Chapter 1

Valuations on Convex Bodies
— the Classical Basic Facts

Rolf Schneider

Abstract The purpose of this chapter is to give an elementary introduction to valua-
tions on convex bodies. The goal is to serve the newcomer to the field, by presenting
basic notions and collecting fundamental facts, which have proved of importance
for the later development, either as technical tools or as models and incentives for
widening and deepening the theory. We also provide hints to the literature where
proofs can be found. It is not our intention to duplicate the existing longer surveys
on valuations, nor to update them. We restrict ourselves to classical basic facts and
geometric approaches, which also means that we do not try to describe the exciting
developments of valuation theory in the last fifteen years, which involve deeper meth-
ods and will be the subject of later chapters. The sections of the present chapter treat,
in varying detail, general valuations, valuations on polytopes, examples of valuations
from convex geometry, continuous valuations on convex bodies, measure-valued
valuations, valuations on lattice polytopes.

1.1 General Valuations

The natural domain for a valuation, as it is understood here, would be a lattice (in the
sense of Birkhoff [4]; see p. 230, in particular). However, many important functions
turning up naturally in convex geometry have a slightly weaker property, and they
become valuations on a lattice only after an extension procedure. For that reason,
valuations on intersectional families are the appropriate object to study here. A family
& of sets is called intersectional if A,B € . implies ANB € ..

Definition 1.1. A function ¢ from an intersectional family .# into an abelian group
(with composition + and zero element 0) is additive or a valuation if
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@(AUB)+@(ANB) = ¢(A)+¢(B) (1.1)
forall A,B € . withAUB € ., and if (@) =0incase 0 € ..

The abelian group in the definition may be replaced by an abelian semigroup with
cancellation law, because the latter can be embedded in an abelian group. A trivial
example of a valuation on . is given by @(A) := 14, where 14 is the characteristic
function of A, defined on S := J4c A by

L [ ifrea,
X) .=
4 0, ifxeS\A

For the abelian group appearing in Definition 1.1 one can take in this case, for
example, the additive group of all real functions on S.

It would generally be too restrictive to assume that the intersectional family .7 is
also closed under finite unions. However, we can always consider the family U(.)
consisting of all finite unions of elements from .. Then (U(%),U,N) is a lattice. If
@ is a valuation on U(.”’) (not only on .”), then (1.1) is easily extended by induction
to the formula

A U-UA) = Y (=)' @) (1.2)
0AICLL,...m}

form € Nand Ay,...,A, € U(Y); here A :=(;c;A; and |J| := cardJ. Relation
(1.2) is known as the inclusion-exclusion formula. This gives rise to another defini-
tion.

Definition 1.2. A function ¢ from the intersectional family .# into an abelian group
is called fully additive if (1.2) holds for m € N and all Ay,...,A,, € .¥ with A| U
--UA, € 7.

Thus, a valuation on . that has an additive extension to the lattice U(.¥), is fully
additive. It is a nontrivial fact that the converse is also true. We formulate a more
general extension theorem. For this, we denote by U*(.¥) the Z-module spanned by
the characteristic functions of the elements of .7

Theorem 1.3 (Groemer’s first extension theorem). Let ¢ be a function from an
intersectional family of sets (including @) into an abelian group, such that ¢(0) = 0.
Then the following conditions (a)—(d) are equivalent.
(a) @ is fully additive;
(d) If
n11A1 —+ .- —‘y—l’lmlAm =0

withA; € S andn; € Z (i=1,...,m), then

”I(P(Al) + "'+”m(P(AM) =0;
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(c) The functional @* defined by ¢*(14) := @(A) for A € . has a Z-linear extension
toU*(S);
(d) @ has an additive extension to the lattice U(.Y).

This theorem is due to Groemer [11]. His proof is reproduced in [42], Theorem
6.2.1. Actually, Groemer formulated a slightly different version. In his version, ¢
maps into a real vector space. The preceding theorem then remains true with Z
replaced by R, U*(.”) replaced by the real vector space V (S) that is spanned by the
characteristic functions of the elements of ., and ‘Z-linear’ replaced by ‘R-linear’.

In this case, if ¢ is fully additive, then Groemer defined the ¢@-integral of a
function f € V() in the following way. If

f=aily 4+ +aply,, ai,...,am €R,

then
/fd(P =ar@(Ar) +- - +an@(An).

This definition makes sense, since by Theorem 1.3 the right-hand side does not
depend on the chosen representation of the function f.

Such integrals with respect to a valuation were later rediscovered by Viro [46],
and they were applied by him and other authors in various ways, mainly in the case
where @ is the Euler characteristic on suitable sets.

Results on general valuations, as mentioned in this section, were preceded by
concrete geometric applications of valuations. We give two historic examples in
subsequent sections.

1.2 Valuations on Polytopes

From now on, we work in n-dimensional Euclidean space R”, with scalar product
denoted by - and induced norm ||-||. The domain of the considered valuations will be
either the set #™" of convex bodies (nonempty, compact, convex sets) or the set "
of convex polytopes in R". We consider the latter case first.

Real valuations on polytopes (by which we always mean convex polytopes) are
closely tied up with dissections of polytopes.

Definition 1.4. A dissection of the polytope P € &" isaset {Py,...,P,} of polytopes
such that P = (J/L, P, and dim (P, N P;) < nfori # j.

Let G be a subgroup of the affine group of R". The polytopes P,Q € &#" are
called G-equidissectable if there are a dissection {P,...,P,} of P, a dissection
{01,...,0m} of Q, and elements gi,...,gx € G such that Q; = g;P; fori=1,...,m.

The most frequently considered cases are those where G is the group 7, of
translations of R” or the group G, of rigid motions of R". Here a rigid motion is an
isometry of R” that preserves the orientation, thus, a mapping g : R” — R” of the
form gx = dx+1¢, x € R", with ¥ € SO(n) and t € R".
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The following is a classical result of elementary geometry.

Theorem 1.5 (Bolyai-Gerwien, 1833/35). In R?, any two polygons of the same
area are Gy-equidissectable.

The theorem remains true if the motion group G, is replaced by the group consist-
ing of translations and reflections in points (Hadwiger and Glur [22]).

Hilbert’s third problem from 1900 asked essentially whether a result analogous to
the Bolyai—Gerwien theorem holds in three dimensions. The negative answer given
by Dehn [8] is apparently the first use of valuations in convexity. We describe the
essence of his answer, though in different terms and using later modifications. This
gives us an opportunity to introduce some further notions and facts about valuations.

On polytopes, the valuation property follows from a seemingly weaker assump-
tion.

Definition 1.6. A function ¢ on 27" with values in an abelian group is called weakly
additive (or a weak valuation) if (setting @(0) := 0) for each P € £" and each
hyperplane H, bounding the two closed halfspaces H™, H ™, the relation

o(P)=oPNH )+ @(PNH )—@(PNH) (1.3)
holds.

Every valuation on £?" is weakly additive, but also the converse is true, even
more.

Theorem 1.7. Every weakly additive function on 2" with values in an abelian group
is fully additive on 2",

A proof can be found in [42], Theorem 6.2.3, and Note 1 there gives hints to the
origins of this result.

Together with Groemer’s first extension theorem (Theorem 1.3), the preceding
theorem shows that every weakly additive function on £?" has an additive extension to
the lattice U(2?"). The elements of U(.Z?") are the finite unions of convex polytopes;
we call them polyhedra.

We need two other important notions.

Definition 1.8. A valuation ¢ on a subset of J#" is called simple if ¢(A) = 0 when-
ever dimA < n.

Definition 1.9. Let G be a subgroup of the affine group of R”. A valuation ¢ on a
subset of #™ (which together with A contains gA for g € G) is called G-invariant if
©(gA) = @(A) for all A in the domain of ¢ and all g € G.

The following is easy, but important.

Lemma 1.10. Let G be a subgroup of the affine group of R". If ¢ is a G-invariant
simple valuation on 2" and if the polytopes P,Q € 2" are G-equidissectable, then

¢(P)=9(Q)
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In fact, by Theorems 1.7 and 1.3, the valuation ¢ has an additive extension to
U(2"), hence the inclusion-exclusion formula (1.2) can be applied to dissections
{P1,...,Py} of Pand {Q1,...,0n} of Q, satisfying g;P, = Q; for g; € G. Since ¢ is
simple, the terms in (1.2) with |J| > 1 vanish, and what remains is

o(P)

PPLU--UPBy) = @(P1)+ -+ ¢@(Pn)
=0(g1P1)+ -+ @(gnPn) = @(g1PIU---UgnPn)
= q’(Ql U"'UQm) = ‘P(Q)

Dehn’s negative answer to Hilbert’s third problem can now be obtained as follows.
We have to show that there are three-dimensional polytopes of equal volume that
are not Gz-equidissectable. For this, we construct a simple, Gz-invariant valuation ¢
on 223 such that ¢(C) = 0 for all cubes C and ¢(T') # 0 for all regular tetrahedra
T. Denote by .%; (P) the set of edges of P € 923, by V| (F) the length of the edge
F € Z,(P), and by y(P,F) the outer angle of P at F. Let f : R — R be a solution of
Cauchy’s functional equation

fx+y)=f(x)+f(y) forx,yeR (1.4)
which satisfies
f(m/2)=0 (1.5)
and
fla)#0, (1.6)

where o denotes the external angle of a regular tetrahedron 7' at one of its edges.
That such a solution f exists, can be shown by using a Hamel basis of R and the fact
that /2 and o are rationally independent. Then we define

o(P):= Y VI(F)f(y(PF)) forPe P
FeZ,(P)

Because of (1.4), it can be shown that ¢ is weakly additive and hence a valuation,
and as a consequence of (1.5) (which implies f(7r) = 0) it is simple. Clearly, it is
Gs-invariant. A cube C has outer angle 7 /2 at its edges, hence ¢(C) = 0, whereas
©(T) # 0, due to (1.6). Now it follows from Lemma 1.10 that C and T cannot be
Gs-equidissectable (even if they have the same volume). For this approach, see
Hadwiger [13], and for an elementary exposition, Boltyanskii [6].

The interrelations between the dissection theory of polytopes and valuations have
been developed in great depth. For a general account, we refer to the book of Sah [37]
and to the survey articles [34] (Sec. II) and [32] (Sec. 4). For a recent contribution,
see Kusejko and Parapatits [27].

While Dehn’s result shows that, in dimension n > 3, two polytopes of equal vol-
ume need not be G,-equidissectable, the following result of Hadwiger [15] is rather
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surprising. The proof (following Hadwiger) can also be found in [42], Lemma 6.4.2.
The result plays a role in the further study of valuations.

Theorem 1.11. Any two parallelotopes of equal volume in R" are T,-equidissectable.

The first main goals of a further study of valuations on polytopes will be general
properties of such valuations and representation or classification results, possibly
under additional assumptions, such as invariance properties or continuity.

A further extension theorem can be helpful. As we have seen, the inclusion-
exclusion formula is easy to use for simple valuations, but it is a bit clumsy in the
general case. We can circumvent this by decomposing a polytope into a finite disjoint
union of relatively open polytopes. A relatively open polytope, briefly ro-polytope, is
the relative interior of a convex polytope. We denote the set of ro-polytopes in R”"
by &% and the set of finite unions of ro-polytopes by U(Z?1L). The elements of the
latter are called ro-polyhedra. Every convex polytope P € &?" is the disjoint union
of the relative interiors of its faces (including P) and hence belongs to U(Z2LL).

Theorem 1.12. Any weakly additive function on " with values in an abelian group
has an additive extension to U(ZL).

This can be deduced from Theorems 1.7 and 1.3; see [42], Corollary 6.2.4. The
result facilitates the proof of the following theorem, which is fundamental for many
of the further investigations. Here ¢ is called homogeneous of degree r if

0. (AP)=A"p(P) forall P € &2" and all real A > 0,

and rational homogeneous of degree r if this holds for rational A > 0.

Theorem 1.13. Let ¢ be a translation invariant valuation on " with values in a
rational vector space X. Then

Q(AP) = Z AT (P)  for P € " and rational A > 0. (1.7)
r=0

Here @, : & — X is a translation invariant valuation which is rational homogeneous
of degreer (r=0,...,n).

Setting A = 1 in (1.7) gives

Q=@+ + P, (1.8)

which is known as the McMullen decomposition. It has the important consequence
that for the investigation of translation invariant valuations on &?" with values in a
rational vector space X one need only consider such valuations which are rational
homogeneous of some degree r € {0,...,n}.

Another consequence of Theorem 1.13 is a polynomial expansion with respect to
Minkowski addition. Recall that the Minkowski sum (or vector sum) of K,L € ¢
is defined by
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K+L={x+y:xeK,yeL},

and that K+ L € Z". A function ¢ from 2" to some abelian group is Minkowski
additive if
Oo(K+L)=¢(K)+¢(L) forall K,Le "

By repeatedly applying (1.7), it is not difficult to deduce the following.

Theorem 1.14. Let ¢ : 2" — X (with X a rational vector space) be a translation
invariant valuation which is rational homogeneous of degree m € {1,...,n}. Then
there is a polynomial expansion

O(MP A+ + LBr)

4 m _
= Y ( )A{l..-Ak’k<p(P1,...,P1,‘..,Pk,...,Pk),
Lyt =0 ry...rg er,—/ hr,—/
k
valid for all Py,..., P, € 2" and all rational Ay, ..., A > 0. Here @ : (Z")" — X is
a symmetric mapping, which is translation invariant and Minkowski additive in each
variable.

Historical note. The result of Theorem 1.13, even in a more general version, was
stated by Hadwiger [12] (his first publication on valuations), as early as 1945, but
without proof. His later work gives a proof of the decomposition (1.8) for simple
valuations only, see [21], p. 54. The question for a result as stated in Theorem 1.14
was posed by Peter McMullen, at an Oberwolfach conference in 1974. He gave a
proof the same year, see [28], [29]. Different proofs were provided by Meier [35]
and Spiegel [45]. A variation of Spiegel’s proof, using Theorem 1.12 instead of the
inclusion-exclusion formula, is found in [42], Section 6.3. Proofs of more general
versions of the polynomiality theorem were given by Pukhlikov and Khovanskii [36]
and by Alesker [1].

A consequence of Theorem 1.14 is the fact that a valuation ¢ : #" — R that is
translation invariant and rational homogeneous of degree 1 is Minkowski additive. A
variant of this result was first proved by Spiegel [44].

We turn to representation results for translation invariant, real valuations on &?".
Without additional assumptions, little is known about these. Setting A = 0 in (1.7),
we see that any such valuation which is homogeneou of degree zero, is constant.
Then we mention two classical characterizations of the volume on polytopes, which
are due to Hadwiger. The volume is denoted by V;,.

Theorem 1.15. Let ¢ : &7 — R be a translation invariant valuation which is simple
and nonnegative. Then ¢ = cV,, with a constant c.

The proof can be found in Hadwiger’s book [21], Sec. 2.1.3. The following result
is also due to Hadwiger (see [21], p. 79; also [42], Theorem 6.4.3). The proof makes
use of Theorem 1.11.
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Theorem 1.16. Let ¢ : 27" — R be a translation invariant valuation which is homo-
geneous of degree n. Then ¢ = cV, with a constant c.

For translation invariant and simple valuations on polytopes, more general rep-
resentations are possible. Under a weak continuity assumption, these go back to
Hadwiger [18], and without that assumption to recent work of Kusejko and Parapatits
[27]. We consider Hadwiger’s result first, but use the terminology of [27].

For k € {0,...,n}, let ¥ denote the set of all ordered orthonormal k-tuples
of vectors from the unit sphere S"~!. %9 contains only the empty tuple (). For
Pc 2" andu € "', let F(P,u) be the face of P with outer normal vector u. For
U= (uy,...,u) € %*and P € 2" we define recursively the face Py of P by

P() Z:P, P(u]7...7u,<) = F<P(u1,m,u,-f1)’”k)’ r= 1,...,k.

The orthonormal frame U = (uy, ...,u;) € %* is P-tight if dimPy, ) =n—rfor

r=0,...,k Let %}f denote the (evidently finite) set of all P-tight frames in %*. Then
V,_«(Py) > 0 for U € %%, where V,,_; denotes the (n — k)-dimensional volume.
A function f : % — R is called odd if

flewur,. ... eux) =& ---&f(ur,... u)

for g = +1.

A valuation @ : " — R is weakly continuous if it is continuous under parallel
displacements of the facets of a polytope. To make this more precise, we consider the
set of polytopes whose system of outer normal vectors of facets belongs to a given
finite set U = {uy,...,u,}; these vectors positively span R”. Now a function ¢ on
" is called weakly continuous if for any such U the function

My Mm) = @{xeR":x-u; <My, i=1,...,m})

is continuous on the set of all (1, ..., Ny) for which the argument of ¢ is not empty.
The following is Hadwiger’s [ 18] result. For a version of his proof, we refer to [42],
Thm. 6.4.6. The proof given in [27] appears to be simpler. We write % := UZ;(I) wk.

Theorem 1.17. A function ¢ : P" — R is a weakly continuous, translation invariant,
simple valuation if and only if for each U € % there is a constant cy € R such that
U > cy is odd and

n—1
o)=Y Y  cuVii(P) (1.9)
k=0uecwu}(P)

for P € 2",

For non-simple valuations, the following result holds. As usual, .%,(P) denotes
the set of r-dimensional faces of a polytope P, and N(P,F) is the cone of normal
vectors of P at its face F.

Theorem 1.18. A function ¢ : 2" — R is a weakly continuous, translation invariant
valuation if and only if there are a constant ¢ and for eachr € {1,...,n— 1} a simple
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real valuation 0, on the system of convex polyhedral cones in R" of dimension at
most n — r such that

o(P) = o({0}) + Z:: ) 9, F))V,(F)+cV,(P) (1.10)

y
for P e 2"

McMullen [31] has deduced this from Hadwiger’s result on simple valuations.
For a different approach, see in [32] the remark after Thm. 5.19.

Satisfactory as these results are in the realm of polytopes, they seem, at present,
not to lead much further in the investigation of continuous valuations on general
convex bodies. Conditions on the functions 6,, which do or do not allow a continuous
extension of a valuation @ represented by (1.10) to general convex bodies, were
investigated in [23].

Without the assumption of weak continuity, Kusejko and Parapatits [27] have
obtained the following result.

Theorem 1.19. A function ¢ : 2" — R is a translation invariant, simple valuation
if and only if for each U € % there exists an additive function fy : R — R such that
U — fy is odd and

n—1

oP)=Y Y  fuVau(Py)) (1.11)

k=0yeukp)

for P € ",

The implications of this result for translative equidecomposability are explained
in [27].

1.3 Examples of Valuations from Convex Geometry

The theory of convex bodies provides many examples of valuations that come up
naturally. We explain the most important of these, before turning to classification and
characterization results.

A first example is given by the identity mapping #"* — J#". This makes sense,
since £, as usual equipped with Minkowski addition, is an abelian semigroup with
cancellation law. The identity mapping is a valuation, since the relation

(KUL)+(KNL)=K+L (1.12)

holds for convex bodies K,L € #" with KUL € " (as first pointed out by
Sallee [38]; the easy proof can be found in [42], Lemma 3.1.1). Consequently,
also the support function defines a valuation. The support function A(K,-) = hg of
the convex body K € Z™" is defined by
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h(K,u) := max{{(u,x) : x € K} foru e R".

The function 4 is Minkowski additive in the first argument. The Minkowski additivity
of the support function together with (1.12) yields

h(KUL,-)+h(KNL,-)=h(K,-)+h(L,") if KUL is convex,

hence the map K — h(K,-), from J£™" into (say) the vector space of real continuous
functions on R”, is a valuation. Using the support function, the following can be
shown (see, e.g., [42], Theorem 6.1.2, and, for the history, Note 2 on p. 332).

Theorem 1.20. Every Minkowski additive function on J£™" with values in an abelian
group is fully additive.

Minkowski addition plays a role in valuation theory of convex bodies in more
than one way. As one example, we mention a way to construct new valuations from a
given one. Let ¢ be a valuation on 2. If C € Z" is a fixed convex body, then

oc(K) :=p(K+C) forK e ™"

defines a new valuation @¢ on # ™. If @ is translation invariant, then the same holds
for ¢@c.

A basic example of a valuation on .#™" is, of course, the volume V,,. Being the
restriction of a measure, the function V,, : #" — R is a valuation, and since lower-
dimensional convex bodies have volume zero, it is simple. Moreover, the valuation
V,, is invariant under rigid motions and continuous (continuity of functions on 2"
always refers to the Hausdorff metric). Via the construction (1.13) below, it gives
rise to many other (non-simple) valuations. The following fact, which goes back
to Minkowski at the beginning of the 20th century, was, in fact, the template for
Theorem 2.5. There is a nonnegative, symmetric function V : (£™)" — R, called the
mixed volume, such that

VamKi+- -+ K) = Y A A V(KK
i1 yeensin=1

forallmeN, Ky,...,K,, € #"and A4,..., A, > 0. (For proofs and more information,
we refer to [42], Sec. 5.1.) We write

V(Kl,...,Kl,...,Km,...,Km) = V(Kl[rl},...,Km[rm]).
— —

r m

For arbitrary p € {1,...,n} and fixed convex bodies M, ,1,...,M, € %™, the func-
tion ¢ defined by

¢o(K) :=V(K[p],Mp;1,....M,), Kex", (1.13)

is a valuation on JZ". It is translation invariant, continuous, and homogeneous of
degree p. Often in the literature, these functionals ¢ are also called ‘mixed volumes’,
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but we find that slightly misleading (since the mixed volume is a function of n
variables) and prefer to call them mixed volume valuations.

Of particular importance are the special cases of the mixed volume valuations
where the fixed bodies are equal to the unit ball B". First we recall two frequently
used constants: k;, is the volume of the unit ball in R” and ), is its surface area;
explicitly,

73 273
K, = ~, Wy =nk; = - (1.14)
r(1+3%) r(3)
We define (n)
Vi(K) = =L~V (K[j],B"[n— j]) (1.15)

Kn—j
for K € Z". The functional V; is called the jth intrinsic volume. In addition to the
properties that all mixed volume valuations share, it is invariant under rotations and
thus under rigid motions. The normalizing factor has the effect that the intrinsic
volume is independent of the dimension of the ambient space in which it is computed.
In particular, if the convex body K has dimension dimK < m, then V,,(K) is the
m-dimensional volume of K.

As a special case of the above approach to mixed volumes, we see that the intrinsic
volumes are uniquely defined by the coefficients in the expansion

Va(K+pB") =Y p" i, ;Vi(K), p>0. (1.16)
Jj=0

Here, K + pB" is the outer parallel body of K at distance p > 0, that is, the set of all
points of R” that have distance at most p from K. Equation (1.16) is known as the
Steiner formula.

The concept of the parallel body can be localized. There is a local Steiner formula,
which leads to measure-valued valuations. For this, we need a few more definitions.
For K € J#™ and x € R”, there is a unique point p(K,x) € K with

lr—pKD)| < |x—y|  forallyek.

The map p(K,-) : R" — K is known as the metric projection of K. The map K —
p(K,x), for fixed x, is another example of a valuation, from ™ to R”. By d(K,x) :=
|lx— p(K,x)|| the distance of x from K is defined, and, for x € R"” \ K, by

_x—p(K,x)
u(K,x) = dKa)

the unit vector pointing from p(K,x) to x. The pair (p(K,x),u(K,x)) is a support
element of K. Generally, a support element of K is a pair (x,u), where x € bdK and
u is an outer unit normal vector of K at x. The set ne(K) of all support elements of K
is called the (generalized) normal bundle or the normal cycle of K. It is a subset of
the product space

I =R'xS"! (1.17)
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(which is equipped with the product topology). Now for 1 € Z(X"), the c-algebra
of Borel sets of X", for K € 2" and p > 0, we define the local parallel set

My(K,n) :={xeR":0<d(K,x) <pand (p(K,x),u(K,x)) €n}.

This is a Borel set. By ¢ we denote n-dimensional Hausdorff measure. Again, one
has a polynomial expansion, namely

A" (Mp(K,1M)) Zp" Tk jAj(K,m)  forp>0.

This defines finite Borel measures Ag(K,-),...,A,—1(K,-) on Z". One calls A;(K,-)
the jth support measure of K. From the valuation property of the nearest point map,
one can deduce that

Aj(KUL,') —‘r/\j(KﬂL,-) :/\j(K,')"FAJ’(L,-)

forall K,L € ¢ with KUL € 2. Thus, the mapping K — A;(K,-) is a valuation

on JZ", with values in the vector space of finite signed Borel measures on X".
From the support measures we get two series of marginal measures. They appear

in the literature with two different normalizations. For Borel sets B C R”, we define

()

nky_j

Ci(K.B) = D;(K,B) = Aj(K,BxS").

The measures Cy(K,-),...,C,—1(K,-) are the curvature measures of K. They are
measures on R”, concentrated on the boundary of K. The definition is supplemented
by

2Cn(K,B) = @u(K, B) := " (KN P).

For Borel sets @ C S"~!, we define

()

nKky—j

Si(K,w) =Y¥(K,0) :=A;j(K,R" x »).

The measures So(K,),...,Sq.—1(K,-) are the area measures of K. They are measures
on the unit sphere S"~!.

1.4 Continuous Valuations on Convex Bodies

Among the valuations on the space " of general convex bodies in R”, those are
of particular interest which have their values in a (here always real) topological
vector space (such as R, R”, tensor spaces, spaces of functions or measures) and
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are continuous with respect to the topology on £ that is induced by the Hausdorff
metric.

Before describing consequences of continuity, we wish to point out that general
valuations on £ can show rather irregular behaviour. For example, if we choose a
non-continuous solution f of Cauchy’s functional equation, f(x+y) = f(x) + f(y)
for x,y € R, then ¢ := foV; with j € {I,...,n} is a valuation on .#™ which is
not continuous, in fact not even locally bounded, since f is unbounded on every
nondegenerate interval. For j = 1, the function ¢ is Minkowski additive and hence,
by Theorem 1.20, even fully additive.

As a first consequence of continuity, we mention another extension theorem of
Groemer [11]. It needs only a weaker version of continuity. A function ¢ from 2™
into some topological (Hausdorff) vector space is called o-continuous if for every
decreasing sequence (K;);cn in # " one has

lim o(K:) = ¢ ([ Ki).

i—oo ;
ieN

If ¢ is continuous with respect to the Hausdorff metric, then it is -continuous. This
follows from Lemma 1.8.2 in [42].

Theorem 1.21 (Groemer’s second extension theorem). Let ¢ be a function on
" with values in a topological vector space. If ¢ is weakly additive on " and is
o-continuous on K", then @ has an additive extension to the lattice U(Z™).

Groemer’s proof is reproduced in [43], Theorem 14.4.2. The formulation of the
theorem here is slightly more general, and we give a slightly shorter proof, based on
the following lemma.

Lemma 1.22. Let K,...,K,, € #™" be convex bodies such that Ky U---UK,, is
convex. Let € > 0. Then there are polytopes Py, ..., P, € 2" with K; C P, C K; + €B"
fori=1,...,msuch that PyU---UP, is convex.

For the proof and the subsequent argument, we refer to Weil [47], Lemma 8.1. With
this lemma, Theorem 1.21 can be proved as follows (following a suggestion of Daniel
Hug). Let ¢ satisfy the assumptions of Theorem 1.21. Let K, ..., K, € £ be convex
bodies such that K; U--- UK}, is convex. We apply Lemma 1.22 with K; replaced by
Ki+27B", k € N, and &€ = 27 (note that J". | (K; +27%B") = (U™, K;) +27*B" is
convex). This yields polytopes Pfk), . ,P,qu) with convex union and such that K; +
27%B" ¢ P¥) C K;+2'7*B". Each sequence (P{X));cy is decreasing. By Theorem 1.7,
the function ¢ is fully additive on 27", hence

oPU-UR) = ¥ ()R,
0AJC{1,....m}

Since
NPHu---UPP) =K U-- UK,
keN
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and
NPY =k  ifK #0,
keN

the ¢-continuity of ¢ yields

e(KiU-UKy) = Y (=) oK)
0£IC{1,....m}

Thus, ¢ is fully additive on .#™. By Theorem 1.3, it has an additive extension to
U(#™). This proves Theorem 1.21.

The elements of the lattice U(.#™), which has been termed the convex ring, are
finite unions of convex bodies and are known as polyconvex sets.

It seems to be unknown whether every valuation on J#™" (without a continuity
assumption) has an additive extension to U(#™).

One consequence of Theorem 1.21 is the fact that the trivial valuation on ™",
which is constantly equal to 1, has an additive extension to polyconvex sets. This
extension is called the Euler characteristic and is denoted by ¥, since it coincides,
on this class of sets, with the equally named topological invariant. It should be
mentioned that for the existence of the Euler characteristic on polyconvex sets, there
is a very short and elegant proof due to Hadwiger [19]; it is reproduced in [42],
Theorem 4.3.1.

Next, we point out that the polynomiality results from Section 1.2 can immediately
be extended by continuity. Let ¢ be a translation invariant, continuous valuation on
J£" with values in a topological vector space X. Then it follows from Theorem 1.13
that there are continuous, translation invariant valuations ¢y, ..., @, on ", with
values in X, such that ¢; is homogeneous of degree i (i =0,...,n) and

O(AK) = Z?Li(pi(K) forK € #" and A > 0.
i=0

In particular, the McMullen decomposition ¢ = @y + - - - + @, holds, where each ¢;
has the same properties as ¢ and is, moreover, homogeneous (not only rationally
homogeneous) of degree i.

If ¢ is, in addition, homogeneous of degree m, then it follows from Theorem 1.14
that there is a continuous symmetric mapping @ : (J£™)™ — X which is translation
invariant and Minkowski additive in each variable, such that

(P(}LIKI +- AkKk)

m
-y ( " >7Ll”~~/Ikrk(p(Kl,...,Kl,...,Kk,...,Kk)
ry...rg N——

n Tk
holds for all Ki,...,K; € #" and all real Ay,...,A; > 0. Further, one can deduce
that for r € {1,...,m} the mapping
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K—o(K,....K,M.y1,...,My,), (1.18)
N——
r
with fixed convex bodies M, 1,...,M,, is a continuous, translation invariant valua-

tion, which is homogeneous of degree 7.

Now that we have the classical examples of valuations on convex bodies at our
disposal, we can have a look at the second historical incentive for the development
of the theory of valuations. This came from the early history of integral geometry.
In his booklet on integral geometry, Blaschke [5], Sec. 43, asked a question, which
we explain here in a modified form. For convex bodies K,M € ¥, consider the
‘kinematic integral’

WKM%:LxMﬁM@M@)

Here u denotes the (suitably normalized) Haar measure on the motion group G, and
X is the Euler characteristic, that is, ¥ (K) = 1 for K € ™ and x(0) = 0. In other
words, y(K,M) is the rigid motion invariant measure of the set of all rigid motions
g for which gM intersects K. There are different approaches to the computation of
y(K,M), and the result is that

V(K.M) =Y c;jVi(K)V;(M) (1.19)
i,j=0

with explicit constants ¢;;. This throws new light on the importance of the intrinsic
volumes. Blaschke investigated this formula in a slightly different context (three-
dimensional polytopal complexes). Important was his observation that some formal
properties of the involved functionals were essential for his proof of such formulas,
namely the valuation property, rigid motion invariance and, in his case, the local
boundedness. He claimed that these properties characterize, ‘to a certain extent’,
the linear combinations of intrinsic volumes. He proved a result in this direction,
where, however, he had to introduce an additional assumption in the course of the
proof, namely the invariance under volume preserving affine transformations for
the ‘volume part’ of his considered functional. Whether a characterization theorem
for valuations on polyhedra satisfying Blaschke’s original conditions is possible,
seems to be unknown. Later, Hadwiger considered valuations on general convex
bodies and introduced the assumption of continuity. The following is his celebrated
characterization theorem.

Theorem 1.23 (Hadwiger’s characterization theorem). If ¢ : " — R is a con-
tinuous and rigid motion invariant valuation, then there are constants c, . ..,c, such
that

0(K)= Y ¢;V;(K)
=

forallK € ™.
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For the three-dimensional case, Hadwiger gave a proof in [16], and for general
dimensions in [17]; his proof is also found in his book [21], Sec. 6.1.10. Hadwiger
expressed repeatedly ([14], p. 346, and [16], footnote 3 on p. 69) that a characteri-
zation theorem for the intrinsic volumes with the assumption of local boundedness
instead of continuity would be desirable. However, the following counterexample,
given in [34], p. 239, shows that this is not possible. For K € ™", let

oK)= ), A" (F(K.u)),

ucSn-1

where F (K, u) is the support set of K with outer normal vector u. This has non-zero
"1 measure for at most countably many vectors u, hence the sum is well-defined,
and its value is bounded by the surface area of K. Thus, ¢ is a rigid motion invariant
valuation which is locally bounded, but it is not continuous and hence not a linear
combination of intrinsic volumes.

Hadwiger showed in [14], [20] how his theorem immediately leads to integral-
geometric results. For instance, to prove (1.19), one notes that for fixed K the
function y(K,-) satifies the assumptions of Theorem 1.23 and hence is a linear
combination of the intrinsic volumes of the variable convex body, with real con-
stants that are independent of this body, thus y(K,M) = }}_oc;(K)V;(M). Then
one repeats the argument with variable K and obtains that y must be of the form
V(K. M) =Y ;_oci;Vi(K)V;(M). The constants c;; can then be determined by apply-
ing the obtained formula to balls of different radii. There are also different approaches
to integral geometric formulas. For one result, however, called ‘Hadwiger’s general
integral-geometric theorem’ (it is reproduced in [43], Theorem 5.1.2), the proof via
the characterization theorem is the only one known.

Hadwiger’s proof of his characterization theorem used a fair amount of dissection
theory of polytopes. A slightly simplified version of his proof was published by Chen
[7]. A considerably shorter, elegant proof of Hadwiger’s theorem is due to Klain [24].
This proof is reproduced in the book by Klain and Rota [26], which presents a neat
introduction to integral geometry, with some emphasis on discrete aspects. Klain’s
proof is also reproduced in [42], Theorem 6.4.14.

An essential aspect of Hadwiger’s characterization theorem is the fact that the
real vector space spanned by the continuous, motion invariant real valuations on
" has finite dimension. This is no longer true if the considered valuations are only
translation invariant. We turn to these valuations, whose investigation is a central
part of the theory. By Val we denote the real vector space of translation invariant,
continuous real valuations on .#", and by Val,, the subspace of valuations that are
homogeneous of degree m. The McMullen decomposition tells us that

n
Val = P Val,, .
m=0

Further, a valuation ¢ (on JZ" or &") is called even (odd) if ¢(—K) = ¢(K)
(respectively, @(—K) = —¢@(K)) holds for all K in the domain of ¢. We denote by
Val™ and Val~ the subspace of even, respectively odd, valuations in Val, and Val,
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and Val,, are the corresponding subspaces of m-homogeneous valuations. Since we
can always write

o(K) =1(0(K)+ ¢(—K)) + 3 (¢(K) — ¢(—K)),

we have
Val,, = Val, & Val,, .

It would be nice to have a simple explicit description of the valuations in each
space Val,,. Only special cases are known. So it follows from the results on polytopes
(Theorem 1.16, in particular), together with continuity, that the spaces Val,, are
one-dimensional for m =0 and m = n.

Corollary 1.24. The space Val is spanned by the Euler characteristic, and the space
Val,, by the volume functional.

An explicit description is also known for the elements of Val,_;. The following
result is due to McMullen [30].

Theorem 1.25. Each ¢ € Val,_| has a representation

oK)= | f)Su-1(K,du)  forKe A,

with a continuous function f : S"~' — R. This function is uniquely determined up to
adding the restriction of a linear function.

More complete results are known for simple valuations. The following result of
Klain [24] was an essential step in his proof of Hadwiger’s characterization theorem.

Theorem 1.26 (Klain’s volume characterization). If ¢ € Val' is simple, then
O(K) = cVy(K) for K € ™", with some constant c.

A counterpart for odd simple valuations was proved in [41] (the proof can also be
found in [42], Theorem 6.4.13):

Theorem 1.27. If ¢ € Val™ is simple, then
‘P(K)Z/Sflg(u)an(l(,du) forK e ™,

with an odd continuous function g : S"! — R.

A different approach to Theorems 1.25 and 1.27 was provided by Kusejko and
Parapatits [27].

Klain’s volume characterization (Theorem 1.26) has a consequence for even
valuations, which has turned out to be quite useful. By G(n,m) we denote the
Grassmannian of m-dimensional linear subspaces of R". Now letm € {1,...,n—1},
and let ¢ € Val,,. Let L € G(n,m). It follows from Corollary 1.24 that the restriction
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of @ to the convex bodies in L is a constant multiple of the m-dimensional volume.
Thus, @(K) = c¢(L)V,y(K) for the convex bodies K C L, where cy(L) is a real
constant. Since ¢ is continuous, this defines a continuous function ¢, on G(n,m).
It is called the Klain function of the valuation ¢. This function determines even
valuations uniquely, as Klain [25] has deduced from his volume characterization.

Theorem 1.28. A valuation in Val}, (m € {1,...,n— 1}) is uniquely determined by
its Klain function.

Klain’s proofs of Theorems 1.26 and 1.28 are reproduced in [42], Theorems 6.4.10
and 6.4.11.

1.5 Measure-valued Valuations

We leave the translation invariant, real valuations and turn to some natural extensions
of the intrinsic volumes. We have already seen the measure-valued localizations of
the intrinsic volumes, the support, curvature, and area measures. Another natural
extension (in the next chapter) will be that from real-valued to vector- and tensor-
valued functions. In both cases, invariance (or rather, equivariance) properties with
respect to the group of rigid motions play an important role.

First we recall that with each convex body K € J#" we have associated its support
measures

Ao(K,), e Ap1 (K 0)

and, by marginalization and renormalization, the curvature measures C; (K,-) and the
area measures S;(K,-), j=0,...,n— 1. Each mapping K — A;(K,-) is a valuation,
with values in the vector space of finite signed Borel measures on £ = R" x §"~ 1,
and it is weakly continuous. The latter means that K; — K in the Hausdorff metric
implies A;(K:,-) > A;(K,-), where the weak convergence - is equivalent to

tim [ ran (Ki) = [ fan(.)
i—oo Jyn xn
for every continuous function f : X" — R. The measure A;(K,-) is concentrated
on the normal bundle nc(K) of K. Valuation property and weak continuity carry
over to the mappings C; and S;. The measure C;(K,-) is a Borel measure on R”,
concentrated on bd K for j < n— 1. The area measure S;(K,) is a Borel measure on
the unit sphere S"~!.
The behaviour of these measures under the motion group is as follows. First, if
g € Gy, we denote the rotation part of g by go (that is, gx = gox +¢ for all x € R",
with a fixed translation vector t). Then we define

gn = {(gx,gou) : (v,u)em}  forn C X7,
gB:={gx:xe€ P} for B C R",
gw:={gou:uc o} for o c S"1.
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For K € %", g € G, and Borel sets 1 C X", B C R" and @ C S"~! we then have

Aj(gKvgn) :Aj(K7n)’ Cj(gKagﬁ) = Cj(K7ﬁ)’ Sj(gKvgw) :SJ(K’ w)'

In each case, we talk of this behaviour as rigid motion equivariance.

One may ask whether, for these measure-valued extensions of the intrinsic vol-
umes, there are classification results similar to Hadwiger’s characterization theorem.
It turns out that in addition to the valuation, equivariance, and continuity properties
we need, because we are dealing with measures, some assumption of local determi-
nation, saying roughly that the value of the considered measure of K at a Borel set &
depends only on a local part of K determined by o. With an appropriate assumption
of this kind, the following characterization theorems have been obtained. If ¢(K) is
a measure, we write here ¢(K)(a) =: ¢(K, @).

Theorem 1.29. Let ¢ be a map from ™ into the set of finite Borel measures on R",
satisfying the following conditions.

(a) ¢ is a valuation;

(b) ¢ is rigid motion equivariant;

(¢) @ is weakly continuous;

(d) @ is locally determined, in the following sense: if B C R" is open and KN =
LN, then o(K,B") = o(L,B’) for every Borel set B’ C B.

Then there are real constants cy, . ..,c, > 0 such that
n
o(K,B) =) ciCi(K.B)
i=0

forK € " and B € B(R").

In the following theorem, (K, ®) denotes the inverse spherical image of K at o,
that is, the set of all boundary points of the convex body K at which there is an outer
normal vector belonging to the given set @ C S"~!.

Theorem 1.30. Let ¢ be a map from ™" into the set of finite signed Borel measures
on S"1, satisfying the following conditions.

(a) ¢ is a valuation;

(b) ¢ is rigid motion equivariant;

(¢) @ is weakly continuous;

(d) @ is locally determined, in the following sense: if @ C S"~ is a Borel set and if
T(K,») = 1(L, ), then ¢(K,®) = @(L, ).

Then there are real constants cy, . ..,c,—1 such that
n—1
(P(K, (D) - Z CiSi(Ka (D)
i=0

forK € #"and w € B(S"1).
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Theorem 1.29 was proved in [40] and Theorem 1.30 in [39]. The following result
is due to Glasauer [10].

Theorem 1.31. Let ¢ be a map from " into the set of finite signed Borel measures

on X", satisfying the following conditions.

(a) @ is rigid motion equivariant;

(b) @ is locally determined, in the following sense: if 1 € B(X") and K,L € ™"
satisfy n Nne(K) = nNinc(L), then 9(K,n) = ¢(L,N).

Then there are real constants cy, . ..,c,_1 such that
n—1
o(K,n) =Y c;Ai(K,m)
j=0

forK € X" and n € B(Z").

Here the valuation property has not been forgotten! Indeed, the last theorem has
a character different from the two previous ones: the assumption that ¢(K,-) is a
locally determined measure on X", is strong enough to allow a simpler proof, without
assuming the valuation property. The latter point will be important in the treatment
of local tensor valuations (in Chap. 2).

1.6 Valuations on Lattice Polytopes

We denote by &?(Z") the set of all polytopes with vertices in Z". In contrast to 2"
and JZ" considered so far, #2(Z") is not an intersectional family. For that reason,
we modify the definition of a valuation in this case and say that a mapping ¢ from
P (Z") into some abelian group is a valuation if

¢(PUQ)+0(PNQ) = ¢(P)+¢(Q) (1.20)

holds whenever P, Q, PUQ,PNQ € H(Z"); moreover, we define that @ € 2 (Z") and
assume that @ (@) = 0. In a similar vein, we say that ¢ satisfies the inclusion-exclusion
principle if
pAIU-UA) = Y ()Y p(a))
0A£IC{1,...om}

holds whenever m € N, A} U---UA,, € Z(Z") and A; € Z(Z") for all nonempty
J C{1,...,m}. Further, a valuation ¢ on &?(Z") is said to have the extension property
if there is a function ¢ on the family of finite unions of polytopes in Z?(Z") such that

PAIU-UA)= Y (D) e(A))
0AJC{1,....m}

whenever Ay € Z(Z") for all nonempty J C {1,...,m}. The following theorem was
proved by McMullen [33].
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Theorem 1.32. A valuation on P (Z") satisfies the inclusion-exclusion principle
and has the extension property.

For polytopes in £?(7Z"), the natural counterpart to the volume functional is the
lattice point enumerator L. It is defined by

L(P) :=card(PNZ") forP e 2(Z").

It was first proved by Ehrhart [9] that there is a polynomial expansion
n
L(kP)=Y KL(P), PeP(Z"),keN. (1.21)
i=0

We refer to the surveys [34], [32] for information about how this fact embeds into
the general polynomiality theorems proved later.

The expansion (1.21) defines valuations Ly, ...,L,(=V,) on & (Z"), which are
invariant under unimodular transformations, that is, volume preserving affine maps of
R™ into itself that leave Z" invariant. A result of Betke [2] (see also Betke and Kneser
[3]), together with Theorem 1.32, gives the following characterization theorem.

Theorem 1.33. If ¢ is a real valuation on &?(Z") which is invariant under unimod-
ular transformations, then

o(P)= iciLi(P) forPe 2(7"),
i=0

with real constants cy, ... ,Cp.
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