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Abstract

We obtain a new characterization of the diametrically complete sets in
Minkowski spaces, by modifying two well-known characteristic properties of bodies
of constant width. We also get sharp inequalities for the circumradius and inradius
of a diametrically complete set of given diameter. Strengthening former work of
D. Yost, we show that in a generic Minkowski space of dimension at least three
the set of diametrically complete sets is not closed under the operation of adding a
ball. We conclude with new results about Eggleston’s problem of characterizing the
Minkowski spaces in which every diametrically complete set is of constant width.
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1 Introduction

A bounded set in a metric space is called diametrically complete if it cannot be en-
larged without increasing its diameter. In a Euclidean space and in two-dimensional
Minkowski spaces, the diametrically complete sets are precisely the convex bodies of
constant width. In an arbitrary Minkowski space (a finite dimensional real normed
space), it is known that every body of constant width is a complete set, but the con-
verse does not hold generally, although this was believed for a long time, until Eggleston
[5] gave counterexamples. Constant width sets have a long and rich history, which goes
back to Euler, and they have been intensively studied since then. In contrast, dia-
metrically complete sets, although they were introduced as early as 1911 (by Meissner
[12]), have received less attention, and many of their basic properties are still far from
being well understood. Also the question, raised by Eggleston [5] in 1965, of character-
izing the Minkowski spaces in which every complete set is of constant width, remains
essentially open.

In this paper, based on a new characterization of complete sets, we investigate
structural properties of the set of all complete sets and obtain, for general norms,
a new necessary condition for the spaces satisfying Eggleston’s condition mentioned
above.

A Minkowski space can be represented as Rn with a norm ‖ · ‖, for some n ∈ N (we
assume n ≥ 2). In the following, all metric notions, like distance, diameter, width, etc.,
refer to this norm. The unit ball of the norm ‖ · ‖ is the set B := {x ∈ Rn : ‖x‖ ≤ 1}.
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Any set B(z, r) := rB + z with r ≥ 0 and z ∈ Rn is called a ball. By Kn we denote
the space of convex bodies (nonempty, compact, convex subsets) of Rn, equipped with
the Hausdorff metric induced by some norm. Kn0 is the subset of bodies with interior
points.

A convex body K ∈ Kn is said to be of constant width if any two parallel supporting
hyperplanes of K have the same distance. This distance is then equal to diamK, the
diameter of K. The body K is of constant width if and only if K −K, the Minkowski
sum of K and of −K, its reflection in the origin o, is a ball. A bounded set M is
called diametrically complete, or briefly complete (also called diametrically maximal),
if diam(M ∪ {x}) > diamM for each x ∈ Rn \M . Clearly, a complete set is compact
and convex. For surveys about previous results on constant width and complete sets,
we refer the reader to Chakerian and Groemer [4], Heil and Martini [6], Martini and
Swanepoel [10].

Eggleston [5, p. 169] considered the following possible properties of a Minkowski
space. He said that a normed space has

Property (A), if every complete set in the space is of constant width,

Property (B), if every complete set in the space is a ball,

Property (C), if every convex body of constant width in the space is a ball.

A space (Rn, ‖ · ‖) not having property (C) contains a non-symmetric (that is, not
centrally symmetric) convex body K such that K − K is a ball. Therefore, the unit
ball B is reducible, that is, it has a non-symmetric summand. As Yost [25] noted, for
n ≥ 3 most (in the Baire category sense) o-symmetric convex bodies are irreducible
(not reducible). He deduced (Corollary 22 and its proof) that most n-dimensional
Minkowski spaces (n ≥ 3) have a smooth and strictly convex unit ball, have property
(C), and hence do not have property (A). On the other hand, for a space (Rn, ‖ · ‖) to
have property (B), it is necessary and sufficient that its unit ball is a parallelepiped.
The sufficiency was shown by Eggleston [5] and the necessity by Soltan [24].

Every bounded set M in (Rn, ‖ · ‖) is contained in a complete set of the same
diameter. Any such complete set is called a completion of M ; it is in general not
unique. The diametric completion map γ associates with every convex body K ∈ Kn
the set γ(K) of its completions.

The results quoted above show clearly that the class of bodies of constant width,
which has such a rich theory in Euclidean spaces, is rather poor in typical normed
spaces, and that the class of complete sets should be studied instead. The first aim of
this note is to characterize complete sets by properties which are obtained by modifying
characteristic properties of bodies of constant width.

The second part of the note is motivated by the study of some structural properties
of the set of complete bodies. Depending on the nature of a given Minkowski space,
the following properties may or may not be satisfied.

Property (D): The sum of any two complete sets is complete.

Property (E): The diametric completion map γ is convex-valued.

Property (F): The sum of any complete set and a ball is complete.
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By (E) we mean, of course, that for each C ∈ Kn and any two completions K,K ′ of C,
the Minkowski combination αK+(1−α)K ′ is a completion of C, for all α ∈ [0, 1]. The
first example of a Minkowski space not satisfying property (F) was given by Naszódi
and Visy [17].

Proposition 1. For a space (Rn, ‖ · ‖), properties (A), (D) and (E) are equivalent.
Property (F) is strictly weaker.

The implication (A)⇒ (D) is trivial. Suppose that (D) holds. Let K be a complete
convex body. Then also −K is complete. By (D), K − K is complete. Since it is
centrally symmetric, one easily proves (or see [2, Proposition 32.4]) that it must be a
ball. Hence, K is of constant width. Thus (A) holds. The equivalence of (A) and (E)
was proved in [16, Prop. 6]. Trivially, (A) implies (F). That property (F) is strictly
weaker than (A), is shown by the example of the space `31. It is known that it does
not satisfy (A) (see [5]). That this space satisfies (F), was deduced in [14] from some
earlier results. We shall give a short direct proof at the beginning of Section 3.

The fact that most n-dimensional Minkowski spaces (for n ≥ 3) do not have prop-
erties (A), (D), (E), shows that the concept of diametrically complete sets is not well
compatible with the linear structure of a vector space. The second aim of this note
is to demonstrate an even stronger incompatibility: we strengthen the result of Yost,
replacing property (A) by the weaker property (F). Note that (F) no longer deals with
bodies of constant width; it expresses a pure property of the system of complete sets.

The question, already raised by Eggleston [5], of characterizing the Minkowski
spaces which have property (A) (and thus also (D) and (E)), remains open. The third
aim of this note to obtain some new restrictions for these spaces. The unit balls of such
spaces have special intersection properties. In Section 4, the available information is
supplemented by a new necessary condition for general norms, with an improvement
for polyhedral norms.

2 Characterizations of complete sets

In this section, we work in a given Minkowski space (Rn, ‖ · ‖), with unit ball B.

Complete sets have the following characterization, also known as the spherical in-
tersection property ([5]). A convex body K of diameter d is complete if and only if

K =
⋂
x∈K

B(x, d). (1)

Another characterization ([5, p. 167]) says that K is complete if and only if each
boundary point of K is at distance d from some other point of K.

Further characterizations require some notation. Let K ∈ Kn. If H is a hyperplane,
we denote by w(K,H) the distance between the two supporting hyperplanes of K
parallel to H and call this the width of K in direction H. It is well known (e.g., [2,
Th. 32.2]) that the diameter of K is equal to its maximal width. The set Σ bounded
by two parallel supporting hyperplanes H,H ′ of K is called a supporting slab of K,
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and w(K,H) = w(K,H ′) is also the width of Σ. Every segment with one endpoint in
K ∩H and the other in K ∩H ′ is called a diametrical chord of K, and it is said to be
generated by Σ.

A convex body K ∈ Kn of diameter d is of constant width if and only if every
supporting slab of K has width d. The following is proved, for example, in [4, p. 55,
(IV′)]. The convex body K is of constant width d if and only if all diametrical chords of
K have length d. To obtain a counterpart of these two characterizations for complete
sets, we say that a supporting slab Σ of K is regular if at least one of its bounding
hyperplanes contains a smooth boundary point of K. (A smooth, or regular, point of
K is a boundary point at which there is a unique supporting hyperplane of K.) A
diametrical chord is called regular if it is generated by some regular supporting slab.

We note that every convex body K ∈ Kn0 is the intersection of its regular supporting
slabs. This follows from the fact that the smooth points are dense in the boundary
of K (a consequence of Reidemeister’s theorem, see, for example, [23], Note 2 on page
79), hence to every point x ∈ Rn \K there exists a supporting hyperplane H of K that
contains a smooth boundary point of K and is such that x lies in the open halfspace
bounded by H that is disjoint from K. From this it also follows that through every
boundary point of K there passes a supporting hyperplane which is a limit of supporting
hyperplanes through smooth boundary points of K.

A supporting slab of a convex body K is called B-regular if it is parallel to a
regular supporting slab of B. The following remark shows the relevance of the B-
regular supporting slabs.

Remark. The diameter of a convex body K is the supremum of the widths of all B-
regular supporting slabs of K. For the proof, let diamK = d. Then d is the maximal
width of K and hence is equal to half the diameter of K − K. Since K − K is o-
symmetric, we have K −K ⊂ dB, and K −K and dB have a common boundary point
x. As noted above, through x there exists a supporting hyperplane H of dB (and hence
of K −K) which is the limit of a sequence (Hj)j∈N of supporting hyperplanes of dB
through smooth boundary points of dB. It follows that

2d = w(dB,H) = w(K −K,H) = lim
j→∞

w(K −K,Hj) = 2 lim
j→∞

w(K,Hj),

which gives the assertion.

The fact observed in the remark is specially useful when the unit ball B is a poly-
tope, since then it has only a finite number of regular supporting slabs and hence the
supremum becomes a maximum.

Now we turn to the announced characterizations of complete sets.

Theorem 1.For a convex body K ∈ Kn0 of diameter d the following assertions are
equivalent.

(a) K is complete.

(b) Every regular supporting slab of K has width d.

(c) Every regular diametrical chord of K has length d.
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Proof. Suppose that (b) holds. Let y ∈ Rn \K. As noted above, there exists a regular
supporting slab Σ of K with y /∈ Σ. By assumption, the slab Σ has width d. Therefore,
there exists a point x ∈ K with ‖y − x‖ > d. Since y /∈ K was arbitrary, this shows
that K is complete, thus (a) holds.

Conversely, suppose that (a) holds. Assume that K has a regular supporting slab
Σ of width < d. Let H1, H2 be the bounding hyperplanes of Σ and let x ∈ H1,
say, be a smooth boundary point of K. By continuity, there are a number ε > 0 and a
neighbourhoodN ofH1 (with respect to the usual topology on the space of hyperplanes)
such that each hyperplane H ∈ N satisfies w(K,H) ≤ d−ε. We assert that there exists
a positive number ε′ ≤ ε such that the distance of x from any supporting hyperplane
of K not in N is greater than ε′. Suppose this is false. Then there exists a sequence
(Hj)j∈N of supporting hyperplanes of K, not contained in N , such that the distance
of x from Hj converges to 0 for j → ∞. A subsequence of (Hj)j∈N converges to a
hyperplane H, necessarily a supporting hyperplane of K and passing through x. Since
Hj /∈ N for all j, we have H 6= H1. This contradicts the fact that x is a smooth
boundary point of K. This contradiction proves the existence of ε′.

Let K ′ := conv[K∪((ε′/2)B+x)]. Let H,H ′ be two parallel supporting hyperplanes
of K ′. If one of the hyperplanes, say H, belongs to N , then w(K,H) ≤ d− ε and hence
w(K ′, H) ≤ d − ε + ε′ ≤ d. Otherwise, the distance of x from H,H ′ is greater than
ε′, hence the ball ε′B + x lies in the interior of the slab bounded by H,H ′. Therefore,
w(K ′, H) = w(K,H) ≤ d. We conclude that diamK ′ ≤ d. Hence, K is not complete,
a contradiction. Thus, (b) holds.

Suppose that (b) holds. Let Σ be a regular supporting slab of K, with boundary
hyperplanes H1, H2. If p ∈ K∩H1 and q ∈ K∩H2, then ‖p−q‖ ≤ d, since diamK = d,
but also ‖p− q‖ ≥ w(K,H1) = d, since (b) holds. Thus, each regular diametrical chord
of K has length d. This is property (c).

Conversely, suppose that (c) holds. Let Σ be a regular supporting slab of K, with
boundary hyperplanes H1, H2. Let q ∈ H2, say, be a smooth boundary point of K, and
let p ∈ K ∩ H1. By the assumption, ‖p − q‖ = d. We have K ⊂ B(p, d), and q is a
boundary point of B(p, d). Hence, there exists a supporting hyperplane H of B(p, d)
through q. It is also a supporting hyperplane of K. Since q is a smooth boundary point
of K, we conclude that H = H2. It follows that the slab Σ has width d. Hence, (b)
holds.

A corollary of Theorem 1 is the result, first proved by Naszódi and Visy [17], that
every smooth complete set is of constant width.

We mention two inequalities. Recall that the circumradius R of a convex body K
is defined by R = min{s ≥ 0 : K ⊂ sB + z for some z ∈ Rn}, and the inradius r of K
by r = max{s ≥ 0 : K ⊃ sB + z for some z ∈ Rn}.

Theorem 2. The circumradius R and the inradius r of a complete convex body K of
diameter d satisfy

R ≤ n

n+ 1
d, (2)

r ≥ 1

n+ 1
d. (3)
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Both inequalities are sharp. If equality holds in one of the inequalities, then K is a
simplex.

Proof. The proof is just a combination of known results. Inequality (2) holds for
arbitrary convex bodies in any Minkowski space. A proof with complete discussion
of the equality case is found in Leichtweiss [8]. Equality holds if and only if K is a
simplex. The possible unit balls in the equality case are not uniquely determined (see
[8]), but the difference body of an extremal simplex K is among them. In that case,
K is a body of constant width and thus complete; hence, even for complete bodies, (2)
cannot be improved.

By a result of Sallee [21] and in view of the characterization (1), the circumradius
R and the inradius r of any complete convex body of diameter d satisfy R + r = d.
This yields the remaining assertions.

3 Complete sets in typical Minkowski spaces

As announced at the end of Section 1, we first show that the space `31, that is, R3 with
unit ball B given by an octahedron with centre at the origin, satisfies property (F). Let
K be a complete convex body of diameter d in this space. By (1), K is a polytope whose
facets are parallel to facets of B. Therefore, K has at most four regular supporting
slabs. It cannot have fewer regular supporting slabs, since any intersection of halfspaces
which are translates of the supporting halfspaces of B with more than one symmetric
pair missing, is unbounded, and with one symmetric pair missing, is a parallelepiped,
which has diameter larger than d if it satisfies condition (b) of Theorem 1. Let r > 0.
The sum K+rB has four regular supporting slabs parallel to those of K, each of width
d+ 2r. Suppose that K + rB has an additional regular supporting slab. Then K + rB
has a facet F which is not parallel to a facet of B and this is not possible since K+ rB
is an intersection of closed balls (a more general result is Theorem 3.3 in [15]). Hence,
all regular supporting slabs of K+rB have the same width, and by Theorem 1, K+rB
is complete. Thus, the space satisfies property (F).

For convenience, we introduce on Rn an auxiliary scalar product 〈·, ·〉. We use it, for
example, in the following notation for hyperplanes and closed halfspaces. For vectors
u 6= o and for τ ∈ R we write

H(u, τ) := {x ∈ Rn : 〈x, u〉 = τ}, H−(u, τ) := {x ∈ Rn : 〈x, u〉 ≤ τ}.

The support function of a convex body K is defined by

h(K,u) := max{〈x, u〉 : x ∈ K},

and H(K,u) = H(u, h(K,u)) is the supporting hyperplane of K with outer normal
vector u. The set Kn of convex bodies is equipped with the Hausdorff metric ρ that is
induced by the Euclidean metric corresponding to the scalar product.

We turn to properties of typical Minkowski spaces. For this, we denote by Sn0 the
set of all o-symmetric convex bodies in Kn0 . Equipped with the Hausdorff metric, this is
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a complete metric space. Every B ∈ Sn0 is the unit ball of a norm on Rn, and conversely.
If (P) is a property of n-dimensional Minkowski spaces, we say that B has property (P)
if Rn with the norm defined by the unit ball B has this property. For convenience, we
use Sn0 with the Hausdorff metric to formulate results on the space of n-dimensional
Minkowski spaces. It would not be difficult to reformulate our results in terms of the
space of isometry classes of n-dimensional Minkowski spaces with the Banach–Mazur
metric.

Theorem 3. Let n ≥ 3. The set of all unit balls in Sn0 not having property (F) is open
and dense in Sn0 .

Corollary 1. Let n ≥ 3. The set of all unit balls in Sn0 which are smooth and strictly
convex, have property (C) and do not have property (F), is a dense Gδ set.

Corollary 1 follows from Theorem 3 by using known results and Baire’s Category
Theorem, as in Yost [25]. He proved a similar assertion, with property (A) instead of
property (F).

Unit balls B,Bi ∈ Sn0 determine norms ‖ · ‖ and ‖ · ‖i on Rn, and the corresponding
diameters are denoted by diam‖·‖ = D and diam‖·‖i = Di, respectively. By D(B) we
denote the set of diametrically complete bodies in (Rn, ‖ · ‖). The bodies in D(B) are
called B-complete. The following result includes the fact that D(B) is closed, but is
more general.

Lemma 1. Let Bi, B ∈ Sn0 be unit balls with Bi → B, let Ci, C ∈ K be convex bodies
with Ci → C. If Ci is Bi-complete for each i, then C is B-complete.

Proof. Since Bi → B in the Hausdorff metric and o is in the interior of B and Bi, there
exist numbers 0 < λi < 1 with λi → 1 and

λiB ⊂ Bi ⊂ λ−1i B, hence λi‖ · ‖ ≤ ‖ · ‖i ≤ λ−1i ‖ · ‖.

Let x ∈ bdC. Since Ci → C, there exist points xi ∈ bdCi with xi → x. Since
Ci is Bi-complete, there exists yi ∈ Ci with ‖xi − yi‖i = Di(Ci). After going over
to a subsequence and changing the notation, we can assume that the sequence (yi)i∈N
converges to some point y. Then y ∈ C. From xi−yi → x−y, ‖ ·‖i → ‖·‖ and Ci → C
we conclude that ‖x− y‖ = D(C). Since x was an arbitrary boundary point of C, the
body C is B-complete.

Proof of Theorem 3.

First we show that the set of convex bodies in Sn0 having property (F) is closed in
Sn0 . Suppose that Bi, B ∈ Sn0 , that Bi has property (F), and Bi → B. Let C ∈ D(B)
and r > 0. We have to show that C + rB ∈ D(B). It would be possible to derive this
from continuity properties of the diametric completion map with respect to Hausdorff
metrics that were proved in [16] (Theorem 1 and Proposition 4), but since their proofs
are more complicated, we give here a short direct proof.
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In Rn with a given norm, complete sets have interior points, and any set of diameter
d is contained in a ball of diameter (2n/(n + 1))d, as follows from (2). Therefore, we
may assume that o is an interior point of C and that C ⊂ τD(C)B with a number
τ < 1.

Let 0 < λ < 1 and µ > 1 be given, and choose α > 1 with

[µ− (µ− λ)τ ] > α2λ.

Since Bi → B in the Hausdorff metric and o is in the interior of B, there exists i0 ∈ N
with

α−1B ⊂ Bi ⊂ αB, hence α−1‖ · ‖ ≤ ‖ · ‖i ≤ α‖ · ‖, for i ≥ i0. (4)

Now let i ≥ i0 be given. Let Ci be a Bi-completion of λC. Then λC ⊂ Ci and
Di(Ci) = Di(λC).

Let y ∈ bdµC, then µ−1y ∈ bdC. Since C is B-complete, there exists a point
z ∈ C with ‖µ−1y − z‖ = D(C), hence ‖y − µz‖ = µD(C). This gives

µD(C) = ‖y − µz‖ ≤ ‖y − λz‖+ ‖λz − z‖+ ‖z − µz‖

= ‖y − λz‖+ (1− λ)‖z‖+ (µ− 1)‖z‖ ≤ ‖y − λz‖+ (µ− λ)τD(C)

and hence
‖y − λz‖ ≥ [µ− (µ− λ)τ ]D(C) > α2λD(C) ≥ D(Ci),

the latter because of

D(Ci) ≤ αDi(Ci) = αDi(λC) ≤ α2D(λC) = α2λD(C),

where (4) was used. Since λz ∈ Ci, it follows that y /∈ Ci. Since y was an arbitrary
boundary point of µC, this shows that Ci ⊂ µC.

We have proved that λC ⊂ Ci ⊂ µC for all i ≥ i0. Since λ < 1 and µ > 1 were
arbitrary, this shows that Ci → C. Since also Bi → B, we have Ci + rBi → C + rB.
Since Ci is Bi-complete and Bi has property (F), the body Ci + rBi is Bi-complete.
From Lemma 1 it follows that C + rB is B-complete. Hence, B has property (F). This
completes the proof of the fact that the set of bodies in Sn0 with property (F) is closed.

From now on we assume that n ≥ 3. We have to show that the set of unit balls in
Sn0 not having property (F) is dense.

Let a unit ball K ∈ Sn0 and a number ε > 0 be given. Recall that the set of
o-symmetric polytopes is dense in Sn0 . Therefore, we can choose an n-dimensional
polytope P ∈ Sn0 with ρ(P,K) < ε. By N(P ) we denote the system of normal vectors
(that is, of outer unit normal vectors of the facets) of P .

We choose a unit vector e and a number τ such that

P ⊂ H−(e, τ) and H(e, τ) ∩ P = {p}

for some vertex p of P . Then we choose a number α > 0 so small that the hyperplane
H(e, τ − α) meets the relative interior of each facet of P that contains p, and does not
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meet any other facet of P . We put Pα := P ∩H−(e, τ − α). By choosing α sufficiently
small, we achieve that ρ(Pα ∩ −Pα, P ) < ε. We choose a point z ∈ int(P \ Pα).

Let e1, e2 be unit vectors orthogonal to each other and to e. With a number λ > 0
we define

v1 := e+ λe1, v2 := e− λe1, v3 := e+ λe2, v4 := e− λe2. (5)

Since H(e, 〈z, e〉) ∩ Pα = ∅, we can choose the number λ > 0 so small that

H(vi, 〈z, vi〉) ∩ Pα = ∅ for i = 1, . . . , 4.

Then we can choose a number η > 0 such that for |τ | ≤ η we still have

H(vi, 〈z, vi〉+ τ) ∩ Pα = ∅ for i = 1, . . . , 4 (6)

and
H(v3, 〈z, v3〉+ τ) ∩H(v4, 〈z, v4〉+ τ) ∩ intP 6= ∅. (7)

With numbers 0 < τ1 < τ2 < η we define the polytopes

B := P ∩
2⋂
i=1

±H−(vi, 〈z, vi〉 − τ1) ∩
4⋂
i=3

±H−(vi, 〈z, vi〉) (8)

and

C := P ∩
2⋂
i=1

±H−(vi, 〈z, vi〉−τ1)∩
4⋂
i=3

H−(vi, 〈z, vi〉−τ2)∩
4⋂
i=3

−H−(vi, 〈z, vi〉+τ2). (9)

We can choose η so small that each of the polytopes B and C has the same system of
normal vectors as the polytope

P ∩
4⋂
i=1

±H−(vi, 〈z, vi〉)

and hence
N(B) = N(C) = N(P ) ∪ {vi}4i=1 .

Further, we note that ρ(Pα∩−Pα, P ) < ε implies ρ(B,P ) < ε and hence ρ(B,K) < 2ε.
The polytope B is o-symmetric and thus is the unit ball of a norm ‖ · ‖ on Rn. In the
following, the Minkowski space notions diameter, width, D(B) refer to this norm.

Intuitively speaking, the polytope C is obtained from the polytope B by pushing
the supporting hyperplanes with outer normal vectors v3, v4 inwards and pulling the
supporting hyperplanes with outer normal vectors −v3,−v4 outwards. The aim of this
construction is to achieve that, with respect to the norm with unit ball B, the body C
is complete, whereas the sum C +B is not complete. To show this, we shall make use
of Theorem 1.

First we show that C ∈ D(B). Notice that every regular supporting slab of P is also
a regular supporting slab of B and a regular supporting slab of C. The supporting slabs
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of C with normal vectors v1, v2 are also supporting slabs of B. The supporting slab of
C with normal vector v3 arises from the parallel supporting slab of B by a translation
(namely, by the vector −(τ2/〈v3, v3〉)v3), and similarly for the supporting slab of C with
normal vector v4. Since C has no other regular supporting slabs, it follows that each
regular supporting slab of C has width 2. In particular, diamC ≥ 2. Since the norm
is polyhedral, the diameter of C is the maximum of the widths of its supporting slabs
which are parallel to the facets of the unit ball, B. Since N(B) = N(C), we conclude
that diamC = d and then, from Theorem 1, that C is B-complete.

Now we consider the sum C + B. Each regular supporting slab of C + B that is
parallel to a supporting slab of B has width 4. But C + B has an additional regular
supporting slab, namely the one with normal vector e. In fact, let

H(v1, 〈z, v1〉 − τ1) ∩H(v2, 〈z, v2〉 − τ1) =: E.

This is an (n − 2)-dimensional affine subspace parallel to lin{e, e1}⊥, which satisfies
E ⊂ H(B, e) and dim (E ∩B) = n− 2. Further, let

H(v3, 〈z, v3〉 − τ2) ∩H(v4, 〈z, v4〉 − τ2) =: F.

Then F is an (n − 2)-dimensional affine subspace parallel to lin{e, e2}⊥, satisfying
F ⊂ H(C, e) and dim (F ∩ C) = n− 2 (here (7) is used). It follows that

H(C +B, e) ∩ (C +B) = (F ∩ C) + (E ∩B),

and this set has dimension n−1 and thus is a facet of C+B. Therefore, the supporting
slab of C + B with normal vector e is regular. However, the assumption τ1 < τ2 and
the way the vectors vi were defined imply that

h(C, e) < h(B, e)

whereas
h(C,−e) = h(B,−e).

Therefore, the supporting slab of C +B with normal vector e is properly contained in
the parallel supporting slab of 2B and hence has width less than 4. By Theorem 1, the
body C +B is not B-complete.

To the given unit ball K ∈ Sn0 and the given number ε > 0, we have constructed a
unit ball B ∈ Sn0 with ρ(B,K) < 2ε and such that there exists a convex body C ∈ D(B)
for which C +B /∈ D(B). This completes the proof of Theorem 3.

4 Perfect norms and generating sets

A Minkowski space (Rn, ‖·‖) has Eggleston’s property (A) if in this space every complete
set is necessarily of constant width, or equivalently, if every set of diameter d is contained
in a set of constant width d. Eggleston’s statement ([5], p. 169), “It is not easy to see
what simple property distinguishes the spaces that have property (A) from those which
do not have property (A)”, is still true 45 years later. Chakerian and Groemer [4],
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p. 62, explicitly mentioned the problem of characterizing those Minkowski spaces for
which the concepts of completeness and constant width coincide. Adopting terminology
introduced by Karasëv [7], we say that a Minkowski space with this property and its
norm are perfect. After recalling some known facts on perfect norms, we conclude this
note with necessary conditions.

A convex body K ⊂ Rn is called a generating set (a terminology introduced by
Polovinkin) if any nonempty intersection of translates of K is a summand of K.

For a nonempty bounded set A ⊂ Rn , let

η(A) :=
⋂
x∈A

B(x,diamA), θ(A) :=
⋂

x∈η(A)

B(x,diamA).

In [16], the convex body η(A) was called the wide spherical hull and θ(A) the tight
spherical hull of A. It was shown in [13], Proposition 2, that η(A) is the union and
θ(A) is the intersection of all complete sets of diameter d = diamA containing A. With
‘complete sets’ replaced by ‘bodies of constant width’ and under the assumption that
the unit ball is a generating set, this was proved in [20], Theorem 3.

The following proposition and its consequences show how these spherical hulls are
related to perfect norms. Although the proposition is essentially known, we present the
short proof, referring to known properties of the Minkowski difference, and then explain
its history. Recall that the Minkowski difference of the sets X,T ⊂ Rn is defined by

X ∼ T :=
⋂
t∈T

(X − t) = {y ∈ Rn : T + y ⊂ X}.

In particular, for a set A of diameter d we have

η(A) = dB ∼ (−A), θ(A) = dB ∼ (−η(A)) = dB ∼ (dB ∼ A),

where the definition of the Minkowski difference together with B = −B was used.

Proposition 2. Let A be a set of diameter 1 in the space (Rn, ‖ · ‖) with unit ball B.
If one of the sets η(A), θ(A) is a summand of B, then the set

1

2
[η(A) + θ(A)]

is a body of constant width 1 that contains A.

Proof. We have η(A) − θ(A) = η(A) − (B ∼ (−η(A))) = η(A) + (B ∼ η(A)). If now
η(A) is a summand of B, then it follows from Lemma 3.1.8 in [23] that η(A) + (B ∼
η(A)) = B, hence η(A)− θ(A) = B. This yields

1

2
[η(A) + θ(A)]− 1

2
[η(A) + θ(A)] =

1

2
[η(A)− θ(A)] +

1

2
[θ(A)− η(A)] = B,

thus 1
2 [η(A) + θ(A)] is a body of constant width 1.

Second, suppose that θ(A) is a summand of B. Then there is a convex body K
with θ(A) +K = B, which gives K = B ∼ θ(A) = B ∼ (B ∼ (B ∼ A)). Since B ∼ A
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is an intersection of translates of B, Lemma 3.2.4 of [23] gives B ∼ (B ∼ (B ∼ A)) =
B ∼ A = −η(A). Thus, θ(A)− η(A) = B, and we can conclude as before.

The assumption of Proposition 2 is a fortiori satisfied if the unit ball B is a generat-
ing set. If a Minkowski space has the property that every set of diameter 1 is contained
in a set of constant width 1, then the norm is perfect.

In Euclidean spaces, the fact that 1
2 [η(A) + θ(A)] is a set of constant width equal

to diamA and containing A, was first proved (in different terminology) by Maehara
[9]. Sallee [22] extended the result to the Minkowski spaces satisfying an assumption
equivalent to the fact that η(A), for any set A of diameter 1, is a summand of the unit
ball. This result was later rediscovered by Polovinkin [19] (more generally, in reflexive
Banach spaces); he assumed that the unit ball is a generating set but needed in his
proof only the mentioned condition.

The preceding results have raised interest in the class of generating sets, since they
yield examples of perfect norms. It has been known for a long time that two-dimensional
convex bodies are generating sets (see Theorem 3.2.3 in [23] and the references given
there in Note 3 for Section 3.2). Maehara [9] was the first to prove that Euclidean
balls are generating sets. This was rediscovered by Polovinkin [18] (a different proof
appears in [7], and an extension to Hilbert spaces in [1]). It is easy to see that the
system of generating sets is stable under linear transformations and direct sums. From
[11] (see assertions (36), (37), (43)), the n-dimensional convex polytopes (n ≥ 3) which
are generating sets are explicitly known in the following cases: in dimension three (see
also [3]), in dimension n if they have at most n + 3 facets, in dimension n if they are
centrally symmetric. A centrally symmetric polytope is a generating set if and only
if it is a direct sum of polygons and, in odd dimension, a segment. New examples of
generating sets (under the name of ‘Sallee sets’) in R3 were constructed by Borowska
and Grzybowski [3]; none of their examples is centrally symmetric.

Proposition 2 has two corollaries (due to the definition of η(A) and the fact that
diam θ(A) = diamA). The first was proved in a different way by Karasëv [7]; the
second seems to be new.

Corollary 2. Suppose that the unit ball B of the norm has the property that every
intersection ⋂

y∈T
(B + y) with diamT ≤ 1

is a summand of B. Then the norm is perfect.

Corollary 3. Suppose that the unit ball B of the norm has the property that every
intersection ⋂

y∈T
(B + y) of diameter 1

is a summand of B. Then the norm is perfect.

Karasëv [7] has strengthened Corollary 2 by part (a) of the following proposition,
showing that one need only consider intersections of two translates at a time. Part (b)
is a partial converse, also due to Karasëv [7].
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Proposition 3. (a) If B ∩ (B + u) is a summand of B for all u ∈ Rn with ‖u‖ ≤ 1,
then the norm is perfect.

(b) If a norm is strictly convex and perfect, then B ∩ (B + u) is a summand of B
whenever ‖u‖ ≤ 1.

The sufficient condition for a perfect norm given by part (a) is not necessary, as
shown by an example due to Karasëv [7]. We modify and explain this example below,
after the proof of Theorem 4. The unit ball B of the perfect norm in Karasëv’s example,
however, still has the property that B∩(B+u), for ‖u‖ ≤ 1, is positively homothetic to
a summand of B. This observation leads us to a necessary condition for general perfect
norms. For its proof, we need the following strengthening of the sufficiency part of a
known criterion for summands (Theorem 3.2.2 in [23]).

Lemma 2. Let K,L ∈ Kn. Suppose that for each supporting hyperplane H of K there
exist a point x ∈ H ∩K and a vector t ∈ Rn such that x ∈ L + t ⊂ K. Then L is a
summand of K.

Proof. From the assumption it follows that K ∼ L 6= ∅, and from (3.1.12) in [23] it
then follows that (K ∼ L) + L ⊂ K. Suppose this inclusion is proper. Then K has
a supporting hyperplane H such that H ∩ ((K ∼ L) + L) = ∅. By assumption, there
exist x ∈ H ∩K and t ∈ Rn with x ∈ L + t ⊂ K. This implies that t ∈ K ∼ L and
hence x ∈ L+ (K ∼ L), a contradiction. Thus (K ∼ L) + L = K, which shows that L
is a summand of K.

Theorem 4. If the norm on Rn with unit ball B is perfect, then 1
2(B ∩ (B + u)) is a

summand of B whenever ‖u‖ ≤ 1.

Proof. We modify the proof of Theorem 3 in [7]. Let u ∈ Rn be a vector with ‖u‖ ≤ 1.
Let H be an arbitrary supporting hyperplane of B ∩ (B + u) and choose a point
y ∈ H ∩B ∩ (B + u). Put

S :=
1

2
((B ∩ (B + u))− y) + y,

thus S arises from B ∩ (B + u) by a dilatation with centre y and homothety factor
1/2. We have S ⊂ B ∩ (B + u) and diamS ≤ 1, hence the set S ∪ {o, u} has diameter
1 (note that y has distance 1 from o and from u). Let C be a completion of this
set. Then S ⊂ C and C ⊂ B ∩ (B + u), since o, u ∈ C and diamC = 1. Hence,
H is a supporting hyperplane to C that contains y. Let H ′ be the other supporting
hyperplane of C parallel to H. Since the norm is perfect, the set C is of constant
width, hence H ′ is at distance 1 from H. There is a point y′ ∈ C ∩H ′, and we have
C ⊂ B + y′. The hyperplane H supports B + y′, since it has distance 1 from y′. Since
the direction of the hyperplane H was arbitrary, we have shown that the bodies K = B
and L = 1

2(B ∩ (B+u)) satisfy the assumption of Lemma 2. The assertion follows.

By a modification of Karasëv’s [7] example we show that the homothety factor
1/2 in Theorem 4 is best possible. In R3, let the unit ball B be obtained from the
cube with vertices (±1,±1,±1) by cutting off the vertex (1, 1, 1) by the plane through
the points (0, 1, 1), (1, 0, 1), (1, 1, 0), and cutting off the opposite vertex symmetrically
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(note that this yields Dürer’s octahedron from his Melencolia I). The norm with
unit ball B is perfect. We prove this as follows. Let K be a complete convex body
with respect to B, say of diameter 1. By (1), K is an intersection of translates of B,
hence K = Σ1 ∩ Σ2 ∩ Σ3 ∩ Σ4, where Σi, i = 1, . . . , 4, are the supporting slabs of K
parallel to the facets of B, with Σ4 corresponding to the triangular facets. Suppose,
first, that Σ1, Σ2, Σ3 are regular slabs of K. Then, by Theorem 1, they have width 1.
Their intersection is a cube C. Clearly, Σ4 has width ≤ 1, since otherwise diamK > 1.
If Σ4 has width < 1, then K is not complete, since suitable points from C outside Σ4

can be added without increasing the diameter. On the other hand, suppose that one
of the supporting slabs Σ1, Σ2, Σ3, say Σ1, is not regular. Then K = Σ2 ∩ Σ3 ∩ Σ4

and, since K has nonempty interior, Σ2, Σ3 and Σ4 are regular, hence they have width
1. This implies that K has diameter > 1, a contradiction. We have proved that every
B-regular supporting slab of K is regular. Further, K has the following property.
Whenever H,H ′ are two parallel supporting planes of K such that H ∩K is an edge
of K, then H ′ ∩K is a parallel edge of K or is one-pointed. Therefore, K −K and B
have the same regular supporting slabs, and since K −K ⊂ B, they are identical, thus
K has constant width. This shows that the norm with unit ball B is perfect. For the
vector u = (1,−1, 0) of length 1, the intersection B∩(B+u) has an edge of length 2 for
which the corresponding edge of B has length 1. Hence, no homothet α(B ∩ (B + u))
with α > 1/2 can be a summand of B.

For suitable polyhedral norms, however, an improvement is possible.

Theorem 5. Suppose that the norm ‖ · ‖ on Rn is perfect and its unit ball B is a
polytope. Let D denote the maximal diameter of the proper faces of B and put

α := min{1/D, 1} (so that α ≥ 1/2).

Then α(B ∩ (B + u)) is a summand of B whenever ‖u‖ ≤ 1.

Proof. Again we modify the proof of Theorem 3 in [7], but in a different way. Let
u ∈ Rn be a vector with ‖u‖ ≤ 1 and put Y := B ∩ (B + u). Let E be an edge of the
polytope Y and H a supporting hyperplane of Y such that H∩Y = E. Let S ⊂ E be a
subsegment which is a translate of αE. Since the edge E is the intersection of a k-face
of B and a (n+ 1− k)-face of B + u, for some k ∈ {1, . . . , n}, it has diameter at most
D. Hence, S has diameter at most 1. The set S ∪ {o, u} has diameter 1; let C be a
completion of this set. Then S ⊂ C and C ⊂ Y . Hence, H is a supporting hyperplane
to C that contains S. Let H ′ be the other supporting hyperplane of C parallel to H.
As in the previous proof, H ′ is at distance 1 from H, and for a point y′ ∈ C ∩H ′ we
have C ⊂ B+y′. The hyperplane H supports B+y′. Thus, the support set (B+y′)∩H
contains S. It follows that the support set B∩ (H−y′) of B contains a translate of αE.
Since E was an arbitrary edge of Y and H was an arbitrary supporting hyperplane of
Y with H ∩ Y = E, it follows from Theorem 3.2.8 in [23] that the polytope αY is a
summand of B.

A complete classification of the convex bodies with the property of Theorem 4 seems
to be difficult. Even the corresponding question for polytopes is open. Some light is
shed on the difficulty of this question if one observes that Karasëv’s example can be
modified with considerable freedom. From the given cube, one can cut off parts by
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several planes (up to eight) in a centrally symmetric way, each plane cutting off one or
two vertices. If the cut-offs are sufficiently close to the edges of the cube, and different
parts cut off have distance larger than one from each other, then one can show that
the norm with the obtained unit ball is perfect.
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