the support set of a closed convex

set K with outer normal vector u, we have (by [3, Thm. 1.7.5])

F (λ1A
•
1 + · · ·+ λnA

•
n, u) = λ1F (A•1, u) + · · ·+ λnF (A•n, u),

hence there are points xi ∈ F (A•i , u) (i = 1, . . . , n) with x = λ1x1 + · · · + λnxn. We have
xi ∈ A•i(ωj), hence x ∈ λ1A1(ωj) ⊕ · · · ⊕ λnAn(ωj). This proves the first inclusion of (19). The

second inclusion follows immediately from the definitions. From (19) and (17) we obtain

λ1A1(ωj) ⊕ · · · ⊕ λnAn(ωj) ↑ int (λ1A1 ⊕ · · · ⊕ λnAn) as j →∞,

from which the assertion (18) follows.

For the bounded C-coconvex sets A1(ωj), . . . , An(ωj) we have from (15) that

Vn(λ1A1(ωj) ⊕ · · · ⊕ λnAn(ωj)) =

n∑
i1,...,in=1

λi1 · · ·λinV (Ai1(ωj), · · · , Ain(ωj)).

By Lemma 3, the left side converges, for j →∞, to Vn(λ1A1 ⊕ · · · ⊕ λnAn). Since this holds
for all λ1, . . . , λn ≥ 0, we can conclude that the limit

lim
j→∞

V (Ai1(ωj), . . . , Ain(ωj)) =: V (Ai1 , . . . , Ain)
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exists and that

Vn(λ1A1 ⊕ · · · ⊕ λnAn) =
n∑

i1,...,in=1

λi1 · · ·λinV (Ai1 , . . . , Ain). (20)

We call V (A1, . . . , An) the mixed volume of the C-coconvex sets A1, . . . , An.

For this mixed volume, we shall now establish an integral representation. To that end,
we note first that the support functions of A• and A•(ωj) satisfy

h(A•, u) = h(A•(ωj), u) for u ∈ ωj . (21)

Since ωj is open, then for u ∈ ωj the support functions of A• and A•(ωj) coincide in a

neighborhood of u. By [3, Thm. 1.7.2], the support sets of A• and A•(ωj) with outer normal

vector u are the same. It follows that τ(A•, ωj) = τ(A•(ωj), ωj) and, therefore, that also

Sn−1(A•, ·) = Sn−1(A•(ωj), ·) on ωj . (22)

More generally, if A1, . . . , An−1 are C-coconvex sets, we can define their mixed area mea-
sure by

S(A•1, . . . , A
•
n−1, ·) = S(A•1(ωj)

, . . . , A•n−1(ωj)
, ·) on ωj , (23)

for j ∈ N. Since ωj ↑ ΩC , this yields a Borel measure on all of ΩC . It need not be finite.
Then we define

S(A1, . . . , An−1, ·) := S(A•1, . . . , A
•
n−1, ·).

By Lemma 1, (21) and (22) we have

Vn(A(ωj))

=
1

n

∫
ωj

h(A(ωj), u)Sn−1(A(ωj), du) +
1

n

∫
ΩC\ωj

h(A(ωj), u)Sn−1(A(ωj),du)

=
1

n

∫
ωj

h(A, u)Sn−1(A, du) +
1

n

∫
ΩC\ωj

h(A(ωj), u)Sn−1(A(ωj),du).

From A(ωj) ↑ A we get
lim
j→∞

Vn(A(ωj)) = Vn(A), (24)

and ωj ↑ ΩC gives

lim
j→∞

1

n

∫
ωj

h(A, u)Sn−1(A,du) =
1

n

∫
ΩC

h(A, u)Sn−1(A,du) = Vn(A).

It follows that

lim
j→∞

∫
ΩC\ωj

h(A(ωj), u)Sn−1(A(ωj),du) = 0. (25)
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From (11) and using (22) and (23), we get

V (A1(ωj), . . . , An(ωj))

=
1

n

∫
ωj

h(A1(ωj), u)S(A2(ωj), . . . , An(ωj),du)

+
1

n

∫
ΩC\ωj

h(A1(ωj), u)S(A2(ωj), . . . , An(ωj),du)

=
1

n

∫
ωj

h(A1, u)S(A2, . . . , An, du)

+
1

n

∫
ΩC\ωj

h(A1(ωj), u)S(A2(ωj), . . . , An(ωj),du) (26)

Writing A := A1 ⊕ · · · ⊕An we have the trivial estimates

h(A1(ωj), u) ≤ h(A(ωj), u), S(A2(ωj), . . . , An(ωj), ·) ≤ Sn−1(A(ωj), ·).

Hence, the term (26) can be estimated by

1

n

∫
ΩC\ωj

h(A1(ωj), u)S(A2(ωj), . . . , An(ωj),du)

≤ 1

n

∫
ΩC\ωj

h(A(ωj), u)Sn−1(A(ωj), du),

and by (25) this tends to zero for j →∞. We conclude that

V (A1, . . . , An) =
1

n

∫
ΩC

h(A1, u)S(A2, . . . , An,du). (27)

7 Proof of Theorem 2

Theorem 1 together with the polynomial expansion (20) now allows similar conclusions as in
the case of convex bodies. Let A0, A1 be C-coconvex sets, and write Aλ = (1− λ)A0 ⊕ λA1

for 0 ≤ λ ≤ 1. A special case of (20) reads

Vn(Aλ) =
n∑
i=0

(
n

i

)
(1− λ)n−iλiV (A0, . . . , A0︸ ︷︷ ︸

n−i

, A1, . . . , A1︸ ︷︷ ︸
i

).

The function f defined by f(λ) = Vn(Aλ)1/n − (1− λ)Vn(A0)1/n − λVn(A1)1/n for 0 ≤ λ ≤ 1
is convex, as follows from Theorem 1 and a similar argument as in the case of convex bodies
(see [3, pp. 369–370]). Also as in the convex body case (see [3, p. 382]), one obtains the
counterpart to Minkowski’s first inequality, namely

V (A0, . . . , A0, A1)n ≤ Vn(A0)n−1Vn(A1), (28)

with equality if and only if A0 = αA1 with some α > 0.
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Now we assume, as in Theorem 2, that A0, A1 are C-coconvex sets with Sn−1(A0, ·) =
Sn−1(A1, ·). By (27),

V (A0, . . . , A0, A1) =
1

n

∫
ΩC

h(A1, u)Sn−1(A0,du).

Therefore, the assumption gives V (A0, . . . , A0, A1) = Vn(A1). Similarly, V (A1, . . . , A1, A0) =
Vn(A0), hence multiplication gives V (A0, . . . , A0, A1)V (A1, . . . , A1, A0) = Vn(A0)Vn(A1). On
the other hand, from (28) we get V (A0, . . . , A0, A1)V (A1, . . . , A1, A0) ≤ Vn(A0)Vn(A1). Thus,
equality holds here, and hence in (28), which implies that A0 = αA1 with α > 0. Since
Sn−1(A0, ·) = Sn−1(A1, ·), we have α = 1.
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