ERRATA

p. VI, l. 21: Replace ‘taylored’ by ‘tailored’.
p. 1, l -3: Replace ‘similarly’ by ‘invariant’.
p. 79, l. -2: Replace $B \otimes \Omega$ by $B \otimes A$.
p. 102, Theorem 4.1.2: The first sentence after formula (4.4) has to be replaced by the following one:
Sufficient for (4.4) is the \mathcal{Q}-integrability of the dth power of the circumradius, and in the case of a process of convex particles, (4.4) is equivalent to the \mathcal{Q}-integrability of the intrinsic volumes V_1, \ldots, V_d.
p. 103, line 12: “The remaining equivalences” has to be replaced by “The remaining assertions on the validity of (4.4)”
p. 139, l. 14: Delete the factor $\frac{1}{2}$.
p. 156, l. 18: Replace (4.34) by (4.31).
p. 172, l. 1: Replace
$$c_j^k = \frac{\Gamma\left(\frac{k+1}{2}\right)}{\Gamma\left(\frac{j+1}{2}\right)} \quad \text{by} \quad c_j^k = (2\sqrt{\pi})^{k-j} \frac{\Gamma\left(\frac{k+1}{2}\right)}{\Gamma\left(\frac{j+1}{2}\right)}.$$
p. 193, l. 16: Insert the factor $\frac{1}{\sigma_{d-1-j}(L \cap S^{d-1})}$ on the left side.
p. 197, formula (5.26): Replace gB by $g. B$
p. 242, formula (6.34): Replace $\gamma(F, u^\perp)$ by $\gamma(F, u^\perp; K, u^+)$.
p. 262, l. -1: In the numerator, replace ω_d by ω_{d-1}.
p. 358, l. 6: Replace $x \in L_q^\perp$ by $x \in \partial L_q^\perp$
p. 364, l. 5: Replace
$$2^{k-1} d^{K_q d_k + k - 1} \kappa_k \quad \text{by} \quad 2^{k-1} d^{K_q d_k + k - 1} \kappa_k.$$
p. 373, l. 5: Replace (8.57) by (8.56).
p. 373, formula (8.63): κ_q must be outside the round brackets.
p. 388, l. -1: Replace e_j^m by e_d^m and insert the factor e_d^j before the sum over s.
p. 440, l. 7: Replace line 7 by “of the parts of the arcs visible in direction u and projected to the line orthogonal to u. A similar estimator, involving circular arcs, is studied in the book by Hall [317].”
p. 469, line 6 of Note 7: Insert ‘a’ before ‘stationary’.
p. 469, line 9 of Note 7: Replace ‘with the cells of Y_i’ by ‘with the cells of the ith mosaic of Y_1’.
p. 472, l. 5: Replace conv X by conv \bar{X}.

p. 478: The proof of
\[\bigcup_{e \in \mathcal{F}_0(m)} D(e, A) = \mathbb{R}^d \quad (1) \]
is not correct; the last paragraph of the proof should be replaced by the following text.

We identify \mathbb{R}^d with the subspace of \mathbb{R}^{d+1} spanned by the vectors e_1, \ldots, e_d of an orthonormal basis (e_1, \ldots, e_{d+1}) of \mathbb{R}^{d+1}, define $\ell(y) := y + \|y\|^2 e_{d+1}$ for $y \in \mathbb{R}^d$ and $P := \text{conv } \ell(A)$. Let \mathcal{F}_P denote the set of facets of the polyhedral set P with an outer normal vector n satisfying $\langle n, e_{d+1} \rangle < 0$. Then $\bigcup_{F \in \mathcal{F}_P} \pi F = \mathbb{R}^d$, where $\pi : \mathbb{R}^{d+1} \to \mathbb{R}^d$ denotes the orthogonal projection. If this where false, then P and some line parallel to e_{d+1} could be separated by a hyperplane, contradicting the assumption that $\text{conv } A = \mathbb{R}^d$. Thus, (1) follows if we have shown that $\pi F \in d$ for $F \in \mathcal{F}_P$.

For the proof, let $F \in \mathcal{F}_P$. The hyperplane $H := \text{aff } F$ is the image of \mathbb{R}^d under an affine map $\alpha : \mathbb{R}^d \to \mathbb{R}^{d+1}$, which can be written in the form $\alpha(y) = y + (\langle 2z, y \rangle + b)e_{d+1}$ with a vector $z \in \mathbb{R}^d$ and a real number b. For $x \in \mathbb{R}^d$ we have
\[
\alpha(z + x) = \ell(z + x) + (b + \|z\|^2 - \|x\|^2)e_{d+1}.
\]
Since H intersects the paraboloid $\ell(\mathbb{R}^d)$, we must have $b + \|z\|^2 > 0$ and hence can write
\[
\alpha(z + x) = \ell(z + x) + (r^2 - \|x\|^2)e_{d+1}
\]
with $r > 0$. Since F is a facet of P, this shows that the ball $\{z + x : x \in \mathbb{R}^d, \|x\| \leq r\}$ in \mathbb{R}^d contains no points of A except, in its boundary, the projections of the vertices of F. Consequently, $\pi F = D(z, A)$.

p. 497, l. -13, -12: Replace the clause in brackets by: (that is, not all passing through one point, and such that any d of their normal vectors are linearly independent).

p. 504, l. 5: Before the sum sign, insert \mathbb{E}.

p. 508, l. -10: Replace $0 \in K$ by $0 \in K$.

p. 510, l. -11: Replace \('k\)-dimensional ball $B^k(x_0, \ldots, x_{d-k})$' by \('(d - k)\)-dimensional ball $B^{d-k}(x_0, \ldots, x_{d-k})$'.

p. 532, l. -10: Replace ‘Section 9.1’ by ‘Section 9.5’.

p. 554, l. 8: Replace $d_j^{(0)}(z)$ by $d_j^{(k)}(z)$.

p. 556, l. 3: The fraction should read
\[
\frac{1}{V_d(rB^d)}.
\]

p. 556, l. 6: Replace $d_j^{(i)}$ by $d_j^{(j)}$.

p. 556, l. 6: Replace $d_j^{(i)}$ by $d_j^{(j)}$.

p. 556, l. 6: Replace $d_j^{(i)}$ by $d_j^{(j)}$.

p. 629, l. -4: Replace $m\mu(K + S) = \mu(Z) = \mu(\bar{Z}) = 0$ by $m\psi(K + S) = \psi(Z) = \psi(\bar{Z}) = 0$.

p. 657, l. 3: Replace ‘Ensembles aléatoires’ by ‘Ensembles fermés aléatoires’
p. 659, reference 518: Replace 902 by 901.
p. 664, reference 631: Replace “Stochastical” by “Stochastic”.
p. 667, reference 718: Delete the full stop after “Wahrscheinlichkeitstheorie”.
p. 673, l. 4: Replace ‘zufälliger Polygone’ by ‘zufälliger konvexer Polygone’.