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Abstract. The ball hull mapping β associates with each closed bounded convex set K in
a Banach space its ball hull β(K), defined as the intersection of all closed balls containing
K. We are concerned in this paper with continuity and Lipschitz continuity (with respect
to the Hausdorff metric) of the ball hull mapping. It is proved that β is a Lipschitz map in
finite dimensional polyhedral spaces. Both properties, finite dimension and polyhedral
norm, are necessary for this result. Characterizing the ball hull mapping by means
of H-convexity we show, with the help of a remarkable example from combinatorial
geometry, that there exist norms with noncontinuous β map, even in finite dimensional
spaces. Using this surprising result, we then show that there are infinite dimensional
polyhedral spaces (in the usual sense of Klee) for which the map β is not continuous.
A property known as ball stability implies that β has Lipschitz constant one. We prove
that every Banach space of dimension greater than two can be renormed so that there
is an intersection of closed balls for which none of its parallel bodies is an intersection of
closed balls, thus lacking ball stability.

1. Introduction

The family M of all intersections of closed balls in a real Banach space X appears in
several questions related to convex geometry, fixed point theory and geometry of Banach
spaces. In the latter context, Mazur initiated some 75 years ago the study of the spaces
satisfying M = H, where H denotes the family of all closed bounded convex sets in X, a
property that now is known as the Mazur intersection property. It received later renewed
attention by Phelps, Giles and Bor-Luh Lin, among many other authors. However, some
of the basic properties of M when M 6= H were still unknown. For instance, when H
is equipped with the usual Hausdorff metric, is it true or false that M is (topologically)
closed? This question (answered in the negative in Section 3) is related to the property
of M being closed under Minkowski sums, and to another stability property concerning
parallel bodies. We say that M is (i) stable if C + D ∈ M whenever C, D ∈ M; (ii) ball
stable if C + B ∈ M for every C ∈ M, where B is the (closed) unit ball. While it is
obvious that M stable implies M ball stable, the converse is false [6]. It was shown in
[11] that the ball stability of M implies that the ball hull mapping β is Lipschitz. The
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ball hull mapping associates with every set K ∈ H its ball hull β(K), the intersection of all
closed balls containing K. It is not difficult to prove that M is closed if β is continuous.

We will show in Section 2 that every Banach space of dimension greater than two
can be renormed to lack ball stability. The class of norms used in the proof will provide
a counterexample to show that M need not be ball stable when β is Lipschitz. A main
tool in this and the subsequent sections is the notion of semi-denting point introduced by
Chen and Lin in [3].

In Section 3 we characterize the ball convex hull through H-convexity, a notion intro-
duced by Boltyanski in [1]. We use this to show, by employing a remarkable example in
[2], that there exist noncontinuous β maps, even in finite dimensional spaces. In Section
4 it is proved that this cannot happen when the norm is polyhedral, since in this case,
β is always Lipschitz. We show that the condition of finite dimension is essential, by
exhibiting a polyhedral norm in c0 whose ball hull mapping is not continuous. When
the space is not finite dimensional, we understand polyhedral always in the sense of Klee
[9]. The following diagram summarizes some results of the present paper (together with
known or obvious results):

M is ball stable
⇓ �⇑

β is Lipschitz ⇐ X polyhedral, dim X < ∞
⇓ ⇑?

X polyhedral ; β is continuous : dim X < ∞
⇓ ⇑?

M is closed

It also points out that there are questions concerning the continuity of ball hull mappings
which are still unsolved. For instance, we have no example of a continuous β map which is
not Lipschitz. It has been observed in [13] that the Lipschitz property of β with Lipschitz
constant 1 implies ball stability.

2. Spaces lacking ball stability

Among the several classes of extreme points that can be found in the literature,
the notion of semi-denting point, introduced by Chen and Lin in [3], is surely the most
suitable for studying convex sets which are intersections of balls (every ball considered in
this paper is closed). Recall that an element f of the unit sphere S∗ of a dual Banach
space is called a semi-denting point of the dual unit ball B∗ if for every ε > 0 there exists a
weak* slice S such that diam(f ∪S) < ε. If we ask additionally that f ∈ S, we recapture
the notion of weak* denting point. The utility of semi-denting points can be illustrated
by a result that will be used later in the proof of Theorem 2.2: if f ∈ S∗ and C ∈ M
has a facet defined by a supporting hyperplane H parallel to f−1(0) (here facet means
nonempty relative interior in H), then f is a semi-denting point of B∗. More precisely,
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we have the following lemma, whose proof is similar to the proof of Proposition 2.3 in [7]
and, therefore, is omitted.

Lemma 2.1. If f ∈ S∗, C ∈ M, α = sup f(C) and f−1(α) ∩ C has nonempty (relative)
interior in f−1(α), then f is a semi-denting point of B∗.

In every two dimensional Banach space, the elements of M satisfy a strong separation
property which, in particular, implies that M is stable, hence ball stable [6]. In higher
dimensions, the situation changes drastically, as the following theorem shows. Here, a
parallel body of the set C is any set of the form C + λB where B is the unit ball and
λ ≥ 0.

Theorem 2.2. A Banach space X with dim X > 2 admits an equivalent norm for which
there is an intersection of closed balls whose parallel bodies are not intersections of closed
balls.

Proof. Assume that dim X > 2. Choose f ∈ S∗, consider the hyperplane Y = f−1(0), a
norm-one vector y ∈ Y and a functional g ∈ S∗ supporting B at y. Since dim X > 2,
there exists z ∈ g−1(0) ∩ Y satisfying ‖z‖ = 1. We can pick x ∈ B with f(x) = 3/4. We
may assume that −1 < g(x) = β < 1. Finally, we can find h ∈ S∗ such that h(x) = 0
and h(z) 6= 0. We can decompose Y = lin(z) ⊕ H, where H = h−1(0) ∩ Y . Consider
D = H ∩ |β/2|B and denote by [y− z, y + z] the segment with end-points y− z and y + z,
respectively. The set

B′ = conv
(
[y − z, y + z] ∪ [−y − z,−y + z] ∪ (x + D) ∪ (−x + D) ∪ (1/2)B

)
is the unit ball of a norm | · | satisfying (1/2)‖x‖ ≤ |x| ≤ 2‖x‖, hence equivalent to
‖ · ‖. Consider the set C = B′ ∩ (2y + B′) ∈ M. Our choice of D and B′ ensures that
C ⊂ g−1(1) and, therefore,

C = [y − z, y + z].

What about C + λB′? In this particular case, C + λB′ = C + λB′. Observe also that
sup f(C+λB′) = λ sup f(B′) = 3λ/4. We claim that f−1(3λ/4)∩(C+λB′) has nonempty
relative interior in f−1(3λ/4). Indeed, Y is isomorphic to lin(z)⊕∞ H and, therefore, the
set [−z, z] + λ(H ∩ |β/2|B) = [−z, z] + λD has nonempty interior in Y . Now, observe
that

f−1(3λ/4) ∩ (C + λB′) = f−1(3λ/4) ∩
(
[y − z, y + z] + λB′)

⊃ [y − z, y + z] + λx + λD

= (y + λx) +
(
[−z, z] + λD

)
,

which proves the claim. Suppose that C+λB′ ∈M. According to Lemma 2.1, ϕ = f/|f |∗
should be a semi-denting point of the new dual ball (B′)∗. We will show that this is not
the case, obtaining a contradiction. The idea is proving that, close enough to ϕ, every
functional in the dual unit sphere (S ′)∗ is the center of a segment of ‖ ·‖∗-length 1/6 lying
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in (S ′)∗. Hence, every weak* slice of (B′)∗ containing points which are close to ϕ has
‖ · ‖∗-diameter at least 1/12.

The work now consists essentially in doing some calculations with dual norms. It is
clear that sup f(B′) = sup f(x + D) = f(x) = 3/4, so ϕ = (4/3)f and thus ‖ϕ‖∗ = 4/3.
As a first step, we show that |φ|∗ = 1 and ‖ϕ− φ‖∗ < 1/3 imply, as in the case of ϕ, that
sup φ(x + D) = 1. Indeed,

sup φ([y − z, y + z] ∪ [−y − z,−y + z]) ≤ sup φ(2B ∩ Y )

≤ sup ϕ(2B ∩ Y ) + 2‖ϕ− φ‖∗ ≤ 2

3
(1)

and, analogously,

sup φ

(
1

2
B

)
≤ 1

2

(
sup ϕ(B) + sup(φ− ϕ)(B)

)
≤ 1

2

(
4

3
+

1

3

)
=

5

6
. (2)

Now we claim that |φ± h/6|∗ = 1 whenever |φ|∗ = 1 and ‖ϕ− φ‖∗ < 1/3. Indeed,

sup(φ± h/6)(B′) ≥ sup φ(x + D)− sup(h/6)(x + D)

= sup φ(x + D) = 1.

To prove that sup(φ ± h/6)(B′) ≤ 1, we first notice, on the one hand, that sup(φ ±
h/6)(x + D) = sup φ(x + D) = 1 as we observed above, and sup(φ ± h/6)(−x + D) =
sup φ(−x + D) ≤ sup φ(B′) = 1. On the other hand, by using (2) we get

sup(φ± h/6)

(
1

2
B

)
≤ sup φ

(
1

2
B

)
+

1

12
‖h‖∗ ≤ 11

12
.

Finally, according to (1),

sup(φ± h/6)([y − z, y + z] ∪ [−y + z,−y − z]) ≤ 2

3
+

1

6
sup h(2B ∩ Y ) ≤ 1.

�

Notice that ball stability has a trivial meaning in spaces with the Mazur intersection
property since, in these spaces, every closed bounded convex set is an intersection of
closed balls. When the space lacks the Mazur intersection property then there are always
functionals which are not semi-denting [3].

The ball hull mapping associates with every closed bounded convex set K its ball
hull β‖·‖(K) (or simply β(K) when it causes no confusion), namely the intersection of all
closed balls containing K. It is known [11] that β is Lipschitz when M is ball stable. The
Lipschitz property here refers to the usual Hausdorff distance:

dist‖·‖(C, D) = inf{ε > 0 : C ⊂ D + εB‖·‖ and D ⊂ C + εB‖·‖}.
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We will use the construction employed in Theorem 2.2 to prove that the converse is false.

Proposition 2.3. M need not be ball stable when β is Lipschitz.

Proof. Denote by ‖ ·‖1 the usual `1 norm in R3 and let e1, e2, e3 be the standard orthonor-
mal basis of R3. Consider the point u = 1

2
e1 + 1

2
e2, the segment [−u, u] and the new norm

| · | whose unit ball is the set B|·| = [−u, u] + B‖·‖1 . By using the same arguments as in
Theorem 2.2, we get that the family M|·| associated with | · | is not ball stable. However,
we claim that the | · |-ball hull mapping (that is, the ball hull mapping associated with
| · |) is Lipschitz with exact constant 2. In order to prove the claim it is important to
notice first that

M|·| = M‖·‖1 .

The inclusion M|·| ⊃ M‖·‖1 is easy because B‖·‖1 is an intersection of two | · |-balls.
The reverse inclusion holds because B|·| ∈ M‖·‖1 . This fact can be intuitively explained
as follows: B|·| is the intersection of eight halfspaces defined by the four functionals
f1(x1, x2, x3) = x1 + x2 + x3, f2(x1, x2, x3) = x1 + x2 − x3, f3(x1, x2, x3) = x1 −
x2 − x3, f4(x1, x2, x3) = x1 − x2 + x3 which are used to define B‖·‖1 . Then, eight
suitable homothetic copies of B‖·‖1 can play the role of these eight halfspaces. This
shows immediately that B|·| ∈ M‖·‖1 Consider now two bounded sets C, D satisfying
dist|·|(C, D) = ε and denote by β|·|(C), β|·|(D) the corresponding | · |-ball hulls. Then,
since B|·| ⊂ 2B‖·‖1 , we have

C ⊂ D + εB|·| ⊂ D + 2εB‖·‖1 ⊂ β|·|(D) + 2εB‖·‖1 .

The important point here is that M‖·‖1 is ‖ · ‖1-ball stable [6], hence

C ⊂ β|·|(D) + 2εB‖·‖1 ∈M‖·‖1 = M|·|

and therefore

β|·|(C) ⊂ β|·|(D) + 2εB‖·‖1 .

Using that B‖·‖1 ⊂ B|·|, we conclude that β|·|(C) ⊂ β|·|(D)+2εB|·|. A symmetric argument
yields β|·|(D) ⊂ β|·|(C) + 2εB|·|, hence dist|·|(β|·|(C), β|·|(D)) ≤ 2ε and so the | · |-ball hull
map is Lipschitz with constant 2. To see that the constant 2 is sharp, consider the two
segments C = [−e2, e2] and D = [−1

2
e1 + 1

2
e2 + e3,

1
2
e1 − 1

2
e2 + e3]. Then dist|·|(C, D) = 1

while dist|·|(β(C), β(D)) = 2. �

Though it is clear from the above result that a Lipschitz β mapping does not imply
the ball stability of M, we don’t know whether such a result is true if we ask, in addition,
that the ball hull mapping be Lipschitz with constant 1. Besides, we have no example of
a continuous ball hull mapping which is not Lipschitz.
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3. The ball hull mapping and H-convexity

The aim of this section is to prove that, quite surprisingly, there are norms for which
the ball hull mapping is not continuous. The key to prove this result is to establish a
suitable connection between the ball hull mapping and H-convexity, a notion introduced
by Boltyanski in [1] in the context of finite dimensional euclidean spaces. It admits an
easy generalization to arbitrary (even infinite dimensional) Banach spaces. The basic idea
is the following. Let H denote a subset of X∗ \{0}; the set C ⊂ X is said to be H-convex
if it can be represented as

C =
⋂
f∈H

f−1(−∞, sup f(C)], (3)

where sup f(C) can be ∞. H-convex sets are always convex and closed; however, they
need not be bounded. The question now is to decide which properties of H ensure the
existence of an equivalent norm | · | such that H-convex sets coincide with the family M|·|
of all intersections of | · |-closed balls. Recall that a subset F of the dual unit sphere S∗ is
called λ-norming if ‖x‖ ≤ λ supf∈F f(x) for every x ∈ X. We say that F is norming if it is
λ-norming for some λ ≥ 1. Of course, S∗ is a trivial 1-norming set but, in general, norming
sets need not be (norm) dense in S∗. Consider, for instance, F = {±(1, 0),±(0, 1)} ⊂ `2

1,
the dual space of `2

∞. An element f of the unit sphere S∗ of a dual Banach space is called
a weak* denting point if for every ε > 0 there exists a weak* slice S of B∗ such that
diam S < ε and f ∈ S. A subset H ⊂ S∗ is symmetric if f ∈ H implies −f ∈ H.

Theorem 3.1. Let H ⊂ S∗ be a symmetric norming set of weak* denting points. There
exists an equivalent norm | · | such that M|·| is precisely the set of H-convex subsets.

Proof. Consider the set

D =
⋂
f∈H

f−1(−∞, 1] =
⋂
f∈H

f−1[−1, 1], (4)

which is closed, convex, centrally symmetric and contains B. Moreover, since H is λ-
norming for some λ ≥ 1, we have D ⊂ λB, hence D is also bounded. In other words, D
is the unit ball of the equivalent norm

|x| = sup
f∈H

|f(x)|, (5)

which satisfies |x| ≤ ‖x‖ ≤ λ|x|. If C ∈ M|·|, there is a collection of balls {Dα =⋂
f∈H f−1[aα, bα]}α such that C =

⋂
α Dα. Consequently,

C =
⋂
f∈H

f−1[sup
α
{aα}, inf

α
{bα}],
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and therefore C is H-convex. To prove the converse, let us first check that the functionals
in H are weak* denting points of the new dual unit ball D∗. Indeed, notice first that
|f |∗ = 1 for every f ∈ H, since sup |f(D)| ≤ 1 by (4) and sup |f(D)| ≥ 1 because B ⊂ D.
Now, given f ∈ H and ε > 0, there is a weak* closed halfspace W ∈ X∗ containing f and
satisfying diam‖·‖∗(W ∩ B∗) < λ−1ε. It is clear that W ∩ D∗ 6= ∅ because f ∈ W ∩ D∗

(this is the reason why we are considering weak* denting points instead of semi-denting
points). Now, since D∗ ⊂ B∗ and |g| ≤ λ‖g‖ for every g ∈ X∗, we have

diam|·|∗(W ∩D∗) ≤ diam|·|∗(W ∩B∗) ≤ λ diam‖·‖∗(W ∩B∗) < ε,

which proves that f is a weak* denting point of D∗. In particular, f is also a semi-denting
point. Let us see that a set C satisfying (3) is an intersection of balls, that is C ∈ M|·|.
To this end, consider x /∈ C. There is an f ∈ H such that f(x) /∈ (−∞, sup f(C)]. The
Chen-Lin characterization of semi-denting points [3] already used in the previous section
implies the existence of a ball containing C but missing x. �

It is not difficult to prove that the continuity of the ball hull mapping implies that
M is closed. Boltyanski, Martini and Soltan proved in Example 20.6 of [2] that, for R3

and a suitable choice of H, there is a sequence of H-convex sets converging to a set M
which is not H-convex. It is not difficult to check that this particular H is a symmetric
norming set of weak* denting points and thus satisfies the conditions of Theorem 3.1.
Applying this theorem, we get a norm | · | for which M|·| is not closed, hence the | · |-ball
hull mapping is not continuous. Let us remark that M has empty interior (it is a line
segment in R3). This is necessarily so, due to the following fact.

Proposition 3.2. The ball hull mapping is always continuous at sets which have nonempty
interior.

Proof. Consider a set C ∈ H such that int C 6= ∅ and a sequence Cn → C in H. We may
assume that 0 ∈ int C. For every λ > 1 we consider the homothetic sets λC and λ−1C,
which satisfy λ−1C ⊂ C ⊂ λC. Now, every family {Bi} of closed balls and every µ ∈ R
satisfy

⋂
i µBi = µ

⋂
i Bi. Therefore, β(λC) = λβ(C) and, similarly, β(λ−1C) = λ−1β(C).

This implies

λ−1β(C) ⊂ β(C) ⊂ λβ(C).

It is easily verified that, if ‖x‖ ≤ M for all x ∈ C (and hence for all x ∈ β(C)), then we
obtain, using the Hausdorff metric, that

dist(λ−1β(C), λβ(C)) ≤ λ(1− 1/λ2)M.

Given ε > 0, fix λ > 1 such that λ(1− 1/λ2)M < ε. Now, the set {D ∈ H : λ−1C ⊂ D ⊂
λC} is a neighborhood of C and, consequently, λ−1C ⊂ Cn ⊂ λC for all sufficiently large n
(say for n ≥ N), so λ−1β(C) ⊂ β(Cn) ⊂ λβ(C) for n ≥ N , and hence dist(β(Cn), β(C)) <

ε for n ≥ N . �
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The question of whether C ∈ M whenever C + λB ∈ M for every λ > 0 can be
easily answered in the affirmative. Indeed, if x /∈ C, there is λ > 0 such that x /∈ C + λB.
Since C + λB ∈M, there is a closed ball D satisfying C ⊂ C + λB ⊂ D and x /∈ D. On
the other hand, if we define C ∼ λB = {x ∈ C : x + λB ⊂ C}, it is natural to ask also
whether C ∈M whenever ∅ 6= C ∼ λB ∈M for every sufficiently small λ > 0. To prove
that this is indeed the case, first notice that limλ→0 dist(C, C ∼ λB) = 0 (since int C 6= ∅
and C is convex) and then apply Proposition 3.2.

Theorem 3.1 answers the question of finding, given a set H ⊂ S∗, an equivalent norm
| · | such that the family of H-convex sets coincides with M|·|. Conversely, if we fix the
norm ‖·‖, is there a nontrivial H ⊂ S∗ with the property that M‖·‖ is precisely the family
of H-convex sets? The natural candidate is H = SD∗, the set of semi-denting points.
By using similar arguments as in the proof of the above theorem, one gets the following
representation result. If SD∗ is a 1-norming set, then C ∈M if and only if

C =
⋂

f∈SD∗

f−1[inf f(C), sup f(C)] (6)

=
⋂

f∈SD∗

f−1(−∞, sup f(C)] =
⋂

f∈SD∗

f−1[inf f(C),∞), (7)

where the last two equalities are due to the fact that f ∈ SD∗ if and only if −f ∈ SD∗. In
other words, if SD∗ is 1-norming, then M is the family of H-convex sets, for H = SD∗.
If {xi}i∈I is any dense set of the unit sphere S and {fi} ⊂ S∗ satisfies fi(xi) = 1 for every
i ∈ I, then {fi} is a norming set. When X is an Asplund space, there is a dense set
of points {xi}i∈I ⊂ S and corresponding support functionals {fi}i∈I ⊂ S∗ such that the
fi are weak* strongly exposed points of B∗ (thus obviously they are also semi-denting).
Points with the above property are usually called regular or smooth points. Consequently,
if X is Asplund (in particular, if X has finite dimension), then C ∈M if and only it can be
represented as in (6), replacing SD∗ by SE∗, the family of weak* strongly exposed points
of B∗. The representation given in (6) does not mean that, in general, the functionals of
SD∗ support every boundary point of C. However, this is the case when the space has
finite dimension, as proved in the following corollary.

Corollary 3.3. Let X be a finite dimensional Banach space. If C is an intersection of
closed balls and x ∈ C is a boundary point, there is f ∈ SD∗ supporting C at x.

Proof. Choose a sequence {xn}n ⊂ X \C converging to x. Since C satisfies (6), for every
n ∈ N we can choose fn ∈ SD∗ such that

fn(xn) /∈ [inf fn(C), sup fn(C)] (8)

while, obviously, fn(x) ∈ [inf fn(C), sup fn(C)]. Since S∗ is compact and SD∗ is closed (a
result whose proof can be deduced directly from the definition of a semi-denting point),
there is a subsequence {fnk

}k ⊂ {fn}n converging to f0 ∈ SD∗. Notice that either
f0(x) = inf f0(C) or f0(x) = sup f0(C). Otherwise, if f0(x) ∈ (inf f0(C), sup f0(C)), then
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f0(xn) ∈ (inf f0(C), sup f0(C)) for n big enough, hence fn(xn) ∈ (inf fn(C), sup fn(C)) for
some n, a contradiction. �

Remark: It can be useful to observe that in a finite dimensional normed space the semi-
denting points are precisely the limits of extreme points. Indeed, in these spaces, the
notions of extreme, denting and weak* denting point coincide. Hence, every extreme
point of B∗ is semi-denting. On the other hand, by the Minkowski theorem (see [12],
Lemma 1.4.5), we have B∗ = conv(ext(B∗)) and then every nonempty slice of C contains
an extreme point. Together with the definition of semi-denting point, this proves the
assertion.

Finally, in spaces with infinite dimension, extreme points need not be semi-denting.
Consider, for instance, the usual unit ball of `∞. It contains no semi-denting points, since
every weak* slice has diameter 2, but it certainly contains extreme points.

4. Ball hull mappings of polyhedral norms

A polytope is the convex hull of finitely many points. The theory of polytopes plays an
important role in convex geometry and other branches of mathematics (for introductions,
see Grünbaum [8] and Ziegler [14]). When the unit ball of a finite dimensional Banach
space is a polytope, we say that both the space and the norm are polyhedral. One of
the several attempts to define infinite dimensional polyhedral spaces (and probably the
one most accepted nowadays) is due to V. Klee [9]: a space is polyhedral if each of the
finite dimensional sections of its unit ball is a polytope. Analogously, its norm is usually
called a polyhedral norm. For classical and recent results on this and other versions on
infinite-dimensional polyhedrality, the reader is referred to [5].

A subset F ⊂ S∗ is called a boundary if for each x ∈ X there exists f ∈ F such
that f(x) = ‖x‖. Finite dimensional polyhedral spaces have finite boundaries and every
polyhedral Banach space admits a boundary Ω = {fi}i∈I ⊂ S∗ with the property that
f−1

i (1)∩ S has nonempty relative interior in f−1
i (1), for every i ∈ I [4]. It can be used to

represent the elements of M as follows. Since f−1
i (1) ∩ S has nonempty relative interior

in f−1
i (1), the functional fi is a weak* strongly exposed point of B∗, thus a semi-denting

point. As a consequence, if C ∈M, then

C =
⋂
i∈I

f−1
i (−∞, sup fi(C)]. (9)

Theorem 4.1. In a finite dimensional polyhedral space, the ball hull mapping is Lipschitz
continuous.

Proof. Let X be a finite dimensional polyhedral space. Consider the finite boundary
Ω = {fi}i∈I described before. We will show that there is a constant c > 0 such that, for
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C ∈M and x ∈ X \ C,

dist(x, C) ≤ c sup
i
{fi(x)− sup fi(C)}. (10)

Before proving (10), let us see why this inequality is the key to proving the theorem.
Consider a closed bounded convex set K ⊂ X and λ > 0. We claim that

β(K + λB) ⊂ β(K) + cλB .

For the proof, let x ∈ X be such that x /∈ β(K) + cλB, then dist(x, β(K)) > cλ and
hence, according to (10), we have

cλ < c sup
i
{fi(x)− sup fi(β(K))}

= c sup
i
{fi(x)− sup fi(K)}, (11)

where (9) was used. This implies the existence of j ∈ I satisfying

λ < fj(x)− sup fj(K).

This inequality, in turn, yields that x /∈ β(K + λB), since

β(K + λB) ⊂ f−1
j (−∞, sup fj(K) + λ].

To prove the theorem, let K1, K2 be closed bounded convex sets with dist(K1, K2) = δ.
Then, K1 ⊂ K2 + δB and so

β(K1) ⊂ β(K2 + δB) ⊂ β(K2) + cδB

which, together with the analogous expression obtained by interchanging K1 and K2,
allows us to conclude that

dist(β(K1), β(K2)) ≤ c dist(K1, K2) .

It remains to prove (10), with suitable c. For that, we choose a real number c > 0
such that for any k linearly independent functionals f1, . . . , fk ∈ Ω and for α1, . . . , αk ∈ R
we have

|α1|+ · · ·+ |αk| ≤ c ‖α1f1 + · · ·+ αkfk‖∗. (12)

The existence of such a constant follows by a routine argument, using homogeneity, con-
tinuity, compactness, and the finiteness of Ω. Now let C ∈ M and x ∈ X \ C be given.
Define ε = dist(x, C) and let y be a point in C with ‖x − y‖ = ε. The compact convex
sets εB + x and C have the point y in common, but no relatively interior points, hence
they can be separated by a hyperplane H containing y. Thus, there exists g ∈ X∗ and
α ∈ R with H = g−1(α), g(x) > α, sup g(C) = α, and g(x− y) = ‖g‖∗‖x− y‖ = ε‖g‖∗.



THE BALL HULL MAPPING 11

The hyperplane H supports C, and F = H ∩C is a face of C. Let ΩF = {f1, . . . , fm}
be the set of functionals f ∈ Ω for which

F ⊂ f−1(sup f(C)), (13)

that is, the supporting hyperplane of C determined by f contains F . Clearly, ΩF is not
empty. We assert that

g ∈ pos{f1, . . . , fm}, (14)

where pos A denotes the positive hull of A, i.e., the set of all linear combinations of
elements from A with nonnegative coefficients. Suppose, this were false. Then g and the
convex cone pos{f1, . . . , fm} can be separated, that is, there exists a vector w ∈ X such
that g(w) > 0 and fi(w) ≤ 0 for i = 1, . . . ,m. Choose z ∈ relintF , the relative interior
of F . Then we have g(z) = sup g(C) and also, in virtue of (13), fi(z) = sup fi(C) for
i = 1, . . . ,m, while f(z) < sup f(C) for f ∈ Ω \ ΩF (otherwise, f(z) = sup f(C), and
since z ∈ relintF , this implies F ⊂ f−1(sup f(C)), a contradiction). We can choose λ > 0
so small that

f(z + λw) < sup f(C)

for f ∈ Ω \ ΩF . Since fi(z + λw) ≤ sup fi(C) for i = 1, . . . ,m, we have z + λw ∈⋂
f∈Ω f−1(−∞, sup f(C)] = C. On the other hand, g(z+λw) > sup g(C), a contradiction.

Thus (14) holds.

By (14), there is a representation g =
∑m

i=1 αifi with αi ≥ 0. By the analogue of
Carathéodory’s theorem for positive combinations, g is a positive combination of linearly
independent functionals among f1, . . . , fm, say g =

∑k
i=1 αifi with αi > 0. If we would

have fi(x− y) < c−1ε for i = 1, . . . , k, then, by (12),

ε‖g‖∗ = g(x− y) =
k∑

i=1

αifi(x− y) < c−1ε
k∑

i=1

αi ≤ c−1ε c ‖g‖∗,

a contradiction. Hence, there is j ∈ {1, . . . , k} with fj(x− y) ≥ c−1ε, that is,

dist(x, C) = ε ≤ c fj(x− y) = c (fj(x)− sup fj(C)),

which proves (10) and thus the theorem. �

We finish this section by showing that Theorem 4.1 is best possible, under two aspects:
for a finite dimensional space, there is no upper bound for the Lipschitz constants of the
ball hull mappings of polyhedral norms, and in an infinite dimensional polyhedral space,
the ball hull mapping even need not be continuous.

Proposition 4.2. For every n ∈ N, there is a polyhedral norm on R3 such that the
corresponding ball hull map has (minimal) Lipschitz constant greater than n.

Proof. The intuitive idea is the following: if we choose a norm ‖ ·‖ in R3 whose associated
ball hull map β is not continuous, and if we approximate ‖ · ‖ by polyhedral norms ‖ · ‖k,
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then the corresponding ball hull maps βk must have large minimal Lipschitz constant. A
norm ‖ · ‖ with non-continuous β map was obtained in Section 3, on the basis of Example
20.6 of [2]. We modify this example to construct now the approximating polyhedral norms.

We denote by 〈·, ·〉 and (e1, e2, e3) the standard scalar product and orthonormal basis
of R3, respectively. With every u ∈ R3, we associate the linear functional u∗ with u∗(x) =
〈u, x〉 for x ∈ R3. Consider the segment M = [−e2, e2] and the sequence of segments

Mk = [−e2 + 1
k
e3, e2− 1

k
e3], k ∈ N. Define the vectors f

(+)
k and f

(−)
k as in [2], consider the

set

Ωk = {±f
(+)
k ,±f

(−)
k , (±e1 ± e2)/

√
2,±e3},

and define

Bk =
⋂

f∈Ω∗k

f−1(−∞, sup f(D)),

where D is the euclidean unit ball. Then Bk is the unit ball of a polyhedral norm ‖ · ‖k.
Note that Hk = Ω∗

k is a boundary of this norm. Let distk and βk denote the Hausdorff
metric and ball hull mapping, respectively, of the norm ‖ · ‖k. We have shown in Section
3 that the Ω∗

k-convex hull map coincides with βk. As in [2], since every f ∈ Ωk satisfies
the inequality |〈f, e1〉| ≤ |〈f, e2〉|, we get that e1 ∈ βk(M). Since (±e1± e2)/

√
2 ∈ Ωk, we

have

distk(βk(M), M) ≥ 1√
2
.

The same argument as in [2], p.133, can be used to show that βk(Mk) = Mk. Now k can
be chosen large enough so that

diste(Mk, M) <
1√

2(n + 1)
, (15)

where diste denotes the euclidean Hausdorff distance. Since D ⊂ Bk, this means that
distk(G, H) ≤ diste(G, H) for every pair of closed, convex sets G, H. Consequently,
distk(Mk, M) < (

√
2(n + 1))−1. This gives

distk(βk(Mk), βk(M)) = distk(Mk, βk(M))

≥ distk(M, βk(M))− distk(M, Mk)

>
1√
2
− 1√

2(n + 1)
=

n√
2(n + 1)

> n distk(M, Mk) > 0,

which proves the assertion. �

Proposition 4.3. Polyhedral norms need not have continuous ball hull mappings.

Proof. For every n ∈ N, choose a natural number kn satisfying (15) and define Xn =
(R3, ‖ · ‖kn), where ‖ · ‖kn is the polyhedral norm used in the proof of Proposition 4.2.
Recall that ‖·‖kn has a boundary Hkn and its ball hull mapping βkn has minimal Lipschitz
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constant greater than n. Denote by

X =

[⊕
n∈N

Xn

]
c0

the c0-sum of the family {Xn, n ∈ N}, and by M, Mn, the families of all intersections of
closed balls in X and Xn, respectively. Denoting by Hkn also the image of Hkn under the
canonical embedding

Hkn ⊂ X∗
n ↪→ X∗ =

[⊕
n∈N

X∗
n

]
`1

,

carrying Hkn to the dual unit sphere SX∗ , we see that H =
⋃

n Hkn is a boundary for
X. The space X is polyhedral. Indeed, let Y ⊂ X be a finite dimensional subspace and
consider HY = {f ∈ H : sup f(BY ) = 1}. If HY is infinite, we can select an infinite
sequence of norm-one functionals {fn}n in HY and a corresponding sequence of vectors
{xn} in BY satisfying fn(xn) = 1. Since BY is compact, there is a subsequence {xni

}
of {xn} such that {xni

} → x0 ∈ BY . Then limi fni
(x0) = 1, implying that x0 /∈ X, a

contradiction. Therefore, HY is finite and hence BY is a polytope.

We may assume that, for every n ∈ N and every functional f ∈ Hkn , the set f−1(1)∩
BXkn

is a facet of BXkn
(that is, has nonempty relative interior in f−1(1)). This implies

that f−1(1)∩BX is also a facet of BX . Applying now Lemma 2.1 we get that f is a semi-
denting point of BX∗ and therefore H turns out to be a 1-norming family of semi-denting
points. We can use the representation stated in (6) for the elements of M to obtain that
C ∈ M if and only if C = π1(C)⊕ · · · ⊕ πn(C)⊕ · · · and πn(C) ∈ Mn, for every n ∈ N,
where πn : X → Xn denotes the canonical projection. Using again a notation of direct
sums we can write

M = (M1 ⊕ · · · ⊕Mn ⊕ · · · ) ∩X.

Let us see that the ball hull mapping associated with M is not continuous. To this end,
consider the segments M , Mkn defined in the proof of Proposition 4.2 and define P ⊂ X

such that πn(P ) = M , namely P = M⊕· · ·⊕M⊕· · · . Then P is closed, bounded, convex,
and P /∈M. Actually, πn(βX(P )) = βR3(M) 6= M for every n ∈ N. Now we will construct
a sequence {Pm}m in M such that πn(Pm) = Mkn+m−1 . The idea behind the construction
is to define P1 = Mk1⊕· · ·⊕Mkn⊕· · · and then to apply a kind of “reverse shift operator”
to obtain P2 = Mk2 ⊕· · ·⊕Mkn+1 ⊕· · · and so on. Then dist(Pm, P ) = dist(M, Mkm) → 0
for m →∞, while

dist(βX(Pm), βX(P )) = dist(Pm, βX(P ))

= dist(Mkm , βR3(M)) → dist(M, βR3(M)) > 0.

�
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