
Chapter 2
Tensor Valuations
and Their Local Versions

Daniel Hug and Rolf Schneider

Abstract The intrinsic volumes, recalled in the previous chapter, provide an array of
size measurements for a convex body, one for each integer degree of homogeneity
from 0 to n. For measurements and descriptions of other aspects, such as position,
moments of the volume and of other size functionals, or anisotropy, tensor-valued
functionals on convex bodies are useful. The classical approach leading to the intrinsic
volumes, namely the Steiner formula for parallel bodies, can be extended by replacing
the volume by higher moments of the volume. This leads, in a natural way, to a series
of tensor-valued valuations. These so-called Minkowski tensors are introduced in the
present chapter, and their properties are studied. A version of Hadwiger’s theorem for
tensor valuations is stated. The next natural step is a localization of the Minkowski
tensors, in the form of tensor-valued measures. The essential valuation, equivariance
and continuity properties of these local Minkowski tensors are collected. The main
goal is then a description of the vector space of all tensor valuations on convex
bodies sharing these properties. Continuity properties of local Minkowski tensors and
of support measures follow from continuity properties of normal cycles of convex
bodies. We establish Hölder continuity of the normal cycles of convex bodies, which
provides a quantitative improvement of the aforementioned continuity property.

2.1 The Minkowski Tensors

We use the notation introduced in Chap. 1. We recall that the intrinsic volumes,
certainly the most important valuations in the theory of convex bodies in Euclidean
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space, all arise from one basic valuation, the volume functional. In fact, they are
generated by the Steiner formula (Chap. 1, formula (1.16)),

Vn(K +ρBn) =
n

∑
j=0

ρ
n− j

κn− jVj(K), ρ ≥ 0. (2.1)

Here and in the following, K ∈K n denotes a convex body. The point to be kept in
mind is that the evaluation of the volume of parallel bodies leads to a polynomial
expansion and that the coefficients yield new valuations, which inherit some essential
properties of the volume functional, but are no longer simple.

The volume functional, which we may write as

Vn(K) =
∫

K
dx,

where dx indicates integration with respect to Lebesgue measure, has a natural
vector-valued analogue, the moment vector∫

K
xdx,

which is needed to define the centre of gravity,

c(K) :=
1

Vn(K)

∫
K

xdx,

of convex bodies K with positive volume. If one wants to study moments of inertia,
for example, one has to consider matrices with entries of type∫

K
ξiξ j dx,

where ξ1, . . . ,ξn are the coordinates of x ∈ Rn with respect to an orthonormal basis.
This can be continued and leads to a series of simple valuations with values in spaces
of symmetric tensors. Application to parallel bodies and polynomial expansion then
reveals more general tensor-valued valuations. In the present section, we introduce
these tensor valuations.

First we fix some conventions how to deal with tensors. We use the scalar product
of Rn to identify Rn with its dual space. Thus, each vector a ∈ Rn is identified with
the linear functional x 7→ a · x from Rn to R. For r ∈ N0, an r-tensor, or tensor of
rank r, on Rn is defined as an r-linear mapping from (Rn)r to R. It is symmetric if it is
invariant under permutations of its arguments. By Tr we denote the real vector space
(with its standard topology) of symmetric r-tensors on Rn. By definition, T0 = R,
and by the identification made above, T1 = Rn. The symmetric tensor product of
the symmetric tensors ai ∈ Tri , i = 1, . . . ,k, is defined as follows. We write s0 = 0,
si = r1 + · · ·+ ri for i = 1, . . . ,k, then
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(a1�·· ·�ak)(x1, . . . ,xsk) :=
1

sk! ∑
σ∈S (sk)

k

∏
i=1

ai(xσ(si−1+1), . . . ,xσ(si))

for x1, . . . ,xsk ∈ Rn, where S (m) denotes the group of permutations of the numbers
1, . . . ,m. Then a1� ·· ·� ak ∈ Tr1+···+rk . Thus the space of symmetric tensors (of
arbitrary rank) becomes an associative, commutative graded algebra with unit. We
shall always use the abbreviations a�b =: ab,

a1�·· ·�ak =: a1 · · ·ak, a�·· ·�a︸ ︷︷ ︸
r

=: ar, a0 := 1.

For instance, for a vector a ∈ Rn, the r-tensor ar with r ≥ 1 is given by

ar(x1, . . . ,xr) = (a · x1) · · ·(a · xr), x1, . . . ,xr ∈ Rn.

The scalar product,
Q(x,y) = x · y, x,y ∈ Rn,

is a symmetric tensor of rank two; we call Q the metric tensor.
Let (e1, . . . ,en) be an orthonormal basis of Rn. Then the tensors ei1 · · ·eir with

1≤ i1 ≤ ·· · ≤ ir ≤ n form a basis of Tr. The corresponding coordinate representation
of T ∈ Tr is given by

T = ∑
1≤i1≤···≤ir≤n

ti1...ir ei1 · · ·eir (2.2)

with

ti1...ir =
(

r
m1 . . .mn

)
T (ei1 , . . . ,eir), (2.3)

where mk counts how often the number k appears among the indices i1, . . . , ir (k =
1, . . . ,n). (We remark that (2.3) should replace the formula given in [19, p. 463, line
−8].)

Now we define the moment tensors, which generalize the volume. Integrals of
tensor-valued functions can, of course, be defined coordinate-wise. For r ∈ N0, let

Ψr(K) :=
1
r!

∫
K

xr dx, K ∈K n. (2.4)

Thus, Ψr(K) ∈ Tr, and explicitly

Ψr(K)(y1, . . . ,yr) =
1
r!

∫
K
(x · y1) · · ·(x · yr)dx

for y1, . . . ,yr ∈ Rn. The factor 1/r! in (2.4) is only for convenience. It is clear that
Ψr : K n→ Tr is a simple valuation.

Immediately from (2.4) we see how Ψr behaves under translations. Since the
binomial theorem holds for the symmetric tensor product, for t ∈ Rn we get
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Ψr(K + t) =
r

∑
j=0

1
j!

Ψr− j(K)t j. (2.5)

Formally, this looks like an ordinary polynomial, but we have to keep in mind that
here, according to our notational conventions,

Ψr− j(K)t j =Ψr− j(K)� t�·· ·� t︸ ︷︷ ︸
j

.

Nevertheless, in view of (2.5) one says that Ψr has polynomial behaviour under
translations.

Also the behaviour under rotations is easy to see. Let O(n) be the orthogonal group
of Rn. Its elements are called rotations of Rn; thus, rotations in our terminology can
be proper (orientation preserving) or improper. For ϑ ∈ O(n) and for y1, . . . ,yr ∈ Rn

we have

Ψr(ϑK)(y1, . . . ,yr) =
1
r!

∫
ϑK

(x · y1) · · ·(x · yr)dx

=
1
r!

∫
K
(ϑx · y1) · · ·(ϑx · yr)dx

=
1
r!

∫
K
(x ·ϑ−1y1) · · ·(x ·ϑ−1yr)dx

=Ψr(K)(ϑ−1y1, . . . ,ϑ
−1yr) = (ϑΨr(K))(y1, . . . ,yr).

Thus,
Ψr(ϑK) = ϑΨr(K),

where the usual operation of O(n) on Tr is defined by

(ϑa)(y1, . . . ,yr) = a(ϑ−1y1, . . . ,ϑ
−1yr)

for a ∈ Tr.
The tensor functional Ψr also satisfies a Steiner formula. To express it in a con-

venient way, we have to introduce further tensor functionals. In the following, we
use the support measures Λk (see Chap. 1, Sec. 1.3), which are Borel measures on
Σ n = Rn×Sn−1. The constants κ j,ω j were introduced in Chap. 1, (1.14).

Definition 2.1. The Minkowski tensors are defined by

Φ
r,s
k (K) :=

1
r!s!

ωn−k

ωn−k+s

∫
Σn

xrus
Λk(K,d(x,u)) (2.6)

for k = 1, . . . ,n−1 and r,s ∈ N0. Further, we define

Φ
r,0
n (K) :=Ψr(K) (2.7)

and
Φ

r,s
k := 0 if k /∈ {0, . . . ,n} or r /∈ N0 or s /∈ N0 or k = n, s 6= 0.
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The latter definition will allow us later to extend some summations formally over
all nonnegative integers.

Now we can formulate a Steiner-type formula.

Theorem 2.2. For r ∈ N0, K ∈K n and ρ ≥ 0, the formula

Ψr(K +ρBn) =
n+r

∑
k=0

ρ
n+r−k

κn+r−kV
(r)
k (K) (2.8)

holds, where
V (r)

k = ∑
s∈N0

Φ
r−s,s
k−r+s. (2.9)

For r = 0, formula (2.8) reduces to the ordinary Steiner formula (2.1) for the
volume.

We indicate the proof of formula (2.8). For this, we need to compute an integral∫
Rn f (x)dx by a procedure that generalizes the transformation to polar coordinates,

with the role of the unit sphere played by the boundary of a general convex body.
Since such a general convex body need neither be smooth nor strictly convex, this
generalized transformation formula makes use of the support measures. These satisfy
themselves a Steiner formula [20, Theorem 4.2.7], of which here the following
special case is relevant. We write Kρ := K +ρBn, for ρ ≥ 0, and define the mapping

τρ : Σ
n→ Σ

n, τρ(x,u) := (x+ρu,u).

Then

2Λn−1(Kρ , ·) =
n−1

∑
k=0

ρ
n−k−1

ωn−kτρΛk(K, ·),

where τρΛk(K, ·) is the image measure (push-forward) of Λk(K, ·) under τρ . Using
this, the following formula can be proved ([20, Theorem 4.2.8]).

Lemma 2.3. Let K ∈K n, and let f : Rn \K → R be a nonnegative measurable
function. Then

∫
Rn\K

f (x)dx =
n−1

∑
j=0

ωn− j

∫
∞

0
tn− j−1

∫
Σn

f (x+ tu)Λ j(K,d(x,u))dt. (2.10)

To prove now formula (2.8), we first write

Ψr(Kρ) =Ψr(K)+
1
r!

∫
Kρ\K

xr dx.

To the last term we apply the transformation (2.10) coordinate-wise and obtain
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Kρ\K

xr dx =
n−1

∑
j=0

ωn− j

∫
ρ

0
tn− j−1

∫
Σn
(x+ tu)r

Λ j(K,d(x,u))dt

=
n−1

∑
j=0

ωn− j

∫
ρ

0
tn− j−1

∫
Σn

r

∑
s=0

(
r
s

)
xr−susts

Λ j(K,d(x,u))dt

=
n−1

∑
j=0

r

∑
s=0

ωn− j

(
r
s

)
ρn− j+s

n− j+ s

∫
Σn

xr−sus
Λ j(K,d(x,u)).

Introducing the index k = j + r− s and using the definition (2.6), we obtain the
assertion (2.8).

2.2 A Classification of Tensor Valuations

To describe our next goals, we recall Hadwiger’s characterization theorem (Chap. 1,
Thm. 1.23). It determines the real vector space of all mappings ϕ : K n→ R which
are

• valuations,
• rigid motion invariant,
• continuous.

The result is that this vector space is spanned by the intrinsic volumes V0, . . . ,Vn.
These intrinsic volume functionals are linearly independent, because they have
different degrees of homogeneity and are not identically zero; hence the vector space
in question has dimension n+1.

As the intrinsic volumes have been generalized to Minkowski tensors, it is natural
to ask whether, respectively in which form, Hadwiger’s characterization theorem can
be extended. For tensor valuations of rank one, there is a closely analogous result.

Theorem 2.4. The real vector space of all mappings ψ : K n→ Rn which are

• valuations,
• rotation equivariant, and such that ψ(K + t)−ψ(K) is parallel to t,
• continuous,

is spanned by the mappings

K 7→
∫

K
xC j(K,dx), j = 0, . . . ,n.

Recall from Chap. 1, Sec. 1.3, the relation between the support measures Λ j(K, ·)
and the curvature measures C j(K, ·). The integral

∫
K xC j(K,dx) is the moment vector

of the curvature measure C j(K, ·). Again, the vector space in question has dimension
n+1, because the moment vectors have different degrees of homogeneity and are
not identically zero. The result was proved by Hadwiger and Schneider [8]. Although
it looks similar to Hadwiger’s characterization theorem, its proof uses a different
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approach. One might wonder why the dimension of the vector space is still n+1.
The Steiner formula for the moment vector

∫
K xdx has, in fact, n+2 terms. However,

one of these, namely
∫

Bn xdx, is identically zero.
For tensor valuations of ranks larger than one, the situation is more complicated.

It remains true that each Minkowski tensor Φ
r,s
k defines a mapping Γ : K n →

Tp, for p = r + s, which is a valuation and is continuous. The behaviour under
isometries (combinations of rotations and translations) can be described as follows.
First, we point out that in Hadwiger’s theorem, ‘rigid motions’ are orientation
preserving, whereas in the following, a ‘rotation’ is an element of O(n) and thus can
be improper. The mapping Γ is rotation covariant, that is, if ϑ ∈ O(n) is a rotation,
then Γ (ϑK) = ϑΓ (K) for all K ∈K n. We recall that the operation of the orthogonal
group appearing here is defined by

(ϑT )(y1, . . . ,yp) = T (ϑ−1y1, . . . ,ϑ
−1yp) for y1, . . . ,yp ∈ Rn, T ∈ Tp.

Further, Γ has polynomial translation behaviour, by which we mean that

Γ (K + t) =
p

∑
j=0

1
j!

Γp− j(K)t j for K ∈K n, t ∈ Rn,

with tensors Γp− j(K) ∈ Tp− j, which are independent of t. (By convention, 00 = 1
here.) We say that Γ is isometry covariant if it has both properties, rotation covariance
and polynomial behaviour under translations.

One new aspect appearing for higher ranks is the following. For rank two, there
is a constant mapping Γ : K n→ T2 that has all the properties listed above, namely
Γ (K) = Q, the metric tensor. Since Q does not depend on K, this mapping Γ is
trivially a valuation, continuous, and has polynomial behaviour under translations.
Since, for ϑ ∈ O(n),

Q(y1,y2) = y1 · y2 = ϑ
−1y1 ·ϑ−1y2 = (ϑQ)(y1,y2),

Γ is also rotation covariant. Since the considered properties are preserved under
symmetric products, it follows that also the mappings K 7→ QmΦ

r,s
k (K), for any

m ∈ N0, share these properties with the Minkowski tensors. But this is as far as we
can go, as the following characterization theorem due to Alesker [1] shows.

Theorem 2.5 (Alesker). Let p ∈ N0. The real vector space of all mappings Γ :
K n→ Tp which are

• valuations,
• isometry covariant,
• continuous,

is spanned by the tensor valuations

Qm
Φ

r,s
k , (2.11)
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where m,r,s ∈ N0 satisfy 2m+ r+ s = p, where k ∈ {0, . . . ,n}, and where s = 0 if
k = n.

The characterizations given in Theorem 1.23 of Chap. 1 (i.e., Hadwiger’s charac-
terization theorem) and Theorem 2.4 are special cases of this result. However, there
is an essential difference: for p ≥ 2, the spanning tensor valuations (2.11) are no
longer linearly independent. They satisfy a series of linear relations, known as the
McMullen relations. We prove these now.

The crucial relation is the identity

QΦ
r−1,0
n = 2πΦ

r,1
n−1. (2.12)

Explicitly, this reads

QΨr−1(K) =
2
r!

∫
Σn

xruΛn−1(K,d(x,u)). (2.13)

It suffices to prove this identity for smooth convex bodies, because the general
case can then be obtained by approximation. If K is smooth, we denote by u(K,x)
the unique outer unit normal vector of K at its boundary point x. For a smooth convex
body K, the measure 2Λn−1(K, ·) is the image measure of the Hausdorff measure
H n−1 on ∂K, the boundary of K, under the measurable mapping x 7→ (x,u(K,x))
from ∂K to Σ n. Therefore, equation (2.13) is equivalent to

QΨr−1(K) =
1
r!

∫
∂K

xru(K,x)H n−1(dx). (2.14)

To prove this, we use coordinates. We introduce an orthonormal basis (e1, . . . ,en) of
Rn and write x∈Rn in the form x = x1e1+ · · ·+xnen (so x1, . . . ,xn are now Cartesian
coordinates). For given i1, . . . , ir, j ∈ {1, . . . ,n}, we define the vector field v by

v(x) := xi1 · · ·xir e j, x ∈ Rn.

To this and the convex body K we apply the divergence theorem. It says that∫
K

divv(x)dx =
∫

∂K
v(x) ·u(K,x)H n−1(dx).

To write this explicitly in a concise form, we use the Kronecker symbol δ and indicate
by x̌m that xm has to be deleted. Then we get∫

K

r

∑
k=1

δik j xi1 · · · x̌ik · · ·xir dx =
∫

∂K
xi1 · · ·xir(e j ·u(K,x))H n−1(dx).

Using tensor notation, this can equivalently be written as
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r

∑
k=1

Q(eik ,e j)Ψr−1(K)(ei1 , . . . , ěik , . . . ,eir)

=
1

(r−1)!

∫
∂K

xr(ei1 , . . . ,eir)u(K,x)(e j)H
n−1(dx). (2.15)

This identity holds for arbitrary (r+1)-tuples (i1, . . . , ir, j) from {1, . . . ,n}.
To prove the identity (2.14), we have to check (only) that the (r+1)-tensors on

either side attain the same value at any (r+1)-tuple (ei1 , . . . ,eir+1) of basis vectors.
Now, by the definition of the symmetric tensor product, for the left side of (2.14) we
have

(r+1)!(QΨr−1(K))(ei1 , . . . ,eir+1)

= ∑
σ∈S (r+1)

Q(eiσ(1) ,eiσ(2))Ψr−1(K)(eiσ(3) , . . . ,eiσ(r+1)). (2.16)

For the right side of (2.14) we obtain from (2.15) that

(r+1)!
1
r!

∫
∂K

(xru(K,x))(ei1 , . . . ,eir+1)H
n−1(dx)

=
1
r! ∑

σ∈S (r+1)

∫
∂K

xr(eiσ(1) , . . . ,eiσ(r))u(K,x)(eiσ(r+1))H
n−1(dx)

=
1
r

r

∑
k=1

∑
σ∈S (r+1)

Q(eiσ(k) ,eiσ(r+1))Ψr−1(K)(eiσ(1) , . . . , ěiσ(k) , . . . ,eiσ(r))

= ∑
σ∈S (r+1)

Q(eiσ(1) ,eiσ(2))Ψr−1(K)(eiσ(3) , . . . ,eiσ(r+1)).

The latter agrees with (2.16). This completes the proof of (2.12).
From (2.12), further identities can be derived by applying (2.12) to the parallel

bodies of a given convex body. For this, we write (2.12) in another explicit form,
which is a counterpart to (2.14) for strictly convex bodies. If the convex body K is
strictly convex, then to each unit vector u ∈ Sn−1 there is a unique boundary point of
K at which u is attained as outer normal vector. We denote this boundary point by
x(K,u). For a strictly convex body K, the measure 2Λn−1(K, ·) is the image measure
of the area measure Sn−1(K, ·) under the measurable mapping u 7→ (x(K,u),u) from
Sn−1 to Σ n (for the area measure, see Sec. 1.3 of Chap. 1 or [20, Sec. 4.2]). Therefore,
equation (2.13) is transformed into

QΨr−1(K) =
1
r!

∫
Sn−1

x(K,u)ruSn−1(K,du). (2.17)

We apply this to a parallel body K +ρBn, for ρ ≥ 0, which is also strictly convex
if K is strictly convex. For the left side we get, using the Steiner formula (2.8),

QΨr−1(K +ρBn) =
n+r−1

∑
k=0

ρ
n+r−1−k

κn+r−1−kQV (r−1)
k (K). (2.18)
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To compute the right side of (2.17) for K +ρBn, we note that

x(K +ρBn,u) = x(K,u)+ρu,

and hence

x(K +ρBn,u)r =
r

∑
j=0

(
r
j

)
ρ

r− jx(K,u) jur− j.

Further, we have to use the Steiner-type formula

Sn−1(K +ρBn, ·) =
n−1

∑
i=0

ρ
n−1−i

(
n−1

i

)
Si(K, ·)

(see [20, (4.36)]). Therefore, we also have

QΨr−1(K +ρBn) (2.19)

=
1
r!

n−1

∑
i=0

(
n−1

i

)∫
Sn−1

r

∑
j=0

(
r
j

)
x(K,u) jur− j+1 Si(K,du)ρ

n+r−1−i− j

=
1
r!

n+r−1

∑
k=0

ρ
n+r−1−k

r+1

∑
s=1

(
r

s−1

)(
n−1

k− r−1+ s

)
(2.20)

×
∫

Σn
xr+1−sus

Θk−r−1+s(K,d(x,u)).

Here we have introduced new indices by s = r+1− j and k = i+ j, and instead of
the measure Λm(K, ·) we have used its re-normalization

Θm(K, ·) = nκm(n
m

)Λm(K, ·).

Comparing the coefficients in (2.18) and (2.19), we now get

κn+r−1−kQV (r−1)
k (K)

=
1
r!

r+1

∑
s=1

(
r

s−1

)(
n−1

k− r−1+ s

)∫
Σn

xr+1−sus
Θk−r−1+s(K,d(x,u)).

With the help of the identity 2πκm = ωm+2, this can be simplified. Replacing r+1
by r, we obtain

QV (r−2)
k (K) = 2π ∑

s∈N0

sΦ
r−s,s
k−r+s(K). (2.21)

So far, this identity has been proved for strictly convex bodies K. By approximation,
this result can be extended to general convex bodies.

Now, multiplying (2.9) (with r replaced by r−2) by Q and comparing with (2.21),
we immediately get the McMullen relations. McMullen [15] proved these relations
in a different way, namely first for polytopes.
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Theorem 2.6 (McMullen). For r ∈ N with r ≥ 2 and k ∈ {0, . . . ,n+ r−2},

Q ∑
s∈N0

Φ
r−s,s−2
k−r+s = 2π ∑

s∈N0

sΦ
r−s,s
k−r+s. (2.22)

For r = 1, relation (2.22) also holds, but only expresses the well-known fact that∫
Sn−1

uS j(K,du) = 0

for j = 0, . . . ,n−1. For rank two, the McMullen relations are given by

QΦ
0,0
k = 2πΦ

1,1
k−1 +4πΦ

0,2
k , k = 0, . . . ,n.

We recall that

Φ
0,0
k (K) =Vk,

Φ
1,1
k−1(K) = ak

∫
Σn

xuΛk−1(K,d(x,u)) for k ≥ 1, Φ
1,1
−1 (K) = 0,

Φ
0,2
k (K) = bk

∫
Σn

u2
Λk(K,d(x,u)) for k ≤ n−1, Φ

0,2
n (K) = 0,

with positive constants ak,bk.
Now the question arises whether the McMullen relations are essentially the only

linear dependences between the basic tensor valuations QmΦ
r,s
k . This is, in fact, true.

The following was proved by Hug, Schneider and Schuster [13].

Theorem 2.7. Any nontrivial linear relation between basic tensor valuations QmΦ
r,s
k

can be obtained by multiplying suitable McMullen relations by powers of Q and by
taking linear combinations of relations obtained in this way.

This result opened the way to determine bases and dimensions of the vector spaces
in question. Let Tp,k denote the real vector space of all mappings K n→ Tp that are
continuous, isometry covariant valuations and homogeneous of degree k. Theorem
3.1 of [13] gives an explicit formula for the dimension of Tp,k. As an example for
explicit bases, we present here the case of rank two:

• T2,0: a basis is {QΦ
0,0
0 }.

• T2,1: a basis is {Φ0,2
1 ,QΦ

0,0
1 }.

• T2,k for k = 2, . . . ,n−1: a basis is {Φ0,2
k ,Φ2,0

k−2,QΦ
0,0
k }.

• T2,n: a basis is {Φ2,0
n−2,QΦ

0,0
n }.

• T2,k for k = n+1,n+2: a basis is {Φ2,0
k−2}.

Thus, the vector space of continuous, isometry covariant tensor valuations of rank
two has dimension 3n+1.
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2.3 Local Tensor Valuations

In the same way as the intrinsic volumes have local versions, the support measures,
so the Minkowski tensors have natural measure-valued extensions. We abbreviate
now the normalizing factor appearing in (2.6) by

cr,s
n,k :=

1
r!s!

ωn−k

ωn−k+s

and define the local Minkowski tensors by

φ
r,s
k (K,η) := cr,s

n,k

∫
η

xrus
Λk(K,d(x,u)) (2.23)

for η ∈B(Σ n), the σ -algebra of Borel sets in Σ n, and for r,s∈N0, k ∈ {0, . . . ,n−1}.
These local tensor valuations can also be introduced in a way that generalizes the
introduction of the support measures by means of a local Steiner formula (see [20,
Thm. 4.2.1]). For this, we define, for K ∈K n and η ∈B(Σ n), a tensor in Tr+s by

V r,s
ρ (K,η) :=

∫
Kρ\K

1η

(
pK(x),uK(x)

)
pK(x)r(x− pK(x)

)s dx (2.24)

for ρ ≥ 0 and r,s ∈ N0. Here 1η is the characteristic function of the set η and pK(x)
denotes the point in K nearest to x; the vector uK(x) := (x− pK(x))/‖x− p(K,x)‖
points from pK(x) to x, for x /∈ K. (Variants of the tensor (2.24) have been introduced
in [16] and [11], aiming at applications.) Noting that for (x,u) in the support of the
measure Λ j(K, ·) and t > 0 the relations pK(x+ tu) = x and uK(x+ tu) = u hold, we
obtain from Lemma 2.3 that

V r,s
ρ (K,η) = r!s!

n−1

∑
j=0

ρ
n− j+s

κn− j+sφ
r,s
j (K,η). (2.25)

Equation (2.23) defines a mapping φ
r,s
k from K n×B(Σ n) into Tr+s. We want to

list the properties of this mapping and collect, therefore, the most important properties
which a general mapping Γ : K n×B(Σ n)→ Tp may have. For η ∈B(Σ n), t ∈Rn

and ϑ ∈ O(n), we write η + t := {(x+ t,u) : (x,u) ∈ η} and ϑη := {(ϑx,ϑu) :
(x,u) ∈ η}. Moreover, recall from Chap. 1, Sec. 1.3, that nc(K) = {(pK(x),uK(x)) :
x ∈ Rn \K} denotes the normal bundle of K. The following properties will play an
important role.

• Γ has polynomial translation behaviour of degree q, where 0≤ q≤ p, if

Γ (K + t,η + t) =
q

∑
j=0

1
j!

Γp− j(K,η)t j (2.26)
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with tensors Γp− j(K,η)∈Tp− j, for all K ∈K n, η ∈B(Σ n) and t ∈Rn (the factor
1/ j! is convenient); here Γp = Γ . In particular, Γ is called translation invariant if
it is translation covariant of degree zero.
• Γ is rotation covariant if Γ (ϑK,ϑη) = ϑΓ (K,η) for all K ∈K n, η ∈B(Σ n)

and ϑ ∈ O(n).
• Γ is isometry covariant (of degree q) if it has polynomial translation behaviour of

some degree q≤ p (and hence of degree p) and is rotation covariant.
• Γ is locally defined if for η ∈B(Σ n) and K,K′ ∈K n with η ∩ nc(K) = η ∩

nc(K′) the equality Γ (K,η) = Γ (K′,η) holds.
• If Γ (K, ·) is a Tp-valued measure for each K ∈K n, then Γ is weakly continuous

if for each sequence (Ki)i∈N of convex bodies in K n converging to a convex body
K the relation

lim
i→∞

∫
Σn

f dΓ (Ki, ·) =
∫

Σn
f dΓ (K, ·)

holds for all continuous functions f : Σ n→ R.

In the previous definitions, the set K n may be replaced by Pn.
Returning to the local Minkowski tensors, we note that from the properties of the

support measures, the following can be deduced for each Γ = φ
r,s
k .

• For each K ∈K n, Γ (K, ·) is a Tr+s-valued measure.
• Γ is weakly continuous.
• For each η ∈B(Σ n), Γ (·,η) is measurable.
• For each η ∈B(Σ n), Γ (·,η) is a valuation.
• The mapping Γ is isometry covariant.
• The mapping Γ is locally defined.

It will be the main goal of the rest of this chapter to determine all mappings with of
these properties. In fact, it will turn out that some properties are consequences of the
others.

2.4 A Characterization Result for Local Tensor Valuations on
Polytopes

In a first step to achieve the goal just formulated, we consider local tensor valuations
on the space Pn of polytopes.

Let P ∈Pn be a polytope. By Fk(P) we denote the set of k-dimensional faces
of P, for k ∈ {0, . . . ,n}. For F ∈Fk(P), the set ν(P,F) = N(P,F)∩Sn−1 is the set
of outer unit normal vectors of P at its face F (see [20], Sec. 2.4, for the normal
cone N(P,F)). From a representation of the support measures for polytopes (see [20],
(4.3)), one can deduce that the local Minkowski tensors of a polytope P have the
explicit representation

φ
r,s
k (P,η) =Cr,s

n,k ∑
F∈Fk(P)

∫
F

∫
ν(P,F)

1η(x,u)xrus H n−k−1(du)H k(dx), (2.27)
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for k ∈ {0, . . . ,n−1} and r,s ∈ N0, where

Cr,s
n,k := (r!s!ωn−k+s)

−1. (2.28)

We point out that the integrations in (2.27) are only with respect to Hausdorff mea-
sures. The structure of (2.27) should be well understood, since it plays an important
role in the following.

If one studies valuations on polytopes, it is always advisable to see how far one
gets without the assumption of continuity. Theorem 1.31 from Chap. 1, for example,
does not need any continuity assumption. However, without this assumption, there
are mappings on Pn which share the preceding properties with the local Minkowski
tensors, but are far more general. Hence, a possible classification theorem has to take
these into account.

To define these generalizations, we associate with each face F of a polytope the
linear subspace that is a translate of the affine hull of F . We denote this subspace by
L(F) and call it the direction space of F . For a linear subspace L of Rn, we denote
by πL : Rn→ L the orthogonal projection. Then we define QL ∈ T2 by

QL(a,b) := πLa ·πLb for a,b ∈ Rn.

We note that QϑL = ϑQL for ϑ ∈ O(n).
Now we define the generalized local Minkowski tensors by extending (2.27) in

the following way:

φ
r,s, j
k (P,η) (2.29)

:=Cr,s
n,k ∑

F∈Fk(P)
Q j

L(F)

∫
F

∫
ν(P,F)

1η(x,u)xrus H n−k−1(du)H k(dx),

for r,s, j,k ∈ N0 with 1≤ k ≤ n−1. This definition is supplemented by

φ
r,s,0
0 := φ

r,s
0 ,

but φ
r,s, j
0 remains undefined for j ≥ 1. Each mapping Γ = φ

r,s, j
k has the following

properties. It is isometry covariant and locally defined. For each P ∈Pn, Γ (P, ·) is a
Tp-valued measure, with p = 2 j+ r+ s. For each η ∈B(Σ n), Γ (·,η) is a valuation.
The first of these properties are easy to see; the proof of the last one uses Theorem
1.7 of Chap. 1; we refer to [12], Theorem 3.3, for the details.

Now we can state a characterization theorem. It is motivated by Theorem 2.5 of
this chapter and Theorem 1.31 of Chap. 1.

Theorem 2.8. For p ∈ N0, let Tp(Pn) denote the real vector space of all mappings

Γ : Pn×B(Σ n)→ Tp

with the following properties.

(a) Γ (P, ·) is a Tp-valued measure, for each P ∈Pn;
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(b) Γ is isometry covariant;
(c) Γ is locally defined.

Then a basis of Tp(Pn) is given by the mappings

Qm
φ

r,s, j
k ,

where m,r,s, j ∈N0 satisfy 2m+2 j+ r+ s = p, where k ∈ {0, . . . ,n−1}, and where
j = 0 if k ∈ {0,n−1}.

That only j = 0 appears if k = n−1, is due to the easily proved identity

φ
r,s, j
n−1 =

j

∑
i=0

(−1)i
(

j
i

)
(s+2i)!ω1+s+2i

s!ω1+s
Q j−i

φ
r,s+2i
n−1 . (2.30)

Theorem 2.8 is a stronger version of a theorem proved in [19]. Some modifications,
including the linear independence result, were proved in [12]. We state this linear
independence as a separate theorem.

Theorem 2.9. Let p ∈N0. On Pn, the generalized local Minkowski tensors Qmφ
r,s, j
k

with
m,r,s, j ∈ N0, 2m+2 j+ r+ s = p, k ∈ {0, . . . ,n−1},

and j = 0 if k ∈ {0,n−1},

are linearly independent.

The proof starts with a general linear relation and takes advantage of the fact that
it involves general Borel sets. This generality, together with homogeneity considera-
tions, can be used to simplify the relation. The simplified relation is then applied to a
tuple (x, . . . ,x) of vectors x = x1e1 + · · ·+ xnen, and from the fact that the resulting
polynomial in x1, . . . ,xn is zero, one can deduce that all coefficients must be zero.

We shall now describe the main steps and ideas of the proof of Theorem 2.8 (the
details are found in [12] and [19]). For this, we suppose that

Γ : Pn×B(Σ n)→ Tp

is a mapping which has the following properties.

• For each K ∈Pn, Γ (K, ·) is a Tp-valued measure.
• Γ is isometry covariant.
• Γ is locally defined.

That Γ is isometry covariant, includes that it has polynomial translation behaviour
of some degree q. Thus, there are mappings Γp− j : Pn×B(Σ n)→Tp− j, j = 0, . . . ,q,
(possibly zero for some j and with Γp = Γ ) such that

Γ (K + t,η + t) =
q

∑
j=0

1
j!

Γp− j(K,η)t j
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for all K ∈Pn, η ∈ B(Σ n) and t ∈ Rn. This implies similar behaviour of the
coefficient tensors, namely

Γp− j(K + t,η + t) =
q− j

∑
r=0

1
r!

Γp− j−r(K,η)tr (2.31)

for j = 0, . . . ,q and all K ∈Pn, η ∈B(Σ n) and t ∈ Rn, in particular (case j = q),

Γp−q(K + t,η + t) = Γp−q(K,η).

Properties of Γp− j can be derived from those of Γ , by means of the following
relation. There are constants a jm ( j = 0, . . . ,q, m = 1, . . . ,q+1), depending only on
q, j,m, such that

Γp− j(K,η)t j =
q+1

∑
m=1

a jmΓ (K +mt,η +mt) (2.32)

for all K ∈Pn, η ∈B(Σ n) and t ∈ Rn. In particular, we can deduce that Γp− j(K, ·)
is a Tp− j-valued measure and that

Γp− j(ϑK,ϑη) = ϑΓp− j(K,η) (2.33)

for ϑ ∈ O(n). Together with (2.31) this shows that also Γp− j is isometry covariant.

Lemma 2.10. For each K ∈Pn, the measure Γ (K, ·) is concentrated on nc(K).

The proof uses that Γ is locally defined and has polynomial translation behaviour.
Further it uses that the only translation invariant finite signed measure on the bounded
Borel sets of Rn is Lebesgue measure, up to a constant factor.

The essential step to prove Theorem 2.8 is the translation invariant case, that is,
the following result.

Theorem 2.11. Let p ∈ N0. Let Γ : Pn ×B(Σ n)→ Tp be a mapping with the
following properties.

(a) Γ (P, ·) is a Tp-valued measure, for each P ∈Pn;
(b) Γ is translation invariant and rotation covariant;
(c) Γ is locally defined.

Then Γ is a linear combination, with constant coefficients, of the mappings

Qm
φ

0,s, j
k ,

where m,s, j ∈N0 satisfy 2m+2 j+s = p, where k ∈ {0, . . . ,n−1}, and where j = 0
if k ∈ {0,n−1}.

If this has been proved, then one can use the properties of the coefficient tensors
Γp− j mentioned above, to give for Theorem 2.8 an inductive proof, which step by
step reduces the degree of the polynomial translation behaviour of Γ .
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Now we indicate some ideas in the proof of Theorem 2.11. To show, as we have to
do, an equality for measures on B(Σ n), it is sufficient to prove equality on product
sets β ×ω with β ∈B(Rn) and ω ∈B(Sn−1). Let P∈Pn. By Lemma 2.10, Γ (P, ·)
is concentrated on nc(P). The polytope P is the disjoint union of the relative interiors
of its facets. Therefore,

Γ (P,β ×ω) =
n−1

∑
k=0

∑
F∈Fk(P)

Γ
(
P,(β ∩ relintF)× (ω ∩ν(P,F))

)
. (2.34)

Consequently, it is sufficient to determine Γ (P,β×ω) for the case where β ⊂ relintF
and ω ⊂ ν(P,F), for some face F ∈Fk(P).

Therefore, we may restrict ourselves to the following situation. We are given
a number k ∈ {0, . . . ,n− 1}, a k-dimensional linear subspace L ⊂ Rn, a bounded
Borel set β ⊂ L, a Borel set ω ⊂ Sn−1∩L⊥, a k-dimensional polytope F ⊂ L with
β ⊂ relintF . It suffices to determine Γ (F,β ×ω) in this case.

First, we fix ω and use the standard characterization of Lebesgue measure in L to
show that

Γ (F,β ×ω) = a(L,ω)H k(β ),

where the constant a(L,ω) is a tensor in Tp that depends on the subspace L and the
Borel set ω . The main task is to determine this tensor function. It has an important
covariance property, namely

a(ϑL,ϑω) = ϑa(L,ω) for ϑ ∈ O(n)

and
ϑa(L,ω) = a(L,ω) if ϑ fixes L⊥ pointwise.

From this, it is deduced in [19] that

a(L,ω) =
bp/2c

∑
j=0

Q j
L

bp/2c

∑
i=0

cpki jQi
L⊥

∫
ω

up−2 j−2i H n−k−1(du) (2.35)

with real constants cpki j. Once this has been proved, things can be put together to
finish the proof of Theorem 2.11.

The only hints we can give here to the proof of (2.35) is the formulation of two
lemmas. The first exhibits the crucial point where the tensors QL enter the scene.

Lemma 2.12. Let L ⊂ Rn be a linear subspace. Let r ∈ N0, let T ∈ Tr be a tensor
satisfying ϑT = T for each ϑ ∈ O(n) that fixes L⊥ pointwise. Then

T =
br/2c

∑
j=0

Q j
Lπ
∗
L⊥T (r−2 j)

with tensors T (r−2 j) ∈ Tr−2 j(L⊥), j = 0, . . . ,br/2c.
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Here Tp(L⊥) denotes the space of p-tensors on L⊥, and for T ∈ Tp(L⊥) we have
used the notation

(π∗L⊥T )(x1, . . . ,xp) := T (πL⊥x1, . . . ,πL⊥xp) for x1, . . . ,xp ∈ Rn.

The proof of Lemma 2.12 is based on the fact that the algebra of symmetric tensors
on Rn is isomorphic to the polynomial algebra on Rn, and it uses some manipulations
with polynomials.

The second crucial lemma deals with rotation covariant tensor measures on the
sphere.

Lemma 2.13. Let r ∈ N0, and let µ : B(Sn−1)→ Tr be a Tr-valued measure satis-
fying

µ(ϑω) = (ϑ µ)(ω) for all ω ∈B(Sn−1) and all ϑ ∈ O(n).

Then

µ(ω) =
br/2c

∑
j=0

a jQ j
∫

ω

ur−2 j H n−1(du), ω ∈B(Sn−1),

with real constants a j, j = 0, . . . ,br/2c.

A first step of the proof uses that the total variation measure of µ is rotation
invariant and hence a constant multiple of spherical Lebesgue measure. Then the
Radon–Nikodym theorem, applied coordinate-wise, yields a representation

µ(ω) =
∫

ω

f dH n−1, ω ∈B(Sn−1),

with an almost everywhere defined measurable mapping f : Sn−1→Tr. A special case
of Lemma 2.12 together with the covariance property and Lebesgue’s differentiation
theorem can then be used to determine the function f .

2.5 The Characterization Result on General Convex Bodies

If we want to extend Theorem 2.8 from polytopes to general convex bodies, we
certainly need some continuity assumption. This raises the question whether φ

r,s, j
k

has a weakly continuous extension from polytopes to general convex bodies. To
make this question more precise, let

Γ : K n×B(Σ n)→ Tp (2.36)

be a mapping and consider the following properties, which it may or may not have:

(A) Γ (K, ·) is a Tp-valued measure, for each K ∈K n;
(B) Γ is isometry covariant;
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(C) Γ is locally defined;
(D) Γ is weakly continuous.

Question. For given k ∈ {0, . . . ,n−1} and r,s, j ∈ N0, is there a mapping Γ as in
(2.36) having properties (A) – (D) and satisfying Γ (P, ·) = φ

r,s, j
k (P, ·) for P ∈Pn?

This is trivially true for k = 0, since φ
r,s,0
0 = φ

r,s
0 by definition, and φ

r,s, j
0 is not defined

for j ≥ 1. It is also true for k = n−1, since we may define

φ
r,s, j
n−1(K) :=

j

∑
i=0

(−1)i
(

j
i

)
(s+2i)!ω1+s+2i

s!ω1+s
Q j−i

φ
r,s+2i
n−1 (K)

for K ∈ K n; by (2.30), this is consistent with the case of polytopes. The weak
continuity of φ

r,s+2i
n−1 follows from (2.23) and the weak continuity of the support

measures. Further, the answer is affirmative if j = 0, since φ
r,s,0
k (P, ·) = φ

r,s
k (P, ·)

for P ∈Pn, and we can define φ
r,s,0
k (K, ·) = φ

r,s
k (K, ·) for K ∈K n. It remains to

consider the cases of φ
r,s, j
k where 1≤ k ≤ n−2 and j ≥ 1.

Proposition 2.14. For k ∈ {1, . . . ,n− 2} and r,s ∈ N0, the answer to the question
above is affirmative for j = 1.

Postponing the proof of this proposition to Section 2.6, we can now state the
following characterization theorem. It includes the fact that the statement of Proposi-
tion 2.14 does not extend to j > 1.

Theorem 2.15. For p∈N0, let Tp(K n) denote the real vector space of all mappings
Γ : K n×B(Σ n)→ Tp with properties (A)–(D).

A basis of Tp(K n) is given by the mappings

Qm
φ

r,s, j
k , k ∈ {0, . . . ,n−1}, m,r,s ∈ N0, j ∈ {0,1},

where 2m+2 j+ r+ s = p and j = 0 if k ∈ {0,n−1}.

As in the case of polytopes, where Theorem 2.8 follows from Theorem 2.11, it
suffices to consider the translation invariant case. By an inductive argument, which
was already used by Alesker [1] in his proof of Theorem 2.5, Theorem 2.15 can be
deduced from the following result. We also observe that linear independence can be
deduced from Theorem 2.9.

Theorem 2.16. Let p ∈ N0. Let Γ : K n ×B(Σ n)→ Tp be a mapping with the
properties (A),(C),(D) and

(B’) Γ is translation invariant and rotation covariant.

Then Γ is a linear combination, with constant coefficients, of the mappings

Qm
φ

0,s, j
k , k ∈ {0, . . . ,n−1}, m,s ∈ N0, j ∈ {0,1},

where 2m+2 j+ s = p and j = 0 if k ∈ {0,n−1}.
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For the proof, some further simplifications are possible. If Γ satisfies the as-
sumptions of Theorem 2.16, then it is not difficult to see (cf. [12], Lemma 3.5) that
Γ = ∑

n−1
k=0 Γk, where Γk is a mapping with the same properties which is, moreover, ho-

mogeneous of degree k. Therefore, to prove Theorem 2.16, we can and will assume in
addition that Γ is homogeneous of some degree k ∈ {0, . . . ,n−1}. If k ∈ {0,n−1},
then Theorem 2.11 shows that the restriction of Γ to Pn is a linear combination
of mappings Qmφ

0,s
k , and by weak continuity this holds also for Γ on K n. Hence,

we can assume now that Γ is homogeneous of some degree k ∈ {1, . . . ,n−2} (and,
therefore, n ≥ 3). Under these assumptions, Theorem 2.11 implies that there are
constants cm js (only finitely many of them different from zero) such that

Γ (P, ·) = ∑
m, j,s≥0

2m+2 j+s=p

cm jsQm
φ

0,s, j
k (P, ·) for P ∈Pn.

Since Γ and φ
0,s,0
k , and by the postponed Proposition 2.14 also φ

0,s,1
k , are weakly

continuous, the mapping Γ ′ defined by

Γ
′ := Γ − ∑

m, j,s≥0, j≤1
2m+2 j+s=p

cm jsQm
φ

0,s, j
k (2.37)

has the properties (A), (B’), (C), (D), and for P ∈Pn it satisfies

Γ
′(P, ·) = ∑

m,s≥0, j≥2
2m+2 j+s=p

cm jsQm
φ

0,s, j
k (P, ·).

Theorem 2.16 and thus Theorem 2.15 is proved if we show that Γ ′ is identically zero.
We sketch the main ideas leading to this result and refer to [12] for the details.

The strategy of the proof is indicated by the following lemma. We write

Γ
′(K, f ) :=

∫
Σn

f (u)Γ
′(K,d(x,u))

for K ∈K n and continuous real functions f on the unit sphere Sn−1.

Lemma 2.17. If the function Γ ′ defined by (2.37) is not identically zero, then there
exist a convex body K ∈K n, a continuous function f on Sn−1, a p-tuple E of vectors
from Rn, and a rotation ϑ ∈ O(n) such that K and f are invariant under ϑ , but
Γ ′(K, f )(ϑE) 6= Γ ′(K, f )(E).

If this is proved, then it follows from the invariance of K and f under ϑ and from
the rotation covariance of Γ ′ that

Γ
′(K, f )(ϑE) = Γ

′(ϑK,ϑ f )(ϑE) = Γ
′(K, f )(E),

which is a contradiction. The conclusion is that Γ ′ ≡ 0, which proves the theorem.
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The (lengthy) proof of Lemma 2.17 constructs a sequence (Pi)i∈N of polytopes
converging to a convex body K, such that K has a symmetry ϑ (a rotation mapping K
into itself) with the following property. For each i, the rotation ϑ is not a symmetry
of Pi, and this fact can be strengthened as follows. If Γ ′ is not identically zero, then
there are a continuous function f on Sn−1, invariant under ϑ , and a p-tuple E of
vectors from Rn, such that

|Γ ′(Pi, f )(ϑE)−Γ
′(Pi, f )(E)| ≥ c > 0. (2.38)

The function f , the p-tuple E and the constant c are independent of i. By the weak
continuity of Γ ′, it then follows that |Γ ′(K, f )(ϑE)−Γ ′(K, f )(E)| ≥ c > 0.

The polytopes Pi are constructed as follows (we describe the construction for n≥ 4;
a modification is necessary for n = 3). Let (e1, . . . ,en) be the standard orthonormal
basis of Rn, and identify lin{e1, . . . ,en−1}with Rn−1. In Rn−1, we consider the lattice

Zn−1 := {m1e1 + · · ·+mn−1en−1 : m1, . . . ,mn−1 ∈ Z}.

Its points are the vertices of a tessellation of Rn−1 into (n− 1)-cubes. We lift the
homothets of this lattice to a paraboloid of revolution. For this, we define the lifting
map ` : Rn−1 → Rn by `(x) := x+ ‖x‖2en for x ∈ Rn−1. For t > 0 we define the
polyhedral set

Rt := conv`(2tZn−1).

It is well known and easy to see that under orthogonal projection to Rn−1, the
facets of Rt project into the cubes of the tessellation induced by 2tZn−1. With
H−h := {y ∈ Rn : y · en ≤ h} for suitable h > 0, we define

Pi := R1/i∩H−h and K := epi`∩H−h .

Then Pi is a convex polytope, and Pi→ K for i→ ∞.
The details of the estimates leading to (2.38) (if h > 0 is sufficiently small) are

found in [12].
We point out, however, that the last argument of the proof given there (which

concerns the case n = 3) needs a correction, and we replace the reasoning on page
1561 of [12] by the following.

Let

F(λ ) :=
d

∑
j=2

c j

d−1

∑
r=0

(
λ cosrβd +

√
1−λ 2 sinrβd

)2 j
, λ ∈ [0,1],

where d ∈ N, d ≥ 2, c j ∈ R, cd 6= 0, βd = π/d. We have to show that F is not
constant. First we note that F(λ ) = P(λ )+

√
1−λ 2 Q(λ ) with polynomials P and

Q, in particular,

P(λ ) =
d

∑
j=2

c j

d−1

∑
r=0

j

∑
`=0

(
2 j
2`

)
λ

2`(cosrβd)
2`(1−λ

2) j−`(sinrβd)
2 j−2`.
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Suppose, to the contrary, that F(λ ) = c for λ ∈ [0,1], with a constant c. Then

(P(λ )− c)2 = (1−λ )(1+λ )Q(λ )2 (2.39)

for λ ∈ [0,1] and hence for all λ ∈R. If P−c and Q are not identically zero, then the
multiplicity of 1 as a root of either (P−c)2 or Q2 is even, but according to (2.39), for
(P−c)2 it is odd. This contradiction shows, in particular, that P is constant. However,
we have

lim
λ→∞

λ
−2dP(λ ) = cd

d−1

∑
r=0

d

∑
`=0

(
2d
2`

)
(−1)d−`(cosrβd)

2`(sinrβd)
2d−2`

= cd

d−1

∑
r=0

Re(cosrβd + i sinrβd)
2d

= cdRe
d−1

∑
r=0

exp
(

r
π

d
i ·2d

)
= dcd 6= 0,

a contradiction

2.6 A Weakly Continuous Extension

The main purpose of this section is to sketch the proof of Proposition 2.14, which
was formulated in the previous section. Moreover, for an arbitrary convex body K we
shall give an explicit description of φ

r,s,1
k (K, ·) as an integral over the normal bundle

of K involving generalized curvatures and principal directions of curvature, which is
then specialized for smooth convex bodies.

It is well known that the map K 7→ Λ j(K, ·) is weakly continuous on K n. This
follows most easily from the weak continuity of the local parallel volume map
K 7→H n(Mρ(K, ·)), for all ρ > 0. As an immediate consequence we obtain that K 7→
φ

r,s,0
k (K, ·) is weakly continuous. In order to show that P 7→ φ

r,s,1
k (P, ·) has a weakly

continuous extension from polytopes to general convex bodies, we shall proceed in
a different way. The starting point is a description of the support measure Λk(K, ·)
of K by means of a current, the normal cycle TK of K, evaluated at suitably chosen
differential forms ϕk (the Lipschitz–Killing curvature forms), as first explained in
[21]. From the continuity of the map K 7→ TK (in a suitable topology), it follows
again that the support measures are weakly continuous. The main task then is to
find suitable tensor-valued differential forms ϕ

r,s
k such that TP evaluated at ϕ

r,s
k

yields φ
r,s,1
k (P, ·), for an arbitrary polytope P.

We start with some basic terminology and facts of multilinear algebra and geomet-
ric measure theory (see [6]), which will also be useful in the final section. Let V be a
finite-dimensional real vector space. Then

∧
m V , for m∈N0, denotes the vector space

of m-vectors of V , and
∧m V is the vector space of all m-linear alternating maps from

V m to R, whose elements are called m-covectors. The map
∧m V → Hom(

∧
m V,R),
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which assigns to f ∈
∧m V the homomorphism v1∧·· ·∧ vm 7→ f (v1, . . . ,vm), allows

us to identify
∧m V and Hom(

∧
m V,R). By this identification, the dual pairing of

elements a ∈
∧

m V and ϕ ∈
∧m V can be defined by 〈a,ϕ〉 := ϕ(a). If V ′ is another

finite-dimensional vector space and f : V → V ′ is a linear map, then a linear map∧
m f :

∧
m V →

∧
m V ′ is determined by (

∧
m f )(v1∧ ·· ·∧ vm) = f (v1)∧ ·· ·∧ f (vm),

for all v1, . . . ,vm ∈V .
To introduce the normal cycle TK of K ∈K n, we remark that the normal bun-

dle nc(K) ⊂ R2n of K is an (n− 1)-rectifiable set. In fact, the map F : ∂K1 →
Rn × Sn−1 given by F(x) := (pK(x),uK(x)) is bi-Lipschitz, and hence the im-
age nc(K) is an (n− 1)-rectifiable subset of R2n. Therefore, for H n−1-almost
all (x,u) ∈ nc(K), the set of (H n−1 nc(K),n− 1) approximate tangent vectors
at (x,u) is an (n− 1)-dimensional linear subspace of R2n, which is denoted by
Tann−1(H n−1 nc(K),(x,u)). This approximate tangent space is spanned by an
orthonormal basis (a1(x,u), . . . ,an−1(x,u)), where

ai(x,u) :=
(

1√
1+ ki(x,u)2

bi(x,u),
ki(x,u)√

1+ ki(x,u)2
bi(x,u)

)
and where (b1(x,u), . . . ,bn−1(x,u)) is a suitable orthonormal basis of u⊥, which is
chosen so that (b1(x,u), . . . ,bn−1(x,u),u) has the same orientation as the standard
basis (e1, . . . ,en) of Rn. Here, ki(x,u) ∈ [0,∞] for i = 1, . . . ,n− 1 with the usual
convention

1√
1+ ki(x,u)2

= 0 and
ki(x,u)√

1+ ki(x,u)2
= 1 if ki(x,u) = ∞.

The dependence of ai,bi,ki on K is not made explicit by our notation. We remark
that bi,ki, i = 1, . . . ,n− 1, are essentially uniquely determined (see [18, Prop. 3,
Lemma 2]). The numbers ki(x,u) can be interpreted as generalized curvatures with
corresponding generalized principal directions of curvature bi(x,u). Moreover, we
can assume that bi(x+ εu,u) = bi(x,u), independent of ε > 0, where (x,u) ∈ nc(K)
and (x+ εu,u) ∈ nc(Kε). For H n−1-almost all (x,u) ∈ nc(K),

aK(x,u) := a1(x,u)∧·· ·∧an−1(x,u)

is an (n− 1)-vector, which fixes an orientation of the approximate tangent space
Tann−1(H n−1 nc(K),(x,u)). Then

TK :=
(
H n−1 nc(K)

)
∧aK

defines an (n−1)-dimensional current in R2n, the normal cycle of K. Explicitly, we
have

TK(ϕ) =
∫

nc(K)
〈aK(x,u),ϕ(x,u)〉H n−1(d(x,u)),
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for all H n−1 nc(K)-integrable functions ϕ : R2n →
∧n−1R2n. Note that TK is a

rectifiable current, which has compact support, and thus TK can be defined for a
larger class of functions than just for the class of smooth differential forms.

In order to define the Lipschitz–Killing forms ϕk, k ∈ {0, . . . ,n− 1}, let Π1 :
R2n→ Rn, (x,u) 7→ x, and Π2 : R2n→ Rn, (x,u) 7→ u. Let Ωn be the volume form
on Rn with the orientation chosen so that Ωn(e1, . . . ,en) = 〈e1 ∧ ·· · ∧ en,Ωn〉 = 1.
Then differential forms ϕk : R2n→

∧n−1R2n, k ∈ {0, . . . ,n−1}, of degree n−1 on
R2n are defined by

ϕk(x,u)(ξ1, . . . ,ξn−1) :=
1

k!(n−1− k)!ωn−k

× ∑
σ∈S (n−1)

sgn(σ)
〈 k∧

i=1

Π1ξσ(i)∧
n−1∧

i=k+1

Π2ξσ(i)∧u,Ωn

〉
,

where (x,u) ∈ R2n, ξ1, . . . ,ξn−1 ∈ R2n, and S (n−1) denotes the set of all permuta-
tions of {1, . . . ,n−1}. Then, writing

K(x,u) :=
n−1

∏
i=1

√
1+ ki(x,u)2,

we have

〈aK(x,u),ϕk(x,u)〉=
1

ωn−k
∑

|I|=n−1−k

∏i∈I ki(x,u)
K(x,u)

for H n−1-almost all (x,u) ∈ nc(K). The summation extends over all subsets I of
{1, . . . ,n−1} of cardinality n−1− k, where a product over an empty set is defined
as 1. Then, for η ∈B(Σ n),

TK(1η ϕk) = Λk(K,η),

which provides a representation of the kth support measure of K in terms of the
normal cycle of K, evaluated at the kth Lipschitz–Killing form ϕk.

The construction of suitable tensor-valued differential forms ϕ
r,s
k is slightly more

involved. For the explicit definition, we refer to [12], Section 4. We simply remark
that the map

ϕ
r,s
k : R2n→

∧n−1
(R2n,Tr+s+2), (x,u) 7→ ϕ

r,s
k (x,u),

is a differential form of degree n− 1 on R2n with coefficients in Tr+s+2 (see [6,
p. 351]). In particular, 〈a,ϕr,s

k (x,u)〉 ∈ Tr+s+2, for all (x,u) ∈ R2n and a ∈
∧

n−1R2n,
where we identify

∧n−1(R2n,W ) and Hom(
∧

n−1R2n,W ), for an arbitrary vector
space W . A straightforward calculation shows that

〈ϑa,ϕr,s
k (ϑx,ϑu)〉= ϑ〈a,ϕr,s

k (x,u)〉,
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for all ϑ ∈ O(n), where in each case the natural operation of the rotation group is
used (in particular, ϑξ := (ϑ p,ϑq) for ξ = (p,q) ∈ Rn×Rn = R2n). As a result of
the construction and by some calculations, which use that for a polytope P we have
ki(x,u) = 0 if and only if bi(x,u) ∈ L(F) and ki(x,u) = ∞ otherwise, we obtain

TP(1η ϕ
r,s
k ) = φ

r,s,1
k (P,η)

for all P ∈Pn and η ∈B(Σ n).
It is known that

• TK is a cycle for K ∈K n (see [17, Prop. 2.6]);
• the map K 7→ TK is a valuation on K n (see [17, Thm. 2.2]);
• TKi → TK in the dual flat seminorm for currents, if Ki,K ∈K n, i ∈N, and Ki→ K

in the Hausdorff metric, as i → ∞ (see [17, Thm. 3.1], and for the dual flat
seminorm, [6, Sec. 4.1.12, p. 367]).

In the next section, we prove a strengthened form of the continuity assertion stated
in the third point, namely local Hölder continuity of the normal cycles of convex
bodies with respect to the Hausdorff metric and the dual flat seminorm.

The third point above implies that if f : R2n→ R is of class C∞, then the map

K n→ R, K 7→ TK( f ϕ
r,s
k ),

is continuous. But then the same is true if f is merely continuous. Hence, (K,η) 7→
TK
(
1η ϕ

r,s
k

)
is the weakly continuous extension of the map (P,η) 7→ φ

r,s,1
k (P,η) from

polytopes P to general convex bodies. Moreover, we have the following result (with
(A) – (D) as formulated at the beginning of Sec. 2.5).

Theorem 2.18. The map K n×B(Σ n)→ Tr+s+2, (K,η) 7→ TK
(
1η ϕ

r,s
k

)
, satisfies

the properties (A) – (D).

The next corollary then is an immediate consequence.

Corollary 2.19. Let r,s ∈ N0 and k ∈ {1, . . . ,n−2}. Then, for each η ∈B(Σ n), the
map K 7→ φ

r,s,1
k (K,η) is a valuation and Borel measurable on K n.

Since the global functionals φ
r,s,1
k (P,Σ n) are continuous, Alesker’s characteri-

zation theorem must yield a representation for them. Such a representation was
explicitly known before. In fact, for r = 0 it follows from another relation by Mc-
Mullen (see [15, p. 269] and [14, Lemma 3.3]) that

φ
0,s,1
k (P,Σ n) = QΦ

0,s
k (P)−2π(s+2)Φ

0,s+2
k (P).

The general case is covered by [14, p. 505].
It is instructive to express the new local tensor valuations φ

r,s,1
k (K, ·) for a general

convex body K in terms of the generalized curvatures ki(x,u) and the corresponding
principal directions of curvature bi(x,u), i = 1, . . . ,n−1. A short calculation shows
that
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φ
r,s,1
k (K,η) (2.40)

=Cr,s
n,k

∫
η∩nc(K)

xrus
n−1

∑
i=1

bi(x,u)2
∑

|I|=n−1−k
i/∈I

∏ j∈I k j(x,u)
K(x,u)

H n−1(d(x,u)).

If k = 1, then

φ
r,s,1
1 (K,η) =Cr,s

n,1

∫
η∩nc(K)

xrus
n−1

∑
i=1

bi(x,u)2 ∏ j: j 6=i k j(x,u)
K(x,u)

H n−1(d(x,u)),

and for k = n−2, we have

φ
r,s,1
n−2 (K,η) =Cr,s

n,n−2

∫
η∩nc(K)

xrus
n−1

∑
i=1

bi(x,u)2
∑

j: j 6=i

k j(x,u)
K(x,u)

H n−1(d(x,u)).

For n = 3, these two special cases coincide and we get

φ
r,s,1
1 (K,η) =Cr,s

3,1

∫
η∩nc(K)

xrus k1(x,u)b2(x,u)2 + k2(x,u)b1(x,u)2

K(x,u)
H 2(d(x,u)).

For a convex body of class C2, we write ux for the unique exterior unit normal
of K at the boundary point x ∈ ∂K of K. An application of the coarea formula then
yields

φ
r,s,1
k (K,η) =Cr,s

n,k

∫
∂K

1η(x,ux)xrus
x

n−1

∑
i=1

bi(x)2
∑

|I|=n−1−k
i/∈I

∏
j∈I

k j(x)H n−1(dx),

where the k j(x) are the principal curvatures and the unit vectors b j(x) give the
principal directions of curvature of K at x ∈ ∂K. In particular, for a convex body K
in R3 with a C2 boundary we get

φ
r,s,1
1 (K,η) =Cr,s

3,1

∫
∂K

1η(x,ux)xrus
x
(
k1(x)b2(x)2 + k2(x)b1(x)2)H 2(dx).

2.7 Hölder Continuity of Normal Cycles of Convex Bodies

The normal cycle TK of a convex body K in Rn has a useful continuity property,
which we have used in the previous section. If Ki, i ∈ N, and K are convex bodies
in Rn and Ki→ K in the Hausdorff metric, as i→ ∞, then TKi → TK in the dual flat
seminorm for currents (cf. [6, Sec. 4.1.12, p. 367]). This was stated without proof in
[22, p. 251] and was proved in [17, Thm. 3.1]; see also [7, Thm. 3.1]. The continuity
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property has been used in the theory of valuations on manifolds (see, for instance,
[2]). It is also a crucial ingredient in [12], in the course of the proof of a classification
theorem for local tensor valuations on the space of convex bodies, as we have seen in
the previous section.

The purpose of this section is to obtain a quantitative improvement of the preceding
continuity result, in the form of a Hölder estimate. As usual we equip K n with the
Hausdorff metric dH . We denote by E n−1(R2n) = E (R2n,

∧n−1R2n) the vector space
of all differential forms of degree n−1 on R2n with real coefficients of class C∞.

Theorem 2.20. Let K,L ∈K n, and let M ⊂R2n be a compact convex set containing
K1×Sn−1 and L1×Sn−1. Then, for each ϕ ∈ E n−1(R2n),

|TK(ϕ)−TL(ϕ)| ≤C(M,ϕ)dH(K,L)
1

2n+1 ,

where C(M,ϕ) is a constant which depends (for given dimension) on M and on the
Lipschitz constant and the sup-norm of ϕ on M.

According to the definition of the dual flat seminorm, this result can be interpreted
as local Hölder continuity of the normal cycles of convex bodies with respect to
the Hausdorff metric and the dual flat seminorm. A similar, but essentially different
quantitative result is obtained in [4, Thm. 2]. It refers to more general sets and is,
therefore, less explicit. On the other hand, its restriction to convex bodies does not
yield the present result, since at least one of the sets in [4] has to be bounded by
a submanifold of class C2. We have not been able to decide whether the stability
exponent 1/(2n+1) in Theorem 2.20 can be improved.

It remains to prove Theorem 2.20. We continue to use the same notation as in
Federer’s [6] book, in order to facilitate the comparison. For the scalar product of
vectors x,y ∈Rn, however, we continue to write x ·y; the induced norm is denoted by
|·|. The same notation is used also for other Euclidean spaces which will come up in
the following. We identify Rn and its dual space via the given scalar product.

Given an inner product space (V, ·) with norm |·| we obtain an inner product
on
∧

m V . For ξ ,η ∈
∧

m V with ξ = v1 ∧ ·· · ∧ vm and η = w1 ∧ ·· · ∧wm, where
vi,w j ∈V , we define ξ ·η = det(〈vi,w j〉mi, j=1). This is independent of the particular
representation of ξ ,η . For general ξ ,η ∈

∧
m V the inner product is defined by

linear extension, and then we put |ξ | :=
√

ξ ·ξ for ξ ∈
∧

m V . If (b1, . . . ,bn) is an
orthonormal basis of V , then the m-vectors bi1 ∧·· ·∧bim with 1≤ i1 < · · ·< im ≤ n
form an orthonormal basis of

∧
m V . Moreover, if ξ ∈

∧
p V or η ∈

∧
q V is simple,

then
|ξ ∧η | ≤ |ξ | |η |. (2.41)

Let (b1, . . . ,bn) be an orthonormal basis of V , and let (b∗1, . . . ,b
∗
n) be the dual basis in

V ∗ =
∧1 V . We endow

∧m V (which is identified with
∧

m V ∗) with the inner product
for which the vectors b∗i1 ∧ ·· · ∧b∗im , for 1 ≤ i1 < · · · < im ≤ n, are an orthonormal
basis. Then

|〈ξ ,Φ〉| ≤ |ξ | |Φ | (2.42)
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for ξ ∈
∧

m V and Φ ∈
∧m V . The preceding facts are essentially taken from [6,

Section 1.7].
Finally, if V is an n-dimensional inner product space, then comass and mass

are defined as in [6, Section 1.8]. In particular, for Φ ∈
∧m V the comass ‖Φ‖ of

Φ satisfies ‖Φ‖ = |Φ | if Φ is simple. Moreover, for ξ ∈
∧

m V the mass ‖ξ‖ of ξ

satisfies ‖ξ‖= |ξ | if ξ is simple.
The proof of Theorem 2.20 will be preceded by a sequence of lemmas. In order to

obtain an upper bound for |TK−TL|, we first establish an upper bound for |TAε
−TA|,

for A ∈ {K,L} and ε ∈ [0,1], which is done in Lemma 2.21. Then we derive an upper
bound for |TKε

−TLε
| under the assumption that the Hausdorff distance of K and L is

sufficiently small. This bound is provided in Lemma 2.26, which in turn is based on
four preparatory lemmas.

Lemma 2.21. Let K ∈K n and ε ∈ [0,1]. Let ϕ ∈ E n−1(R2n). Then

|TKε
(ϕ)−TK(ϕ)| ≤C(K,ϕ)ε,

where C(K,ϕ) is a real constant, which depends on the maximum and the Lipschitz
constant of ϕ on K1×Sn−1 and on H n−1(∂K1).

Proof. We consider the bi-Lipschitz map

Fε : nc(K)→ nc(Kε), (x,u) 7→ (x+ εu,u).

The extension of Fε to all (x,u) ∈ R2n by Fε(x,u) := (x+ εu,u) is differentiable for
all (x,u) ∈ R2n. By [6, Theorem 3.2.22 (1)], for H n−1-almost all (x,u) ∈ nc(K) the
approximate Jacobian of Fε satisfies

apJn−1Fε(x,u) = ‖
∧

n−1 apDFε(x,u)aK(x,u)‖> 0, (2.43)

and the simple orienting (n−1)-vectors aK(x,u) and aKε
(x+ εu,u) are related by

aKε
(x+ εu,u) =

∧
n−1 apDFε(x,u)aK(x,u)

‖
∧

n−1 apDFε(x,u)aK(x,u)‖
. (2.44)

The orientations coincide, since

〈
∧

n−1(Π1 +ρ Π2)aK(x,u)∧u,Ωn〉> 0

for all ρ > 0. Thus, first using the coarea theorem [6, Theorem 3.2.22] and then
(2.43) and (2.44), we get

TKε
(ϕ) =

∫
nc(Kε )

〈aKε
,ϕ〉dH n−1

=
∫

nc(K)
〈aKε
◦Fε(x,u),ϕ ◦Fε(x,u)〉 apJn−1Fε(x,u)H n−1(d(x,u))

=
∫

nc(K)
〈
∧

n−1 apDFε(x,u)aK(x,u),ϕ ◦Fε(x,u)〉H n−1(d(x,u)).
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By the triangle inequality, we obtain

|TKε
(ϕ)−TK(ϕ)|

≤
∫

nc(K)

{∣∣〈(∧
n−1 apDFε(x,u)−

∧
n−1 id

)
aK(x,u),ϕ ◦Fε(x,u)

〉∣∣
+ |〈aK(x,u),ϕ(x+ εu,u)−ϕ(x,u)〉|

}
H n−1(d(x,u)).

We have

|〈(
∧

n−1 apDFε(x,u)−
∧

n−1 id)aK(x,u),ϕ ◦Fε(x,u)〉|
≤ |ϕ(x+ εu,u)||(

∧
n−1 apDFε(x,u)−

∧
n−1 id)aK(x,u)|,

where we used (2.42). Now aK(x,u) is of the form
∧n−1

i=1 (vi,wi) with suitable
(vi,wi)∈R2n and |vi|2+ |wi|2 = 1. Moreover, we have DFε(x,u)(v,w) = (v+εw,w),
for all (v,w) ∈ R2n. Writing z0

i := vi, z1
i := wi, we have∣∣(∧n−1 apDFε(x,u)−
∧

n−1 id)aK(x,u)
∣∣

=
∣∣∣n−1∧

i=1

(vi + εwi,wi)−
n−1∧
i=1

(vi,wi)
∣∣∣

=
∣∣∣ ∑
αi∈{0,1}

ε∑αi
n−1∧
i=1

(zαi
i ,wi)−

n−1∧
i=1

(z0
i ,wi)

∣∣∣
≤ ε ∑

αi∈{0,1},∑αi≥1

∣∣∣n−1∧
i=1

(zαi
i ,wi)

∣∣∣
≤ c(n)ε,

where we used (2.41) and the fact that |(vi,wi)|= 1 and |(wi,wi)| ≤ 2. We deduce
that

|ϕ(x+ εu,u)|
∣∣(∧n−1 apDFε(x,u)−

∧
n−1 id)aK(x,u)

∣∣≤C1(K,ϕ)ε.

Furthermore, again by (2.42) we get

|〈aK(x,u),ϕ(x+ εu,u)−ϕ(x,u)〉| ≤ |ϕ(x+ εu,u)−ϕ(x,u)| ≤C2(K,ϕ)ε.

Thus we conclude that

|TKε
(ϕ)−TK(ϕ)| ≤C3(K,ϕ)ε H n−1(nc(K)).

Since F : ∂K1→ nc(K), z 7→ (p(K,z),z− p(K,z)), is Lipschitz with Lipschitz con-
stant bounded from above by 3, the assertion follows. ut

A convex body K ∈K n is said to be ε-smooth (for some ε > 0), if K = K′+εBn

for some K′ ∈ K n. For a nonempty set A ⊂ Rn, we define the distance from A
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to x ∈ Rn by d(A,x) := inf{|a− x| : a ∈ A}. The signed distance is defined by
d∗(A,x) := d(A,x)− d(Rn \A,x), x ∈ Rn, if A,Rn \A 6= /0. If K is ε-smooth, then
∂K has positive reach. More precisely, if x ∈ Rn satisfies d(∂K,x)< ε , then there is
a unique point p(∂K,x) ∈ ∂K such that d(∂K,x) = |p(∂K,x)− x|.

Lemma 2.22. Let ε ∈ (0,1) and δ ∈ (0,ε/2). Let K,L ∈ K n be ε-smooth and
assume that dH(K,L)≤ δ . Then

p : ∂K→ ∂L, x 7→ p(∂L,x),

is well-defined, bijective, bi-Lipschitz with Lip(p)≤ ε/(ε−δ ), and |p(x)− x| ≤ δ

for all x ∈ ∂K.

Proof. Since dH(K,L)≤ δ , we have K ⊂ L+δBn, L ⊂ K +δBn, and a separation
argument yields that

{x ∈ L : d(∂L,x)≥ δ} ⊂ K. (2.45)

This shows that ∂K ⊂ {z ∈ Rn : d(∂L,z) ≤ δ} and therefore the map p is well-
defined on ∂K and |p(x)− x| ≤ δ for all x ∈ ∂K. By [5, Theorem 4.8 (8)] it follows
that Lip(p)≤ ε/(ε−δ ). Since L is ε-smooth, for y ∈ ∂L there is a unique exterior
unit normal of L at y, which we denote by u =: uL(y). Put y0 := y− εu and note
that y0 +(ε−δ )Bn ⊂ K∩L by (2.45). Then x ∈ ∂K is uniquely determined by the
condition {x} = (y0 +[0,∞)u)∩ ∂K and satisfies p(x) = y. This shows that p is
surjective.

Now let x1,x2 ∈ ∂K satisfy p(x1) = p(x2) =: p0 ∈ ∂L. Since there is a ball B of
radius ε with p0 ∈ B⊂ L, the points x1,x2 ∈ ∂K are on the line through p0 and the
center of B. By (2.45), they cannot be on different sides of p0, hence x1 = x2. This
shows that the map p is also injective. If d∗(∂K, ·) : Rn→ ∂K denotes the signed
distance function of ∂K, then q : ∂L→ ∂K, z 7→ z−d∗(∂K,z)uL(z), is the inverse of
p. Since the signed distance function is Lipschitz, Lemma 2.23 below shows that q is
Lipschitz as well. ut

The following lemma provides a simple argument for the fact that the spherical
image map of an ε-smooth convex body is Lipschitz with Lipschitz constant at
most 1/ε .

Lemma 2.23. Let K ∈K n be ε-smooth, ε > 0. Then the spherical image map uK is
Lipschitz with Lipschitz constant 1/ε .

Proof. Let x,y ∈ ∂K, and define u := uK(x), v := uK(y). Then x−εu+εv ∈ x−εu+
εBn ⊂ K, and hence (x− εu+ εv− y) · v≤ 0. This yields

ε(v−u) · v≤ (y− x) · v. (2.46)

By symmetry, we also have ε(u− v) ·u≤ (x− y) ·u, and therefore

ε(v−u) · (−u)≤ (y− x) · (−u). (2.47)

Addition of (2.46) and (2.47) yields
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ε|v−u|2 ≤ (y− x) · (v−u)≤ |y− x||v−u|,

which implies the assertion. ut

Lemma 2.24. Let ε ∈ (0,1) and δ ∈ (0,ε/2). Let K,L ∈ K n be ε-smooth and
assume that dH(K,L)≤ δ . Put p(x) := p(∂L,x) for x ∈ ∂K. Then

G : nc(K)→ nc(L), (x,u) 7→ (p(x),uL(p(x))),

is bijective, bi-Lipschitz with Lip(G)≤ 2/(ε−δ )≤ 4/ε , and

|G(x,u)− (x,u)| ≤ δ +2
√

δ/ε

for all (x,u) ∈ nc(K).

Proof. It follows from Lemma 2.22 that G is bijective. Then, for (x,u),(y,v)∈ nc(K)
we get

|G(x,u)−G(y,v)| ≤ |p(x)− p(y)|+ |uL(p(x))−uL(p(y))|

≤ ε

ε−δ
|x− y|+ 1

ε

ε

ε−δ
|x− y|

≤ ε +1
ε−δ

|x− y|

≤ 2
ε−δ

|(x,u)− (y,v)|,

where we have used again Lemma 2.22 and Lemma 2.23. Let x ∈ ∂K and z := p(x)∈
∂L. We want to bound uL(z) ·uK(x) from below. If x /∈ L, then

conv
(
{x}∪ (z− εuL(z)+(ε−δ )Bn)

)
⊂ K,

and therefore

uL(z) ·uK(x)≥
ε−δ

ε +δ
≥ 1− 2δ

ε
.

If x ∈ L, then in a similar way we obtain

uL(z) ·uK(x)≥
ε−δ

ε
≥ 1− δ

ε
,

hence

uL(z) ·uK(x)≥ 1− 2δ

ε
(2.48)

holds for all x ∈ ∂K. Thus

|uL(z)−uK(x)| ≤ 2
√

δ/ε,

which finally implies that, for all (x,u) ∈ nc(K),
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|G(x,u)− (x,u)| ≤ |p(x)− x|+ |uL(p(x))−uK(x)|

≤ δ +2
√

δ/ε.

Since G−1 : nc(L)→ nc(K) is given by G−1(z,u) = (q(z),uK(q(z))) (with q as
defined in the proof of Lemma 2.22), it follows that also G−1 is Lipschitz. ut

Next we show that, under the assumptions of Lemma 2.25,
∧

n−1DG(x,u) is
an orientation preserving map from the approximate tangent space of nc(K) to
the approximate tangent space of nc(L). It seems that a corresponding fact is not
provided in the proofs of related assertions in the literature.

Lemma 2.25. Let ε ∈ (0,1) and δ ∈ (0,ε/(4n)). Let K,L ∈K n be ε-smooth and
assume that dH(K,L) ≤ δ . Then, for H n−1-almost all (x,u) ∈ nc(K), the (n−1)-
vector

∧
n−1DG(x,u)aK(x,u) ∈ Tann−1(H n−1 nc(L),G(x,u)) has the same orien-

tation as aL(G(x,u)).

Proof. Let x ∈ ∂K, u := uK(x), and x̄ := p(x), hence d(∂L,x) = |x− x̄|. The orien-
tation of Tann−1(∂K,x) is determined by an arbitrary orthonormal basis (b1(x), . . . ,
bn−1(x)) of u⊥ with Ωn(b1(x), . . . ,bn−1(x),u) = 1. Similarly, any orthonormal basis
(b̄1(x̄), . . . , b̄n−1(x̄), ū) with ū := uL(p(x)) determines the orientation of the space
Tann−1(∂L, p(x)). Since G is bi-Lipschitz, we can assume that (x,u) ∈ nc(K) is such
that all differentials exist that are encountered in the proof. Moreover, we can also
assume that

∧
n−1DG(x,u)aK(x,u) spans Tann−1(H n−1 nc(L),G(x,u)), where we

write again G for a Lipschitz extension of the given map G to R2n. In the following,
we put bi := bi(x) and b̄i := b̄i(x̄) for i = 1, . . . ,n−1.

By our previous discussion, the differentials of the maps nc(K)→ ∂K, (x,u) 7→ x,
and ∂L→ nc(L), z 7→ (z,uL(z)), are orientation preserving. Hence, it remains to be
shown that the differential of p : ∂K→ ∂L, x 7→ p(x), is orientation preserving, that
is,

∆ := Ωn(Dp(x)(b1), . . . ,Dp(x)(bn−1), ū)> 0.

First, we assume that x 6= x̄, that is, x /∈ ∂L. Since Dp(x)(ū) = 0, we get

Dp(x)(bi) =
n−1

∑
j=1

bi · b̄ j Dp(x)(b̄ j),

and thus
∆ = det(B)Ωn(Dp(x)(b̄1), . . . ,Dp(x)(b̄n−1), ū),

where B = (Bi j) with Bi j := bi · b̄ j for i, j ∈ {1, . . . ,n−1}. We choose b̄1, . . . , b̄n−1
as principal directions of curvature of ∂L at x̄ = p(x). Then Dp(x)(b̄i) = τi b̄i with

τi := 1−d(∂L,x)ki

(
∂L, x̄,

x− x̄
|x− x̄|

)
> 0,

for i = 1, . . . ,n− 1. Here we use that L is ε-smooth, hence ∂L has positive reach,
d(∂L,x)< ε and



2 Tensor Valuations and Their Local Versions 57∣∣∣∣ki

(
∂L, x̄,

x− x̄
|x− x̄|

)∣∣∣∣≤ 1/ε.

Hence it follows that ∆ > 0 if we can show that det(B)> 0. Let B̃ = (B̃i j) be defined
by B̃i j := Bi j, B̃in := bi · ū, B̃n j := u · b̄ j, and B̃nn := u · ū, for i, j ∈ {1, . . . ,n− 1}.
Then

1 = Ωn(b1, . . . ,bn−1,u)Ωn(b̄1, . . . , b̄n−1, ū) = det(B̃)

≤ u · ū det(B)+
n−1

∑
i=1
|bi · ū| ·1

≤ u · ūdet(B)+
√

n−1
√

1− (u · ū)2.

From (2.48) and our assumptions, we get u · ū ≥ 1− (2δ )/ε ≥ 1− 1/(2n), and
therefore √

1− (u · ū)2 ≤
√

1/n.

Thus
1 < u · ū det(B)+1,

which implies that det(B)> 0.
Finally, we have to consider the case where x ∈ ∂L. For H n−1-almost all x ∈

∂K ∩ ∂L, we have Tann−1(H n−1 (∂K ∩ ∂L),x) = u⊥ and Dp(x) = idu⊥ , since
p(z) = z for all z ∈ ∂K∩∂L. Hence, ∆ = Ωn(b1, . . . ,bn−1, ū) = u · ū > 0. ut

Lemma 2.26. Let ε ∈ (0,1) and δ ∈ (0,ε/(4n)). Let K,L ∈K n be ε-smooth and
assume that dH(K,L)≤ δ . Let M ⊂ R2n be a compact convex set containing K1−ε ×
Sn−1 and L1−ε ×Sn−1 in its interior. Then

|TK(ϕ)−TL(ϕ)| ≤C(M,ϕ)(4/ε)n−1(δ +2
√

δ/ε)

for ϕ ∈ E n−1(R2n), where C(M,ϕ) is a constant which depends on the sup-norm
and the Lipschitz constant of ϕ on M, and on H n−1(∂K1).

Proof. Let G be as in Lemma 2.24 (or a Lipschitz extension to the whole space with
the same Lipschitz constant). Then [6, Theorem 4.1.30] implies that

TL = G]TK ,

since
∧

n−1DG preserves the orientation of the orienting (n− 1)-vectors, by Lem-
ma 2.25. (In [17] a corresponding fact is stated without further comment.) Recall
the definitions of the dual flat metric FM from [6, 4.1.12] and of the mass M (of a
current) from [6, p. 358]. Using [6, 4.1.14], ∂TK = 0, the fact that TK has compact
support contained in the interior of M and Lemma 2.24, we get

FM(TL−TK) = FM(G]TK−TK)

≤M(TK) · ‖G− id‖nc(K),∞ · (4/ε)n−1

≤H n−1(∂K1)(4/ε)n−1(δ +2
√

δ/ε),
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where ‖G− id‖nc(K),∞ := sup{|G(x,u)− (x,u)| : (x,u) ∈ nc(K)}. The assertion now
follows from the definition of FM , since ‖dϕ‖ can be bounded in terms of the sup-
norm and the Lipschitz constant of ϕ on M. ut

Now we are in a position to complete the proof of Theorem 2.20.

Proof of Theorem 2.20. Let ϕ ∈ E n−1(R2n). Let δ := dH(K,L)> 0 and ε := δ
1

2n+1 .
Assume that δ < (4n)−

2n+1
2n . Then δ < ε/(4n). Lemma 2.21 implies that

|TK(ϕ)−TKε
(ϕ)| ≤C(M,ϕ)ε,

|TL(ϕ)−TLε
(ϕ)| ≤C(M,ϕ)ε.

Since Kε and Lε are ε-smooth, dH(Kε ,Lε) = δ , (Kε)1−ε = K1 and (Lε)1−ε = L1,
Lemma 2.26 shows that

|TKε
(ϕ)−TLε

(ϕ)| ≤C(M,ϕ)(4/ε)n−1(δ +2
√

δ/ε).

The triangle inequality then yields

|TK(ϕ)−TL(ϕ)| ≤C4(M,ϕ)(ε + ε
1−n

δ + ε
1−n
√

δ/ε)

≤C5(M,ϕ)δ
1

2n+1 .

If δ ≥ (4n)−
2n+1

2n , we simply adjust the constant. ut
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