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Abstract

We prove integral geometric formulae of Crofton type for Holmes-Thompson
areas of rectifiable Borel sets in smooth projective Finsler spaces.

1 Introduction

A classical result of integral geometry in Euclidean spaces, usually associated with the
name of Crofton (although he obtained only the first very special cases), expresses the
area of a submanifold as an integral of the number of intersection points with the affine
subspaces of complementary dimension. More precisely, let M be a k-dimensional C1

submanifold of Euclidean space Rn (n ≥ 2, k ∈ {1, . . . , n − 1}). Let λk denote the
k-dimensional differential-geometric surface area, and let µj be a rigid motion invariant
measure on the affine Grassmannian A(n, j) of j-flats (j-dimensional affine subspaces)
of Rn. Then ∫

A(n,n−k)
card(M ∩ E) dµn−k(E) = ankλk(M), (1)

with a constant ank depending on the normalization of the measure µn−k. More gen-
erally, if j ∈ {n− k, . . . , n− 1}, then

∫

A(n,j)
λk+j−n(M ∩ E) dµj(E) = ankjλk(M), (2)

with a constant ankj. For proofs and further references, we refer to the books of Santaló
[30] (p. 245, (14.69)) and of Sulanke and Wintgen [36] (p. 252, (5)).

In the present paper, we extend formula (2) to Holmes-Thompson areas and recti-
fiable Borel sets in smooth projective Finsler spaces. The role of the Haar measures
µj on the affine Grassmannians A(n, j) is then played by suitable signed measures.
(For j = 1, these are positive measures, and they exist also in general, not necessarily
smooth, projective Finsler spaces, see Schneider [34].) Before stating the main result,
we want to put these investigations in a wider context and explain some background.

The beauty of formula (1) is an invitation for various generalizations in different
directions. Starting from the left side of (1) as a definition, for more general sets M ,
one is led to the notion of integral geometric (or Favard) measures; see, e.g., Mattila
[26], Section 5.14, and the references given there. In the following, we look at (1)
from an opposite point of view: suppose some notion of k-dimensional area is given
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instead of λk; does there exist a measure or signed measure on A(n, n − k), replacing
µn−k, so that (1) holds for a reasonably large class of sets M? One may also think
of replacing the affine Grassmannians by more general systems of sets with similar
properties. We list some work that can be subsumed under this general program.
There is a clear distinction between the possibilities and results in dimension two and
in higher dimensions.

In dimension two, the program concerns notions of length and measures on the
system A(2, 1) of lines or on similar curve systems. A very satisfactory result has
been obtained in the course of the solution of Hilbert’s fourth problem in the plane
by Pogorelov [28], Ambartzumian [7], Alexander [1]. Let µ be a Borel measure on
A(2, 1). For p, q ∈ R2, let d(p, q) be the µ measure of the set of lines weakly separating
p and q, and suppose that d(p, p) = 0 and 0 < d(p, q) < ∞ for p 6= q. Then d
is a continuous metric on R2 which is additive along lines, and the induced curve
length has the property that the lines are geodesics. The quoted papers establish,
through different approaches, the converse: every metric with these properties, and
hence every notion of curve length for which the lines are geodesics, is obtained in the
described way from a measure. A related investigation of Ambartzumian [8] replaces
the lines by certain axiomatically defined systems of curves. For sufficiently smooth
two-dimensional Finsler or Riemannian manifolds, densities on sets of geodesics leading
to Crofton formulae were considered by Blaschke [12], Santaló [29], Owens [27] (who
was apparently unaware of Blaschke’s work). An elementary treatment of a Crofton
formula in Minkowski planes was given by Chakerian [15]. For the classical Crofton
formula in the Euclidean plane, an elementary proof for rectifiable curves can be found
in a paper by Ayari and Dubuc [9].

About dimensions greater than two, we mention first that (1) holds also in spaces
of constant curvature, with flats replaced by totally geodesic submanifolds, see Santaló
[30]. The investigation of general versions of Crofton formulae began with Busemann
[13], [14]. Generalizing Hilbert’s fourth problem, he suggested to study axiomatically
defined k-dimensional areas in affine spaces for which flats minimize area. Closely re-
lated is the question about the validity of Crofton formulae with positive measures,
and then the consideration of Crofton formulae involving signed measures is a nat-
ural generalization. Concrete Crofton formulae were obtained for Minkowski spaces
(finite-dimensional real normed spaces), in special cases by El-Ekhtiar [18] and more
systematically by Schneider and Wieacker [35]. The latter paper contains a version
of (2) for Holmes-Thompson areas of rectifiable Borel sets in hypermetric Minkowski
spaces, with suitable positive measures on A(n, j). In Minkowski geometry, there are
different notions of area, see Thompson [37], but only the Holmes-Thompson area
seems generally suitable for this type of integral geometric formulae. This was made
clear in [32] (Theorem 1) and [33]. The mentioned results of [35] do not require any
smoothness assumptions. On the other hand, under smoothness assumptions, there are
quite general investigations about Crofton type results for densities, due to Gelfand
and Smirnov [22] and to Álvarez, Gelfand and Smirnov [6]. The work of Álvarez and
Fernandes [3], [4], [5] and of Fernandes [21] combines a tool from this theory, double
fibrations and the Gelfand transform, with other methods, in part from symplectic
geometry, to obtain Crofton formulae for Holmes-Thompson areas of smooth submani-
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folds of smooth projective Finsler spaces. In particular, [3] and [21] extend (1) to this
situation, as well as (2) for the special case k = n − 1. In Section 4 below, we gener-
alize this to all k ∈ {1, . . . , n − 1} and to (Hk, k)-rectifiable Borel sets. It turns out
that the methods used in [35] for the special case of hypermetric Minkowski spaces are
sufficiently general to be adaptable to smooth projective Finsler spaces, thus yielding
the following theorem (explanations and precise definitions are given in Section 2).

Theorem 1. Let (Rn, F ) be a smooth projective Finsler space, and let volk denote
the corresponding k-dimensional Holmes-Thompson area. For j ∈ {1, . . . , n− 1}, there
exists a signed measure ηj on the affine Grassmannian A(n, j) such that, for k ∈
{n− j, . . . , n} and for every (Hk, k)-rectifiable Borel set M ⊂ Rn,

∫

A(n,j)
volk+j−n(M ∩ E) dηj(E) = ankjvolk(M) (3)

with a constant ankj.

Theorem 1 can be considered as giving, for projective Finsler spaces, a positive answer
to the first of the three open problems formulated by Chakerian [16] (p. 50). The
second of his problems was solved in [34], and the third one in [33] (Theorem 1).

The standard classical examples of projective Finsler spaces are the Minkowski
spaces and the Hilbert geometries. In the latter case, the Finsler metric is not defined
on all of Rn, but on the interior of a convex body in Rn. In both cases, a single convex
body determines the whole geometry, and the smoothness properties of the induced
Finsler metric depend on the smoothness of that convex body. In order that arbitrary
convex bodies can be admitted, one has to consider general Finsler metrics, which
satisfy the usual convexity and continuity, but no smoothness assumptions. In [34], a
version of (1), with Holmes-Thompson areas, was obtained for general Finsler metrics
F on Rn such that (Rn, F ) is a hypermetric projective Finsler space. For k = n − 1,
the assumption ‘hypermetric’ can be deleted ([34], Theorem 2). The corresponding
(positive) measure on the space A(n, 1) of lines was obtained by approximation and
was, therefore, not described in any explicit way. The existence of this line measure can
also be proved for Hilbert geometries. For Hilbert geometries in planar polygons, the
line measure is known explicitly, see Alexander [1] and Alexander, Berg and Foote [2].
We mention here that for the special case of the Hilbert geometry in an n-dimensional
simplex, an explicit description of the line measure can be obtained, using the fact, es-
tablished by de la Harpe [17], that this metric space is isometric to a certain Minkowski
space. We hope to treat the line measure in a polytopal Hilbert geometry somewhere
else.

2 Finsler spaces and areas

We restrict ourselves here to Finsler metrics on Rn; the case of an open convex subset
instead of Rn requires only obvious modifications. For convenience, we always assume
that Rn is equipped with its standard scalar product 〈·, ·〉, for n ≥ 2. One reason
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for this is that it allows us to talk of Lipschitz mappings f : Rk → Rn, of the k-
dimensional Hausdorff measure Hk on Rn (for k ≥ 0), and of (Hk, k)-rectifiable sets. A
set M ⊂ Rn is called (Hk, k)-rectifiable (for k ∈ {1, . . . , n}) if Hk(M) < ∞ and there
exist Lipschitz maps fi : Rk → Rn, i ∈ N, such that Hk(K \

⋃

i∈N fi(Rk)) = 0. The
notion of Lipschitz map, the classes of sets of zero or finite Hausdorff measure, and the
notion of (Hk, k)-rectifiable sets do not depend on the choice of the Euclidean metric.

We canonically identify the tangent space TxRn of Rn at x with Rn. By a Finsler
metric on Rn we understand here a continuous function F : Rn × Rn → [0,∞) such
that F (x, ·) is a norm on Rn, for each fixed x ∈ Rn. The Finsler metric F is said to be
smooth if F is of class C∞ on Rn × (Rn \ {0}). (The additional assumption made in
the differential geometry of Finsler spaces, that F 2(x, ·) has positive definite Hessian
on Rn \ {0}, is not needed in the following.) If F is a (smooth) Finsler metric on
Rn, we say that (Rn, F ) is a (smooth) Finsler space. In such a space, the length of a
parameterized C1 curve γ : [a, b] → Rn is defined by

∫ b
a F (γ(t), γ′(t)) dt. The Finsler

space (Rn, F ) is called projective if line segments are shortest curves (not necessarily
the only ones) connecting their endpoints. The metric dF induced by F is defined by
letting dF (p, q) be the infimum of the lengths of the piecewise C1 curves connecting
the points p, q ∈ Rn. If (Rn, F ) is projective, the segment [p, q] with endpoints p, q has
length dF (p, q).

We assume that a Finsler metric F on Rn is given. For x ∈ Rn, we write

F (x, ·) =: ‖ · ‖x

and
Bx := {ξ ∈ Rn : ‖ξ‖x ≤ 1}.

This convex body, the unit ball of the Minkowski space (TxRn, ‖ · ‖x), is called the
indicatrix of the Finsler metric F at x. Since we have identified TxRn with Rn, each
‖ · ‖x is a norm on Rn, and Bx is a convex body in Rn which is centrally symmetric
with respect to the origin.

Let Bo
x be the polar body of Bx with respect to the chosen scalar product, thus

Bo
x = {η ∈ Rn : 〈ξ, η〉 ≤ 1 for all ξ ∈ Bx}.

This body is called the figuratrix of the Finsler metric F at x (for its role in the calculus
of variations, see Blaschke [11]).

The metric dF induces, in the usual way, an s-dimensional Hausdorff measure Hs
F ,

for each s ≥ 0. We recall its definition. Let diamF denote the diameter in terms of dF .
For a subset A ⊂ Rn and for δ > 0, let

Ωδ(A) := {(Ci)i∈N : Ci ⊂ Rn, diamF Ci < δ for all i, A ⊂
⋃

i∈NCi }

and

Hs
F (A) :=

πs/2

2sΓ (1 + s/2)
sup
δ>0

inf
(Ci)∈Ωδ(A)

∑

i∈N
(diamF Ci)s.

This yields a metric outer measure Hs
F on Rn, and its restriction to the Borel sets is a

measure.
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Similarly, for each x ∈ Rn, an s-dimensional Hausdorff measure on Rn is defined
with respect to the metric induced by the norm ‖ · ‖x. This Hausdorff measure is de-
noted by Hs

F,x. In particular, Hn
F,x is the translation invariant Haar measure satisfying

Hn
F,x(Bx) = κn, where κn denotes the volume of the n-dimensional Euclidean unit ball

(cf. [35], p. 235).
Recall that the s-dimensional Hausdorff measure on Rn that is induced by the

auxiliary Euclidean metric, coming from the scalar product 〈·, ·〉, is denoted by Hs. In
particular, Hn coincides with the Lebesgue (outer) measure. It is easy to see, using
the continuity of the Finsler metric, that the outer measures Hs

F ,Hs
F,x,Hs all have the

same classes of null sets and of measurable sets.
For a (Hk, k)-rectifiable Borel set M in Rn (where k ∈ {1, . . . , n}), the Busemann k-

area of M is defined as the Hausdorff measure Hk
F (M). The Holmes-Thompson k-area

of M can be defined by

volk(M) =
1
κ2

k

∫

M
vp(Bx ∩ TxM) dHk

F (x). (4)

Here TxM is the approximate tangent space of M at x (a linear subspace of Rn, since
TxRn was identified with Rn); it exists and is unique for Hk

F -almost all x ∈ M and
is measurable in dependence on x. The functional vp is the volume product, that is,
vp(K) is the product of the (Euclidean) volumes of K and Ko; this definition does not
depend on the choice of the scalar product.

The definitions of Busemann and Holmes-Thompson area as given here for rectifi-
able Borel sets in Finsler spaces are the natural extensions of these notions for smooth
submanifolds of Minkowski spaces. In a sense which can be made precise, these two
area notions are dual to each other. Areas in Minkowski spaces are thoroughly dis-
cussed in the book of Thompson [37]. The Holmes-Thompson area appears also in a
natural way as a symplectic volume; see Álvarez and Fernandes [3].

The auxiliary Euclidean structure on Rn has been introduced for two additional
reasons. First, the introduction below of signed measures on the affine Grassmannians
A(n, j), which replace the motion invariant measures in Euclidean spaces and yield
Crofton formulae for the Holmes-Thompson areas, rely on results of Pogorelov, which
are conveniently formulated in Euclidean terms. Second, we will have to use results
from the Euclidean geometry of convex bodies. For notions from this theory which are
used below without explanation, we refer to the book [31].

We introduce some Euclidean terminology referring to the scalar product 〈·, ·〉. The
unit sphere is given by

Sn−1 := {u ∈ Rn : 〈u, u〉 = 1},
and its spherical Lebesgue measure is denoted by σ. If (·)|E denotes orthogonal pro-
jection from Rn to the linear subspace E of Rn, then (Bx ∩E)o = Bo

x|E. We will show
in Section 3 that in a projective Finsler space (4) can be replaced by

volk(M) =
1
κk

∫

M
Hk(Bo

x|TxM) dHk(x). (5)

(Note that Hk and the orthogonal projection depend on the auxiliary scalar prod-
uct; the integral, however, is independent of the choice of the Euclidean structure.)
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Analogously, the Busemann k-area can be represented by

Hk
F (M) = κk

∫

M

1
Hk(Bx ∩ TxM)

dHk(x). (6)

Special cases of (6) for general Finsler spaces are contained in Theorem 4.1 of Belletini,
Paolini and Venturini [10].

Defining the ‘local scaling function’ of the Holmes-Thompson k-area (with respect
to the chosen auxiliary Euclidean structure) by

σk(x,E) :=
1
κk
Hk(Bo

x|E) for x ∈ Rn and E ∈ G(n, k) (7)

(G(n, k) is the Grassmannian of k-dimensional linear subspaces of Rn), we write (5) in
the form

volk(M) =
∫

M
σk(x, TxM) dHk(x). (8)

Now we assume that (Rn, F ) is a smooth projective Finsler space. It follows from the
work of Pogorelov [28] (see [34] for a brief sketch of the relevant parts) that there exists
a continuous function g : Sn−1 × R → R such that, for each x ∈ Rn, the support
function h(Bo

x, ·) of the figuratrix can be represented by

h(Bo
x, ξ) =

∫

Sn−1
|〈ξ, u〉|g(u, 〈x, u〉) dσ(u) (9)

for ξ ∈ Rn. Since the integral depends only on the even part of the function
u 7→ g(u, 〈x, u〉), one can assume that g(u, t) = g(−u,−t) for (u, t) ∈ Sn−1 × R.
Parameterizing hyperplanes of Rn by

Hu,t := {y ∈ Rn : 〈y, u〉 = t}

with u ∈ Sn−1 and t ∈ R, we can consider the function g as a function on the space
of hyperplanes, via g(Hu,t) = g(u, t). If this function is considered as a density with
respect to the (Euclidean) Haar measure on A(n, n− 1), it defines a signed measure η
on A(n, n− 1). This signed measure is given by

∫

A(n,n−1)
f dη =

∫

Sn−1

∫

R
f(Hu,t)g(u, t) dt dσ(u) (10)

for nonnegative measurable functions f on the space A(n, n− 1) of hyperplanes.
Let k ∈ {1, . . . , n}. The signed measure η induces a signed measure ηn−k on the

space A(n, n− k) of (n− k)-flats by means of
∫

A(n,n−k)
f dηn−k = ck

∫

A(n,n−1)
· · ·

∫

A(n,n−1)
f(H1 ∩ . . . ∩Hk) dη(H1) · · · dη(Hk) (11)

for nonnegative measurable functions f on A(n, n− k); here

ck :=
2k

k!κk
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is a convenient normalizing factor. (Observe that H1 ∩ . . . ∩Hk ∈ A(n, n− k) for η⊗k-
almost all k-tuples (H1, . . . , Hk) ∈ A(n, n − 1)k.) In terms of hyperplane parameters,
this reads

∫

A(n,n−k)
f dηn−k = ck

∫

Sn−1
· · ·

∫

Sn−1

∫

R
· · ·

∫

R
f (Hu1,t1 ∩ . . . ∩Huk,tk)

g(u1, t1) · · · g(uk, tk) dt1 · · · dtk dσ(u1) · · · dσ(uk). (12)

The measures ηj thus defined appear in the Crofton formulae of Theorem 1. In the
Euclidean case, where F (x, ξ) = 〈ξ, ξ〉, they coincide with the Haar measures µj in the
classical formula (1). This construction of the measures ηn−k on A(n, n− k) appeared
first, for the case of Minkowski spaces, in [35], Theorem 7.1.

For the proof of Theorem 1 in Section 4, we need the following preparations. For
each x ∈ Rn, we define a signed measure ρx on Sn−1 by

ρx(A) :=
∫

A
g(u, 〈x, u〉) dσ(u) (13)

for Borel sets A ⊂ Sn−1. Then we can write (9) as

h(Bo
x, ξ) =

∫

Sn−1
|〈ξ, u〉| dρx(u). (14)

It is known from the theory of generalized zonoids that this formula, which can be
considered as giving (half of) the Euclidean lengths of the one-dimensional orthogo-
nal projections of Bo

x, extends to higher-dimensional projections. For affine subspaces
E, L ∈ A(n, k), let [E, L⊥] = |〈E, L〉| be the absolute value of the determinant (in di-
mension k) of the orthogonal projection from E to L. By L(u1, . . . , uk) and [u1, . . . , uk]
we denote, respectively, the linear subspace spanned by the vectors u1, . . . , uk and the
k-dimensional volume of the parallelepiped spanned by them. Let k ∈ {1, . . . , n} and
E ∈ A(n, k). Then, for x ∈ Rn,

Hk(Bo
x|E)

=
2k

k!

∫

Sn−1
· · ·

∫

Sn−1

[

E, L(u1, . . . , uk)⊥
]

[u1, . . . , uk] dρx(u1) · · · dρx(uk); (15)

see Weil [38], p. 176. It is important to notice that this follows from (14) even if ρx is
only a signed measure. Defining the signed measure ρ(k)

x on G(n, k) by

ρ(k)
x (A) := ck

∫

Sn−1
· · ·

∫

Sn−1
1A(L(u1, . . . , uk))[u1, . . . , uk] dρx(u1) · · · dρx(uk) (16)

for Borel sets A ⊂ G(n, k), we can write (7) and (15) in the form

σk(x,E) =
∫

G(n,k)
[E,L⊥] dρ(k)

x (L) for x ∈ Rn, E ∈ G(n, k). (17)
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(Essentially, the definition (16) goes back to Matheron [25], p. 101; later uses of this
‘projection generating measure’, as it has been called, begin with Goodey and Weil
[23].) With these notations, we have

∫

G(n,n−j)
σk+j−n(x,E ∩ L⊥)[E, L⊥] dρ(n−j)

x (L) =
ck+j−ncn−j

ck
σk(x, E) (18)

for k, j ∈ {1, . . . , n− 1} with k + j−n ≥ 0 and for every E ∈ G(n, k). The proof given
in [35], Lemma 7.2, for this equation in the case of a measure ρ carries over without
change to the signed measure ρx, for every x ∈ Rn.

3 The area formula for projective Finsler spaces

For the proof of (5), we need an extension of Federer’s area formula ([20], p. 243),
which holds for Lipschitz mappings from Rk to Rn (k ≤ n), to Lipschitz mappings
into a projective Finsler space (Rn, F ). This could be deduced from a general version
for metric spaces (Kirchheim [24], Corollary 8), but for convenience we give here an
elementary proof, by just adapting the proof in [35] for Minkowski spaces to the present
situation.

In the following, Ek denotes the Euclidean unit ball of Rk. For a Lipschitz mapping
f : Rk → Rn, the differential of f at z ∈ Rk exists for Hk-almost all z and is denoted
by Dfz.

Theorem 2. Let (Rn, F ) be a projective Finsler space. Let k ∈ {1, . . . , n}, and let
f : Rk → Rn be a Lipschitz map. Then

κk

∫

Rn
card(A ∩ f−1({x})) dHk

F (x) =
∫

A
Hk

F,f(z)(Dfz(Ek)) dHk(z)

for every Hk-measurable subset A of Rk.
If h is a nonnegative Hk-measurable function on Rk, then

κk

∫

Rn

∑

y∈f−1({x})

h(y) dHk
F (x) =

∫

Rk
h(z)Hk

F,f(z)(Dfz(Ek)) dHk(z).

The metric dF in a Finsler space (Rn, F ) was introduced in Section 2. For a norm N
on Rk and functions f : Rk → Rn and g : C → Rk with C ⊂ Rn we use the notation

Lip(N, dF , f) := sup
x 6=y

dF (f(x), f(y))
N(x− y)

and

Lip(dF , N, g) := sup
x6=y

N(g(x)− g(y))
dF (x, y)

.

By [x, y] we denote the closed segment in Rn with endpoints x, y.
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Now suppose that a projective Finsler space (Rn, F ), a positive integer k ≤ n and
a Lipschitz map f : Rk → Rn are given, as in Theorem 2. The proof of Theorem 2
requires the following lemma.

Lemma. Let A be a Borel subset of {x ∈ Rk : f is differentiable at x and Dfx is
injective}, and let t > 1. Then there is a countable Borel covering C of A such that,
for each C ∈ C, the restriction f |C is injective and there is a norm N (depending on
C) on Rk satisfying

Lip(N, dF , f |C) ≤ t, Lip(dF , N, (f |C)−1) ≤ t

and
t−kµN(Ek) ≤ Hk

F,f(x)(Dfx(Ek)) ≤ tkµN(Ek) for x ∈ C,

where µN is the k-dimensional Hausdorff measure induced on Rk by the norm N .

Proof. We extend the proof of Lemma 5.1 in [35]. Choose ε > 0 such that t−1 + ε <
1 < t−ε, further a countable, dense subset D of Rk and a countable family N of norms
on Rk such that, for each norm N ′ on Rk, there is a norm N ∈ N satisfying

(t−1 + ε)N ≤ N ′ ≤ (t− ε)N.

For z ∈ D, N ∈ N and i ∈ N let C(z, N, i) be the set of all b ∈ E(z, i−1) (where E(z, r)
is the Euclidean ball in Rk with centre z and radius r) such that, for all a ∈ E(z, i−1)
and all p ∈ [f(a), f(b)],

(t−1 + ε)N ≤ ‖Dfb(·)‖p ≤ (t− ε)N, (19)

‖f(a)− f(b)−Dfb(a− b)‖p ≤ εN(a− b). (20)

For a, b ∈ C(z, N, i) we infer from (19) and (20) that

t−1N(a− b) ≤ ‖f(a)− f(b)‖p ≤ tN(a− b) for all p ∈ [f(a), f(b)]. (21)

In particular, f |C(z,N,i) is injective. We assert that

Lip(N, dF , f |C(z,N,i)) ≤ t, (22)

Lip(dF , N, (f |C(z,N,i))−1) ≤ t. (23)

For the proof, let a, b ∈ C(z, N, i). Since the Finsler space (Rn, F ) is projective, the
distance dF (f(a), f(b)) is given by the Finsler length of the segment [f(a), f(b)], thus

dF (f(a), f(b)) =
∫ 1

0
‖f(b)− f(a)‖(1−τ)f(a)+τf(b) dτ ≤ tN(a− b)

by (21). This gives (22), and (23) is obtained similarly (only here we use the fact that
the Finsler space is projective).

The inequalities (19) for the norms (t−1 + ε)N , ‖Dfb(·)‖p, (t − ε)N imply for the
induced k-dimensional Hausdorff measures the estimates

t−kµN(Ek) ≤ (t−1 + ε)kµN(Ek) ≤ Hk
F,f(b)(Dfb(Ek)) ≤ (t− ε)kµN(Ek) ≤ tkµN(Ek).
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We show that {C(z, N, i) : z ∈ D, N ∈ N , i ∈ N} is a covering of A. Let b ∈ A.
For c ∈ E(b, 2), consider the norm Nb,c := ‖Dfb(·)‖f(c). Since F is continuous, we can
choose a number i ∈ N and a norm N ∈ N so that

(t−1 + ε)N ≤ Nb,c ≤ (t− ε)N for all c ∈ E(b, 2i−1).

Also by continuity of F , and by compactness of E(b, 2), there is a number M so that
‖ · ‖f(c) ≤ M‖ · ‖f(b) for all c ∈ E(b, 2). Since f is differentiable at b, we can further
choose i so small that, for all a ∈ E(b, 2i−1),

‖f(a)− f(b)−Dfb(a− b)‖f(b) ≤ M−1εN(a− b).

This implies

‖f(a)− f(b)−Dfb(a− b)‖f(c) ≤ εN(a− b) for all a, c ∈ E(b, 2i−1).

Now we choose z ∈ D with z ∈ E(b, i−1). Then (20) is satisfied for all a ∈ E(z, i−1)
and all p ∈ [f(a), f(b)], hence b ∈ C(z, N, i).

Finally, we choose {xj : j ∈ N} dense in Rk and {τj : j ∈ N} dense in [0, 1] and put

Aj,m := {b ∈ E(z, i−1) : (t−1 + ε)N(xj) ≤ ‖Dfb(xj)‖(1−τm)f(xj)+τmf(b) ≤ (t− ε)N(xj)}

and

Bj,m := {b ∈ E(z, i−1) : ‖f(xj)− f(b)−Dfb(xj − b))‖(1−τm)f(xj)+τmf(b) ≤ εN(xj − b)}.

Then
C(z, N, i) =

⋂

j,m∈N
Aj,m ∩

⋂

j,m∈N
xj∈E(z,i−1)

Bj,m,

which shows that C(z, N, i) is a Borel set.

Proof of Theorem 2. This is now a straightforward generalization of the proof of
Theorem 5.2 (and of (32), corrected) in [35]: one has merely to replace µk(f(G)) in
that proof by Hk

F (f(G)) and µk(Dfz(Ek)) in the integrands by Hk
F,f(z)(Dfz(Ek)).

For the envisaged application, recall that Hk is the k-dimensional Hausdorff measure
induced on Rn by the auxiliary Euclidean structure. Let L ⊂ Rn be a k-dimensional
linear subspace. Let x ∈ Rn. The restriction of the norm ‖ · ‖x to L has unit ball
Bx ∩ L; the corresponding k-dimensional Hausdorff measure on L is Hk

F,x L, and we
have Hk

F,x(Bx ∩ L) = κk. Since both, Hk
F,x L and Hk L are Haar measures on L,

they are proportional, thus

Hk
F,x(· ∩ L)

κk
=

Hk(· ∩ L)
Hk(Bx ∩ L)

. (24)

Now suppose that f : A → Rn is an injective Lipschitz map, A ⊂ Rk is a bounded
Borel set, and f(A) = M is a Borel set. Let g : M → R be a nonnegative Hk-
measurable function. If we apply Theorem 2, equation (24), and then Theorem 2 to
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the Euclidean metric, we get
∫

M
g(x) dHk

F (x) =
∫

A
g(f(z))

Hk
F,f(z)(Dfz(Ek))

κk
dHk(z)

=
∫

A
g(f(z))

Hk(Dfz(Ek))
Hk(Bf(z) ∩Dfz(Rk))

dHk(z)

= κk

∫

M
g(x)

1
Hk(Bx ∩ TxM)

dHk(x).

Now the choice g = 1 on M gives (6), and the choice

g(x) = vp(Bx ∩ TxM)/κ2
k = Hk(Bo

x|TxM)Hk(Bx ∩ TxM)/κ2
k

gives (5), under our special assumptions on M . However, to this special case the
proof for a general (Hk, k)-rectifiable Borel set M can be reduced; see Theorem 3.2.29
in Federer [20]. The same special assumptions on M can be made in the proof of
Theorem 1 in the next section. Here one has to observe that both sides of (3) are
zero if Hk

F (M) = 0. This is true in the Euclidean case, as follows from Federer [19];
in a smooth projective Finsler space it then follows by observing that the measure ηj

has a density with respect to the Euclidean invariant measure µj and that in compact
subsets of Rn, the Hausdorff measure Hs

F can be estimated from above by a constant
multiple of Hs.

4 A general Crofton formula

Now we can prove Theorem 1. We assume that (Rn, F ) is a smooth projective Finsler
space, and the signed measure ηj on A(n, j) is defined as in Section 2. Let k ∈
{1, . . . , n}, j ∈ {1, . . . , n − 1} with q := k + j − n ≥ 0, and put m := n − j. Let
M ⊂ Rn be a (Hk, k)-rectifiable Borel set. We may assume that M is of the special
form as assumed at the end of the last section. From (12), we have

∫

A(n,j)
volq(F ∩M) dηj(F ) = cm

∫

(Sn−1)m
I(u1, . . . , um) dσ⊗m(u1, . . . , um)

with

I(u1, . . . , um)

:=
∫

R
· · ·

∫

R
volq(Hu1,t1 ∩ . . . ∩Hum,tm ∩M)g(u1, t1) · · · g(um, tm) dt1 · · · dtm.

For i = 1, . . . , m, let Ci be an (n − 1)-dimensional unit cube in u⊥i := {x ∈ Rn :
〈x, ui〉 = 0}. As in [35], formula (54) (where no invariance property of τq is needed),
we get

volq(Hu1,t1 ∩ . . . ∩Hum,tm ∩M)

=
∫

u⊥1

· · ·
∫

u⊥m

volq(Dq(y, t)) dλn−1(y1) · · · dλn−1(ym),

11



where λn−1 denotes the (n− 1)-dimensional Lebesgue measure and where

Dq(y, t) := (C1 + t1u1 + y1) ∩ . . . ∩ (Cm + tmum + ym) ∩M.

By (8), this gives

I(u1, . . . , um)

=
∫

R
· · ·

∫

R

∫

u⊥1

· · ·
∫

u⊥m

∫

Dq(y,t)
σq(x, TxDq(y, t)) dHq(x)

dλn−1(y1) · · · dλn−1(ym)g(u1, t1) · · · g(um, tm) dt1 · · · dtm

=
∫

u⊥1

· · ·
∫

u⊥m

∫

R
· · ·

∫

R

∫

Dq(y,t)
σq(x, TxDq(y, t))g(u1, 〈x, u1〉) · · · g(um, 〈x, um〉)

dHq(x)dt1 · · · dtm dλn−1(y1) · · · dλn−1(ym).

Here we have applied Fubini’s theorem and then made use of the fact that x ∈ Dq(y, t)
satisfies x ∈ u⊥i + tiui = Hui,ti , hence 〈x, ui〉 = ti, for i = 1, . . . , m. Thus we obtain

I(u1, . . . , um)

=
∫

Rn
· · ·

∫

Rn

∫

D′
q(z)

σq(x, TxD′
q(z))g(u1, 〈x, u1〉) · · · g(um, 〈x, um〉)

dHq(x)dλn(z1) · · · dλn(zm)

with
D′

q(z) := (C1 + z1) ∩ . . . ∩ (Cm + zm) ∩M.

Writing

f(x) := σq
(

x, L(u1, . . . , um)⊥ ∩ TxM
)

g(u1, 〈x, u1〉) · · · g(um, 〈x, um〉),

we get

I(u1, . . . , um) =
∫

Rn
· · ·

∫

Rn

∫

(C1+z1)∩...∩(Cm+zm)∩M
f(x) dHq(x) dλn(z1) · · · dλn(zm).

Now we use Lemma 6.1 of [35], where we put p = m, M0 = M , Mi = Ci for i = 1, . . . , m.
We obtain

I(u1, . . . , um)

=
∫

C1

· · ·
∫

Cm

∫

M
f(x0)[T⊥

x0
M, T⊥

x1
C1, . . . , T⊥

xm
Cm] dHk(x0)dHn−1(x1) · · · dHn−1(xm)

= [u1, . . . , um]
∫

M
f(x)[L(u1, . . . , um)⊥, TxM ] dHk(x).

12



Inserting this and using (13), (16) and (18) we conclude that
∫

A(n,j)
volq(F ∩M) dηj(F )

= cm

∫

(Sn−1)m

∫

M
[u1, . . . , um][L(u1, . . . , um)⊥, TxM ]σq(x, L(u1, . . . , um)⊥ ∩ TxM)

g(u1, 〈x, u1〉) · · · g(um, 〈x, um〉)dHk(x) dσ⊗m(u1, . . . , um)

= cm

∫

M

∫

(Sn−1)m
σq(x, L(u1, . . . , um)⊥ ∩ TxM)[L(u1, . . . , um)⊥, TxM ]

[u1, . . . , um]g(u1, 〈x, u1〉) · · · g(um, 〈x, um〉) dσ⊗m(u1, . . . , um) dHk(x)

=
∫

M

∫

G(n,m)
σq(x, L⊥ ∩ TxM)[L⊥, TxM ] dρ(m)

x (L) dHk(x)

=
cqcm

ck

∫

M
σk(x, TxM) dHk(x)

=
ck+j−ncn−j

ck
volk(M).

This completes the proof of Theorem 1.
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