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Abstract. We prove sharp inequalities for the average number of affine di-

ameters through the points of a convex body K in Rn. These inequalities hold
if K is either a polytope or of dimension two. An example shows that the

proof given in the latter case does not extend to higher dimensions.

1. Introduction

An affine diameter of an n-dimensional convex body in Rn is a closed segment
connecting two points that lie in distinct parallel supporting hyperplanes of the
body. Much work has been done on intersection properties of affine diameters and
on the characterization of special convex bodies, such as simplices, by such inter-
section properties. We refer the reader to the survey article by Soltan [9]. As the
author points out, that survey does not cover results on affine diameters of typical
convex bodies, in the Baire category sense; it also does not touch average numbers
of intersections. A result of Baire type, proved by Bárány and Zamfirescu [1], says
that in most convex bodies, most points belong to infinitely many affine diameters.
This, however, does not imply that the average number of affine diameters through
the points of a typical convex body must be infinite, since the set of most points
addressed in the theorem can be of measure zero. In fact, in the plane it follows
from a result of Hammer and Sobczyk [4] that for a convex body with no pair of
boundary segments in distinct parallel supporting lines, the set of points through
which there pass infinitely many affine diameters is of measure zero.

In this paper, we are concerned with the average number of affine diameters
through the points of a convex body. For a convex body K ⊂ Rn and a point
z ∈ intK we denote by Na(K, z) the number (∞ admitted) of affine diameters
passing through z. We define the mean number of affine diameters passing through
a point of K by

(1.1) Na(K) :=
1

Vn(K)

∫
K

Na(K, z) dz,

where Vn denotes the volume and dz indicates integration with respect to Lebesgue
measure. (The function Na(K, ·) is Borel measurable; see Section 2.) Some caution
is advisable. Recall that for a convex body K ⊂ Rn and a unit vector u ∈ Rn, the
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set F (K,u) is the support set of K with outer normal vector u. If there is a vector u
such that dim(F (K,u)+F (K,−u)) = n−1 and dimF (K,u)+dimF (K,−u) > n−1,
then there is a set of positive measure in K through each point of which there pass
infinitely many affine diameters, thus Na(K) = ∞ for such a body. Incidentally,
this shows that the function Na is not continuous on the space of convex bodies
with the Hausdorff metric. Generally, we say for a convex body K ⊂ Rn that K
and −K are in general relative position if

dim(F (K,u) + F (K,−u)) = n− 1 ⇒ dimF (K,u) + dimF (K,−u) = n− 1

for all u ∈ Sn−1. (We warn the reader that this notion appears in the literature
also with a more restrictive definition.) Thus, Na(K) <∞ can only be expected if
K and −K are in general relative position. The following seems to be unknown.

Question. Is Na(K) <∞ if K and −K are in general relative position?

The following theorems give affirmative answers, in a strengthened form, if either
K is a polytope or if the dimension is two.

Theorem 1.1. Let P ⊂ Rn be an n-polytope such that P and −P are in general
relative position. Then

(1.2) Na(P ) =
n+ 1

Vn(P )

∫ 1

0

Vn((1− t)P − tP ) dt− 1.

This implies that

(1.3) n < Na(P ) ≤ 2n − 1.

Equality on the right-hand side holds if and only if P is a simplex. The lower bound
n is sharp, but is not attained.

Theorem 1.2. Let K ⊂ R2 be a two-dimensional convex body such that K and
−K are in general relative position. Then

(1.4) 1 ≤ Na(K) ≤ V2(K −K)

2V2(K)
≤ 3.

Equality on the left side is attained if and only if K is centrally symmetric. Equality
on the right side is attained if and only if K is a triangle.

A comparison of the sharp lower bounds in (1.3) and (1.4) shows incidentally
that the function Na is not continuous, even if restricted to the set of planar convex
bodies K for which K and −K are in general relative position. In fact, such a body
K ∈ K2 which is centrally symmetric and hence satisfies Na(K) = 1, can be
approximated arbitrarily closely by convex polygons P with P and −P in general
relative position, for which Na(P ) > 2.

To the question posed above, we can also give a positive answer in n dimensions,
if we assume in addition that K has a support function of class C2. Since this is
technically more involved, it will be considered elsewhere.

2. Preliminaries

Let Rn be equipped with the standard scalar product 〈·, ·〉 and the induced norm
‖ · ‖. We write o for the origin (zero vector) of Rn. The linear subspace orthogonal
to a vector u 6= o is denoted by u⊥. Unit ball and unit sphere of Rn are denoted,
respectively, by Bn and Sn−1.
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We denote by Kn the set of convex bodies (nonempty, compact, convex subsets)
in Rn. The set Pn ⊂ Kn is the set of convex polytopes. For a polytope P , the set
of r-dimensional faces of P is denoted by Fr(P ), r = 0, . . . , n− 1.

The support function h(K, ·) of a convex body K is defined by h(K,x) :=
max{〈x, y〉 : y ∈ K}, and for u ∈ Sn−1, the hyperplane

H(K,u) := {x ∈ Rn : 〈u, x〉 = h(K,u)}

is the supporting hyperplane of K with outer normal vector u. The face (or support
set) of K in direction u is the set F (K,u) = K ∩H(K,u). By N(K,x) we denote
the normal cone of K at its boundary point x, that is, the set of all outer normal
vectors to K at x, together with the zero vector. If K is smooth (i.e., has only
regular boundary points), then to each x ∈ bdK there is a unique outer unit
normal vector to K at x; we denote it by uK(x).

As usual, K + M = {x + y : x ∈ K, y ∈ M} for K,M ∈ Kn and µK := {µx :
x ∈ K} for µ ∈ R. In particular,

DK := K −K = {x− y : x, y ∈ K}

is the difference body of K. For u ∈ Sn−1, h(DK,u) is the width of K in direction
u.

Lebesgue measure on Rn is denoted by λn. We also make use of the k-dimensional
Hausdorff measure, Hk. For the volume of convex bodies in Rn we prefer the
notation Vn, and by V (·, . . . , ·) (n arguments) we denote the mixed volume. For
this, and for some notation and results used below, we refer to [8], Section 5.1.
The (n − 1)-dimensional mixed volume of convex bodies lying in parallel (n − 1)-
dimensional affine subspaces is denoted by v(·, . . . , ·) (n− 1 arguments).

To show that the integral (1.1) is defined, let Mk,m be the set of all points x ∈
intK through which there pass at least k affine diameters, each two of which form
an angle at least 1/m, where k,m ∈ N. If (xj)j∈N is a sequence in Mk,m converging
to some point x ∈ intK, then, choosing suitable convergent subsequences of affine
diameters, we see that through x there pass at least k affine diameters, each two of
them forming an angle at least 1/m. Thus, the set {x ∈ intK : Na(K,x) ≥ k} is
the union of countably many closed sets and hence is a Borel set. Since this holds
for all k ∈ N, the function Na(K, ·) is Borel measurable.

3. Proof of Theorem 1.1

Let P ∈ Pn be an n-polytope with the property that P and −P are in general
relative position. By D we denote the set of all points z which lie in the convex
hull of any two faces of P where this convex hull has dimension less than n. Let
z ∈ P \ D and z ∈ [x, y], where [x, y] is an affine diameter of P . Then there is
some u ∈ Sn−1 such that x ∈ F (P, u) and y ∈ F (P,−u) = −F (−P, u), and hence
x − y ∈ F (P, u) + F (−P, u) = F (P − P, u) = F (DP, u) (where we used [8], Thm.
1.7.5(c)). Let r := dimF (P, u) and s := dimF (P,−u). Since z /∈ D, we have
dim(F (P, u) +F (P,−u)) = n− 1. Since P and −P are in general relative position,
it follows that r + s = n− 1. Hence, every affine diameter of P through z is of the
form [x, y] with x ∈ F and y ∈ −G for some faces F ∈ Fr(P ) and G ∈ Fs(−P )
satisfying r + s = n− 1 and F +G ∈ Fn−1(DP ). Since z /∈ D, in fact x ∈ relintF
and y ∈ relint(−G). For any such pair F,G we define

A(F,G) := {(1− t)x− ty : t ∈ [0, 1], x ∈ F, y ∈ G}.
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Then for z ∈ P \D there is a one-to-one correspondence between the affine diameters
through z and the pairs F,G with z ∈ A(F,G). Thus, for z ∈ P \D,

Na(P, z) =
1

2

n−1∑
r=0

∑
∗

1{z ∈ A(F,G)},

where the summation
∑
∗ extends over all F ∈ Fr(P ) and all G ∈ Fn−1−r(−P )

such that F +G ∈ Fn−1(DP ). Since D is of measure zero, we conclude that

(3.1) Na(P ) =
1

2Vn(P )

∑
∗
λn(A(F,G)).

We can write this as

(3.2) Na(P ) =
1

2Vn(P )

∑
u∈Sn−1

λn(A(F (P, u), F (−P, u))),

since a summand is different from zero only if F (P, u) + F (−P, u) = F (DP, u) is
an (n− 1)-face of DP .

Assume that F,G is such a pair as in (3.1), and let u be the outer unit normal
vector of DP at F + G. The width of P in direction u is given by h := h(DP, u).
Writing

Hτ := (1− τ/h)H(P, u) + (τ/h)H(P,−u)

for 0 ≤ τ ≤ h, we have

A(F,G) ∩Hτ = (1− τ/h)F − (τ/h)G.

Therefore, Fubini’s theorem together with the substitution τ = th gives

λn(A(F,G)) =

∫ h

0

λn−1(A(F,G) ∩Hτ ) dτ

=

∫ 1

0

λn−1((1− t)F − tG)hdt

=

∫ 1

0

n−1∑
k=0

(
n− 1

k

)
(1− t)ktn−1−kv(F [k],−G[n− 1− k])hdt

=
1

n

n−1∑
k=0

h(DP, u)v(F [k],−G[n− 1− k]),(3.3)

where v(F [k],−G[n − 1 − k]) denotes the (n − 1)-dimensional mixed volume of F
taken k times and −G taken n− 1− k times.
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Combining equations (3.2) and (3.3) and using formula (5.23) of [8], we get

Na(P ) =
1

2Vn(P )

∑
u∈Sn−1

1

n

n−1∑
j=0

h(DP, u)v(F (P, u)[j], F (−P, u)[n− 1− j])

=
1

2VnP )

n−1∑
j=0

V (DP, P [j],−P [n− 1− j])

=
1

2Vn(P )

n−1∑
j=0

{
V (P [j + 1],−P [n− 1− j]) + V (P [j],−P [n− j])]

}
=

1

Vn(P )

[
n∑
k=0

V (P [k],−P [n− k])

]
− 1.(3.4)

On the other hand, we have∫ 1

0

Vn((1− t)P − tP ) dt

=

∫ 1

0

n∑
k=0

(
n

k

)
(1− t)ktn−kV (P [k],−P [n− k]) dt

=
1

n+ 1

n∑
k=0

V (P [k],−P [n− k]).(3.5)

In view of (3.4) and (3.5), the proof of equation (1.2) is complete.
The inequalities (1.3) follow from (1.2) and the inequalities

(3.6) Vn(K) ≤
∫ 1

0

Vn((1− t)K − tK) dt ≤ 2n

n+ 1
Vn(K),

which are due to Rogers and Shephard ([6, Theorem 2]; note that the formulation
there involves an associated convex body, but is equivalent to (3.6)). They hold
for all n-dimensional convex bodies K ∈ Kn. Equality on the right holds if and
only if K is an n-simplex. Equality on the left holds if and only if K is centrally
symmetric. A polytope P for which P and −P are in general relative position
cannot be centrally symmetric, hence we have strict inequality on the left side of
(1.3). On the other hand, the right side of (1.2) is a continuous function of P in the
Hausdorff metric. A centrally symmetric polytope can be approximated arbitrarily
closely by polytopes P with P,−P in general relative position (as follows, e.g., from
the proof of [7, Theorem 3.7]). Therefore, the lower bound n in (1.3) cannot be
replaced by a larger one. �

Remark. In the planar case, formula (1.2) can be written as

Na(P ) =
V2(P − P )

2V2(P )
.

This can be deduced directly from (3.1) as follows. The pair (F,G) with dimF =
1, dimG = 0 takes part in the sum (3.1) exactly when F is an edge of P and
−G = {v(F )} is the unique vertex opposite to F . Then A(F,G) is the triangle
conv(F ∪ {v(F )}), which is a translate of the triangle conv((F − v(F )) ∪ {o}).
These triangles, together with their reflections about the origin, are easily seen to



6 IMRE BÁRÁNY, DANIEL HUG, AND ROLF SCHNEIDER

form a triangulation of P − P . The sum of the areas of these triangles is then
indeed half the area of P − P .

4. Relative normals

For treating affine diameters, we first develop some methods and results for
relative normals. We do this in a slightly more general fashion than needed for
the affine diameters, since it requires little additional effort and is of independent
interest.

We assume that a fixed convex body B ∈ K2 with o ∈ intB is given; we call it
the gauge body. For a nonempty compact set K ⊂ R2, the B-distance of x from K
is defined by

d(K,B, x) = min{r ≥ 0 : x ∈ K + rB}
= min{r ≥ 0 : (−rB + x) ∩K 6= ∅}.

It is easy to see that d(K,B, ·) is a convex function.
Now let K ∈ K2 be a convex body. We say that K and B are in general relative

position if dimF (K,u)+dimF (B, u) ≤ 1 for all u ∈ S1. This is the case if and only
if dimF (K + B, u) = dimF (K,u) + dimF (B, u) for all u ∈ S1. Note that if this
definition is applied to K and B = −K, it is consistent with the definition given
in the introduction. In the rest of this section, K and B are fixed convex bodies
which are in general relative position.

Let x ∈ R2 \ K. Since K and B are in general relative position, there are a
unique point p(K,B, x) ∈ bdK and a unique vector u(K,B, x) ∈ bdB such that

x = p(K,B, x) + d(K,B, x)u(K,B, x).

We call p(K,B, x) the B-projection of x to K and the vector u(K,B, x) a B-normal
of K at p(K,B, x).

Next we provide some Lipschitz and differentiability properties.

Lemma 4.1. The B-projection p(K,B, ·) : R2 \K → bdK is a Lipschitz map.

Proof. Let x, y ∈ R2 \K. We abbreviate

R(x) := p(K,B, x) + [0,∞)(x− p(K,B, x))

and define the ray R(y) similarly. Note that all points z ∈ R(x) satisfy p(K,B, z) =
p(K,B, x). We may assume that e := p(K,B, x)− p(K,B, y) 6= o, since otherwise
relation (4.1) is trivial. Then it follows that

R(x) ∩R(y) = ∅.
Therefore, we have either

(4.1) ‖x− y‖ ≥ ‖e‖
or

‖x− y‖ ≥ ‖p(K,B, x)− ȳ‖ = ‖e‖ sinα,

where ȳ denotes the orthogonal projection of p(K,B, x) to the ray R(y) and α is
the angle between the vectors e and y−p(K,B, y). This angle satisfies α ≥ α0 > 0,
where α0 is the smallest angle that a vector b ∈ bdB can form with a supporting
line of B at b, which is clearly positive. It follows that

(4.2) ‖x− y‖ ≥ ‖e‖ sinα0.

By (4.1) and (4.2), the Lipschitz continuity of p(K,B, ·) is established. �
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Lemma 4.2. Let x ∈ R2 \K, and set t := d(K,B, x). Then d(K,B, ·) is differen-
tiable at x if and only if x is a regular boundary point of K + tB.

Proof. We introduce the following notation, for both directions of the proof. There
is a unique vector b ∈ bdB such that x−tb ∈ bdK. Further, since x ∈ bd (K+tB),
there is some vector u ∈ N(K + tB, x) ∩ S1 such that (x+ Ru) ∩ int(K + tB) 6= ∅.
Note that d(K,B, y) = t for all y ∈ bd (K+tB). There exists a nonnegative convex
function f such that

γv(s) := x+ sv − f(x+ sv)u ∈ bd (K + tB)

if v ∈ u⊥ ∩ S1 and |s| is small enough. The convexity of f implies the existence of
the limit

γ′v(0; 1) := lim
s↓0

γv(s)− γv(0)

s
= v − f ′(x; v)u .

Let us assume now that d(K,B, ·) is differentiable at x. Since d(K,B, ·)◦γv(s) =
t, for |s| sufficiently small, we obtain that

(4.3) Dd(K,B, x)(v − f ′(x; v)u) = 0

for v ∈ u⊥ ∩ S1. Suppose that f ′(x; v) 6= 0, and hence f ′(x; v) > 0, for some v ∈
u⊥∩S1. Then the vectors a1 := v−f ′(x; v)u and a2 := −v−f ′(x;−v)u are linearly
independent, and therefore (4.3) implies that Dd(K,B, x) = 0. This contradicts
the fact that the directional derivative of g := d(K,B, ·) satisfies g′(x; b) = 1.
Therefore, f ′(x; v) = 0 for v ∈ u⊥, hence x is a regular boundary point of K + tB.

Conversely, assume that x is a regular boundary point of K+tB. Let v ∈ u⊥∩S1.
We have d(K,B, x) = d(K,B, γv(s)) = t. There is a number r0 > 0 with r0B

2 ⊂ B,
and this implies that |d(K,B, x) − d(K,B, y)| ≤ r−1

0 ‖y − x‖. Hence, for |s| > 0
sufficiently small, we get∣∣∣∣d(K,B, x+ sv)− d(K,B, x)

s

∣∣∣∣ =

∣∣∣∣d(K,B, x+ sv)− d(K,B, γv(s))

s

∣∣∣∣
≤ 1

r0

∥∥∥∥x+ sv − γv(s)
s

∥∥∥∥ =
1

r0

∣∣∣∣f(x+ sv)

s

∣∣∣∣ .
Since f is differentiable at x and f(x) = 0, this yields that the partial deriva-
tives of the convex function d(K,B, ·)|(x+u⊥) at x exist. Also d(K,B, ·)|(x+R b) is
differentiable at x, obviously. Thus, the convex function

(α1, α2) 7→ d (K,B, x+ α1v + α2b) ,

(α1, α2) sufficiently close to (0, 0), has partial derivatives at o. Hence, by [8, Theo-
rem 1.5.8], it is differentiable at o. This implies that d(K,B, ·) is differentiable at
x. �

Since d(K,B, ·) is convex and therefore differentiable almost everywhere, almost
every point x ∈ R2 \K is a regular boundary point of K + d(K,B, x)B.

For λ > 0 we consider the map

hλ : R2 \K → R2 \K, y 7→ p(K,B, y) + λ(y − p(K,B, y)).

Obviously (hλ)−1 = hλ−1 , and we have hλ(bd (K + tB)) = bd (K + tλB) for t > 0.
By Lemma 4.1, hλ is a bi-Lipschitz map. But then Dhλ(y) has rank two and
(hλ)−1 is differentiable at hλ(y) if hλ is differentiable at y ∈ R2 \K (see the proof
of Theorem 3.2 in [10]). This implies that p(K,B, ·) is differentiable at y ∈ R2 \K
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if and only if p(K,B, ·) is differentiable at ȳ for any ȳ ∈ R(y). The same is true for
d(K,B, ·), as follows from Lemma 4.2 and the relation

(4.4) N(K + tB, x+ tb) = N(K,x) ∩N(B, b)

(see [8, Theorem 2.2.1(a)]).
We define DK,B as the set of all y ∈ R2 \K such that p(K,B, ·) and d(K,B, ·)

are differentiable at y, and hence at any point of R(y) \ {y}. Then Lemma 4.1 and
Lemma 4.2 yield that H2(R2 \ (K ∪ DK,B)) = 0. Since d(K,B, ·) is Lipschitz, the
coarea formula yields

0 =

∫
R2\(K∪DK,B)

J1d(K,B, x)H2(dx)

=

∫ ∞
0

H1(bd(K + tB) \ DK,B) dt.

Let t0 > 0 be such that H1(bd(K + t0B) \ DK,B) = 0. Let t > 0. The bi-Lipschitz
map ht/t0 maps bd(K + t0B) \ DK,B onto bd(K + tB) \ DK,B , hence we conclude

that H1(bd(K + tB) \ DK,B) = 0 for all t > 0.
Our next aim is to introduce generalized relative curvatures on a generalized

normal bundle, partly following [5]. The n-dimensional Euclidean case of this notion
(that is, with B replaced by Bn) is sketched in [8, Section 2.6].

Choose y ∈ DK,B and set t := d(K,B, y). The differential Du(K,B, y) of
u(K,B, ·) at y exists. Let u := uK+tB(y) be the unique Euclidean outer unit
normal vector of K + tB at y, and let v ∈ u⊥ ∩ S1. We can choose an injective,
continuous mapping γ : (−ε, ε) → bd (K + tB) with the properties that γ(0) = y
and γ is differentiable at 0 with γ′(0) = v. Then u(K,B, ·) ◦ γ maps (−ε, ε) into
bdB and is differentiable at 0, hence the vector w := (u(K,B, ·) ◦ γ)′(0) exists.
Since, by (4.4), u is an outer normal vector of B at u(K,B, y), we have 〈u,w〉 = 0.
Moreover, since

v = lim
s↓0

γ(s)− y
s

,

there is a decreasing null sequence (si)i∈N with 〈γ(si)− y, v〉 > 0 and such that the
points γ(si) are regular boundary points of K + tB. Let ui be the Euclidean outer
unit normal vector of K + tB at γ(si). Then ui is also an outer unit normal vector
of B at u(K,B, γ(si)), as follows from (4.4), applied to x′, b′ with x′ + tb′ = γ(si).
Since 〈ui, v〉 ≥ 0 (for sufficiently small si), it follows that

〈u(K,B, γ(si))− u(K,B, y), v〉 ≥ 0

and hence that 〈w, v〉 ≥ 0. Altogether, we have 〈w, u〉 = 0 and 〈w, v〉 ≥ 0, hence
there exists a number k(K,B, y) ≥ 0 with

Du(K,B, y)(v) = k(K,B, y)v.

Thus, we have established the following lemma.

Lemma 4.3. Let y ∈ DK,B, and set u := uK+d(K,B, y)B(y). Then there is a

number k(K,B, y) ≥ 0 such that Du(K,B, y)(v) = k(K,B, y)v for all v ∈ u⊥.

Now, for y ∈ DK,B and 0 < s < d(K,B, y), we have

y − su(K,B, y) ∈ bd (K + (d(K,B, y)− s)B)
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and

(4.5) u(K,B, y − su(K,B, y)) = u(K,B, y).

Choosing v ∈ u⊥ \ {o}, where

u := uK+d(K,B, y)B(y) = uK+(d(K,B ,y)−s)B(y − su(K,B, y)),

we obtain from (4.5) that

(4.6) (1− sk(K,B, y))Du(K,B, y − su(K,B, y))(v) = k(K,B, y)v.

Moreover, we have

(4.7) Du(K,B, y − su(K,B, y))(v) = k(K,B, y − su(K,B, y))v.

From (4.6) and (4.7) it follows that k(K,B, y) < 1/s and

(4.8) k(K,B, y − su(K,B, y)) =
k(K,B, y)

1− sk(K,B, y)
.

Hence we get

0 ≤ k(K,B, y) ≤ d(K,B, y)−1.

Using (4.8), we see that k(K,B, y) = d(K,B, y)−1 implies

k(K,B, y − su(K,B, y)) = d(K,B, y − su(K,B, y))−1.

Furthermore, k(K,B, y) < d(K,B, y)−1 yields

k(K,B, y)

1− d(K,B, y)k(K,B, y)

=
k(K,B, y − su(K,B, y))

1− d(K,B, y − su(K,B, y))k(K,B, y − su(K,B, y))
.

Before we summarize the obtained results in the next lemma, we define

N (K,B) := {(p(K,B, x), u(K,B, x)) ∈ bdK × bdB : x ∈ bd(K + tB)},

which is independent of t > 0. The set N (K,B) is called the B-normal bundle of
K. For fixed t > 0, the mappings

F : N (K,B)→ bd (K + tB), (x, b) 7→ x+ tb,

and

F−1 : bd (K + tB)→ N (K,B), y 7→ (p(K,B, y), u(K,B, y)),

are Lipschitz maps which are inverse to each other. In particular, this shows that
N (K,B) is a closed, 1-rectifiable subset of R2 × R2.

Lemma 4.4. Let (x, b) ∈ N (K,B) be such that y := x+ tb ∈ DK,B for some (and
hence for all) t > 0. Then

k(K,B;x, b) :=
k(K,B, y)

1− tk(K,B, y)
∈ [0,∞]

is independent of the particular choice of t > 0. Moreover, k(K,B;x, b) is de-
fined for H1 almost all (x, b) ∈ N (K,B), and k(K,B;x, b) = ∞ if and only if
k(K,B, y) = 1/t.
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Next, we express the (Euclidean) first-order area measures of K and B in terms
of generalized curvatures. As a preparation, we describe the tangent space of the
B-normal bundle in terms of these generalized curvatures.

Let y ∈ DK,B∩bd (K+tB), t > 0, and (x, b) := F−1(y). Then, if u := u(x, b) :=
uK+tB(y) and v ∈ S1 ∩ u⊥, we obtain, recalling that p(K,B, y) = y − tu(K,B, y),

Tan1 (N (K,B), (x, b)) = DF−1(y)(u⊥)

= lin {(Dp(K,B, y)(v),Du(K,B, y)(v))}
= lin {((1− tk(K,B, y))v, k(K,B, y)v)}

= lin

{(
1√

1 + k(K,B;x, b)2
v,

k(K,B;x, b)√
1 + k(K,B;x, b)2

v

)}
.(4.9)

Here, we had to distinguish the cases k(K,B, y) < 1/t and k(K,B, y) = 1/t. These
facts are used in the proof of the following lemma and in the next section.

We recall that S1(K, ·) denotes the first-order area measure of a convex body
(see [8, Section 4.2]); in particular, in the plane it is the length measure (see also
[8, Subsection 8.3.1]).

Lemma 4.5. Let ω ⊂ S1 be a Borel set. Then

S1(K,ω) =

∫
N (K,B)

1{u(x, b) ∈ ω} 1√
1 + k(K,B;x, b)2

H1(d(x, b))

and

S1(B,ω) =

∫
N (K,B)

1{u(x, b) ∈ ω} k(K,B;x, b)√
1 + k(K,B;x, b)2

H1(d(x, b)).

Proof. It follows from (4.9) that the approximate Jacobian of the surjective Lip-
schitz map Π1 : N (K,B)→ bdK with (x, b) 7→ x is equal to

ap J1Π1(x, b) =
1√

1 + k(K,B;x, b)2

for H1 almost all (x, b) ∈ N (K,B). Let f : N (K,B) → [0,∞] be H1 integrable.
Then the coarea formula implies that∫

N (K,B)

f(x, b)
1√

1 + k(K,B;x, b)2
H1(d(x, b))

=

∫
bdK

∫
Π−1

1 ({x})
f(x, b)H0(d(x, b))H1(dx).(4.10)

Let (x, b) ∈ N (K,B) be such that x + (0,∞)b ⊂ DK,B and card Π−1
1 ({x}) > 1.

Then there is some b̄ ∈ bdB \ {b} such that for all b′ ∈ bdB from an arc arcB(b, b̄)
connecting b and b̄ we have x + tb′ ∈ bd (K + tB) for any t > 0. Let u := u(x, b)
and v ∈ u⊥ ∩ S1. Further, let γ : [0, 1]→ arcB(b, b̄) be a map with γ(0) = b which
is differentiable at 0 and satisfies γ′r(0) 6= o. Since y := x+ tb is a regular boundary
point of K + tB and Γ(s) := x + γ(s) ∈ bd (K + B) for s ∈ [0, 1], it follows that
Γ′r(0) = γ′r(0) = λv for some λ 6= 0. Clearly, we have u(K,B, x + tb′) = b′ for all
b′ ∈ arcB(b, b̄), hence u(K,B, x+ tγ(s)) = γ(s) for s ∈ [0, 1]. The map u(K,B, ·) is
differentiable at y, and the right derivative of s 7→ x+ tγ(s) at s = 0 exists and is
equal to tλv. This yields

(4.11) Du(K,B, x+ tb)(tλv) = λv
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and thus Du(K,B, y)(v) = t−1v. Therefore, k(K,B, x + tb) = 1/t. It follows that
k(K,B;x, b) =∞. Choosing

f(x, b) := 1{x ∈ bdK : card Π−1
1 ({x}) > 1},

we get from (4.10) that card Π−1
1 ({x}) = 1 for H1 almost all x ∈ bdK. Then we

apply again (4.10) with f(x, b) = 1{u(x, b) ∈ ω}. Since u(x, b) ∈ N(K,x)∩N(B, b)
by (4.4), it follows that u(x, b) = uK(x), the unique exterior unit normal of K at
x ∈ bdK, for H1 almost all x ∈ bdK and (the unique) (x, b) ∈ N (K,B). Then we
get ∫

N (K,B)

1{u(x, b) ∈ ω} 1√
1 + k(K,B;x, b)2

H1(d(x, b))

=

∫
bdK

1{uK(x) ∈ ω}H1(dx) = S1(K,ω).

For the proof of the second assertion, we proceed similarly and consider the
surjective Lipschitz map Π2 : N (K,B) → bdK, (x, b) 7→ b, with approximate
Jacobian

ap J1Π2(x, b) =
k(K,B;x, b)√

1 + k(K,B;x, b)2

for H1 almost all (x, b) ∈ N (K,B). If f : N (K,B) → [0,∞] is measurable, then
the coarea formula implies that∫

N (K,B)

f(x, b)
k(K,B;x, b)√

1 + k(K,B;x, b)2
H1(d(x, b))

=

∫
bdB

∫
Π−1

2 ({b})
f(x, b)H0(d(x, b))H1(db).(4.12)

Let (x, b) ∈ N (K,B) be such that x+b ∈ DK,B and card Π−1
2 ({b}) > 1. Then there

are x, x̄ ∈ bdK, x 6= x̄, with (x̄, b) ∈ N (K,B). Then x+ tb 6= x̄+ tb are boundary
points of K + tB such that for all x′ ∈ bdK from an arc between x, x̄ we have
x′+tb ∈ bd (K+tB) and u(K,B, x′+tb) = b. Arguing as in the derivation of (4.11),
we obtain Du(K,B, x + tb)(v) = o = k(K,B, x + tb)v and thus k(K,B;x, b) = 0.
Now the proof can be completed as before by applying twice formula (4.12). Here
we use again that u(x, b) ∈ N(K,x) ∩ N(B, b) and u(x, b) = uB(b) for H1 almost
every b ∈ bdB and (the unique) (x, b) ∈ N (K,B). �

5. Proof of Theorem 1.2

Let K ∈ K2 and o ∈ intK, without loss of generality. We assume that K and
−K are in general relative position and apply the results of Section 4 to K and
B = −K. Then (x, y) ∈ N (K,−K) if and only if there is some u ∈ S1 such
that x ∈ F (K,u) and y ∈ F (−K,u). Recall that then x + y ∈ F (DK,u) and
−y ∈ F (K,−u). We consider the Lipschitz map

Φ : N (K,−K)× [0, 1]→ K, (x, y, t) 7→ (1− t)x− ty,
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for which we have (recalling that u(x, y) = uK−K(x+ y) and v ∈ u(x, y)⊥ ∩ S1)

apJ2Φ(x, y, t)

=

∣∣∣∣∣det

(
x+ y,

1− t√
1 + k(K,−K;x, y)2

v − t k(K,−K;x, y)√
1 + k(K,−K;x, y)2

v

)∣∣∣∣∣
= h(DK,u(x, y))

∣∣∣∣∣ 1− t√
1 + k(K,−K;x, y)2

− tk(K,−K;x, y)√
1 + k(K,−K;x, y)2

∣∣∣∣∣
≤ h(DK,u(x, y))

[
1− t√

1 + k(K,−K;x, y)2
+

tk(K,−K;x, y)√
1 + k(K,−K;x, y)2

]
,

for H1-almost all (x, y) ∈ N (K,−K) and all t ∈ (0, 1). Thus, applying the coarea
formula, we get

2V (K)Na(K)

=

∫
K

card Φ−1(z) dz

=

∫
N (K,−K)

∫ 1

0

apJ2Φ(x, y, t) dtH1(d(x, y))

≤ 1

2

∫
N (K,−K)

h(DK,u(x, y))
1√

1 + k(K,−K;x, y)2
H1(d(x, y))

+
1

2

∫
N (K,−K)

h(DK,u(x, y))
k(K,−K;x, y)√

1 + k(K,−K;x, y)2
H1(d(x, y)).

An application of Lemma 4.5 then implies that

2V2(K)Na(K)

≤ 1

2

∫
S1
h(DK,u)S1(K, du) +

1

2

∫
S1
h(DK,u)S1(−K, du)

= V (DK,K) + V (DK,−K)

= V2(DK).

The right-hand inequality in (1.4) now follows from the Rogers–Shephard in-
equality for the difference body (see, e.g., [8, Section 10.1]) together with the infor-
mation on the equality sign.

Concerning the left-hand inequality in (1.4), we remark that any point of a
convex body belongs to an affine diameter ([9], assertion 3.3). If K is centrally
symmetric and K and −K are in general relative position, which implies that K
is strictly convex, then each point of K different from the centre lies on precisely
one affine diameter, so equality holds in the left-hand side of (1.4). Assume next
that equality holds there and K and −K are in general relative position. We claim
that, under these conditions, all affine diameters of K have a point in common. A
theorem of Hammer [3] (see also Busemann [2], pp. 89–90) implies then that K is
centrally symmetric.

For the proof, we remark first that every oriented affine diameter [a, a1] (oriented
by demanding that a1 be its endpoint) determines uniquely an angle α ∈ [0, 2π)
such that a1−a is a positive multiple of (cosα, sinα). We call α the angle of [a, a1].
Conversely, every α ∈ [0, 2π) is the angle of a unique oriented affine diameter [a, a1].
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The existence follows from the fact that a longest chord of given direction in a
convex body is an affine diameter; see, e.g., [9], Proposition 3.1. The uniqueness
follows from the assumption that the boundary of K does not contain segments in
distinct parallel support lines. It is then easy to see that an oriented affine diameter
depends continuously on its angle.

Assume now, contrary to the claim, that not all affine diameters of K pass
through one point. Then, since any two affine diameters intersect, there are three
affine diameters [a, a1], [b, b1] and [c, c1] that bound a non-degenerate triangle ∆.
We choose the notation so that the points a, b, c, a1, b1, c1 come in this order anti-
clockwise on bdK (some of the points may coincide), and that ∆ is on the left-hand
side of the oriented segments [a, a1], [c, c1] and on the right-hand side of [b, b1]. This
is clearly possible. We can also choose the coordinate system in such a way that
the angles α, β, γ of the segments [a, a1], [b, b1], [c, c1] satisfy 0 = α < β < γ < π.

Let x be an interior point of ∆. Since x is on the left side of [a, a1] and on the
right side of [b, b1], there is by continuity an angle between α and β such that the
oriented affine diameter with this angle passes through x. Similarly, there is an
angle between β and γ for which the corresponding oriented affine diameter passes
through x. The two unoriented affine diameters through x obtained in this way are
distinct. We conclude that Na(K) ≥ 1 + λ2(∆)/λ2(K) > 1, a contradiction.

6. On the Lipschitz continuity of the B-projection

An indispensable prerequisite for the proof of Theorem 1.2 was Lemma 4.1, say-
ing that for convex bodies K,B ∈ K2 in general relative position, the B-projection
to bdK is a Lipschitz map. We show by an example that there is no corresponding
result in higher dimensions. Therefore, the proof of Theorem 1.2 does not extend to
n ≥ 3. The example might also be of independent interest, as it shows that the met-
ric projection in higher-dimensional Minkowski spaces is in general not Lipschitz
continuous.

In order that the B-projection be defined, we need an additional assumption.
We say that K,B ∈ Kn are in strongly general relative position if

dimF (K,u) + dimF (B, u) = dimF (K +B, u) for all u ∈ Sn−1.

In the following, we construct two convex bodies K,B ∈ K3 in strongly general
relative position for which the B-projection to bdK is not Lipschitz.

In R3 with the standard basis we consider the points

xn :=

(
1

n
,

1

n2
, 0

)
, yn :=

(
1

n
,

1

n2
,

1

n

)
for n ∈ N.

Since the points xn lie in a plane and on a convex curve and the points yn lie in
a different plane, it is clear that none of the points xn, yn lies in the convex hull of
the others.

For n ∈ N, we define the segments

Sn :=

{
[xn+1, yn] if n is odd,

[xn, yn+1] if n is even,

Tn :=

{
[xn, yn+1] if n is odd,

[xn+1, yn] if n is even.
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x1

x2
x3

y1

y2

y3

S1

T1

T2

S2

Figure 1. The two zig-zag polygons (which are not to scale) are
used in the construction of B (heavy lines) and K (heavier lines).

Let n ∈ N. The four points xn, yn, xn+1, yn+1 lie in a plane Hn. Let H0
n be the

open halfspace bounded by this plane and containing o. Then xj , yj ∈ H0
n for all

j /∈ {n, n+ 1}. It follows that

Hn ∩ cl conv
⋃
j∈N

Sj = Sn, Hn ∩ cl conv
⋃
j∈N

Tj = Tn.

Now we define

K := cl conv

(⋃
n∈N

Sn ∪ {(0, 1, 1), (0, 1,−1)}

)
,

B := cl conv
⋃
n∈N

Tn.

It is elementary to check that K and B are in strongly general relative position.
Now let n ∈ N be odd. By the properties of the plane Hn mentioned above,

there are a unit vector u and a vector z ∈ R3 such that

Hn = H(K,u) = H(−B + z,−u).

The vector z0 := xn + yn+1 satisfies

−Tn + z0 = −[xn, yn+1] + z0 = [−yn+1,−xn] + z0 = [xn, yn+1] = Tn,

hence (−Tn + z0) ∩ Sn 6= ∅. There are other vectors z (with z − z0 parallel to
Hn) for which −Tn + z and Sn intersect in a point q(z). This point is then the
unique point in K ∩ (−B + z), from which it follows that q(z) = p(K,B, z). In
particular, choosing z1 := z0 + xn+1 − xn = xn+1 + yn+1, we get q(z1) = xn+1.
Further, we can choose z2 := z0 + λ(xn − xn+1) with suitable λ ∈ (0, 1) to obtain
q(z2) = yn+1 + λ(xn − xn+1) ∈ Sn. With these choices we have

‖p(K,B, z1)− p(K,B, z2)‖ = ‖q(z1)− q(z2)‖ > ‖xn+1 − yn+1‖ =
1

n+ 1
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and

‖z1 − z2‖ = (1 + λ)‖xn − xn+1‖ <
2
√

13

(n+ 1)2
.

Thus we get
‖p(K,B, z1)− p(K,B, z2)‖

‖z1 − z2‖
>
n+ 1

2
√

13
.

Since here n may be chosen arbitrarily large, this shows that the map p(K,B, ·)
does not have the Lipschitz property.

To obtain the final counterexample, we may replace B by a translate which has
the origin as an interior point. Further, it is not difficult to modify the example in
such a way that the gauge body B becomes centrally symmetric with respect to o.
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