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Abstract. The normal cycle TK associated with a convex body K ⊂ Rn is a

current which in principle contains complete information about K. It is known

that if a sequence of convex bodies Ki, i ∈ N, converges to a convex body K
in the Hausdorff metric, then the associated normal cycles TKi converge to

TK in the dual flat seminorm. We give a quantitative improvement of this

convergence result by providing an estimate of the distance (in the dual flat
seminorm) of the normal cycles of convex bodies with given Hausdorff distance.

The support measures of a convex body K arise from a local Steiner formula
or, alternatively, by evaluating suitable differential forms at the normal cycle

of K. Complementing the estimate for the normal cycles, we establish an

upper bound for the distance (in the bounded Lipschitz metric) of the support
measures of two convex bodies in terms of the Hausdorff distance of these

bodies. A special case of these estimates yields reverse forms of known stability

results for area measures.

1. Introduction

In 1986, Martina Zähle [20] presented a current representation of Federer’s cur-
vature measures. For k = 0, . . . , n− 1, she defined a differential form ϕk of degree
n − 1 on the Euclidean space R2n such that, for each compact set K of positive
reach in Rn and for each Borel set β in Rn, the evaluation of 1βϕk at the normal
cycle of K yields the kth curvature measure of K, evaluated at β. The curvature
measures had previously been introduced by Federer [6] in a different way. The
approach using currents has later been investigated, applied and considerably ex-
tended in work of Zähle [21, 22], Rataj and Zähle [16, 17, 18], Fu [8], Pokorný and
Rataj [15], and others. The normal cycle has thus become an important tool for the
treatment of curvature properties of very general classes of sets, and it has found
many applications in integral geometry. In this note, we restrict ourselves to convex
bodies. The normal cycle TK of a convex body K in Rn (we recall the definition in
Section 2) has a useful continuity property. If Ki, i ∈ N, and K are convex bodies
in Rn and Ki → K in the Hausdorff metric, as i→∞, then TKi → TK in the dual
flat seminorm for currents. This was stated without proof in [22, p. 251] and was
proved in [16, Thm. 3.1]; see also [9, Thm. 3.1]. The continuity property has been
used in the theory of valuations on manifolds (see, for instance, [1]). It is also a
crucial ingredient in [13], in the course of the proof for a classification theorem for
local tensor valuations on the space of convex bodies.
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The purpose of this note is to obtain a quantitative improvement of the preceding
continuity result, in the form of a Hölder estimate. To formulate it, we denote by
Kn the space of convex bodies (nonempty compact convex subsets) in Euclidean
space Rn, as usual equipped with the Hausdorff metric dH . We write Bn and
Sn−1 for the unit ball and the unit sphere, respectively, in Rn, and Hk for the
k-dimensional Hausdorff measure. For ρ > 0, Kρ := K + ρBn is the parallel body
of the convex body K at distance ρ. Below, we identify Rn × Rn with R2n and
denote by En−1(R2n) = E(R2n,

∧n−1 R2n) the vector space of all differential forms
of degree n− 1 on R2n with real coefficients and of class C∞.

Theorem 1.1. Let K,L ∈ Kn, and let M ⊂ R2n be a compact convex set containing
K1 × Sn−1 and L1 × Sn−1. Then, for each ϕ ∈ En−1(R2n),

|TK(ϕ)− TL(ϕ)| ≤ C(M,ϕ) dH(K,L)
1

2n+1 ,

where C(M,ϕ) is a constant which depends (for given dimension) on M and on
the Lipschitz constant and the sup-norm of ϕ on M .

According to the definition of the dual flat seminorm, this result can be inter-
preted as local Hölder continuity of the normal cycles of convex bodies with respect
to the Hausdorff metric and the dual flat seminorm. A similar, but essentially
different quantitative result is obtained in [3, Thm. 2]. It refers to more general
sets and is, therefore, less explicit. On the other hand, its restriction to convex
bodies does not yield the present result, since at least one of the sets in [3] has to
be bounded by a submanifold of class C2.

As mentioned, normal cycles are useful for introducing curvature measures for
quite general classes of sets. In the theory of convex bodies, they have been used to
introduce a generalization of curvature measures, the support measures. For Rn,
these are Borel measures on the product of Rn and the unit sphere Sn−1, with the
property that their marginal measures are the curvature measures on one hand and
the surface area measures on the other hand. On the space of convex bodies with
the Hausdorff metric, the support measures are weakly continuous. We improve
this statement by showing that the support measures are locally Hölder continuous
with respect to the bounded Lipschitz metric dbL (we recall its definition in Section
4). Let Λi(K, ·) denote the ith support measure of K ∈ Kn, normalized as explained
in Section 4.

Theorem 1.2. Let K,L ∈ Kn be convex bodies, and let R be the radius of a ball
containing K2 and L2. Then

dbL(Λi(K, ·),Λi(L, ·)) ≤ C(R) dH(K,L)1/2

for i ∈ {0, . . . , n−1}, where C(R) is a constant which (for given dimension) depends
only on R.

An estimate of this type, though with a smaller exponent of the Hausdorff dis-
tance, could be derived directly from Theorem 1.1. We shall obtain the stronger
result of Theorem 1.2 by adapting an approach due to Chazal, Cohen–Steiner and
Mérigot [2].

A special case of Theorem 1.2 concerns the area measure Sn−1(K, ·). If ω ⊂ Sn−1

is a Borel set, then Sn−1(K,ω) = 2Λn−1(K,Rn × ω). From Theorem 1.2 it follows
under the same assumptions on K and L that

(1.1) dbL(Sn−1(K, ·), Sn−1(L, ·)) ≤ C ′(R) dH(K,L)1/2.
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We want to present some motivation for proving such an inequality.
The area measure is the subject of a famous existence and uniqueness theorem

due to Minkowski (see, e.g., [19, Sec. 7.1]). The uniqueness assertion has been
improved by some stability results. One of these (going back to Diskant; see [4],
[19, Thm. 7.2.2]) says that for convex bodies K,L ∈ Kn one has

(1.2) dH(K,L′) ≤ γ ‖Sn−1(K, ·)− Sn−1(L, ·)‖1/nTV

for a suitable translate L′ of L, where ‖ · ‖TV denotes the total variation norm.
Here γ > 0 is a constant depending only on the dimension and on a-priori bounds
for the inradius and circumradius of K and L.

The stability result (1.2) has the blemish that its assumption is too strong: the
left side can be small even if the right side is large. For example, if K is a unit cube
and L is a rotated image of K, arbitrarily close to K but not a translate of it, then
‖Sn−1(K, ·) − Sn−1(L, ·)‖TV ≥ 1. It seems, therefore, more meaningful to replace
the right-hand side in (1.2) by an expression involving a metric for measures that
metrizes the weak convergence. For the Lévy–Prokhorov metric, such a stability
result was proved in [12]. It was deduced from a corresponding stability result for
the bounded Lipschitz metric (which is implicit in the proof, though it was not
stated explicitly), namely

(1.3) dH(K,L′) ≤ γ dbL(Sn−1(K, ·), Sn−1(L, ·))1/n

for a suitable translate L′ of L, with a constant γ as above. It appears that the
Hölder continuity (1.1) is, in principle, a more elementary fact than its reverse, the
stability estimate (1.3), and should therefore have preceded it.

2. Notation and preliminaries

We have to use several definitions and results from geometric measure theory,
therefore we choose most of our notation as in Federer’s [7] book, in order to
facilitate the comparison. For example, we denote the scalar product in Rn by •
and the induced norm by | · |. The same notation is used also for other Euclidean
spaces which will come up in the following. We identify Rn and its dual space via
the given scalar product.

Next we recall some notation and basic facts from multilinear algebra. Let
V be finite-dimensional real vector spaces. Then

∧
m V , for m ∈ N0, denotes

the vector space of m-vectors of V , and
∧m

V is the vector space of all m-linear
alternating maps from V m to R, whose elements are called m-covectors. The map∧m

V → Hom(
∧
m V,R), which assigns to f ∈

∧m
V the homomorphism

v1 ∧ . . . ∧ vm 7→ f(v1, . . . , vm),

allows us to identify
∧m

V and Hom(
∧
m V,R). By this identification, the dual

pairing of elements a ∈
∧
m V and ϕ ∈

∧m
(V,R) can be defined by 〈a, ϕ〉 := ϕ(a).

If V ′ is another finite-dimensional vector space and f : V → V ′ is a linear map,
then a linear map

∧
m f :

∧
m V →

∧
m V

′ is determined by

(
∧
mf)(v1 ∧ . . . ∧ vm) = f(v1) ∧ . . . ∧ f(vm),

for all v1, . . . , vm ∈ V .
Given an inner product space (V, •) with norm | · | we obtain an inner product

on
∧
m V . For ξ, η ∈

∧
m V with ξ = v1 ∧ . . . ∧ vm and η = w1 ∧ . . . ∧ wm, where
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vi, wj ∈ V , we define

ξ • η = det
(
〈vi, wj〉mi,j=1

)
.

This is independent of the particular representation of ξ, η. For general ξ, η ∈
∧
m V

the inner product is defined by linear extension, and then we put |ξ| :=
√
ξ • ξ

for ξ ∈
∧
m V . If (b1, . . . , bn) is an orthonormal basis of V , then the m-vectors

bi1 ∧ . . . ∧ bim with 1 ≤ i1 < . . . < im ≤ n form an orthonormal basis of
∧
m V .

Moreover, if ξ ∈
∧
p V or η ∈

∧
q V is simple, then

(2.1) |ξ ∧ η| ≤ |ξ| |η|.

Let (b1, . . . , bn) be an orthonormal basis of V , and let (b∗1, . . . , b
∗
n) be the dual basis

in V ∗ =
∧1

V . We endow
∧m

V with the inner product for which the vectors
b∗i1 ∧ . . . ∧ b

∗
im

, for 1 ≤ i1 < . . . < im ≤ n, are an orthonormal basis. Then

(2.2) |〈ξ,Φ〉| ≤ |ξ| |Φ|

for ξ ∈
∧
m V and Φ ∈

∧m
V .

The preceding facts are essentially taken from [7, Section 1.7].
Let V be an n-dimensional inner product space. Then comass and mass are

defined as in [7, Section 1.8]. In particular, for Φ ∈
∧m

V the comass ‖Φ‖ of Φ
satisfies ‖Φ‖ = |Φ| if Φ is simple. Moreover, for ξ ∈

∧
m V the mass ‖ξ‖ of ξ satisfies

‖ξ‖ = |ξ| if ξ is simple.

Now we turn to convex bodies. For notions from the theory of convex bodies
which are not explained here, we refer to [19]. Let K ∈ Kn. The metric projection,
which is denoted by p(K, ·), maps Rn to K, and

u(K,x) := |x− p(K,x)|−1(x− p(K,x))

is defined for x ∈ Rn \K. Let ∂K denote the topological boundary of K. The map
F : ∂K1 → Rn × Sn−1 given by F (x) := (p(K,x), u(K,x)) is bi-Lipschitz, and the
image is the normal bundle NorK of K, which is an (n−1) rectifiable subset of R2n.
Hence, forHn−1-almost all (x, u) ∈ NorK, the set of (Hn−1 NorK,n−1) approxi-
mate tangent vectors at (x, u) is an (n−1)-dimensional linear subspace of R2n, which
is denoted by Tann−1(Hn−1 NorK, (x, u)). Let Π1 : Rn × Rn → Rn, (x, u) 7→ x,
and Π2 : Rn × Rn → Rn, (x, u) 7→ u, be projection maps and Ωn the volume form
for which Ωn(e1, . . . , en) = 1 for the standard basis (e1, . . . , en) of Rn. The follow-
ing statements hold for Hn−1-almost all (x, u) ∈ NorK. First, we can choose an
orthonormal basis (a1(x, u), . . . , an−1(x, u)) of Tann−1(Hn−1 NorK, (x, u)) such
that the (n− 1)-vector aK(x, u) := a1(x, u) ∧ . . . ∧ an−1(x, u) satisfies

(2.3)
〈∧

n−1(Π1 + %Π2)aK(x, u) ∧ u,Ωn
〉
> 0

for all % > 0 and thus determines an orientation of Tann−1(Hn−1 Nor(K), (x, u)).
Then the normal cycle associated with the convex body K is the (n−1)-dimensional
current in R2n which is defined by

TK :=
(
Hn−1 NorK

)
∧ aK .

More generally, we can define

TK(ϕ) =

∫
NorK

〈aK(x, u), ϕ(x, u)〉Hn−1(d(x, u))
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for all Hn−1 NorK-integrable functions ϕ : Rn × Rn →
∧n−1 R2n. Here we use

that TK is a rectifiable current, which has compact support, and thus TK can be
defined for a larger class of functions than just for smooth differential forms.

Sometimes it is convenient to work with the orthonormal basis of the approximate
tangent space of NorK at (x, u) that is given by

ai(x, u) :=
(
αi(x, u) bi(x, u),

√
1− αi(x, u)2 bi(x, u)

)
,

where (b1(x, u), . . . , bn−1(x, u)) is a suitably chosen orthonormal basis of u⊥ (the
orthogonal complement of the linear subspace spanned by u) such that the or-
thonormal basis (b1, . . . , bn−1, u) has the same orientation as the standard basis
(e1, . . . , en) of Rn, and αi(x, u) ∈ [0, 1] for i = 1, . . . , n − 1. Note that the de-
pendence of ai, bi, αi on K is not made explicit by our notation. The data bi, αi,
i = 1, . . . , n − 1, are essentially uniquely determined (cf. [18, Proposition 3 and
Lemma 2]). Moreover, we can assume that bi(x + εu, u) = bi(x, u), independent
of ε > 0, where (x, u) ∈ NorK and (x + εu, u) ∈ NorKε with Kε := K + εBn.
However, in general αi(x + εu, u) is not independent of ε and will be positive for
ε > 0. See [20, 16, 18, 10, 11] for a geometric description of the numbers αi(x, u)
in terms of generalized curvatures and for arguments establishing the facts stated
here.

3. Proof of Theorem 1.1

In order to obtain an upper bound for |TK − TL|, we first establish an upper
bound for |TAε − TA|, for A ∈ {K,L} and ε ∈ [0, 1], which is done in Lemma
3.1. Then we derive an upper bound for |TKε − TLε | under the assumption that
the Hausdorff distance of K and L is sufficiently small. This bound is provided in
Lemma 3.6, which in turn is based on four preparatory lemmas.

Lemma 3.1. Let K ∈ Kn and ε ∈ [0, 1]. Let ϕ ∈ En−1(R2n). Then

|TKε(ϕ)− TK(ϕ)| ≤ C(K,ϕ) ε,

where C(K,ϕ) is a real constant, which depends on the maximum and the Lipschitz
constant of ϕ on K1 × Sn−1 and on Hn−1(∂K1).

Proof. We consider the bi-Lipschitz map

Fε : NorK → NorKε, (x, u) 7→ (x+ εu, u).

The extension of Fε to all (x, u) ∈ R2n by Fε(x, u) := (x + εu, u) is differentiable
for all (x, u) ∈ R2n. By [7, Theorem 3.2.22 (1)], for Hn−1-almost all (x, u) ∈ NorK
the approximate Jacobian of Fε satisfies

(3.1) ap Jn−1Fε(x, u) =
∥∥∧

n−1apDFε(x, u)aK(x, u)
∥∥ > 0,

and the simple orienting (n− 1)-vectors aK(x, u) and aKε(x+ εu, u) are related by

(3.2) aKε(x+ εu, u) =

∧
n−1 apDFε(x, u)aK(x, u)∥∥∧
n−1 apDFε(x, u)aK(x, u)

∥∥ .
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It follows from (2.3) that the orientations coincide. Thus, first using the coarea
theorem [7, Theorem 3.2.22] and then (3.1) and (3.2), we get

TKε(ϕ) =

∫
NorKε

〈aKε , ϕ〉dHn−1

=

∫
NorK

〈aKε ◦ Fε(x, u), ϕ ◦ Fε(x, u)〉 ap Jn−1Fε(x, u)Hn−1(d(x, u))

=

∫
NorK

〈∧
n−1apDFε(x, u)aK(x, u), ϕ ◦ Fε(x, u)

〉
Hn−1(d(x, u)).

By the triangle inequality, we obtain

|TKε(ϕ)− TK(ϕ)|

≤
∫

NorK

{ ∣∣〈(∧
n−1apDFε(x, u)−

∧
n−1id

)
aK(x, u), ϕ ◦ Fε(x, u)

〉∣∣
+ |〈aK(x, u), ϕ(x+ εu, u)− ϕ(x, u)〉|

}
Hn−1(d(x, u)).

We have ∣∣〈(∧
n−1apDFε(x, u)−

∧
n−1id

)
aK(x, u), ϕ ◦ Fε(x, u)

〉∣∣
≤ |ϕ(x+ εu, u)|

∣∣(∧
n−1apDFε(x, u)−

∧
n−1id

)
aK(x, u)

∣∣ ,
where we used (2.2). Now aK(x, u) is of the form

∧n−1
i=1 (vi, wi) with suitable

(vi, wi) ∈ R2n and |vi|2 + |wi|2 = 1. Moreover, we have DFε(x, u)(v, w) = (v +
εw,w), for all (v, w) ∈ R2n. Writing z0

i := vi, z
1
i := wi, we have∣∣(∧

n−1apDFε(x, u)−
∧
n−1id

)
aK(x, u)

∣∣
=

∣∣∣∣∣
n−1∧
i=1

(vi + εwi, wi)−
n−1∧
i=1

(vi, wi)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑

αi∈{0,1}

ε
∑
αi

n−1∧
i=1

(zαii , wi)−
n−1∧
i=1

(z0
i , wi)

∣∣∣∣∣∣
≤ ε

∑
αi∈{0,1},

∑
αi≥1

∣∣∣∣∣
n−1∧
i=1

(zαii , wi)

∣∣∣∣∣
≤ c(n)ε,

where we used (2.1) and the fact that |(vi, wi)| = 1 and |(wi, wi)| ≤ 2. We deduce
that

|ϕ(x+ εu, u)|
∣∣(∧

n−1apDFε(x, u)−
∧
n−1id

)
aK(x, u)

∣∣ ≤ C1(K,ϕ)ε.

Furthermore, again by (2.2) we get

|〈aK(x, u), ϕ(x+ εu, u)− ϕ(x, u)〉| ≤ |ϕ(x+ εu, u)− ϕ(x, u)|
≤ C2(K,ϕ) ε.

Thus we conclude that

|TKε(ϕ)− TK(ϕ)| ≤ C3(K,ϕ) εHn−1(NorK).

Since F : ∂K1 → NorK, z 7→ (p(K, z), z − p(K, z)), is Lipschitz with Lipschitz
constant bounded from above by 3, the assertion follows. �
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A convex body K ∈ Kn is said to be ε-smooth (for some ε > 0), if K = K ′+εBn

for some K ′ ∈ Kn. For a nonempty set A ⊂ Rn, we define the distance from A
to x ∈ Rn by d(A, x) := inf{|a − x| : a ∈ A}. The signed distance is defined by
d∗(A, x) := d(A, x)− d(Rn \A, x), x ∈ Rn, if A,Rn \A 6= ∅. If K is ε-smooth, then
∂K has positive reach. More precisely, if x ∈ Rn satisfies d(∂K, x) < ε, then there
is a unique point p(∂K, x) ∈ ∂K such that d(∂K, x) = |p(∂K, x)− x|.

Lemma 3.2. Let ε ∈ (0, 1) and δ ∈ (0, ε/2). Let K,L ∈ Kn be ε-smooth and
assume that dH(K,L) ≤ δ. Then

p : ∂K → ∂L, x 7→ p(∂L, x),

is well-defined, bijective, bi-Lipschitz with Lip(p) ≤ ε/(ε − δ), and |p(x) − x| ≤ δ
for all x ∈ ∂K.

Proof. Since dH(K,L) ≤ δ, we have K ⊂ L+ δBn, L ⊂ K+ δBn, and a separation
argument yields that

(3.3) {x ∈ L : d(∂L, x) ≥ δ} ⊂ K.
This shows that ∂K ⊂ {z ∈ Rn : d(∂L, z) ≤ δ} and therefore the map p is well-
defined on ∂K and |p(x)−x| ≤ δ for all x ∈ ∂K. By [6, Theorem 4.8 (8)] it follows
that Lip(p) ≤ ε/(ε− δ). Since L is ε-smooth, for y ∈ ∂L there is a unique exterior
unit normal of L at y, which we denote by u = u(L, y) =: uL(y). Put y0 := y − εu
and note that y0 +(ε−δ)Bn ⊂ K∩L by (3.3). Then x ∈ ∂K is uniquely determined
by the condition {x} = (y0 + [0,∞)u)∩∂K and satisfies p(x) = y. This shows that
p is surjective.

Now let x1, x2 ∈ ∂K satisfy p(x1) = p(x2) =: p0 ∈ ∂L. Since there is a ball B of
radius ε with p0 ∈ B ⊂ L, the points x1, x2 ∈ ∂K are on the line through p0 and
the center of B. By (3.3), they cannot be on different sides of p0, hence x1 = x2.
This shows that the map p is also injective. If d∗(∂K, ·) : Rn → ∂K denotes the
signed distance function of ∂K, then q : ∂L→ ∂K, z 7→ z − d∗(∂K, z)uL(z), is the
inverse of p. Since the signed distance function is Lipschitz, Lemma 3.3 shows that
q is Lipschitz as well. �

The following lemma provides a simple argument for the fact that the spherical
image map of an ε-smooth convex body is Lipschitz with Lipschitz constant at most
1/ε. A less explicit assertion is contained in [14, Hilfssatz 1].

Lemma 3.3. Let K ∈ Kn be ε-smooth, ε > 0. Then the spherical image map uK
is Lipschitz with Lipschitz constant 1/ε.

Proof. Let x, y ∈ ∂K, and define u := uK(x), v := uK(y). Then

x− εu+ εv ∈ x− εu+ εBn ⊂ K,
and hence (x− εu+ εv − y) • v ≤ 0. This yields

(3.4) ε(v − u) • v ≤ (y − x) • v.
By symmetry, we also have ε(u− v) • u ≤ (x− y) • u, and therefore

(3.5) ε(v − u) • (−u) ≤ (y − x) • (−u).

Addition of (3.4) and (3.5) yields

ε |v − u|2 ≤ (y − x) • (v − u) ≤ |y − x| |v − u|,
which implies the assertion. �
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Lemma 3.4. Let ε ∈ (0, 1) and δ ∈ (0, ε/2). Let K,L ∈ Kn be ε-smooth and
assume that dH(K,L) ≤ δ. Put p(x) := p(∂L, x) for x ∈ ∂K. Then

G : NorK → NorL, (x, u) 7→ (p(x), uL(p(x))),

is bijective, bi-Lipschitz with Lip(G) ≤ 2/(ε− δ) ≤ 4/ε, and

|G(x, u)− (x, u)| ≤ δ + 2
√
δ/ε

for all (x, u) ∈ NorK.

Proof. It follows from Lemma 3.2 that G is bijective. Then, for (x, u), (y, v) ∈
NorK we get

|G(x, u)−G(y, v)| ≤ |p(x)− p(y)|+ |uL(p(x))− uL(p(y))|

≤ ε

ε− δ
|x− y|+ 1

ε

ε

ε− δ
|x− y|

≤ ε+ 1

ε− δ
|x− y|

≤ 2

ε− δ
|(x, u)− (y, v)|,

where we have used again Lemma 3.2 and Lemma 3.3. Let x ∈ ∂K and z := p(x) ∈
∂L. We want to bound uL(z) • uK(x) from below. If x /∈ L, then

conv({x} ∪ (z − εuL(z) + (ε− δ)Bn)) ⊂ K,
and therefore

uL(z) • uK(x) ≥ ε− δ
ε+ δ

≥ 1− 2δ

ε
.

If x ∈ L, then in a similar way we obtain

uL(z) • uK(x) ≥ ε− δ
ε
≥ 1− δ

ε
,

hence

(3.6) uL(z) • uK(x) ≥ 1− 2δ

ε
holds for all x ∈ ∂K. Thus

|uL(z)− uK(x)| ≤ 2
√
δ/ε,

which finally implies that, for all (x, u) ∈ NorK,

|G(x, u)− (x, u)| ≤ |p(x)− x|+ |uL(p(x))− uK(x)|

≤ δ + 2
√
δ/ε.

Since G−1 : NorL → NorK is given by G−1(z, u) = (q(z), uK(q(z))), it follows
that also G−1 is Lipschitz. �

Next we show that, under the assumptions of Lemma 3.5,
∧
n−1DG(x, u) is an

orientation preserving map from the approximate tangent space of NorK to the
approximate tangent space of NorL. It seems that a corresponding fact is not
provided in the proofs of related assertions in the literature.

Lemma 3.5. Let ε ∈ (0, 1) and δ ∈ (0, ε/(4n)). Let K,L ∈ Kn be ε-smooth
and assume that dH(K,L) ≤ δ. Then, for Hn−1-almost all (x, u) ∈ NorK, the
(n − 1)-vector

∧
n−1DG(x, u)aK(x, u) ∈ Tann−1(Hn−1 NorL,G(x, u)) has the

same orientation as aL(G(x, u)).
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Proof. Let x ∈ ∂K, u := uK(x), and x̄ := p(x), hence d(∂L, x) = |x − x̄|.
The orientation of Tann−1(∂K, x) is determined by an arbitrary orthonormal ba-
sis b1(x), . . . , bn−1(x) of u⊥ with Ωn(b1(x), . . . , bn−1(x), u) = 1. Similarly, any or-
thonormal basis b̄1(x̄), . . . , b̄n−1(x̄), ū with ū := uL(p(x)) determines the orientation
of Tann−1(∂L, p(x)). Since G is bi-Lipschitz, we can assume that (x, u) ∈ NorK
is such that all differentials exist that are encountered in the proof. Moreover, we
can also assume that

∧
n−1DG(x, u)aK(x, u) spans Tann−1(Hn−1 NorL,G(x, u)),

where we write again G for a Lipschitz extension of the given map G to R2n. In
the following, we put bi := bi(x) and b̄i := b̄i(x̄) for i = 1, . . . , n− 1.

The differentials of the maps NorK → ∂K, (x, u) 7→ x, and ∂L → NorL,
z 7→ (z, uL(z)), are orientation preserving, which follows for instance from the
discussion at the end of Section 2. Hence, it remains to be shown that the differential
of p : ∂K → ∂L, x 7→ p(x), is orientation preserving, that is,

∆ := Ωn(Dp(x)(b1), . . . , Dp(x)(bn−1), ū) > 0.

First, we assume that x 6= x̄, that is, x /∈ ∂L. Since Dp(x)(ū) = o, we get

Dp(x)(bi) =

n−1∑
j=1

bi • b̄j Dp(x)(b̄j),

and thus

∆ = det(B) Ωn(Dp(x)(b̄1), . . . , Dp(x)(b̄n−1), ū),

where B = (Bij) with Bij := bi • b̄j for i, j ∈ {1, . . . , n−1}. We choose b̄1, . . . , b̄n−1

as principal directions of curvature of ∂L at x̄ = p(x). Then Dp(x)(b̄i) = τi b̄i with

τi := 1− d(∂L, x)ki

(
∂L, x̄,

x− x̄
|x− x̄|

)
> 0,

for i = 1, . . . , n− 1. Here we use that L is ε-smooth, hence ∂L has positive reach,
d(∂L, x) < ε and ∣∣∣∣ki(∂L, x̄, x− x̄|x− x̄|

)∣∣∣∣ ≤ 1/ε.

Hence it follows that ∆ > 0 if we can show that det(B) > 0. Let B̃ = (B̃ij)

be defined by B̃ij := bij , B̃in := bi • ū, B̃nj := u • b̄j , and B̃nn := u • ū, for
i, j ∈ {1, . . . , n− 1}. Then

1 = Ωn(b1, . . . , bn−1, u) Ωn(b̄1, . . . , b̄n−1, ū) = det(B̃)

≤ u • ū det(B) +

n−1∑
i=1

|bi • ū| · 1

≤ u • ūdet(B) +
√
n− 1

√
1− (u • ū)2.

From (3.6) and our assumptions, we get u • ū ≥ 1 − (2δ)/ε ≥ 1 − 1/(2n), and
therefore √

1− (u • ū)2 ≤
√

1/n.

Thus

1 < u • ū det(B) + 1,

which implies that det(B) > 0.
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Finally, we have to consider the case where x ∈ ∂L. For Hn−1-almost all x ∈
∂K ∩ ∂L, we have Tann−1(Hn−1 (∂K ∩ ∂L), x) = u⊥ and Dp(x) = idu⊥ , since
p(z) = z for all z ∈ ∂K ∩ ∂L. Hence, ∆ = Ωn(b1, . . . , bn−1, ū) = u • ū > 0. �

Lemma 3.6. Let ε ∈ (0, 1) and δ ∈ (0, ε/(4n)). Let K,L ∈ Kn be ε-smooth and
assume that dH(K,L) ≤ δ. Let M ⊂ R2n be a compact convex set containing
K1−ε × Sn−1 and L1−ε × Sn−1 in its interior. Then

|TK(ϕ)− TL(ϕ)| ≤ C(M,ϕ)

(
4

ε

)n−1 (
δ + 2

√
δ/ε
)

for ϕ ∈ En−1(R2n), where C(M,ϕ) is a constant which depends on the sup-norm
and the Lipschitz constant of ϕ on M , and on Hn−1(∂K1).

Proof. Let G be as in Lemma 3.4 (or a Lipschitz extension to the whole space with
the same Lipschitz constant). Then [7, Theorem 4.1.30] implies that

TL = G]TK ,

since
∧
n−1DG preserves the orientation of the orienting (n−1)-vectors, by Lemma

3.5. (In [16] a corresponding fact is stated without further comment.) Recall the
definitions of the dual flat metric FM from [7, 4.1.12] and of the mass M (of a
current) from [7, p. 358]. Using [7, 4.1.14], ∂TK = 0, the fact that TK has compact
support contained in the interior of M and Lemma 3.4, we get

FM (TL − TK) = FM (G]TK − TK)

≤M (TK) · ‖G− id‖NorK,∞ ·
(

4

ε

)n−1

≤ Hn−1(∂K1)

(
4

ε

)n−1 (
δ + 2

√
δ/ε
)
,

where ‖G − id‖NorK,∞ := sup{|G(x, u) − (x, u)| : (x, u) ∈ NorK}. The assertion
now follows from the definition of FM , since ‖dϕ‖ can be bounded in terms of the
sup-norm and the Lipschitz constant of ϕ on M . �

Now we are in a position to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Let ϕ ∈ En−1(R2n). Let δ := dH(K,L) > 0 and ε := δ
1

2n+1 .

Assume that δ < (4n)−
2n+1
2n . Then δ < ε/(4n). Lemma 3.1 implies that

|TK(ϕ)− TKε(ϕ)| ≤ C(M,ϕ) ε,

|TL(ϕ)− TLε(ϕ)| ≤ C(M,ϕ) ε.

Since Kε and Lε are ε-smooth, dH(Kε, Lε) = δ, (Kε)1−ε = K and (Lε)1−ε = L,
Lemma 3.6 shows that

|TKε(ϕ)− TLε(ϕ)| ≤ C(M,ϕ)

(
4

ε

)n−1 (
δ + 2

√
δ/ε
)
.

The triangle inequality then yields

|TK(ϕ)− TL(ϕ)| ≤ C4(M,ϕ)

(
ε+

δ

εn−1
+

1

εn−1

√
δ

ε

)
≤ C5(M,ϕ) δ

1
2n+1 .
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If δ ≥ (4n)−
2n+1
2n , we simply adjust the constant. �

4. Proof of Theorem 1.2

In the theory of convex bodies, Federer’s curvature measures are supplemented
by the area measures, which are finite Borel measures on the unit sphere (and
were, in fact, introduced more than 20 years earlier). The two series of measures
are generalized by the support measures. We briefly recall their definition (see [19,
Chap. 4]).

For K ∈ Kn, we have already used the metric projection p(K, ·) and the vector
function u(K,x) := (x − p(K,x))/d(K,x), where d(K,x) := |x − p(K,x)| denotes
the distance of the point x from K. We also write p(K, ·) =: pK , u(K, ·) =: uK and
d(K, ·) =: dK . For ρ > 0, we set Kρ := Kρ \K, where Kρ = K+ρBn is the already
defined parallel body of K at distance ρ. The product space Rn × Sn−1 is denoted
by Σ. For given K, the map fρ : Kρ → Σ is defined by fρ(x) := (pK(x), uK(x))
for x ∈ Kρ, and µK,ρ = µρ(K, ·) is the image measure of Hn Kρ under fρ. This
is a finite Borel measure on Σ, concentrated on NorK. The support measures
Λ0(K, ·), . . . ,Λn−1(K, ·) of K can be defined by

(4.1) µK,ρ =

n−1∑
i=0

ρn−iκn−iΛi(K, ·).

Thus, the normalization is different from [19, (4.2.4)]; the connection is given by
nκn−iΛi(K, ·) =

(
n
i

)
Θi(K, ·). The support measures have the property of weak

continuity: if a sequence (Kj)j∈N of convex bodies converges to a convex body K in
the Hausdorff metric, then the sequence (Λi(Kj , ·))j∈N converges weakly to Λi(K, ·).
The topology of weak convergence can be metrized by the bounded Lipschitz metric
dbL or the Lévy–Prokhorov metric dLP (see, e.g., Dudley [5, Sec. 11.3]). Therefore,
the question arises whether the weak continuity of the support measures can be
improved to Hölder continuity with respect to one of these metrics.

For bounded real functions f on Σ we define

‖f‖L := sup
x 6=y

|f(x)− f(y)|
|x− y|

, ‖f‖∞ := sup
x
|f(x)|.

For finite Borel measures µ, ν on Σ, their bounded Lipschitz distance is defined by

dbL(µ, ν) := sup

{∣∣∣∣∫
Σ

f dµ−
∫

Σ

f dν

∣∣∣∣ : f : Σ→ R, ‖f‖L ≤ 1, ‖f‖∞ ≤ 1

}
.

The following lemma is modeled after Proposition 4.1 of Chazal, Cohen–Steiner
and Mérigot [2]. Under the restriction to convex bodies, it extends the latter to the
measures µK,ρ.

Lemma 4.1. If K,L ∈ Kn are convex bodies and ρ > 0, then

dbL(µK,ρ, µL,ρ) ≤
∫
Kρ∩Lρ

|pK − pL|dHn +

∫
Kρ∩Lρ

|uK − uL|dHn +Hn(Kρ4Lρ),

where 4 denotes the symmetric difference.
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Proof. Let f : Σ → R be a function with ‖f‖L ≤ 1 and ‖f‖∞ ≤ 1. Using the
transformation formula for integrals and the properties of f , we obtain∣∣∣∣∫

Σ

f dµK,ρ −
∫

Σ

f dµL,ρ

∣∣∣∣
=

∣∣∣∣∫
Kρ

f ◦ (pK , uK) dHn −
∫
Lρ
f ◦ (pL, uL) dHn

∣∣∣∣
≤
∫
Kρ∩Lρ

|f ◦ (pK , uK)− f ◦ (pL, uL)| dHn

+

∫
Kρ\Lρ

|f ◦ (pK , uK)| dHn +

∫
Lρ\Kρ

|f ◦ (pL, uL)| dHn

≤
∫
Kρ∩Lρ

|(pK , uK)− (pL, uL)|dHn +

∫
Kρ\Lρ

1 dHn +

∫
Lρ\Kρ

1 dHn

≤
∫
Kρ∩Lρ

(|pK − pL|+ |uK − uL|) dHn +Hn(Kρ4Lρ),

from which the assertion follows. �

Proof of Theorem 1.2. We assume that K,L ∈ Kn and dH(K,L) =: δ < 1. Let
R be the radius of a ball containing K2 and L2. For 0 < ρ ≤ 1 we use Lemma
4.1 (where for convex bodies, the estimation of the first and the third term on the
right-hand side is easier than for the case of general compact sets considered in [2]).
First, from Lemma 1.8.9 in [19] we get

(4.2)

∫
Kρ∩Lρ

|pK − pL|dHn ≤
√

5DHn(Kρ ∩ Lρ)
√
δ ≤ C1(R)

√
δ,

where D = diam(Kρ ∪ Lρ) and the constant C1(R) depends only on R.
About the distance function dK , it is well known that

sup
x∈Rn

|dK(x)− dL(x)| = dH(K,L) = δ

and that
∇dK = uK on Rn \K.

Therefore, it follows immediately from Theorem 3.5 of Chazal, Cohen–Steiner and
Mérigot [2] (applied to E = int(Kρ ∩ Lρ)) that

(4.3)

∫
Kρ∩Lρ

|uK − uL|dHn ≤ C2(R)
√
δ.

For the estimation of Hn(Kρ4Lρ), let x ∈ Kρ \ Lρ; then x ∈ Kρ \ K and
x /∈ Lρ \ L. If x ∈ L, then d(K,x) ≤ δ, hence x ∈ Kδ \K. If x /∈ L, then x /∈ Lρ
but x ∈ Kρ, Kρ ⊂ (Lδ)ρ = Lρ+δ, and hence x ∈ Lρ+δ \ Lρ. It follows that

Kρ \ Lρ ⊂ (Kδ \K) ∪ (Lρ+δ \ Lρ)
and hence

Hn(Kρ \ Lρ) ≤ Hn(Kδ)−Hn(K) +Hn(Lρ+δ)−Hn(Lρ)

≤ C3(R)δ ≤ C3(R)
√
δ.

Here K and L can be interchanged, and together with (4.2), (4.3) and Lemma 4.1
this gives

(4.4) dbL(µK,ρ, µL,ρ) ≤ C4(R)
√
δ.
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To deduce an estimate for the support measures, we apply the usual procedure
(e.g., [19], p. 202) and choose in (4.1) for ρ each of the n fixed values ρj = j/n,
j = 1, . . . , n, and solve the resulting system of linear equations (which has a non-
zero Vandermonde determinant), to obtain representations

Λi(K, ·) =

n∑
j=1

ai,jµK,ρj , i = 0, . . . , n− 1,

with constants aij depending only on i, j. Using the definition of the bounded
Lipschitz metric, we deduce that

(4.5) dbL(Λi(K, ·),Λi(L, ·)) ≤
n∑
j=1

|aij |dbL(µK,ρj , µL,ρj ) ≤ C(R)
√
δ.

This completes the proof of Theorem 1.2. �
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