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Abstract. We investigate the family M of intersections of balls in a finite dimensional
vector space with a polyhedral norm. The spaces for which M is closed under Minkowski
addition are completely determined. We characterize also the polyhedral norms for which
M is closed under adding a ball. A subset P of M consists of the Mazur sets K, defined
by the property that for any hyperplane H not meeting K there is a ball containing
K and not meeting H. We characterize the Mazur sets in terms of their normal cones
and also as summands of closed balls. As a consequence, we characterize the polyhedral
spaces with only trivial Mazur sets as those whose unit ball is indecomposable.

1. Introduction

The present paper is a sequel to [15] and is part of a program initiated in recent

years to investigate the basic algebraic/topological properties of the family M of all

intersections of closed balls in a normed space X. This family has appeared in problems

from convex geometry, geometry of Banach spaces, fixed point theory, and combinatorial

geometry. An early result concerns the Mazur intersection property, dating back to Mazur

[12]. The space X has this property if M is equal to the family of all closed bounded

convex subsets of X. It was proved by Phelps [17] that a finite dimensional space has

the Mazur intersection property if and only if the set of extreme points of the dual unit

ball B∗ is dense in the boundary of B∗. An infinite dimensional generalization is due to

Giles, Gregory and Sims [7]. Our aim is to establish the basic facts concerning M when

the space lacks the Mazur intersection property. In this context, it is known that M is

uniformly very porous [10] and that it need not be (topologically) closed [15].

Two kinds of problems are considered in this paper, those connected with Minkowski

sums and those pertaining to Mazur sets. Recall that M is (i) stable if C + D ∈ M
whenever C, D ∈ M; (ii) ball stable if C + B ∈ M for every C ∈ M, where B is the

unit ball of the space. These properties introduced in [8] have close connections with the

continuity of the ball hull mapping [15]. The closed bounded convex set K is said to be

a Mazur set if the following separation property is satisfied: for every hyperplane H with

positive distance from K, there exists a ball D with K ⊂ D and H ∩D = ∅. The family
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of all Mazur sets in our normed space is denoted by P . Observe that P is contained in

M. The space is called a Mazur space if P = M. Basic results concerning Mazur sets

and Mazur spaces can be found in [8], [9]. For instance, M is stable in every Mazur

space. In this paper, we restrict ourselves to finite dimensional polyhedral spaces, that is,

finite dimensional real vector spaces with a norm whose unit ball is a polytope. In this

elementary situation, several questions about the classes M and P have explicit answers.

It is known that M is stable in `∞ and in every two-dimensional space, thus it should

not come as a surprise that it is also stable in

X = X1 ⊕∞ · · · ⊕∞ Xk, (1)

where each Xi is a normed space of dimension at most two. More surprising is the fact

that the converse is true when the norm is polyhedral: every finite dimensional polyhedral

space with stable M is obtained in this way. Finite dimensional polyhedral spaces which

are direct sums of the form (1) have recently come up in connection with the investigation

of suns in normed spaces [4].

Next we characterize the finite dimensional polyhedral normed spaces for which M is

ball stable. The characterization involves relations between the normal cones of the unit

ball B of the space. It should be observed that the normal cones of the unit ball B are

in correspondence with the exposed faces of the dual unit ball B∗, thus this character-

ization can alternatively be formulated in terms of the facial structure of B∗, as in the

characterization result of Phelps.

In the last section, we are concerned with spaces in which the only Mazur sets are

balls and one-pointed sets. Typical examples are the spaces `d
1, for d > 2 [9]. We improve

this result by obtaining a complete characterization of the finite dimensional polyhedral

spaces satisfying this property. The notion of indecomposability plays a major role in this

result. As a main step to achieve this characterization, the Mazur sets in finite dimensional

polyhedral spaces are completely determined. Our characterization is in terms of normal

fans, on the one hand, and summands of the unit ball, on the other. Using this result,

we are able to characterize the finite dimensional polyhedral Mazur spaces X as those for

which M is stable.

2. Preliminaries

Throughout this paper, X is a real normed space of dimension 1 < d < ∞, with norm

‖ · ‖. Its unit ball, dual space, and dual unit ball are denoted by B, (X∗, ‖ · ‖∗), and B∗,

respectively. A homothet of B, that is, any set of the form λB + t with λ > 0 and t ∈ X,

is called a ball. The family of all nonempty intersections of balls is denoted by MX , or

briefly by M, when no ambiguity arises. By K we denote the set of all nonempty compact

convex subsets of X.
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The support function of K ∈ K is defined by h(K, f) := maxx∈K f(x) for f ∈ X∗.

The functional f ∈ X∗ \ {0} supports K at x if f(x) = h(K, f), that is, if f attains its

maximum on K at the point x. We write

H−(K, f) := f−1(−∞, max f(K)] = {x ∈ K : f(x) ≤ h(K, f)}

for the (closed) supporting halfspace of K determined by f ∈ X∗ \ {0}, and

H(K, f) := {x ∈ K : f(x) = h(K, f)}

for the supporting hyperplane of K determined by f . The set F (K, f) := K ∩H(K, f) is

the (exposed) face of K determined by f . The dual unit sphere, that is, the boundary of

B∗, is denoted by S∗. In connection with intersections of balls in Banach spaces, a certain

subset of the dual unit sphere plays an important role. This is the set of semi-denting

points, which in the finite-dimensional case coincide with the limits of exposed points of

B∗ (see [15], Remark after Corollary 3, and observe that every extreme point is a limit of

exposed points, by the theorem of Straszewicz ([18], Theorem 1.4.7)). We denote by Ω the

closure of the set of exposed points of B∗. The following description of the intersections

of balls (see [15], (7)) will be useful.

Lemma 2.1. Let K ∈ K. Then K ∈M if and only if K =
⋂

f∈Ω H−(K, f).

If X has a polyhedral norm, then Ω is just the set of vertices of the dual unit ball B∗,

or, equivalently, the set of all norm one functionals f ∈ X∗ for which f−1(1) is a facet

(a face of codimension one) of the polytopal unit ball B. If K ∈ M is a polytope and

f ∈ S∗ is such that F (K, f) is a facet of K, then it follows from Lemma 2.1 that f ∈ Ω.

In the following, we make essential use of support cones and normal cones, which

describe the behavior of a closed convex set at one of its points. We recall briefly the

definitions. Let K ⊂ X be a closed convex set and x ∈ K. The support cone S(K, x) of

K at x is the closure of the set {λ(y− x) : y ∈ K, λ ≥ 0}. It is a closed convex cone and

can also be represented as

S(K, x) =
⋂

x∈H(K,f)

H−(K, f)− x,

the intersection extending over all f ∈ S∗ for which x ∈ H(K, f) (if x is an interior point

of K, the intersection of the empty family of subsets of X is understood as X). The dual

convex cone

N(K, x) = S(K, x)∗ = {f ∈ X∗ : f(z) ≤ 0 ∀z ∈ S(K, x)}

is called the normal cone of K at x. Evidently,

N(K, x) = {f ∈ X∗ : f(y) ≤ f(x) ∀y ∈ K},
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thus f ∈ N(K, x) if and only if f supports K at x or f is the zero functional.

A closed convex cone C is called a normal cone of K if there exists a point x in

the boundary of K such that C = N(K, x). If K is a polytope, F is a face of K and

x is a relatively interior point of F , then the normal cone N(K, x) does not depend on

the choice of x. It is denoted by N(K, F ) and called the normal cone of K at F , thus

N(K, F ) = {f ∈ X∗ : F ⊂ F (K, f)}. Its dimension satisfies dim F + dim N(K, F ) = d.

The finite system of all normal cones of a polytope is called the normal fan of the polytope.

If x is a boundary point of the unit ball B, then

N(B, x) ∩ S∗ = {f ∈ S∗ : f(x) = 1},

which is an exposed face of the dual unit ball B∗. Thus, the normal cones of the unit ball

are precisely the positive hulls of the exposed faces of the dual unit ball. The following

result will be needed.

Lemma 2.2. Let K,L ⊂ X be nonempty closed convex sets.

(a) If x ∈ K and y ∈ L, then

N(K + L, x + y) = N(K, x) ∩N(L, y).

(b) If K, L are polytopes and x ∈ K ∩ L, then

N(K ∩ L, x) = N(K,x) + N(L, x).

For a proof, we refer to [18], Theorem 2.2.1 (the use of a scalar product in [18]

is evidently not essential for the validity of these results). However, (b) is formulated

there for general convex bodies, which requires an extra condition. That this condition

can be deleted in the case of polytopes, follows from the fact that for a polytope K

the set {λ(y − x) : y ∈ K, λ ≥ 0} is already closed and hence equal to the support

cone S(K, x). This, in turn, implies that for polytopes K, L and x ∈ K ∩ L we have

S(K ∩ L, x) = S(K, x) ∩ S(L, x), from which (b) follows.

3. Stability and ball stability of polyhedral norms

The purpose of this section is to obtain characterizations for both the stability and

the ball stability of M in finite dimensional polyhedral spaces. We begin with a result

concerning `∞ sums.

Proposition 3.1. Let X1, . . . , Xk be finite dimensional normed spaces, let

X = X1 ⊕∞ · · · ⊕∞ Xk.

Then MX is stable (ball stable) if and only if each MXi
is stable (ball stable).
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Proof. We will write the proof only for stability, since for ball stability the argument is

similar. Let Bi be the unit ball of Xi (i = 1, . . . , k), then B = B1 ⊕ · · · ⊕ Bk is the unit

ball of X. Let πi : X → Xi denote the canonical projection. We claim that

K ∈MX ⇔ K = K1 ⊕ · · · ⊕Kk with Ki ∈MXi
, i = 1, . . . , k. (2)

Indeed, if K ∈MX , say K =
⋂

α∈I(λαB + tα), then

K =
⋂
α∈I

[(λαB1 + π1(tα))⊕ · · · ⊕ (λαBk + πk(tα))]

=

(⋂
α∈I

(λαB1 + π1(tα))

)
⊕ · · · ⊕

(⋂
α∈I

(λαBk + πk(tα))

)
.

Conversely, let K = K1 ⊕ · · · ⊕Kk with Ki ∈ MXi
, i = 1, . . . , k. Let x ∈ X \K. There

is an index j with πj(x) /∈ Kj. Hence, there are λ > 0 and tj ∈ Xj with Kj ⊂ λBj + tj
and πj(x) /∈ λBj + tj. Here λ can be chosen arbitrarily large (if tj is suitably adapted),

in particular so large that Ki ⊂ λBi for i 6= j. Then it follows that K ⊂ λB + t for t with

πj(t) = tj and x /∈ λB + t. This proves that K ∈MX , as desired.

For the proof of the proposition, suppose now that MXi
is stable for i = 1, . . . , k. Let

C, D ∈ MX . Using (2), we can write C = C1 ⊕ · · · ⊕ Ck and D = D1 ⊕ · · · ⊕ Dk with

Ci, Di ∈MXi
, i = 1, . . . , k, hence

C + D = (C1 + D1)⊕ · · · ⊕ (Ck + Dk).

Since Ci + Di ∈ MXi
, it follows from (2) that C + D ∈ MX . Thus, MX is stable.

Conversely, suppose that MX is stable. Let C1, D1 ∈ MX1 , say. There is a family

{λαB1 + tα} of balls in X1 with C1 =
⋂

α(λαB1 + tα). Put λ := infα λα. Then

C1 ⊕ λB2 ⊕ · · · ⊕ λBk =
⋂
α

[(λαB1 + tα)⊕ λαB2 ⊕ · · · ⊕ λαBk] ∈MX .

Similarly, there is µ ≥ 0 with D1⊕ µB2⊕ · · · ⊕ µBk ∈MX . Since MX is stable, we have

(C1 + D1)⊕ (λ + µ)B2 ⊕ · · · ⊕ (λ + µ)Bk ∈MX ,

hence the claim (2) gives C1 + D1 ∈MX1 . Thus MX1 is stable. �

Remark. The natural question whether Proposition 3.1 has an analog for `1-sums has a

negative answer, since M`31
is not stable [8] (yet it is ball stable, for instance by Theorem

3.3 below). Moreover, we show that the `1-sum of two finite dimensional normed spaces,

both satisfying ball stability, need not be ball stable. Consider for X the space R2 endowed

with a norm whose unit ball is a hexagon, and let Y = X⊕1 R. That M is not ball stable

in this space, can be deduced from Theorem 3.3.
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For finite dimensional polyhedral spaces, we are able to give an explicit description of

the spaces satisfying stability.

Theorem 3.2. Let X be a finite dimensional space with polyhedral norm. Then MX is

stable if and only if X = X1 ⊕∞ · · · ⊕∞ Xk, where each Xi is a polyhedral normed space

of dimension at most two, or, equivalently, if the unit ball of X is a direct sum of convex

polygons of dimensions one and two.

Proof. Sufficiency is a direct consequence of Proposition 3.1 and the fact that M is stable

in every two dimensional space [8], so it remains to prove necessity. Recall that dim X = d

and that Ω is the set of vertices of the dual unit ball B∗. Let Λ be the system of lines in

X∗ spanned by the pairs of antipodal points in Ω. A (d− 1)-dimensional subspace of X∗

spanned by d− 1 lines of Λ is called a spanned subspace.

Claim. If d− 1 spanned subspaces intersect in a line, then this line belongs to Λ.

For the proof, let S1, . . . , Sd−1 be spanned subspaces that intersect in a line L. Let

fL ∈ S∗ be one of the two vectors (in X∗) spanning L. We may assume that f1, . . . , fd−1 ∈
Ω are d − 1 linearly independent vectors spanning S1. Then fL ∈ lin{f1, . . . , fd−1}, and

without loss of generality (replacing fi by −fi where necessary) we can assume that

fL ∈ pos{f1, . . . , fd−1}. The functional fi determines a unique facet Fi = F (B, fi) =

f−1
i (1) of the polytopal unit ball B. Choose xi ∈ relint Fi (the relative interior of Fi)

(i = 1, . . . , d− 1). Then

P1 :=
d−1⋂
i=1

(B − xi)

is a polytope and, obviously, an element of M. The set G1 :=
⋂d−1

i=1 (Fi − xi) is a face

of P1. Since xi ∈ relint Fi, the set G1 has the same dimension as
⋂d−1

i=1 f−1
i (1), which is

1, due to the linear independence of f1, . . . , fd−1. Thus G1 is an edge of P1. The normal

cone N(P1, G1) of P1 at G1 is the positive hull of the vectors f1, . . . , fd−1, as follows

from Lemma 2.2(b), hence fL ∈ N(P1, G1). Performing the same construction with

S2, . . . , Sd−1, we obtain polytopes P1, . . . , Pd−1 ∈M and corresponding edges Gi ⊂ Pi such

that fL ∈
⋂d−1

i=1 N(Pi, Gi). The sum G := G1 + · · ·+Gd−1 is a face of P := P1 + · · ·+Pd−1

and, by Lemma 2.2(a), N(P, G) =
⋂d−1

i=1 N(Pi, Gi). Observe that N(Gi, 0) = Si and,

hence

N(G, 0) = N(G1 + · · ·+ Gd−1, 0) =
d−1⋂
i=1

Si.

Since S1, . . . , Sd−1 intersect in a line, dim N(G, 0) = 1. It follows that dim G = d−1, thus

G is a facet of P . From fL ∈ N(P, G) we see that fL is a functional that determines G.

Since M is closed under Minkowski sums, we have P ∈ M. Now it follows from Lemma

2.1 that fL ∈ Ω, which proves the claim.

The proof can now be completed by applying a result from projective geometry. The

following argument was essentially used before in [19], but for greater clarity we include
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it here in a simpler form. Let P d−1 be the (d − 1)-dimensional real projective space,

whose points are the lines through 0 in X∗ and whose k-dimensional subspaces are the

(k+1)-dimensional linear subspaces of X∗. Then Λ is a system of n points in P d−1 (where

2n is the number of points in Ω), not all lying in a hyperplane. By results of Motzkin

[16, 4.3] and Hansen [11] (showing that Motzkin’s hypothesis Ud is always satisfied), the

following holds. The number of hyperplanes in P d−1 determined by the points of Λ is at

least n, and it is exactly n if and only if (∗) the points are, for odd d−1, on d/2 lines, and

for even d− 1, all but one on (d− 1)/2 lines. Now suppose that (∗) does not hold. Then

the points of Λ determine at least n+1 hyperplanes in P d−1, and these determine, by the

dual of Motzkin’s result, at least n + 1 intersection points and thus at least one point not

in Λ. This contradicts the claim. Thus (∗) holds. For the points of Ω this means that

they lie, for even d, on d/2 two-dimensional linear subspaces of X∗, and for odd d, on

(d− 1)/2 two-dimensional linear subspaces and a one-dimensional linear subspace. Since

Ω spans X∗, it follows that B is a direct sum of two-dimensional polygons and, for odd

d, a segment. �

Remark. As noted in [15], the sets in M are precisely the H-convex sets, for H = Ω, the

closure of the set of exposed points of B∗ (in finite dimensions). Boltyanski and Martini

[2] have investigated the question under which conditions the Minkowski sum of H-convex

sets is again H-convex. Their Example 1 seems to contradict our Theorem 3.2. However,

H. Martini has informed us that their Examples 1 and 3 are erroneous.

We will now prove a characterization of the finite dimensional polyhedral norms for

which M is ball stable. To this end, we define a critical configuration of B as a pair

(N, {f1, . . . , fk}) consisting of a normal cone N of B of dimension at least two and a set

{f1, . . . , fk} ⊂ Ω of vertices of B∗ such that

dim(N ∩ pos{f1, . . . , fk}) = 1.

Theorem 3.3. Let X be a finite dimensional polyhedral normed space. Then MX is ball

stable if and only if B does not have a critical configuration.

Proof. Suppose that (N, {f1, . . . , fk}) is a critical configuration of B. As in the proof of

Theorem 3.2, we choose xi ∈ relint F (B, fi) (i = 1, . . . , k) and put

P :=
k⋂

i=1

(B − xi),

then P ∈ MX and, by Lemma 2.2, N(P, 0) = pos{f1, . . . , fk}. Let F be the face of

B with N(B, F ) = N and choose x ∈ relint F . Again by Lemma 2.2, N(P + B, x) =

N(P, 0)∩N(B, x). Since x ∈ relint F , it follows that N(P +B, x) = N(B, F )∩N(P, 0) =

N ∩ pos{f1, . . . , fk}. By assumption, this cone has dimension one, hence the unique

g ∈ S∗ ∩N(P + B, x) determines a facet of P + B. If we had P + B ∈MX , then Lemma
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2.1 would imply that g ∈ Ω. Since g ∈ N(B, F ), the face F would be a facet and thus

dim N(B, F ) = 1, a contradiction. Thus, MX is not ball stable.

Conversely, suppose that MX is not ball stable. Then there exists a set P ∈ MX ,

necessarily a polytope, such that P + B /∈MX . By Lemma 2.1,

P + B 6=
⋂
f∈Ω

H−(P + B, f).

Therefore, the polytope P + B has a facet F1 whose determining functional, say g ∈ S∗,

is not an element of Ω. Let

F := F (B, g), G := F (P, g),

then F1 = F + G. Choosing a point x1 ∈ relint F1, we can represent it as x1 = x + y with

x ∈ relint F and y ∈ relint G. Therefore, by Lemma 2.2,

N(P + B, F ) = N(P + B, x1) = N(P, y) ∩N(B, x) = N(P, G) ∩N(B, F ).

By Lemma 2.1, the polytope P ∈ MX can be represented as P =
⋂

f∈Ω H−(P, f). The

face G is an intersection of facets of P . Hence, there are f1, . . . , fk ∈ Ω such that

N(P, G) = pos{f1, . . . , fk}.

Since F1 is a facet of P + B, we have

1 = dim N(P + B, F1) = dim(N(B, F ) ∩ pos{f1, . . . , fk}).

Since F = F (B, g) and g /∈ Ω, the face F is not a facet, hence dim N(B, F ) ≥ 2. Thus,

(N(B, F ), {f1, . . . , fk}) is a critical configuration. �

As mentioned earlier, `d
1 is an example of a space in which M is ball stable, but not

stable.

4. Mazur sets in polyhedral spaces

The family M of all intersections of balls has two nice subfamilies, both in the core of

Minkowski’s convexity theory: convex bodies of constant width and diametrically maximal

sets [5]. In addition to these classical examples, the class P of Mazur sets (see the

definition in the introduction) is another interesting subfamily of M. It is known that

sets of constant width are always Mazur sets while this is not the case for diametrically

maximal sets [14]. The space is called a Mazur space if P = M.

It was shown in [9] that the only Mazur sets in `d
1 are one-pointed sets and balls.

The main purpose of this section is to give a characterization of the finite dimensional
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polyhedral spaces satisfying this curious property. To this end, the Mazur sets in a finite

dimensional polyhedral space are determined in the following theorem.

Let P, Q ∈ K be polytopes. We say that the normal fan of P is coarser than the

normal fan of Q if the normal fan of Q is a refinement of the normal fan of P , that is,

every normal cone of P is a union of normal cones of Q. A summand of a polytope P is a

compact convex set K of positive dimension for which there exists a compact convex set

M of positive dimension such that P = K + M . Summands of polytopes are necessarily

polytopes ([18], p. 143).

Theorem 4.1. For a convex body K ∈ K of positive dimension in a polyhedral space X,

the following conditions are equivalent:

(a) K is a Mazur set.

(b) K is a polytope whose normal fan is coarser than the normal fan of B.

(c) K is homothetic to a summand of B.

Proof. We begin with an elementary preparation.

Claim. Let C ⊂ X be a closed convex cone, let f ∈ X∗ be a functional such that

C ∩ f−1(0) = {0}. Let K ∈ K be a convex body such that to every ε > 0 there exists a

vector tε ∈ X with

K + tε ⊂ C and (K + tε) ∩ f−1(−ε) 6= ∅. (3)

If x ∈ K is such that f(x) = max f(K), then 0 ∈ K − x ⊂ C.

For the proof, we observe that C ⊂ f−1(−∞, 0). If tε satisfies (3), then x + tε ∈
C ∩ f−1(−ε, 0). Choosing a sequence (εi)i∈N with εi → 0, we see from⋂

i∈N

[C ∩ f−1(−εi, 0)] = {0}

that tεi
→ −x and, hence, 0 ∈ K − x ⊂ C, which proves the claim.

Now let K ∈ K be a Mazur set. Let N(K, x) be a normal cone of K, and let

f ∈ N(K,x)∩S∗; then x ∈ F (K, f). The support set F = F (B, f) is a face of the polytope

B. Let ε > 0 be given. The hyperplane f−1(h(K, f) + ε) does not meet K. Since K is a

Mazur set, there exists a ball Bε = λεB+tε, λε > 0, with K ⊂ Bε ⊂ f−1(−∞, h(K, f)+ε).

Choose y ∈ relint F and let yε := λεy + tε. Then K − yε ⊂ S(Bε, yε) = S(B, y), the

latter by an obvious property of support cones. Moreover, f(x) = h(K, f) ≤ f(yε) ≤
h(K, f) + ε and thus −ε ≤ f(x− yε) ≤ 0. In particular, K − yε ∩ f−1(−ε) 6= ∅.

Since y ∈ relint F , the support cone S(B, y) is a direct sum, S(B, y) = X1⊕C, where

the subspace X1 is a translate of the affine hull of F , and C is a pointed convex cone in

a subspace X2 complementary to X1. Let π2 be the canonical projection to X2. Writing
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−yε = t1,ε + t2,ε with ti,ε ∈ Xi, we get from the claim (with X replaced by X2 and K

replaced by π2(K)) that 0 ∈ π2(K)− π2(x) ⊂ π2(S(B, y)). Since K + t ⊂ S(B, y) for all

t ∈ X1, this implies 0 ∈ K − x ⊂ S(B, y). From this, we get S(K, x) = S(K − x, 0) ⊂
S(B, y). By duality, it follows that N(B, y) ⊂ N(K, x); moreover, f ∈ N(B, y). Since

N(K, x) was an arbitrary normal cone of K, this shows that every normal cone of K is

a union of normal cones of B. In particular, K has only finitely many normal cones and

hence is a polytope. The normal fan of this polytope is coarser than the normal fan of B.

Thus, (b) holds.

The equivalence of (b) and (c) may be ‘folklore’, but in default of a suitable reference

we give a proof of the necessity. Suppose that (b) holds. Let f ∈ S∗ be such that the

face F = F (K, f) is an edge of K. Since the normal fan of K is coarser than the normal

fan of B, there exists a normal cone N of B such that f ∈ N ⊂ N(K, F ). There exists

a face G of B with N = N(B, G). Since N(B, G) ⊂ N(K, F ), the face G contains a line

segment parallel to the edge F . Since there are only finitely many such pairs (F, G), we

can choose a number λ > 0 with the following property: whenever F (λK, f) (f ∈ S∗) is

an edge of λK, then the support set F (B, f) contains a translate of F (λK, f). Now it

follows from [18, Theorem 3.2.8] that λK is a summand of B. Thus (c) holds.

Suppose that (c) holds. Then there are a number λ > 0 and a convex body M ,

necessarily a polytope, such that B = λK+M . Then, K+λ−1M = λ−1B. Let f ∈ X∗ and

µ ∈ R be such that sup f(K) < µ. We choose y ∈ λ−1M satisfying f(y) = sup f(λ−1M)

and consider the ball C = −y + λ−1B. Since 0 ∈ λ−1M − y and

K + (λ−1M − y) = −y + λ−1B

we see that K ⊂ C. Finally,

sup f(C) = f(−y) + sup f(λ−1M) + sup f(K)

= sup f(K) < µ

which, since f and µ were arbitrary, proves that K is a Mazur set. �

Corollary 4.2. A finite dimensional polyhedral space X is a Mazur space if and only if

MX is stable.

Proof. A useful property of P is that it is stable under Minkowski sums in any normed

space [8]. Hence, in every Mazur space X, the set MX is stable. Conversely, assume

that X is a finite dimensional polyhedral space and MX is stable. Then it follows from

Theorem 3.2 that X is of the form X = X1 ⊕∞ · · · ⊕∞ Xk with dim Xi ≤ 2 and each Xi

polyhedral. If K ∈ MX , then K = K1 ⊕ · · · ⊕Kk with Ki ∈ MXi
, by Proposition 3.1.

Each Xi is a Mazur space ([8], Theorem 6.5), hence by Theorem 4.1, Ki is homothetic to

a summand of Bi (the unit ball of Xi). This means that there exist a number λi > 0 and

a convex body Mi ⊂ Xi with Bi = λiKi + Mi (i = 1, . . . , k). Choosing a number λ with
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0 < λ < 0, we have Bi = λKi + (λi − λ)Ki + Mi and hence

B1 ⊕ · · · ⊕Bk = λ(K1 ⊕ · · · ⊕Kk) + [((λ1 − λ)K1 + M1)⊕ · · · ⊕ ((λk − λ)Kk + Mk)].

Thus, K is homothetic to a summand of B = B1 ⊕ · · · ⊕ Bk and is, therefore, a Mazur

set. This shows that X is a Mazur space. �

Our final result shows that the property that balls and one-pointed sets are the only

Mazur sets is not so rare. Here the notion of indecomposable polytopes plays a role. A

convex body K ∈ K is indecomposable if a representation K = M +L with convex bodies

M, L ∈ K is only possible if M and L are either one-pointed or homothetic to K.

Corollary 4.3. For a polyhedral space X, the following conditions are equivalent:

(a) The only Mazur sets in X are balls and one-pointed sets.

(b) The unit ball B is indecomposable.

Proof. Suppose that (b) holds and that K is a Mazur set. By Theorem 4.1, K is homo-

thetic to a summand of B. Since B is indecomposable, K can only be a trivial summand,

that is, either one-pointed or homothetic to B.

Conversely, suppose that (b) does not hold. Then there are two convex bodies K, M ,

neither one-pointed nor homothetic to B, such that B = K + M . These bodies are

polytopes. It follows from Theorem 4.1 that K and M are Mazur sets. Thus (a) does not

hold. �

If we assume that d ≥ 3 and endow the set of all isometry classes of d-dimensional

normed spaces with the Banach-Mazur metric, then the subset of classes of normed spaces

with only trivial Mazur sets is dense. This follows from Corollary 4.3, together with the

facts that every every simplicial polytope of dimension at least three is indecomposable

([18, Corollary 3.2.13]) and that every convex body can be approximated arbitrarily closely

by simplicial polytopes.
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