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1 Introduction

Let Kn denote the space of convex bodies (nonempty, compact, convex subsets) with the
Hausdorff metric in n-dimensional Euclidean space Rn (n ≥ 2) and Kns the subspace of
centrally symmetric bodies. The mixed volume V : (Kn)n → R is the unique symmetric
function for which

|λ1K1 + · · ·+ λmKm| =
∑

1≤i1,...,in≤m
λi1 · · ·λinV (Ki1 , . . . ,Kin)

for m ∈ N, K1, . . . ,Km ∈ Kn, λ1, . . . , λm ≥ 0, where | · | denotes the volume. The
non-trivial fact that |λ1K1 + · · ·+ λmKm| is indeed a polynomial, was emphasized by
Minkowski. It is the basis of the Brunn–Minkowski theory of convex bodies, of which
the mixed volume is a central notion; see [5], for example.

Motivated by an attempt to extend the mixed volume to log-concave measures,
we have become interested in characterizing the classical mixed volume by some of its
functional properties, not taking recourse to the notion of volume. Thus, we want to
obtain the mixed volume directly as a multilinear function, instead of constructing it
from the volume, using polynomial behaviour under Minkowski linear combinations.

The following properties of a function F : (Kn)n → R, which are shared by the
mixed volume, are certainly good candidates for figuring in a characterization. Here
a function f : Kn → R is called (Minkowski) additive if f(K + L) = f(K) + f(L),
where K + L is the vector sum of K,L ∈ Kn, and f is increasing if K ⊂ L implies
f(K) ≤ f(L).

(P1) F is Minkowski additive in each variable.

(P2) F is increasing in each variable.

(P3) F is symmetric (invariant under permutation of its arguments).

These important properties are far from being characteristic for the mixed volume,
as shown by the following examples.
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Example 1. Let µ be a finite, positive Borel measure on the group GL(n). By h(K, ·)
we denote the support function of the convex body K. For each K ∈ Kn we define a
convex body Kµ by

h(Kµ, u) =
∫

GL(n)
h(αK, u)µ(dα), u ∈ Rn,

(clearly this defines a support function) and put

F (K1, . . . ,Kn) := V (Kµ
1 , . . . ,K

µ
n), K1, . . . ,Kn ∈ Kn.

Then F has properties (P1), (P2), (P3). Moreover, F is translation invariant in each
variable.

Example 2. By Sn−1 we denote the unit sphere of Rn. Let the function f : (Sn−1)n →
R be continuous, non-negative and even in each variable, and assume that f is sym-
metric. Define

F (K1, . . . ,Kn)

:=
∫
Sn−1

. . .

∫
Sn−1

h(K1, u1) · · ·h(Kn, un)f(u1, . . . , un)σ(du1) · · ·σ(dun),

where σ is the spherical Lebesgue measure on Sn−1. If t ∈ Rn and 〈·, ·〉 denotes the
scalar product, then

F (K1 + t,K2, . . . ,Kn)− F (K1, . . . ,Kn)

=
∫
Sn−1

. . .

∫
Sn−1

〈u1, t〉h(K2, u2) · · ·h(Kn, un)f(u1, . . . , un)σ(du1) · · ·σ(dun)

= 0,

since f is even in u1. Hence, F is translation invariant in the first argument, and
similarly in the other arguments. Therefore, we can always assume that Ki contains
the origin, for i = 1, . . . , n. Then it follows that F is increasing in each argument.
Thus, F has properties (P1), (P2), (P3).

These functions F are far from the mixed volume. In fact, the mixed volume even
cannot be represented in the form

V (K1, . . . ,Kn) =
∫

(Sn−1)n

h(K1, u1) · · ·h(Kn, un)µ(d(u1, . . . , un)),

for all K1, . . . ,Kn ∈ Kn, with a finite signed Borel measure µ on (Sn−1)n (this follows
from [5, Theorem 5.2.2]). We remark that, on the other hand, there exists a sequence
(fk)k∈N of C∞ functions on (Sn−1)n with∫

(Sn−1)n

h(K1, u1) · · ·h(Kn, un)fk(u1, . . . , un)σn(d(u1, . . . , un))→ V (K1, . . . ,Kn)
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as k → ∞, for all K1, . . . ,Kn ∈ Kn. This was proved by Weil [8], and in a slightly
sharper version (fk real analytic) by Przes lawski [4].

Example 3. Let A2, . . . , An ∈ Kn be fixed convex bodies and define

F (K1, . . . ,Kn) :=
n∏
i=1

V (Ki, A2, . . . , An)

for K1, . . . ,Kn ∈ Kn. Then F has properties (P1), (P2), (P3).

If we demand only the properties (P1) and (P2), then each of the previous exam-
ples can be generalized in the obvious way. We give one further example with these
properties.

Example 4. Embed Rn as a subspace in RN with N > n and let ϕ1, . . . , ϕn ∈ GL(n)
be fixed linear maps from Rn into RN . Let An+1 . . . , AN be fixed convex bodies in RN

and define
F (K1, . . . ,Kn) := V (ϕ1K1, . . . , ϕnKn, An+1, . . . , AN )

for K1, . . . ,Kn ∈ Kn, where V denotes the mixed volume in RN . Then F has properties
(P1) and (P2).

These examples show clearly that, for a possible characterization of the mixed
volume, further assumptions are necessary, which must somehow tie the variables of
F closer together. Here the criterion for the vanishing of the mixed volume comes to
mind. It says (see [5, Th. 5.1.7]) that V (K1, . . . ,Kn) = 0 holds if and only if the
n-tuple (K1, . . . ,Kn) is degenerate, in the sense of the following definition.

Definition. The n-tuple (K1, . . . ,Kn) of convex bodies in Rn is degenerate if there do
not exist segments S1 ⊂ K1, . . . , Sn ⊂ Kn with linearly independent directions.

Of the criterion for the vanishing of the mixed volume, we consider only the following
two rudimentary forms.

(P4) F (K1, . . . ,Kn) = 0 if one of the arguments K1, . . . ,Kn is a singleton.

(P5) F (K1, . . . ,Kn) = 0 if two of the arguments K1, . . . ,Kn are parallel segments.

Properties (P1) and (P2) alone already have a number of implications, which we
collect in the following lemma.

Lemma 1. Suppose that the function F : (Kn)n → R satisfies (P1) and (P2). Then F
satisfies (P4), and in each variable it is translation invariant, continuous and positively
homogeneous. Moreover, F ≥ 0.

If we restrict ourselves to centrally symmetric convex bodies, then conditions (P1),
(P2) and (P5) turn out to be sufficient for a characterization of the mixed volume. It
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is a bit surprising that the seemingly weak condition (P5) for the vanishing of F rules
out so many other possibilities not leading to the mixed volume.

If we only consider F on zonotopes, then even the monotonicity (P2) can be relaxed.

(P2′) F (K,K2, . . . ,Kn) ≤ F (M,K2, . . . ,Kn) whenever K ⊂ M with dimK ≤ 1 and
dimM ≤ 2; similarly in the other arguments.

By Zn we denote the set of zonotopes, that is, of finite sums of segments, in Rn.

Theorem 1. If the function F : (Zn)n → R satisfies (P1), (P2′), (P4) and (P5), then

F (K1, . . . ,Kn) = aV (K1, . . . ,Kn) for K1, . . . ,Kn ∈ Zn,

with a constant a ≥ 0.

Under the full assumption of monotonicity, this result extends to centrally symmet-
ric bodies and one non-symmetric body.

Theorem 2. If the function F : Kn× (Kns )n−1 → R satisfies (P1), (P2) and (P5), then

F (K1, . . . ,Kn) = aV (K1, . . . ,Kn) for K1 ∈ Kn and K2, . . . ,Kn ∈ Kns ,

with a constant a ≥ 0.

An alternative formulation expresses a certain minimality property of the mixed
volume among all functions satisfying properties (P1) and (P2).

Corollary. Let F : (Kns )n → R satisfy (P1) and (P2). If F is bounded from above by
a constant multiple of the mixed volume, then F is a constant multiple of the mixed
volume.

In fact, under the assumptions of the Corollary, F is non-negative, by Lemma
1. If there exists a constant c with 0 ≤ F (K1, . . . ,Kn) ≤ cV (K1, . . . ,Kn) for all
K1, . . . ,Kn ∈ Kns , then F satisfies (P5), since V does.

The case of non-symmetric bodies looks to be harder and seems to require different
methods. The restriction to centrally symmetric convex bodies is clearly necessary
in Theorem 2, since condition (P5) cannot distinguish between K and −K. In fact,
if F (K1, . . . ,Kn) is defined as a linear combination, with non-negative coefficients, of
V (±K1, . . . ,±Kn), then F satisfies (P1), (P2), (P5). One may conjecture that the
converse is also true, but we have only been able to prove this in special cases and with
additional assumptions. The next theorem settles the conjecture in the two-dimensional
case. In the following, we write −K =: K∗.

Theorem 3. If the function F : (K2)2 → R satisfies (P1), (P2) and (P5), then

F (A,B) = aV (A,αB + (1− α)B∗)

for A,B ∈ K2, with constants a ≥ 0 and α ∈ [0, 1].
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To extend this result (with two not necessarily symmetric arguments) to higher di-
mensions, we need an additonal condition, which expresses a further important property
of the mixed volume.

(P6) F (ϕK1, . . . , ϕKn) = F (K1, . . . ,Kn) for all ϕ ∈ SL(n) (whenever both sides of
the equation are defined).

Theorem 4. If the function F : (Kn)2 × (Kns )n−2 → R satisfies (P1), (P2), (P5) and
(P6), then

F (A,B,C1, . . . , Cn−2) = aV (A,αB + (1− α)B∗, C1, . . . , Cn−2)

for A,B ∈ Kn and C1, . . . , Cn−2 ∈ Kns , with constants a ≥ 0 and α ∈ [0, 1].

In view of the fact that the essential properties (P1) and (P2) are preserved under
linear maps, it appears natural to ask whether the function defined by

F (K1, . . . ,Kn) := V (ϕ1K1, . . . , ϕnKn), K1, . . . ,Kn ∈ Kn,

where ϕ1, . . . , ϕn ∈ GL(n) are fixed linear transformations, can be characterized by
suitable properties. This function F has in general none of the properties (P3), (P5),
(P6). Property (P5) should be replaced by the following one.

(P5′) To any nondegenerate segment S there exists a nondegenerate segment S̄, with
unique direction, such that F (S, S̄,K3, . . . ,Kn) = 0 (for all K3, . . . ,Kn such that the
left side is defined), similarly for any other ordered pair of arguments.

What we can prove, is a corresponding generalization of Theorem 3.

Theorem 5. If the function F : (K2)2 → R satisfies (P1), (P2) and (P5′), then

F (A,B) = V (A,ϕ(αB + (1− α)B∗))

for A,B ∈ K2, with a linear transformation ϕ ∈ GL(2) and a constant α ∈ [0, 1].

We prove Theorems 1 and 2 in the next section and Theorems 3 and 4 in Section 3.
The proof of Theorem 5 follows separately in Section 4, since the construction of the
linear map ϕ requires an extra argument.

2 Proof of Theorems 1 and 2

In this section, we prove Theorem 1, Lemma 1, and Theorem 2.

Let F be a function on D(F ) satisfying (P1), (P2′), (P4), (P5), where D(F ) is one
of the domains of F in Theorems 1 to 4. If F ≡ 0, the assertions of Theorems 1 to 4
hold with a = 0; therefore, we assume in the following that F is not identically zero.

We prepare the proofs of Theorems 1 and 2 with first conclusions from the proper-
ties.
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Let K2, . . . ,Kn be fixed convex bodies for which (S,K2, . . . ,Kn) ∈ D(F ) for seg-
ments S. For segments S contained in a fixed line through the origin, the function
S 7→ F (S,K2, . . . ,Kn) is Minkowski additive, increasing and translation invariant. It
follows that F (S,K2, . . . ,Kn) = f(length(S)), where f is an increasing solution of
Cauchy’s functional equation and thus a linear function (e.g., see [1]). Thus, F is
positively homogeneous on segments, in each argument (observe that F is translation
invariant in each argument, by (P1) and (P4)).

All segments appearing in the following are assumed to have positive length. A
segment is called centred if it has its centre at the origin o.

Proposition 1. Let S, T1, T2 be centred segments. If

T1 + RS = T2 + RS, (1)

then
F (T1, S,A1, . . . , An−2) = F (T2, S,A1, . . . , An−2)

for all convex bodies A1, . . . , An−2 for which (S1, S2, A1, . . . , An−2) ∈ D(F ) for segments
S1, S2.

Here, the role of the first two arguments can be played by any other two arguments
(in any order).

Proof. Under the assumption (1), we can choose λ > 0 with T1 ⊂ T2 + λS. Properties
(P2′), (P1), (P5), applied in this order, give

F (T1, S,A1, . . . , An−2)

≤ F (T2 + λS, S,A1, . . . An−2)

= F (T2, S,A1, . . . , An−2) + F (λS, S,A1, . . . , An−2)

= F (T2, S,A1, . . . , An−2).

Since the assumption is symmetric in T1 and T2, the assertion follows.

Proposition 2. F is symmetric on segments.

Proof. Since F is, in each variable, translation invariant and positively homogeneous
on segments, we may restrict ourselves to centred segments of unit length. First let
n = 2, and let S, T ⊂ R2 be two centred unit segments. If S and T are parallel, then
0 = F (S, T ) = F (T, S), by (P5). Assume that S, T have different directions. Let D be
a diagonal of the parallelogram S + T . Proposition 1 shows that F (D,S) = F (T, S)
and F (D,T ) = F (S, T ). Also by Proposition 1, F (D,S) = F (D,T ), hence F (T, S) =
F (S, T ).

This symmetry extends to n dimensions. In Rn, assume that the centred segments S
and T have different directions. Let span{S, T} be the two-dimensional linear subspace
spanned by S and T . In the following, it is assumed that (A,B,K3, . . . ,Kn) ∈ D(F ).
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The function f defined by f(A,B) := F (A,B,K3, . . . ,Kn) (with fixed K3, . . . ,Kn) for
convex bodies A,B in span{S, T} has properties (P1), (P2′), (P4), (P5) with respect
to span{S, T}. As just proved, it follows that f(S, T ) = f(T, S), which gives

F (S, T,K3, . . . ,Kn) = F (T, S,K3, . . . ,Kn). (2)

Of course, a similar symmetry holds for any other pair of arguments of F , and the
symmetry of F on segments follows.

Proof of Theorem 1. Under the assumptions of Theorem 1, we show that there is a
constant a ≥ 0 such that

F (S1, . . . , Sn) = aV (S1, . . . , Sn) (3)

for all segments S1, . . . , Sn.

In order to give an inductive proof starting at dimension one, we extend the assertion
to n = 1, claiming that a function F on closed intervals in R that is Minkowski additive,
increasing and is zero on singletons, must be a constant multiple of the length of the
intervals. This is true, as mentioned above.

Now let n ≥ 2 and suppose that the assertion (3) has been proved in spaces of
smaller dimension. Let S, T2, . . . , Tn be segments, without loss of generality centred.
We define

f(K2, . . . ,Kn) := F (S,K2, . . . ,Kn)

for K2, . . . ,Kn ∈ Zn with Ki ⊂ S⊥, where S⊥ denotes the (n − 1)-dimensional linear
subspace orthogonal to S. Then f has properties (P1), (P2′), (P4), (P5), in the (n−1)-
dimensional space S⊥. Denoting by V ′ the mixed volume in S⊥, we conclude from the
induction hypothesis that there is a constant c(S) such that

F (S, S2, . . . , Sn) = c(S)V ′(S2, . . . , Sn)

for all segments S2, . . . , Sn ⊂ S⊥. Putting a(S) := nc(S)/length(S), we get from [5,
(5.3.23)] that

F (S, S2, . . . , Sn) = a(S)V (S, S2, . . . , Sn).

Since F and V are positively homogeneous on segments, we have a(λS) = a(S) for
λ > 0.

Let S2 be the image of T2 under orthogonal projection to S⊥. From Proposition 1
we get

F (S, T2, T3, . . . , Tn) = F (S, S2, T3, . . . , Tn),

also if S2 is one-pointed, since then T2 is parallel to S, and both sides are zero. The
last n− 2 arguments can be treated similarly, hence

F (S, T2, . . . , Tn) = F (S, S2, . . . , Sn) = a(S)V (S, S2, . . . , Sn).

The latter is equal to a(S)V (S, T2, . . . , Tn), since V has the same properties as F . The
obtained equality

F (S, T2, . . . , Tn) = a(S)V (S, T2, . . . , Tn)
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holds for arbitrary n-tuples S, T2, . . . , Tn of segments.

From Proposition 2 we have

F (S, T2, . . . , Tn) = F (T2, S, T3, . . . , Tn) = a(T2)V (T2, S, T3 . . . , Tn),

and we can conclude that a(S) does not depend on S. This proves (3).

Using (P1), we can replace each line segment in (3) by a zonotope. This completes
the proof of Theorem 1.

Proof of Lemma 1. We prove a slightly more general version of Lemma 1, assuming
that F is a function on D(F ), where D(F ) is one of the domains of F in Theorems 1
to 5, and that F satisfies (P1) and (P2) on this domain.

In the following it is assumed that K,M,M ′,K3, . . . ,Kn are convex bodies such
that (K,M,K3, . . . ,Kn), (K,M ′,K3, . . . ,Kn) ∈ D(F ). For fixed K3, . . . ,Kn, write
f(K,M) := F (K,M,K3, . . . ,Kn). Below, o is the origin of Rn, x ∈ Rn, and a singleton
{x} is written as x. From f(o,M) = f(o+ o,M) = 2f(o,M) we get f(o,M) = 0.

Suppose there exist x ∈ Rn and and a convex body M such that f(x,M) 6= 0.
Since 0 = f(o,M) = f(x−x,M) = f(x,M)+f(−x,M), we can assume (interchanging
the roles of x and −x, if necessary) that f(x,M) > 0. We choose a convex body M ′

with M ⊂ M ′ and o ⊂ M ′; then a := f(x,M ′) ≥ f(x,M) > 0. From 0 = f(o,M ′) =
f(x,M ′) + f(−x,M ′) we get f(−x,M ′) = −a. Since o ∈ M ′, we have M ′ ⊂ 2M ′ and
hence −a = f(−x,M ′) ≤ f(−x, 2M ′) = 2f(−x,M ′) = −2a, a contradiction. This
shows that f(x,M) = 0 for all x and M and hence, by similar reasoning for the other
arguments, that F (K1, . . . ,Kn) = 0 whenever (K1, . . . ,Kn) ∈ D(F ) and one of the
arguments is a singleton. Thus, F satisfies (P4). Together with (P2) this shows that
F ≥ 0.

From (P4) we get, in particular, that F (K1+x,K2, . . . ,Kn) = F (K1,K2, . . . ,Kn)+
F (x,K2, . . . ,Kn) = F (K1,K2, . . . ,Kn) for (K1, . . . ,Kn) ∈ D(F ), and similarly in the
other arguments; hence F is translation invariant in each variable.

From (P1), (P2), (P4) we can deduce that the function F is continuous in each
variable; the proof is carried out in [2]. Additivity and continuity now also give positive
homogeneity in each variable.

Now we assume that F is a function on the domain as in Theorem 2 and that it
satisfies (P1), (P2), (P5). Proposition 1 can be extended as follows.

Proposition 3. Let k ∈ {1, . . . , n − 1}, and let S1, . . . , Sk be centred segments. If
K,M ∈ Kn are convex bodies with

K + R(S1 + · · ·+ Sk) = M + R(S1 + · · ·+ Sk), (4)

then

F (K,S1, . . . , Sk, A1, . . . , An−k−1) = F (M,S1, . . . , Sk, A1, . . . , An−k−1)

for A1, . . . , An−k−1 ∈ Kns .
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Proof. Under the assumption (4), we can choose λ > 0 with K ⊂M +λ(S1 + · · ·+Sk).
Properties (P2), (P1), (P5), applied in this order, give

F (K,S1, . . . , Sk, A1, . . . , An−k−1)

≤ F (M + λ(S1 + · · ·+ Sk), S1, . . . , Sk, A1, . . . , An−k−1)

= F (M,S1, . . . , Sk, A1, . . . , An−k−1) +
k∑
i=1

F (λSi, S1, . . . , Sk, A1, . . . , An−k−1)

= F (M,S1, . . . , Sk, A1, . . . , An−k−1).

Since the assumption is symmetric in K and M , the assertion follows.

Proof of Theorem 2. Under the assumptions of Theorem 2, F has all the properties
stated in Lemma 1. It follows from Theorem 1 that

F (Z, S2, . . . , Sn) = aV (Z, S2, . . . , Sn)

with a constant a, for zonotopes Z and segments S2, . . . , Sn. By continuity, this equa-
tion holds also if Z is a zonoid. We use an argument that we have learned from [3]. Let
K be a generalized zonoid, that is, a convex body for which there exist zonoids Z1, Z2

such that K + Z1 = Z2. Then we get

F (K,S2, . . . , Sn) + F (Z1, S2, . . . , Sn) = F (K + Z1, S2, . . . , Sn)

= F (Z2, S2, . . . , Sn) = aV (Z2, S2, . . . , Sn) = aV (K + Z1, S2, . . . , Sn)

= aV (K,S2, . . . , Sn) + aV (Z1, S2, . . . , Sn)

= aV (K,S2, . . . , Sn) + F (Z1, S2, . . . , Sn)

and hence
F (K,S2, . . . , Sn) = aV (K,S2, . . . , Sn).

Every centrally symmetric convex body with a support function of class C∞ is a gen-
eralized zonoid (see, e.g., [5, Section 3.5], in particular Theorem 3.5.3). Therefore, the
generalized zonoids are dense in the set of all centrally symmetric convex bodies. Since
F and V are continuous, the last equality holds for all centrally symmetric convex bod-
ies K. In the same way, each of the last n−1 arguments can be replaced by a centrally
symmetric convex body.

It remains to replace one of the convex bodies by a non-symmetric body.

Let K ∈ Kn, and let S2, . . . , Sn be segments with linearly independent directions.
It follows from Proposition 3 and the translation invariance of F in its first variable
that

F (K,S2, . . . , Sn) = F (K∗, S2, . . . , Sn).
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Now the already proved part of Theorem 2 for centrally symmetric bodies gives

2F (K,S2, . . . , Sn) = F (K +K∗, S2, . . . , Sn)

= aV (K +K∗, S2, . . . , Sn) = 2aV (K,S2, . . . , Sn).

As above, this can be extended to

F (K,C2, . . . , Cn) = aV (K,C2, . . . , Cn) for C2, . . . , Cn ∈ Kns .

This completes the proof of Theorem 2.

3 Proof of Theorems 3 and 4

Already the assertions of the remaining theorems indicate that the proofs must be
of an essentially different kind: a Minkowski combination αB + (1 − α)B∗ appears
as an argument, and the number α has to be found. For the treatment of centrally
symmetric bodies in the previous section, the case of segments was crucial. This cannot
be sufficient now. However, for non-symmetric bodies, a similar role can be played by
the triangles (see the end of the proof of Theorem 4). For this reason, much of the
following proof employs two-dimensional convex bodies. The additivity property must
now be exploited in a deeper way: we use a result of Firey [2], which is based on
a version of the Riesz representation theorem. With this, we construct an additive
map on two-dimensional convex bodies and then find that it is essentially of the form
B 7→ αB + (1− α)B∗ (see Lemma 3 below); this is the crucial tool of the proofs.

Let F satisfy the assumptions of Theorem 4, but without (P6) for a while, and let
F 6≡ 0. As shown in Section 2, F is then continuous and positively homogeneous in
each argument, non-negative, and symmetric on segments. Further, we show that F
satisfies the following condition (P7).

(P7) If F (K1, . . . ,Kn) = 0, then (K1, . . . ,Kn) is degenerate.

For the proof, suppose that (P7) were false. Then there is an n-tuple (K0
1 , . . . ,K

0
n)

with F (K0
1 , . . . ,K

0
n) = 0 which is not degenerate, hence there are segments S1 ⊂

K0
1 , . . . , Sn ⊂ K0

n with linearly independent directions. Since F is increasing in each
variable, it follows that F (S1, . . . , Sn) = 0. We put C := S1 + · · ·+ Sn and assert that

F (C, . . . , C︸ ︷︷ ︸
k

, Srk+1
, . . . , Srn) = 0 (5)

for k ∈ {0, . . . , n} and rk+1, . . . , rn ∈ {1, . . . , n}. We prove this by induction on k. The
case k = 0 holds by assumption and by the symmetry of F on segments if r1, . . . , rn
are all different, and by (P5) if they are not all different. Suppose (5) holds for some
k ∈ {0, . . . , n− 1}. Adding over rk+1 from 1 to n, we obtain

F (C, . . . , C︸ ︷︷ ︸
k+1

, Srk+2
, . . . , Srn) = 0,
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which completes the induction.

For given K1, . . . ,Kn ∈ Kn we can choose S1, . . . , Sn in such a way (by homogeneity
and translation invariance) that K1, . . . ,Kn ⊂ C. Then the case k = n of (5) shows that
F (K1, . . . ,Kn) = 0, a contradiction to F 6≡ 0. This shows that F satisfies (P7).

We fix n−2 centred segments U1, . . . , Un−2 with linearly independent directions and
also a two-dimensional linear subspace E that is complementary to span{U1, . . . , Un−2},
the linear subspace spanned by U1, . . . , Un−2 (with E = R2 if n = 2). We denote by
K(E) the set of convex bodies in E and by K(0)(E) the subset of bodies with nonempty
interior relative to E. Let B ∈ K(0)(E).

The function defined by A 7→ F (A,B,U1, . . . , Un−2), A ∈ Kn, is not identically
zero by (P7), it is Minkowski additive, positively homogeneous, increasing, and zero on
singletons. These are the assumptions under which Firey’s work [2] yields the following
result, which we formulate here as a lemma.

Lemma 2. Under the previous assumptions, there are a number p ∈ {1, . . . , n} and
n − p pairwise orthogonal (centred) unit segments σ1, . . . , σn−p such that one of the
following cases occurs.

Case 1. p ≥ 2, and there is a convex body K of dimension p, contained in the
orthogonal complement of span{σ1, . . . , σn−p}, such that

F (A,B,U1, . . . , Un−2) = V (A,K, . . . ,K︸ ︷︷ ︸
p−1

, σ1, . . . , σn−p)

for all A ∈ Kn. The body K is uniquely determined up to a translation.

Case 2. p = 1, and there is a constant c > 0 such that

F (A,B,U1, . . . , Un−2) = cV (A, σ1, . . . , σn−1)

for all A ∈ Kn.

We assume in the following, without loss of generality, that K has its Steiner point
at the origin o; it is then uniquely determined.

A comment is in order which concerns the application of Minkowski’s existence the-
orem in [2]. Firey’s argument yields the existence of a finite Borel measure µ (depending
on U1, . . . , Un−2 and B) on Sn−1 with

F (A,B,U1, . . . , Un−2) =
1
n

∫
Sn−1

h(A, u)µ(du) for all A ∈ Kn. (6)

The number p appearing in Case 1 is the dimension of the smallest linear subspace
L ⊂ Rn containing the support of µ, and the convex body K is obtained by applying
Minkowski’s existence theorem in L to the measure µ, considered as a measure on
Sn−1 ∩ L. This theorem does not hold in a one-dimensional space. Therefore, Firey’s
equation (5) is not valid for p = 1: if ω′ (in Firey’s notation) contains precisely one
point of the 0-sphere Ω′ = Sn−1 ∩ L, then µ(ω′) = c can be any positive number,
whereas s(K̄;ω′) = 1. This is the reason for the appearance of the constant c (which
is missing in [2]) in Case 2.
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Now we apply Lemma 2. Suppose, first, that Case 2 holds. Then we have

F (A,B,U1, . . . , Un−2) = cV (A, σ1, . . . , σn−1) = 0

for all convex bodies A ⊂ span {σ1, . . . , σn−1}. We can choose a segment S1 ⊂
span {σ1, . . . , σn−1} with dim span{U1, . . . , Un−2, S1} = n− 1 and then (since dimB =
2) a segment S2 ⊂ B with dim span{U1, . . . , Un−2, S1, S2} = n. The n-tuple
(U1, . . . , Un−2, S1, S2) is not degenerate, hence F (S1, B, U1, . . . , Un−2) 6= 0 by (P7).
This is a contradiction, hence Case 2 does not occur.

In Case 1, p ≥ 2, and by (P5) we have

V (Ui,K, . . . ,K︸ ︷︷ ︸
p−1

, σ1, . . . , σn−p) = 0 for i = 1, . . . , n− 2,

thus each n-tuple

(K1, . . . ,Kn) = (Ui,K, . . . ,K︸ ︷︷ ︸
p−1

, σ1, . . . , σn−p)

is degenerate, by (P7). Therefore, the following holds (see [5, Theorem 5.1.7]). There
are a number k ∈ {1, . . . , n} and indices 1 ≤ i1 < · · · < ik ≤ n such that

dim(Ki1 + · · ·+Kik) < k. (7)

Let s ≤ p− 1 be the number of indices among i1, . . . , ik which are from {2, . . . , p}, and
suppose that s ≥ 1. Then either k−s or k−s−1 of the indices are from {p+1, . . . , n}.
Since dimK = p and linK and span{σ1, . . . , σn−p} are complementary subspaces, we
get

dim(Ki1 + · · ·+Kik) ≥ p+ k − s− 1 ≥ k,

a contradiction. Hence, s = 0. From (7) it then follows that Ui ⊂ span {σ1, . . . , σn−p},
for i = 1, . . . , n − 2. Therefore, p = 2 and span {U1, . . . , Un−2} = span {σ1, . . . , σn−2}.
This space is the orthogonal complement of a two-dimensional subspace Y , which con-
tains the convex body K (by Firey’s construction). We put

TB := K

and have thus defined a map T : K(0)(E) → K(Y ). In the following lemma, we deter-
mine this map explicitly. For this, the previously introduced objects U1, . . . , Un−1, E, Y
remain fixed, and we introduce the following notation. By πY : Rn → Y we denote the
orthogonal projection. We write M =tr M

′ (M ⊂tr M
′) for convex bodies M,M ′ if and

only if there exists a vector t with M = M ′ + t (respectively, M ⊂ M ′ + t). Further,
we put P := U1 + · · ·+ Un−2 and denote by |P | the (n− 2)-dimensional volume of P .
(If n = 2, we omit P and replace |P | by 1.)

Lemma 3. The map T can be extended to an additive, continuous map on all of K(E).
The extension satisfies

TB =tr b [απYB + (1− α)πYB∗] for B ∈ K(E), (8)
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with
b =

a|P |
(n− 1)(n− 2)!

, (9)

where a is a positive constant depending only on F , and with a constant α ∈ [0, 1],
possibly depending also on U1, . . . , Un−2 and E.

Proof. We need the following conclusion from Firey’s [2] proof in Case 1. In our
situation, L = Y , and the restriction of µ to Sn−1 ∩ Y is the length measure S1(K, ·).
For u ∈ Sn−1 ∩ Y , we have h(A, u) = h(πYA, u), hence (6) reduces to

F (A,B,U1, . . . , Un−2) =
1
n

∫
Sn−1∩Y

h(πYA, u)S1(TB, du)

=
2
n
v(πYA, TB), (10)

for A ∈ Kn, where v denotes the mixed volume in the two-dimensional space Y .

We make repeatedly use of the following fact. If M,M ′ ∈ K(Y ), then

v(A,M) ≤ v(A,M ′) for all A ∈ K(Y ) implies M ⊂tr M
′. (11)

This result, which extends to higher dimensions but is used here only for n = 2, is due
to Weil [7].

Let B1, B2 ∈ K(0)(E). From the additivity of F in its second argument and from
(10) we get

v(A, T (B1 +B2)) = v(A, TB1) + v(A, TB2) = v(A, TB1 + TB2)

for all A ∈ K(Y ) and hence T (B1 + B2) =tr T (B1) + T (B2). Since each body TB has
its Steiner point at the origin, it follows that

T (B1 +B2) = TB1 + TB2.

Thus, T is additive.

In a similar way, it follows from the positive homogeneity of F in its second argument
that

T (λB) = λTB

for λ ≥ 0.

Suppose that B1 ⊂tr B2. Since F is increasing in its second argument, (10) gives

v(A, TB1) ≤ v(A, TB2) for all A ∈ K(Y ),

and we conclude that
B1 ⊂tr B2 ⇒ TB1 ⊂tr TB2. (12)

We show that T is continuous. Let (Bi)i∈N be a sequence in K(0)(E) converging to
some convex body B ∈ K(0)(E). There is a fixed convex body C ∈ K(0)(E) containing
all the Bi, hence TBi ⊂ TC. Thus, the sequence (TBi)i∈N is bounded and hence has a
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convergent subsequence, say TBij → M ∈ K(Y ) for j →∞. This convergence implies
that (n/2)F (A,Bij , U1, . . . , Un−2) = v(A, TBij )→ v(A,M) for all A ∈ K(Y ). From the
continuity of F we have (n/2)F (A,Bij , U1, . . . , Un−2)→ (n/2)F (A,B,U1, . . . , Un−2) =
v(A, TB). The equality v(A,M) = v(A, TB) for all A ∈ K(Y ) yields TB =tr M and
then TB = M , since both bodies have their Steiner point at the origin. Since every
convergent subsequence of (TBi)i∈N converges to TB, the sequence itself converges to
TB. This establishes the continuity of T on K(0)(E).

We extend T to all of K(E). Let S ∈ K(E) be a segment or a singleton. Let
Bi, B ∈ K(0)(E) be such that Bi → S. Then Bi + B → S + B, hence TBi + TB =
T (Bi + B) → T (S + B). From this it follows that the sequence (TBi)i∈N converges
to some convex body M and that M + TB = T (S + B). Therefore, M is uniquely
determined, and we can define TS := M . Then T (S + B) = TS + TB for arbitrary
B ∈ K(0)(E). If S1, S2 ∈ K(E), we choose B ∈ K(0)(E) and have T (S1 + S2) + T (B) =
T (S1 +S2 +B) = TS1 +T (S2 +B) = TS1 +TS2 +TB, hence T (S1 +S2) = TS1 +TS2.
Thus, the extended mapping T is additive. Similarly, if Bi → S, then Bi+B → B+S,
hence T (Bi+B)→ T (S+B) and thus TBi+TB → TS+TB, which implies TBi → TB.
Hence, the extended map T is continuous. By similar arguments, the other properties
of T (homogeneity, monotonicity) can be extended.

Let C ∈ K(0)(E) be o-symmetric. For A ∈ K(E) it follows from Theorem 2 that

F (A,C,U1, . . . , Un−2) = aV (A,C,U1, . . . , Un−2),

where the constant a is positive, since we have assumed that F 6≡ 0. Recalling that
P = U1 + · · ·+ Un−2, we have

(n− 2)!V (A,C,U1, . . . , Un−2) = V (A,C, P, . . . , P ),

and formula [5, (5.3.23)] gives(
n

2

)
V (A,C, P, . . . , P ) = |P |v(πYA, πY C).

Hence,

F (A,C,U1, . . . , Un−2) =
1

(n− 2)!
1(
n
2

) |P |v(πYA, πY C).

From (10) we have

F (A,C,U1, . . . , Un−2) =
2
n
v(πYA, TC).

Since, in the last two equations, πYA can be any convex body in Y , we deduce from
(11) that TC =tr b πY C, where b is given by (9).

The body C is centrally symmetric, hence also TC is centrally symmetric (as follows
from Firey’s proof of Lemma 2). Since both sets have their centre at the origin, we
conclude that TC = b πY C. Defining the linear map Λ : E → Y as the restriction of
b πY to E, we thus have

TC = ΛC for C ∈ K(E) with C = −C. (13)
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By continuity, this holds also if dimC < 2.

To study T on nonsymmetric sets, we define T ′ : K(Y ) → K(Y ) by T ′(B) :=
T (Λ−1B) for B ∈ K(Y ); then

T ′C = C for C ∈ K(Y ) with C = −C.

We start with a triangle ∆ ⊂ Y . The set ∆ + ∆∗ =: H (recall that ∆∗ := −∆) is a
o-symmetric hexagon. It follows that

T ′∆ + T ′∆∗ = T ′(∆ + ∆∗) = T ′H = H.

Hence, T ′∆ and T ′∆∗ are summands of H. Let S1, S2, S3 be the o-symmetric segments
which are translates of the edges of ∆. Since ∆ and ∆∗ both contain a translate of
Si, it follows from (12) that each of T ′∆ and T ′∆∗ contains a translate of T ′Si = Si,
i = 1, 2, 3.

The facts observed in the previous paragraph are invariant under affine transfor-
mations of Y . We may, therefore, introduce a scalar product 〈·, ·〉 on Rn for which ∆
becomes regular. Without loss of generality, we assume that ∆ has vertices o, u1, u2,
where u1, u2 ∈ Y are unit vectors. We put u3 := u2 − u1, then

〈u1, u2〉 = 〈u3, u2〉 =
1
2
.

The edges of the hexagon H are, say in clockwise order, translates of the segments
S1, S2, S3, S1, S2, S3. Since T ′∆ is a summand of H, it has corresponding edges which
are translates of α1S1, α2S2, α3S3, α4S1, α5S2, α6S3 with 0 ≤ αi ≤ 1 (here we allow
edges of length zero). The triangle T ′∆∗ has corresponding edges which are translates
of (1− α1)S1, (1− α2)S2, (1− α3)S3, (1− α4)S1, (1− α5)S2, (1− α6)S3.

Let x, y be the endpoints of a longest segment parallel to S2 contained in T ′∆. We
may assume that y − x = ru2 with r > 0. Since T ′∆ contains a translate of S2, we
have r ≥ 1. We may further assume, as is easy to see, that x is a vertex of T ′∆. Then
either

y = x+ α1u1 + α2u2 + λα3u3

with 0 ≤ λ ≤ 1, or
y = x+ α1u1 + α2u2 + α3u3 − µα4u1

with 0 ≤ µ ≤ 1. In the first case, we obtain

1 ≤ r = 〈y − x, u2〉 =
1
2
α1 + α2 +

1
2
λα3 ≤

1
2
α1 + α2 +

1
2
α3, (14)

and in the second case

1 ≤ r = 〈y − x, u2〉 =
1
2
α1 + α2 +

1
2
α3 −

1
2
µα4 ≤

1
2
α1 + α2 +

1
2
α3. (15)

In a similar way, considering the triangle T ′∆∗, we obtain

1 ≤ 1
2

(1− α1) + (1− α2) +
1
2

(1− α3). (16)
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Adding (14), respectively (15), to (16), we see that equality must hold in (14), respec-
tively (15), which means that

y − x = α1u1 + α2u2 + α3u3. (17)

For a unit vector v ∈ Y orthogonal to u2 we have 〈u3, v〉 = 〈u2− u1, v〉 = −〈u1, v〉 6= 0,
hence (17) gives α1 = α3. In the same way (going ‘the other way round’ from x to y)
we obtain that α4 = α6.

Applying the same argument to S1 or S3, we deduce that α1 = α3 = α5 =: α and
α2 = α4 = α6 =: β. Since (14) holds with equality, we have α+ β = 1. Thus, we have
obtained that

T ′∆ =tr α(∆)∆ + (1− α(∆))∆∗,

where we have written α(∆) to point out a possible dependence on ∆. It remains to
show that there is, in fact, no such dependence.

For this, let G be a line and z a point in Y with z /∈ G. Let u, v, w be different
points on G, in this order, and let ∆1 := conv{z, u, v}, ∆2 := conv{z, v, w}, ∆ :=
conv{z, u, w}, S := conv{z, v} and write α(∆i) =: αi for i = 1, 2 and α(∆) =: α. Then
∆ + S = ∆1 + ∆2 and therefore

α(∆1 + ∆2) + (1− α)(∆1 + ∆2)∗ (18)

= α(∆ + S) + (1− α)(∆ + S)∗

= α∆ + (1− α)∆∗ + S =tr T
′∆ + S = T ′∆ + T ′S

= T ′(∆ + S) = T ′(∆1 + ∆2) = T ′∆1 + T ′∆2

=tr α1∆1 + (1− α1)∆∗1 + α2∆2 + (1− α2)∆∗2. (19)

Let ξ ∈ Y denote the outer unit normal vector of the edge conv{z, u} of the triangle
∆1. The support sets of the polygons (18) and (19) with outer unit normal vector ξ
must have the same length, hence α = α1 (note that none of the triangles ∆2, ∆∗1, ∆∗2
has an edge with outer normal vector ξ). Therefore, for u,w ∈ G the value α(∆) for
∆ := conv{z, u, w} depends only on u. For the same reason, it depends only on w.
Hence, it is a constant for u,w ∈ G. Since T ′ is positively homogeneous, the value α(∆)
is constant for all triangles ∆ with an edge on G. Taking a line G′ intersecting G and a
triangle with edges on G′ and G, we see that the value is also independent of the line.
Therefore, T ′∆ =tr α∆+(1−α)∆∗ with a fixed α ∈ [0, 1], for all triangles ∆. Since every
convex polygon P is a sum of triangles and segments, we get T ′P =tr αP + (1− α)P ∗

and then, by approximation and continuity, T ′B =tr αB+ (1−α)B∗ for all B ∈ K(Y ).

Recalling that T ′(B) = T (Λ−1B) for B ∈ K(Y ) and that Λ = b πY |E , we arrive at
(8). This finishes the proof of Lemma 3.

Now we complete the proofs of Theorem 3 and Theorem 4 separately.
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Proof of Theorem 3. If n = 2, no segments U1, . . . , Un−2 appear, and the previous proof
and result hold with E = Y = R2 and |P | = 1. In view of (9), equation (8) simplifies
to

TB =tr a [αB + (1− α)B∗] for B ∈ K2.

Hence, (10) gives
F (A,B) = aV (A,αB + (1− α)B∗)

for A,B ∈ K2. This completes the proof of Theorem 3.

Proof of Theorem 4. Now we assume that n ≥ 3 and that F satisfies also condition
(P6). From (8) and (10) we have

F (A,B,U1, . . . , Un−2) =
2
n
b v(πYA, πY [αB + (1− α)B∗]) (20)

for A ∈ Kn and B ∈ K(E).

So far, the linearly independent segments U1, . . . , Un−2 and the two-dimensional
linear subspace E, complementary to span{U1, . . . , Un−2}, were fixed. The constant α
in (20) may depend on this data, therefore we write α = α(U1, . . . , Un−2, E). To show
the independence, we first fix U1, . . . , Un−2 and consider two two-dimensional subspaces
E1, E2, both complementary to span{U1, . . . , Un−2}. Write α(U1, . . . , Un−2, Ei) =: αi.
Let B ∈ K(Y ) and Bi ∈ K(Ei) be convex bodies such that πYBi = B, i = 1, 2. It
follows from Proposition 3 (modified for the appropriate variables) that

F (A,B1, U1, . . . , Un−2) = F (A,B2, U1, . . . , Un−2),

hence (20), together with πYBi = B, gives

v(πYA,α1B + (1− α1)B∗) = v(πYA,α2B + (1− α2)B∗).

Since this holds, in particular, for all A ∈ K(Y ), we deduce from (11) that

α1B + (1− α1)B∗ =tr α2B + (1− α2)B∗.

Choosing for B a triangle in Y , we conclude that α1 = α2. Thus, α(U1, . . . , Un−2, E)
does not depend on E, and we denote it by α(U1, . . . , Un−2). From (20) and (9) we can
deduce that α(U1, . . . , Un−2) does not change if, say, U1 is dilated by a positive factor.

Now let (U ′1, . . . , U
′
n−2) be a second (n− 2)-tuple of centred segments with linearly

independent directions and such that

span{U1, . . . , Un−2} = span{U ′1, . . . , U ′n−2} = Y ⊥.

We write P ′ = U ′1 + · · · + U ′n−2 and α(U1, . . . , Un−2) = α, α(U ′1, . . . , U
′
n−2) = α′.

Since α(U1, . . . , Un−2) does not change under dilatation of one of its arguments, we can
assume that |P | = |P ′|. Then there exists a linear map ϕ ∈ SL(n) with ϕUi = U ′i for
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i = 1, . . . , n − 2 and ϕy = y for y ∈ Y . Now we use property (P6). For A,B ∈ K(Y )
we obtain from (20) that

2
n
b v(A,αB + (1− α)B∗)

= F (A,B,U1, . . . , Un−2) = F (ϕA,ϕB,ϕU1, . . . , ϕUn−2) = F (A,B,U ′1, . . . , U
′
n−2)

=
2
n
b v(A,α′B + (1− α′)B∗).

By the argument used above, we can conclude that α = α′. This shows that
α(U1, . . . , Un−2) depends, in fact, only on Y = span{U1, . . . , Un−2}⊥, and we denote it
by α(Y ).

Let Y ′ be a second two-dimensional linear subspace. There exists a rotation ρ ∈
SO(n) with Y ′ = ρY . For A,B ∈ K(Y ) we get

2
n
b v(A,α(Y )B + (1− α(Y ))B∗)

= F (A,B,U1, . . . , Un−2) = F (ρA, ρB, ρU1, . . . , ρUn−2)

=
2
n
b v(ρA, α(Y ′)ρB + (1− α(Y ′))ρB∗)

=
2
n
b v(A,α(Y ′)B + (1− α(Y ′))B∗),

by the rigid motion invariance of the mixed volume. As above, we conclude that
α(Y ) = α(Y ′).

We have shown that the constant α in (20) is independent of U1, . . . , Un−2 and the
two-dimensional subspace in which B lies. We can write (20) in the form

F (A,B,U1, . . . , Un−2) = aV (A,αB + (1− α)B∗, U1, . . . , Un−2), (21)

valid for A ∈ Kn and two-dimensional convex bodies B ∈ Kn. By continuity, the
assumption on the linear independenc of the directions of U1, . . . , Un−2 is no longer
required. That (21) holds, in fact, for general convex bodies B ∈ Kn, can be shown
by a similar extension procedure as in Section 2, replacing generalized zonoids by
generalized triangle bodies. A convex body K ∈ Kn is called a triangle body if it can
be approximated by finite sums of triangles, and it is called a generalized triangle body
if there exist triangle bodies T1, T2 such that K +T1 = T2. By [6, Lemma 2], the set of
generalized triangle bodies is dense in Kn. Therefore, the kind of argument from the
proof of Theorem 2 can be used to extend (21) from two-dimensional convex bodies B
to general convex bodies.

As in Section 2, each argument Ui can be replaced by a centrally symmetric convex
body, thus we get

F (A,B,C1, . . . , Cn−2) = aV (A,αB + (1− α)B∗, C1, . . . , Cn−2)

for A,B ∈ Kn and C1, . . . , Cn−2 ∈ Kns . This finishes the proof of Theorem 4.

18



4 Proof of Theorem 5

Let n = 2, and let F have the properties of Theorem 5. By Lemma 1, F is non-negative,
in each variable translation invariant, continuous and positively homogeneous, and it
vanishes if one of its arguments is a singleton.

In the following, all segments are again nondegenerate. Let S be a segment. By
(P5′), there exists a segment S̄ with F (S, S̄) = 0, and every segment parallel to S̄ has
the same property. We make S̄ unique by demanding that it has centre o and length
1, with respect to a given Euclidean metric. Then (P5′) implies for segments S1 that

F (S, S1) = 0⇔ S1 ‖ S̄. (22)

Similarly, to each segment S there exists a unique centred segment S̃ of unit length
such that

F (S1, S) = 0⇔ S1 ‖ S̃. (23)

We modify the proof of Theorem 3. Let B ∈ K2
(0), the set of two-dimensional

convex bodies in R2. The function A 7→ F (A,B), A ∈ K2, is not identically zero, since
otherwise F (S, S1) = 0 for an arbitrary segment S and all segments S1 ⊂ B, which
contradicts (22). Now we can apply Lemma 2. Its case 2 cannot occur, for the same
reason as just explained. Hence, there is a unique convex body K ∈ K2

(0), with Steiner
point o, that satisfies F (A,B) = V (A,K) for all A ∈ K2, and we can define a map
T : K2

(0) → K
2
(0) by TB := K. Precisely as in Section 3 it follows that T is additive,

positively homogeneous, increasing up to translations, continuous, and can be extended
to a mapping T : K2 → K2 under preservation of all these properties. In particular, we
have

F (A,B) = V (A, TB) for all A,B ∈ K2. (24)

Let x ∈ R2 (and recall that we identify {x} with x). Since F (A, x) = 0 for all
A ∈ K2, we obtain V (A, Tx) = 0 for all A ∈ K2. This implies

Tx = o.

We want to use the properties of T to show that it is induced by a linear mapping.
First we assert that under the mapping T the following holds.

(a) Only singletons are mapped to singletons.

(b) Segments are mapped to segments.

(c) Segments of different directions are mapped to segments of different directions.

Proof of (a): If TB is a singleton, then (24) yields F (A,B) = V (A, TB) = 0 for
all A ∈ K2. If B is not a singleton, it contains a segment S, and we would have
F (S1, S) = 0 for all segments S1, which contradicts (23). This contradiction shows
that B is a singleton.

Proof of (b): Assume that S is a segment and TS is not a segment. By (a), TS is
not a singleton, hence dimTS = 2. It follows that 0 = F (S̃, S) = V (S̃, TS) 6= 0, since
S̃ is not a singleton, a contradiction.
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Proof of (c): Let S1, S2 be segments of different directions. As just proved, TS1

and TS2 are segments. Assume, to the contrary, that TS1 ‖ TS2. Then (24) gives
F (TS1, S2) = V (TS1, TS2) = 0, and (23) implies that TS1 ‖ S̃2. This gives F (S̃2, S1) =
V (S̃2, TS1) = 0 and hence S̃2 ‖ S̃1. Therefore, F (S̃1, S2) = 0. Since also F (S̃1, S1) = 0
by the definition of S̃1, now (22) (applied to S̃1 instead of S) yields that S1 ‖ S2, a
contradiction. This completes the proof of (c).

For x ∈ R2 \ {o} we denote by Sx the segment with endpoints ±x. The image TSx
is a segment with centre o, hence of the form Sy with y ∈ R2 \ {o}. For λ ≥ 0 we have

TSλx = T (|λ|Sx) = |λ|TSx = |λ|Sy = Sλy.

We fix two linearly independent vectors a, b ∈ R2. Then TSa = Su, TSb = Sv with
linearly independent vectors u, v ∈ R2. By the homogeneity of T , also TSλa = Sλu,
TSλb = Sλv for λ > 0.

We consider the diagonals of the parallelogram Sa + Sb. We have

Sa+b ⊂ Sa + Sb, Sa−b ⊂ Sa + Sb

and
S2a ⊂ Sa+b + Sa−b, S2b ⊂ Sa+b + Sa−b.

From (12) and o-symmetry we obtain that

TSa+b ⊂ Su + Sv, TSa−b ⊂ Su + Sv (25)

and
2Su ⊂ TSa+b + TSa−b, 2Sv ⊂ TSa+b + TSa−b. (26)

We have TSa+b = Sx and TSa−b = Sy with linearly independent vectors x, y ∈ R2,
say

x = λu+ µv, y = γu+ δv.

Then (25) implies that |λ|, |µ|, |γ|, |δ| ≤ 1. From

u =
δ

D
x− µ

D
y, v = − γ

D
x+

λ

D
y, D = λδ − µγ

and (26) we obtain |λ|, |µ|, |γ|, |δ| ≤ |D|/2. This gives |D| ≤ |λδ|+ |µγ| ≤ D2/2, hence
|D| ≥ 2. On the other hand, |D| ≤ |λδ|+|µγ| ≤ 2. We conclude that |λ|, |µ|, |γ|, |δ| = 1.
This means that either TSa+b = Su+v, TSa−b = Su−v or TSa+b = Su−v, TSa−b = Su+v.
Replacing v by −v, if necessary, we can assume that TSa+b = Su+v and TSa−b = Su−v.

Let λ, µ > 0. Since TSλa = Sλu, TSµv = Sµb, the same argument as above shows
that either TSλa+µb = Sλu+µv, TSλa−µb = Sλu−µv or TSλa+µb = Sλu−µv, TSλa−µb =
Sλu+µv. Since for λ, µ = 1 the first case occurs, it follows from the continuity of T
that the first case occurs for all λ, µ > 0. Now we define a (nondegenerate) linear map
ϕ : R2 → R2 by

ϕ(λa+ µb) := λu+ µv
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for λ, µ ∈ R. Then we have TS = ϕS for every centred segment S ⊂ R2 and hence

TC = ϕC for C ∈ K2 with C = −C.

This equation corresponds to equation (13) in Section 3, with E replaced by R2 and
Λ replaced by ϕ. We continue the proof verbally as there, to end up with an equation
corresponding to (8), namely

TB =tr ϕ[αB + (1− α)B∗] for B ∈ K2,

with α ∈ [0, 1]. Together with (24) this completes the proof of Theorem 5.
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