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Abstract. For a convex body of given volume in spherical
space, the total invariant measure of hitting great subspheres
becomes minimal, equivalently the volume of the polar body
becomes maximal, if and only if the body is a spherical cap.
This result can be considered as a spherical counterpart of two
Euclidean inequalities, the Urysohn inequality connecting mean
width and volume, and the Blaschke-Santaló inequality for the
volumes of polar convex bodies. Two proofs are given; the first
one can be adapted to hyperbolic space.
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In the classical geometry of convex bodies in Euclidean space, the intrinsic
volumes (or quermassintegrals) play a central role. These functionals have
counterparts in spherical and hyperbolic geometry, and it is a challenge for
a geometer to find analogues in these spaces for the known results about
Euclidean intrinsic volumes. In the present paper, we prove one such result,
an inequality of isoperimetric type in spherical (or hyperbolic) space, which
can be considered as a counterpart to the Urysohn inequality and is, in
the spherical case, also related to the Blaschke-Santaló inequality. Before
stating the result (at the beginning of Section 2), we want to recall and
collect the basic facts about intrinsic volumes in Euclidean space, describe
their noneuclidean counterparts, and state those open problems about the
latter which we consider to be of particular interest. We restrict ourselves
here to spherical space and comment only briefly on the case of hyperbolic
space.
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1 Intrinsic volumes

By En we denote the n-dimensional Euclidean vector space, with scalar
product 〈·, ·〉 and norm ‖ · ‖. Its unit ball and unit sphere are Bn := {x ∈
En : ‖x‖ ≤ 1} and Sn−1 := {x ∈ En : ‖x‖ = 1}, respectively. Lebesgue
measure on En is denoted by λn, and spherical Lebesgue measure on Sn−1

by σn−1. Then κn := λn(Bn) = πn/2/Γ(1+n/2) and βn−1 := σn−1(Sn−1) =
nκn = 2πn/2/Γ(n/2). By Kn we denote the space of convex bodies (non-
empty, compact, convex sets) in En.

For K ∈ Kn and ε > 0, the parallel body of K at distance ε is given by

Kε := {x ∈ En : d(K,x) ≤ ε},

where d(K, ·) denotes the Euclidean distance from K. By Steiner’s formula,
there is a polynomial expansion

λn(Kε) =
n

∑

j=0

εn−jκn−jVj(K) =
n

∑

i=0

εi
(

n
i

)

Wi(K) (1)

for ε ≥ 0. This defines the jth intrinsic volume Vj : Kn → R, and also the
ith quermassintegral Wi : Kn → R. We use here only the first normaliza-
tion. Particular cases are 2Vn−1, the surface area, and (2κn−1/nκn)V1, the
mean width. Special representations hold under additional assumptions. If
the boundary ∂K of K is a regular C2 hypersurface, then

Vj(K) =

(n
j

)

nκn−j

∫

∂K
Hn−1−j dA, (2)

where Hk is the kth normalized elementary symmetric function of the prin-
cipal curvatures of ∂K and dA denotes the area element. If P is a polytope
and Fj(P ) denotes the set of its j-dimensional faces, then

Vj(P ) =
∑

F∈Fj(P )

γ(F, P )λj(F ), (3)

where γ(F, P ) is the normalized external angle of P at its face F .

The Gauss-Bonnet theorem for convex bodies says that

V0(K) = χ(K), (4)

where χ denotes the Euler characteristic (χ(K) = 1 for K ∈ Kn).

The fact that Vj is, up to a factor, a special mixed volume, is not
relevant in our present context, since the notion of mixed volume is based
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on the vector addition in En and has, therefore, no direct noneuclidean
counterpart. Of relevance, however, is the integral-geometric interpretation
(which gave rise, historically, to the term ‘quermassintegral’).

Let En
q be the space of q-dimensional planes in En, and let µq be its

motion invariant measure, normalized so that µq({E ∈ En
q : E∩Bn 6= ∅}) =

κn−q. Then

Vj(K) =
(

n
j

)

κn

κjκn−j

∫

En
n−j

χ(K ∩ E) dµn−j(E). (5)

Since χ(K ∩ E) = 1 if K ∩ E 6= ∅, Vj(K) is, up to a factor, the total
invariant measure of the set of (n− j)-planes meeting K.

Let Ln
q denote the Grassmannian of q-dimensional linear subspaces of

En and let νq be its rotation invariant probability measure. For K ∈ Kn

and L ∈ Ln
q , we denote by K|L the image of K under orthogonal projection

to L. Then

Vj(K) =
(

n
j

)

κn

κjκn−j

∫

Ln
j

λj(K|L) dνj(L). (6)

Thus Vj(K) is, up to a factor, the average volume of the j-dimensional
projections of K. By a suitable decomposition of µn−j , formula (5) is an
immediate consequence of (6).

As functions on Kn, the intrinsic volumes are invariant under rigid mo-
tions, nonnegative, increasing under set inclusion, continuous with respect
to the Hausdorff metric, and additive. A function ϕ : Kn → R is additive
or a valuation if ϕ(K1 ∪ K2) + ϕ(K1 ∩ K2) = ϕ(K1) + ϕ(K2) whenever
K1,K2,K1 ∪K2 ∈ Kn.

Hadwiger’s celebrated characterization theorem says: If ϕ : Kn → R is
additive, rigid motion invariant and continuous, then ϕ =

∑n
j=0 cjVj with

constant coefficients c0, . . . , cn. See Hadwiger [14, 6.1.10] for the classical
approach to this theorem; for a shorter proof, see Klain [16] and Klain-Rota
[17, 9.1].

The intrinsic volumes satisfy various sharp inequalities, resulting from
the theory of mixed volumes. We mention here only the inequalities con-
necting two intrinsic volumes. For K ∈ Kn and 1 ≤ j < k ≤ n, one
has

(

κn−j
(n

j

) Vj(K)

)k

≥ κk−j
n

(

κn−k
(n
k

) Vk(K)

)j

(7)

(see, e.g., [28, p. 334]). Equality holds if K is a ball, and if Vj(K) > 0
it holds only in this case. In particular, among all convex bodies of given
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positive volume, precisely the balls have the least jth intrinsic volume, for
j = 1, . . . , n− 1.

Now we discuss the situation in spherical space. For n-dimensional
spherical space, we take the unit sphere Sn of (n+1)-dimensional Euclidean
space En+1. By a convex body in Sn we understand here the intersection
Sn∩C of Sn with a line-free closed convex cone C, where {0} 6= C ⊂ En+1.
Thus, a convex body in this sense is contained in some open hemisphere.
We denote by Kn

s the space of all convex bodies in Sn, equipped with the
Hausdorff metric.

For A ⊂ Sn and ε ≥ 0, the parallel set Aε is defined by

Aε := {x ∈ Sn : ds(A, x) ≤ ε}, (8)

where ds(A, x) denotes the spherical distance of x from A. For K ∈ Kn
s

and 0 ≤ ε ≤ π/2, Steiner’s formula in Sn can be written as

σn(Kε) = βnVn(K) +
n−1
∑

j=0

fj(ε)βjβn−j−1Vj(K), (9)

where Vn(K) = σn(K)/βn and

fj(ε) :=
∫ ε

0
cosj t sinn−j−1 t dt.

Older references for Steiner formulae in spaces of constant curvature are
Herglotz [15], Allendoerfer [1], Santaló [22]. A very general (local) version
(for sets of positive reach) appears in Kohlmann [18]. For convex bodies in
spherical space, an elementary proof, using polytopes and approximation,
was given by Glasauer [10].

Since the functions f0, . . . , fn−1 are linearly independent, the expansion
(9) defines the coefficients Vj(K) uniquely. The chosen normalization is
convenient. We call the functionals V0, . . . , Vn the intrinsic volumes in Sn,
although other functionals discussed below might also deserve this name.

As a counterpart to (2), we now have, under smoothness assumptions,

Vj(K) =

(n−1
j

)

βjβn−j−1

∫

∂K
Hn−1−j dA, (10)

with analogous meanings of Hk and dA. In addition to the literature quoted
above, we refer to Santaló [24] (with different notation).

The counterpart to (3) we formulate in a slightly different way. Let
P ∈ Kn

s be a spherical polytope, thus P = Sn∩CP , where CP is a polyhedral
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cone in En+1. For faces F,G of CP with F ⊂ G, we denote by β(F, G) the
internal and by γ(F,G) the external (normalized) angle of G at F . Then

Vj(P ) =
∑

F∈Fj+1(CP )

β(0, F )γ(F, CP ), (11)

where Fj+1(CP ) is the set of (j + 1)-faces of the polyhedral cone CP .

In spherical space, the intrinsic volumes behave well under duality. For
A ⊂ Sn, the polar set is defined by

A∗ := {x ∈ Sn : 〈x, a〉 ≤ 0 for all a ∈ A}.

If K ∈ Kn
s has interior points, then K∗ ∈ Kn

s and (K∗)∗ = K. It follows
from (11) and approximation that

Vj(K) = Vn−j−1(K∗) (12)

for j = 0, . . . , n− 1 and K ∈ Kn
s . It is consistent with this to define

V−1(K) := Vn(K∗).

The counterpart to (4), the Gauss-Bonnet formula in spherical space,
involves a sequence of intrinsic volumes and not just V0, namely

bn
2 c

∑

i=0

V2i(K) =
1
2
χ(K). (13)

For differential-geometric proofs (not restricted to the convex case), we
refer to Allendoerfer-Weil [2], Santaló [23], [24]. For K ∈ Kn

s , (13) gives

bn
2 c

∑

i=0

V2i(K) =
1
2
, (14)

and the Steiner formula (9) for ε = π/2 (observe that σn(Kπ/2)+σn(K∗) =
σn(Sn)) gives

n
∑

i=−1

Vi(K) = 1. (15)

From (14) and (15) it follows that

n
∑

i=−1

(−1)iVi(K) = 0. (16)

Relations (14) and (15) are equivalent to (15) and (16). For spherical poly-
topes (from which the case of general K ∈ Kn

s follows by approximation),
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(15) has a direct elementary proof (by decomposition of Sn), and an el-
ementary proof of (16) was given by McMullen [19] (using (11); see also
Glasauer [10] for more details).

Due to the different form of the Gauss-Bonnet theorem, also the
integral-geometric result corresponding to (5) takes a different form. Let
Sn

q denote the space of q-dimensional great subspheres in Sn (intersections
of Sn with (q + 1)-dimensional linear subspaces of En+1), and let νq be the
rotation invariant probability measure on Sn

q . In view of (5), the functionals
defined by

Uj(K) :=
1
2

∫

Sn
n−j

χ(K ∩ S) dνn−j(S) (17)

for K ∈ Kn
s and j = 0, . . . , n can also be considered as spherical counter-

parts of the Euclidean intrinsic volumes (the factor 1/2 is only for conve-
nience). We have

Uj(K) =
b(n−j)/2c

∑

k=0

Vj+2k(K). (18)

With different notation, this can be found (also for hyperbolic space) in
Santaló [25, Section IV.4]. Formula (18) is Corollary 5.2.5 in the thesis
of Glasauer [10] (see also [11]), which contains many general results about
integral geometry of convex bodies in spherical space. A special one is a
spherical counterpart to (6). Let S ∈ Sn

q , q ∈ {0, . . . , n}. Then S = Sn ∩ L
with a (q + 1)-dimensional linear subspace L of En+1. For K ∈ Kn

s , the
projection K|S of K on S is defined by

K|S := S ∩ pos (K ∪ L⊥),

where pos denotes the positive hull in En+1 and L⊥ is the orthogonal
complement of L. Defining

Wj(K) :=
1
βj

∫

Sn
j

σj(K|S) dνj(S),

for K ∈ Kn
s , we have

Wj(K) =
n

∑

k=j

Vk(K), (19)

by [10, 5.2.11].

It is clear from the definitions that the functionals Uj and Wj are in-
creasing under set inclusion. This is not generally true for the intrinsic
volumes Vj (see the discussion in McMullen-Schneider [21, pp. 183 – 184]).

There are now three different sequences of functionals that can be con-
sidered as spherical counterparts of the Euclidean intrinsic volumes. Of
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these, the Vj seem to be the basic ones, since the Uj and Wj are linear
combinations of the Vj with nonnegative coefficients. All of these function-
als are rotation invariant, continuous with respect to the Hausdorff metric,
and additive. In view of Hadwiger’s characterization theorem, one may ask
whether every function ϕ : Kn

s → R sharing these properties must be of
the form ϕ =

∑n
i=0 ciVi with constant coefficients c0, . . . , cn. This question

has repeatedly been asked ([13, problem 49], [21, problem (15.5)], [20, p.
976]). We have recalled it here, since it is still open, in spite of the immense
progress that the theory of valuations on convex bodies has seen in recent
years, due to work of S. Alesker, D. Klain, M. Ludwig, and others.

Our main concern here are extremal problems, motivated by the in-
equalities (7) in the Euclidean case. In noneuclidean spaces, we cannot
expect simple inequalities, but we can hope for simple extremal bodies.

Question. Which of the functionals Vj , Uj ,Wj in spherical space have the
property that they attain an extremum, on the set of convex bodies in Kn

s
of given volume, precisely at balls?

The same question can be posed for the analogues of Vj , Uj in hyperbolic
space. The only known result in this direction seems to be the case of
Vn−1 = Un−1, which is the classical isoperimetric problem for the surface
area. The extremal property of the ball in noneuclidean spaces was obtained
by E. Schmidt [27]; see also Burago-Zalgaller [7]. Also known under the
name of ‘isoperimetric inequality’ in Sn is the following fact. Let A be
a measurable subset. Let C ⊂ Sn be a ball with σn(A) = σn(C). Then
σn(Aε) ≥ σn(Cε). Proofs, by different types of symmetrizations, are found
in [27], the appendix of Figiel-Lindenstrauss-Milman [9], Benyamini [4],
Schechtman [26]. If we restrict ourselves to convex bodies, this includes,
in view of the Steiner formula (9), an extremal property of the ball with
respect to certain linear combinations of intrinsic volumes.

The main purpose of this paper is to show that the functional U1 attains
its minimum on the set of spherical convex bodies of given volume precisely
at the balls. By (18), U1 is also a sum of certain intrinsic volumes. Since
U1(K) is, up to a factor, the total measure of the spherical hyperplanes
meeting K and thus a counterpart to the Euclidean mean width, the result
can be considered as a spherical version of the Urysohn inequality. On the
other hand, from (18), (14), (15) we have U1 = 1/2− V−1, or

U1(K) =
1
2
− Vn(K∗) (20)

(which is easy to see directly). Hence, the result can also be considered as
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a spherical counterpart of the Blaschke-Santaló inequality on the volumes
of polar convex bodies.

Let us say that a functional on Kn
s is minimal (maximal) at balls if on

each set of bodies in Kn
s with a fixed value of the volume, the functional

attains its minimum (maximum) at balls. By the isoperimetric inequality,
Vn−1 is minimal at balls. The result of this paper says that V−1 is maximal
at balls. In the special case n = 3, relations (14) and (15) give

V0 + V2 =
1
2
,

V−1 + V1 + V3 =
1
2
.

Hence, for n = 3, V0 is maximal at balls, and V1 is minimal at balls. But
already in dimension 4, the situation for V0, V1, V2 is not clear. On the
other hand, it seems reasonable to conjecture that Uj is minimal at balls,
for j = 1, . . . , n− 1 and all n.

For our result, we will give two proofs, of which either one has its
intrinsic interest. The first one has the advantage that it works also in
hyperbolic space. The second one establishes an interesting connection to
the Euclidean Blaschke-Santaló inequality.

2 A proof by two-point symmetrization

We prove the following theorem. As usual, a ball in Sn will be called
a spherical cap. This is the nonempty intersection of Sn with a closed
halfspace of En+1 (and may be one-pointed).

Theorem. Let K ∈ Kn
s . If C ⊂ Sn is a spherical cap with σn(K) = σn(C),

then
U1(K) ≥ U1(C). (21)

Equality holds if and only if K is a spherical cap.

For the proof we use two-point symmetrization, a method which is also
known under the names of ‘two-point rearrangement’, ‘compression’, or
‘polarization’. We learned about this method from a paper of Feige and
Schechtman [8]. Its first appearance seems to be in a paper by Wolontis [29].
Benyamini [4] used it for the proof of a spherical isoperimetric inequality.
A recent survey of this method (mostly applied to functions) with new
applications and many references is given by Brock and Solynin [6].
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A two-point symmetrization on Sn uses a given oriented hyperplane.
Let H ⊂ En+1 be a hyperplane through 0 together with an orientation,
which determines H+ and H−, the two closed halfspaces bounded by H.
By ρ we denote the reflection with respect to H. Let A ⊂ Sn. The two-point
symmetrization T with respect to H transforms A into the set

TA := (A ∩ ρA) ∪ [(A ∪ ρA) ∩H+].

Intuitively, T pushes as much of A as possible into H+ without causing
doubly covered points. Writing A0 := A∩ ρA, we have the disjoint decom-
position

TA = A0 ∪ ρ[(A ∩H−) \A0] ∪ [(A ∩H+) \A0],

which shows that σn(TA) = σn(A).

Let U(Kn
s ) denote the system of finite unions of convex bodies in Sn.

We extend the definition of the functional U1 by putting

U1(K) :=
1
2

∫

Sn
n−1

χ(K ∩ S) dνn−1(S)

for K ∈ U(Kn
s ). The Euler characteristic χ is needed here as a function

defined on U(Kn
s ), which satisfies χ(K) = 1 for K ∈ Kn

s , χ(∅) = 0, and
the additivity property χ(A1 ∪ A1) + χ(A1 ∩ A2) = χ(A1) + χ(A2) for
A1, A2 ∈ U(Kn

s ). An elementary existence proof, without a recourse to
algebraic topology, can be found, e.g., in Groemer [12].

Now let K ∈ Kn
s and an oriented hyperplane H through 0 be given.

The reflection ρ and the two-point symmetrization T refer to H, H−, H+,
as above. It is easy to check that

TK ∩ ρTK = K ∩ ρK, TK ∪ ρTK = K ∪ ρK. (22)

Let L ⊂ En+1 be a closed convex set. Using (22) and the additivity of χ,
we get

χ(L ∩ TK) + χ(ρL ∩ TK)

= χ(L ∩ TK) + χ(L ∩ ρTK)

= χ(L ∩ TK ∩ ρTK) + χ(L ∩ (TK ∪ ρTK))

= χ(L ∩K ∩ ρK) + χ(L ∩ (K ∪ ρK))

= χ(L ∩K) + χ(L ∩ ρK)

= χ(L ∩K) + χ(ρL ∩K).
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We apply the result

χ(L ∩ TK) + χ(ρL ∩ TK) = χ(L ∩K) + χ(ρL ∩K) (23)

in the case where L is a hyperplane through 0. In that case, we show in
addition that

χ(L ∩ conv TK) ≤ χ(L ∩ TK), (24)

where conv A denotes the spherically convex hull of A ⊂ Sn, which is defined
as the intersection of Sn with pos A, the positive hull of A in En+1. For the
proof, we write K0 := K ∩ ρK and

K1 := K0 ∪ (ρK ∩H+),

K2 := K0 ∪ (K ∩H+).

Then K1,K2 are either empty or elements of Kn
s . To show the convexity of

K1, say, it is sufficient to assume that x ∈ K0 and y ∈ ρK∩H+ and to show
that [x, y] ⊂ K1, where [x, y] denotes the (here unique) spherical segment
joining x and y. Now x ∈ K0 implies x ∈ ρK, hence the convexity of ρK
gives [x, y] ∈ ρK. If x ∈ H+, then [x, y] ⊂ ρK∩H+ ⊂ K1. Otherwise, there
is a point z ∈ [x, y]∩H. Since z ∈ ρK and ρx ∈ ρK, we have [z, ρx] ⊂ ρK,
thus [z, x] ⊂ K. Hence, [z, x] ⊂ K ∩ ρK = K0 ⊂ K1. Together with
[z, y] ⊂ ρK ∩H+ ⊂ K1, this gives [x, y] ⊂ K1.

From
TK = K1 ∪K2, K0 = K1 ∩K2

we deduce that

χ(L ∩ TK) = χ(L ∩K1) + χ(L ∩K2)− χ(L ∩K0).

The set K lies in an open hemisphere, hence in a cap C of (spherical) radius
less than π/2. It follows that TK ⊂ TC, and TC =: C ′ is a cap congruent
to C. Therefore conv TK ⊂ C ′, hence conv TK ∈ Kn

s .

Case 1: χ(L ∩ K0) = 1. Then χ(L ∩ K1) = 1, χ(L ∩ K2) = 1, hence
χ(L ∩ TK) = 1. Since L ∩ conv TK 6= ∅, we have χ(L ∩ conv TK) = 1.

Case 2: χ(L ∩K0) = 0.

Subcase a: χ(L ∩ K1) = 1, χ(L ∩ K2) = 0. Then χ(L ∩ TK) = 1 and
χ(L ∩ conv TK) = 1.

Subcase b: χ(L ∩ K2) = 0, χ(L ∩ K1) = 1. Then χ(L ∩ TK) = 1 and
χ(L ∩ conv TK) = 1.

Subcase c: χ(L ∩K1) = 0, χ(L ∩K2) = 0. Then χ(L ∩ TK) = 0. Since L
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is a hyperplane and K1 ∪K2 is connected, we have L ∩ conv TK = ∅ and
thus χ(L ∩ conv TK) = 0.

Subcase d: χ(L ∩ K1) = 1, χ(L ∩ K2) = 1. Then χ(L ∩ TK) = 2 and
χ(L ∩ conv TK) = 1.

This proves the proposition (24).

We write conv TK =: KH . As a result of (24) (also applied to ρL) and
(23), we have

χ(L ∩KH) + χ(ρL ∩KH) ≤ χ(L ∩K) + χ(ρL ∩K).

Applying this inequality to every great subsphere S = L ∩ Sn, we get
∫

Sn
n−1

χ(S ∩KH) dνn−1(S) +
∫

Sn
n−1

χ(ρS ∩KH) dνn−1(S)

≤
∫

Sn
n−1

χ(S ∩K) dνn−1(S) +
∫

Sn
n−1

χ(ρS ∩K) dνn−1(S).

Here
∫

Sn
n−1

χ(ρS ∩K) dνn−1(S) =
∫

Sn
n−1

χ(S ∩K) dνn−1(S) = 2U1(K),

since the measure νn−1 is invariant under the reflection ρ. We conclude
that U1(KH) ≤ U1(K).

We are now in a position to prove the theorem. The case of volume 0
being trivial, we let 0 < v < σn(Sn)/2 and consider the set of all bodies
K ∈ Kn

s with σn(K) = v and minimal U1(K). By standard arguments,
this set is not empty; its elements will be called extremal bodies. Let K be
an extremal body. Let T be a two-point symmetrization with respect to
some oriented hyperplane H. Suppose that TK is not spherically convex.
Then the spherically convex hull KH of TK has larger volume than TK.
There exists a convex body A ⊂ intKH with σn(A) = v. From A ⊂
int KH it follows that U1(A) < U1(KH) ≤ U1(K). This contradicts the
fact that K is extremal. Hence, TK is spherically convex, and σn(TK) =
σn(K), U1(TK) = U1(K). In particular, we have shown that the extremal
body K has the property that every two-point symmetrization preserves
the convexity of the body. This implies that K is a spherical cap. Of this
fact, Bianchi [5] indicated a proof to the last author. An independent proof
and a generalization are due to Aubrun and Fradelizi [3].

Without using the last result, we could also finish the proof in the fol-
lowing alternative way. It has been shown above that the set E of extremal
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bodies is closed under two-point symmetrization. First we show that E
contains a spherical cap. For this, we adapt an argument from [4] (see also
[26]). Let C be a spherical cap with σn(C) = v. By a standard argument,
there exists an element B ∈ E for which σn(B ∩ C) is maximal. Suppose
that B 6= C. Since σn(B) = σn(C), there are congruent caps B1 ⊂ B \ C
and B2 ⊂ C \ B. Let H be the oriented hyperplane through 0, with cor-
responding reflection ρ, so that ρB1 = B2 and B1 ⊂ H−. The two-point
symmetrization T with respect to H gives σn(TB ∩C) > σn(B ∩C). Since
TB ∈ E , this is a contradiction. This shows that B = C and thus C ∈ E .
This proves the inequality (21). To show that only spherical caps are ex-
tremal, we can argue as follows. Let K ∈ E , and let C be the set of all
spherically convex bodies that can be obtained from K by the iteration of
finitely many two-point symmetrizations. By the same argument as above,
one can show that the closure of C contains a spherical cap. Two-point
symmetrization does not change the volume or the surface area. On con-
vex bodies, volume and surface area are continuous. Hence, K has the same
volume and surface area as some spherical cap. Among convex bodies in
Sn, the caps are the only solutions of the isoperimetric problem. Hence K
must be a cap.

Corollary. Let A ⊂ Sn be a nonempty measurable set. If C ⊂ Sn is a
spherical cap with σn(A) = σn(C), then

σn(A∗) ≤ σn(C∗). (25)

Equality holds if A is a spherical cap, and if A is closed and σn(A) <
1
2σn(Sn), it holds only in this case.

For the proof, we need only consider special sets A. First, inequality (25)
and the equality assertion are trivial if σn(A∗) = 0. If σn(A∗) > 0, then A
lies in some open hemisphere, hence we can restrict ourselves to this case.
Let B be the spherically convex hull of the closure of A. Then B ∈ Kn

s and
B∗ = A∗. Hence, we see that it is sufficient to prove the inequality (25)
under the assumption that A ∈ Kn

s . Now the assertion follows from (20)
and the Theorem.

The inequality (25) can be seen in a certain analogy to the Blaschke-Santaló
inequality in Euclidean space En. Let K ⊂ En be a convex body with 0
as centroid. Let Ko := {x ∈ Rn : 〈x, y〉 ≤ 1 for all y ∈ K} be its polar
body. The Blaschke-Santaló inequality says that if E is a centred ellipsoid
with λn(K) = λn(E), then λn(Ko) ≤ λn(Eo), with equality if and only if
K is a centred ellipsoid. (In Euclidean space, λn(E)λn(Eo) is independent
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of E, but in Sn there is no similarly elegant relation between σn(C) and
σn(C∗).) The first proofs of this inequality made use of connections to affine
differential geometry and, in particular, the affine isoperimetric inequality,
which was obtained by Steiner symmetrization. Later, simpler proofs were
found, which make more direct use of Steiner symmetrization and apply,
in addition, the Brunn-Minkowski inequality (see the references in [28, p.
425, Note 12]). Neither of these approaches seems to carry over to spherical
space.

In the next section, however, we will show that it is possible to de-
duce the spherical counterpart of the Blaschke-Santaló inequality from the
Euclidean one. In contrast to the proof of the theorem given above, this
proof does not carry over to the hyperbolic space, so that the method of
two-point symmetrization is somewhat superior.

3 Deduction from the Euclidean Blaschke-
Santaló inequality

Let K ∈ Kn
s , and let C ∈ Kn

s be a spherical cap with σn(K) = σn(C). We
want to show that

σn(K∗) ≤ σn(C∗),

and that equality holds only if K is a spherical cap. If σn(K) = 0, then the
assertion is easy to check. The same is true for the case n = 1. Hence, we
assume in the following that σn(K) > 0, thus intK 6= ∅ (here and in the
following, the interior, int, refers to the obvious surrounding space), and
n ≥ 2.

For e ∈ −int K∗ put H+
e := {x ∈ En+1 : 〈x, e〉 > 0} and Te := e + e⊥,

so that Te is the tangent hyperplane of Sn at e. Then K ⊂ intH+
e . We

define a map Re : Sn ∩H+
e → Te by Re(u) := 〈e, u〉−1u. The Jacobian of

this map is given by
JRe(u) = 〈e, u〉−(n+1),

hence
F (e) :=

∫

K
〈e, u〉−(n+1) dσn(u)

is the volume of the set Re(K) in Te. It is easy to see that the function
F : −intK∗ → (0,∞) defined in this way is continuous and that F (e) →∞
as e approaches the boundary of −K∗. Hence, the function F attains a
minimum at some point e ∈ −intK∗. Since all directional derivatives of F
at e must vanish, we get

∫

K
〈e, u〉−(n+2)〈v, u〉 dσn(u) = 0 for v ∈ Sn ∩ e⊥.
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This implies that the vector
∫

K
〈e, u〉−(n+2)u dσn(u)

is proportional to e and hence equal to F (e)e. Consequently, the centroid
of Re(K) in Te is given by

λn(Re(K))−1
∫

Re(K)
x dλn(x) = F (e)−1

∫

K
〈e, u〉−(n+2)u dσn(u) = e.

Now the Blaschke-Santaló inequality, applied in e⊥, tells us that

λn(Re(K))λn((Re(K)− e)o) ≤ κ2
n, (26)

where the polarity o is taken in e⊥. Equality holds if and only if Re(K) is
an ellipsoid.

We set Se := Sn ∩ e⊥. Let α : Se → (0, π/2) be the positive continuous
function defined by

∂(Re(K)) = {e + (tan α(u))u : u ∈ Se},

i.e., tan α(·) is the radial function of Re(K) with respect to e in Te. By
σn−1 we denote the spherical Lebesgue measure on Se. Then

λn(Re(K)) =
1
n

∫

Se

tann α(u) dσn−1(u).

We define a map τ : (0, π/2)× Se → Sn by τ(t, u) := (cos t)e + (sin t)u.
It has Jacobian Jτ(t, u) = sinn−1 t, hence

σn(K) =
∫

Se

∫ α(u)

0
sinn−1 t dt dσn−1(u).

Next we define

D(x) :=
∫ x

0
sinn−1 t dt, x ∈ (0, π/2),

and set
g(s) := D(arctan s1/n), s ∈ (0,∞).

Let h denote the inverse function of g. Then h and D−1, the inverse of D,
are related by

h(y) = tann D−1(y), y ∈ im(D).
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Since
h′(y) =

n
cosn+1 D−1(y)

,

the function h′ is strictly increasing, hence h is strictly convex. Therefore,
Jensen’s inequality gives

λn(Re(K))
κn

=
1

nκn

∫

Se

tann α(u) dσn−1(u)

=
1

nκn

∫

Se

h(D(α(u))) dσn−1(u)

≥ h
(

1
nκn

∫

Se

D(α(u)) dσn−1(u)
)

= h
(

σn(K)
nκn

)

,

with equality if and only if α is constant. The assertion concerning the
equality case follows from the usual proof of Jensen’s inequality in the
present particular situation. We conclude that

h
(

σn(K)
nκn

)

≤ λn(Re(K))
κn

, (27)

with equality if and only if K is a spherical cap centred at e. Since −e ∈
intK∗ and K∗ ⊂ intH+

−e, we similarly have

h
(

σn(K∗)
nκn

)

≤ λn(R−e(K∗))
κn

, (28)

with equality if and only if K∗ is a spherical cap centred at −e, hence if
and only if K is a spherical cap centred at e. Now

R−e(K∗) + e = (Re(K)− e)o. (29)

In fact, both sets lie in e⊥, and for y ∈ e⊥ we have

y ∈ (Re(K)− e)o

⇔ 〈y, x− e〉 ≤ 1 ∀x ∈ Re(K) ⇔ 〈y, x〉 ≤ 1 ∀x ∈ Re(K)

⇔ 〈y, 〈e, k〉−1k〉 ≤ 1 ∀ k ∈ K ⇔ 〈y − e, k〉 ≤ 0 ∀ k ∈ K

⇔ y ∈ Re(K∗) + e.

From (28) and (29) we get

h
(

σn(K∗)
nκn

)

≤ λn((Re(K)− e)o)
κn

, (30)
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with equality if and only if K is a spherical cap centred at e.

Let C ⊂ Sn be a spherical cap centred at e with σn(C) = σn(K). Then
(27), together with the assertion on the equality case, gives

λn(Re(C))
κn

= h
(

σn(C)
nκn

)

= h
(

σn(K)
nκn

)

≤ λn(Re(K))
κn

(31)

Using (30), (26), (31), the equality case of the Blaschke-Santaló inequality,
and the equality case of (30), we deduce that

h
(

σn(K∗)
nκn

)

≤ λn ((Re(K)− e)o)
κn

≤ κn

λn(Re(K))

≤ κn

λn(Re(C))

=
λn ((Re(C)− e)o)

κn

= h
(

σn(C∗)
nκn

)

.

This implies the required inequality, since h is strictly increasing. If equality
holds in the inequality σn(K∗) ≤ σn(C∗) thus obtained, then equality must
hold in (30), which means that K is a spherical cap.

References

[1] C.B. Allendoerfer, Steiner’s formula on a general Sn+1. Bull. Amer.
Math. Soc. 54 (1948), 128 – 135.

[2] C.B. Allendoerfer, A. Weil, The Gauss-Bonnet theorem for Rieman-
nian polyhedra. Trans. Amer. Math. Soc. 53 (1943), 101 – 129.

[3] G. Aubrun, M. Fradelizi, Two-point symmetrization and convexity.
Preprint, 2003.

[4] Y. Benyamini, Two point symmetrization, the isoperimetric inequality
on the sphere and some applications. Longhorn Notes, Univ. of Texas,
Texas Funct. Anal. Seminar, (1983 – 1984), 53 – 76.

[5] G. Bianchi, Personal communication, July 2002.



17

[6] F. Brock, A. Solynin, An approach to symmetrization via polarization.
Trans. Amer. Math. Soc. 352 (2000), 1759 – 1796.

[7] Yu.D. Burago, V.A. Zalgaller, Geometric Inequalities. Springer, Berlin
1980.

[8] U. Feige, G. Schechtman, On the optimality of the random hyperplane
rounding technique for MAX CUT. Random Structures & Algorithms
20 (2002), 403 – 440.

[9] T. Figiel, J. Lindenstrauss, V.D. Milman, The dimension of almost
spherical sections of convex bodies. Acta Math. 139 (1977), 53 – 94.

[10] S. Glasauer, Integralgeometrie konvexer Körper im sphärischen Raum.
Doctoral dissertation, Freiburg i. Br. 1995.

[11] S. Glasauer, Integral geometry of spherically convex bodies. Diss.
Summ. Math. 1 (1996), 219 – 226.

[12] H. Groemer, On the Euler characteristic in spaces with a separability
property. Math. Ann. 211 (1974), 315 – 321.

[13] P. Gruber, R. Schneider, Problems in geometric convexity. In J. Tölke
and J.M. Wills (Eds.), Contributions to Geometry, Birkhäuser, Basel
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Basel 1983, pp. 170 – 247.
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