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Abstract. It is proved that the shape of the typical cell of a stationary Poisson-Voronoi
tessellation in Euclidean space, under the condition that the volume of the typical cell
is large, must be close to spherical shape, with high probability. The same holds if the
volume is replaced by the surface area or other suitable functionals. Similar results hold
for the zero cell of a stationary and isotropic Poisson hyperplane tessellation.

1 Introduction

In this paper, we continue a line of research that began with a problem of D.G. Kendall (see
the foreword to the first edition of [17]). He conjectured that the shape of the zero cell (or
Crofton cell) of a stationary and isotropic Poisson line process in the plane, given that the
area of the cell tends to infinity, must tend to circular shape. Contributions to Kendall’s
question are due to Miles [11] and Goldman [3], and the conjecture was proved by Kovalenko
[8], [10]. In [7], Kovalenko’s result was extended to higher dimensions and to stationary,
but not necessarily isotropic Poisson hyperplane processes. It was also strengthened, by
estimating the probability of large deviations from spherical shape, given that the volume of
the zero cell lies in a prescribed interval. In the present paper, we prove an analogous result
for the typical cell of a stationary Poisson-Voronoi tessellation of d-dimensional space. This
extends and strengthens a result of Kovalenko [9] in the planar case. We further generalize
this result by considering, in addition to the volume functional, also the kth intrinsic volume,
k = 1, . . . , d− 1. This includes cells of large surface area or of large mean width. The result
from [7] on Crofton cells of stationary Poisson hyperplane processes with large volume is also
extended to the kth intrinsic volume, but only for k ≥ 2 and under the additional assumption
of isotropy. For both types of random polytopes, Poisson-Voronoi cells and isotropic Crofton
cells, we can also replace (somewhat easier) the condition of large volume by the condition of
large inradius. This is suggested by considerations of Miles [11] on Crofton cells in the plane
and by the work of Calka [1] on planar Poisson-Voronoi tessellations. Finally, we mention
here that cells of large volume in Poisson-Delaunay tessellations were treated in [6]; such cells
tend to be regular simplices.

Let A be a locally finite point set in Euclidean space Rd (with scalar product 〈·, ·〉 and
norm ‖ · ‖), where d ≥ 2. For x ∈ A, the Voronoi cell of x with respect to A is defined by

C(x, A) := {y ∈ Rd : ‖y − x‖ ≤ ‖y − a‖ for all a ∈ A}.
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Let X̃ be a stationary Poisson point process of intensity λ > 0 in Rd. (In treating simple
point processes, we conveniently identify a simple counting measure with its support.) Then

X := {C(x, X̃) : x ∈ X̃}

is the Poisson-Voronoi tessellation derived from X̃. Let Z denote the typical cell of X (we
recall its definition in Section 2).

For a convex body (non-empty, compact, convex set) K ⊂ Rd, we denote the volume by
vd(K). The (conveniently renormalized) intrinsic volumes v0(K), . . . , vd−1(K) can be defined
by means of the Steiner formula

vd(K + εBd) =
d

∑

k=0

εd−k
(

d
k

)

vk(K), ε ≥ 0.

Here Bd := {x ∈ Rd : ‖x‖ ≤ 1} is the unit ball. Equivalently, vi(K) is the mixed volume
V (K[i], Bd[d− i]) of i copies of K and d− i copies of Bd. The functional Wj = vd−j is known
as the jth quermassintegral. In particular, dvd−1 is the surface area, and (2/κd)v1 is the mean
width; here κd := vd(Bd). More information is found in [15].

Let K ⊂ Rd be a compact set with o ∈ K and containing more than one point. In order
to measure the deviation of K from a ball with centre o, we define

δ(K) :=
Ro − ρo

Ro + ρo
,

where Ro is the radius of the smallest ball with centre o containing K and ρo is the radius
(possibly zero) of the largest ball with centre o contained in K.

By P we denote the underlying probability, and P(· | ·) is a conditional probability.

Theorem 1. Let X denote the Poisson-Voronoi tessellation derived from a stationary Poisson
point process with intensity λ > 0 in Rd; let Z be its typical cell. Let k ∈ {1, . . . , d}. There is
a positive constant c0 depending only on the dimension d such that the following is true. If
ε ∈ (0, 1) and I = [a, b) is any interval (possibly b = ∞) with ad/kλ ≥ σ0 > 0, then

P(δ(Z) ≥ ε | vk(Z) ∈ I) ≤ c exp
{

−c0ε(d+3)/2ad/kλ
}

,

where c is a constant depending only on d, ε and σ0.

In particular,
lim

a→∞
P(δ(Z) ≥ ε | vk(Z) ≥ a) = 0

for every ε > 0, but Theorem 1 provides much stronger information.

Theorem 1 will be proved in Section 6, after preliminary explanations in Section 2 and
preparations in Sections 3 to 5.

In [7], a similar result was obtained for the volume of the zero cell (also called Crofton cell)
of the tessellation generated by a stationary Poisson hyperplane process. We will indicate in
Section 7 how, under the additional assumption of isotropy, this result can be extended to
the kth intrinsic volume, k = 2, . . . , d. As in [7], we measure the deviation of the shape of a
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convex body K ⊂ Rd with interior points from spherical shape by rBd , which we abbreviate
by rd, thus

rd(K) := min{s/r − 1 : rBd + z ⊂ K ⊂ sBd + z, z ∈ Rd, r, s > 0}.

Theorem 2. Let Zo be the zero cell of the tessellation induced by a stationary isotropic
Poisson hyperplane process in Rd with intensity λ > 0. Let k ∈ {2, . . . , d}. There is a
positive constant c0 depending only on the dimension d such that the following is true. If
ε ∈ (0, 1) and I = [a, b) is any interval (possibly b = ∞) with a1/kλ ≥ σ0 > 0, then

P(rd(Zo) ≥ ε | vk(Zo) ∈ I) ≤ c exp
{

−c0ε(d+3)/2a1/kλ
}

,

where c is a constant depending only on d, ε and σ0.

The case of the volume is included here for k = d. We remark that in this case the inequality
of Theorem 2 is sharper (in its dependence on ε) than Theorem 1 of [7], specialized to the
isotropic case. The reason for this improvement lies in the fact that in the isotropic case
sharper stability estimates from convex geometry are available. Unfortunately, our method
of proof does not permit us to treat the case k = 1, which in the plane is the case of the
perimeter, already studied by Miles [11] in his heuristic approach.

In addition to ρo(K) defined above, we denote by ρ(K) the radius of the largest ball
contained in the convex body K.

Theorem 3. Let Z and Zo be defined as in Theorems 1 and 2, respectively. There is a
positive constant c0 depending only on the dimension d such that the following is true. If
ε ∈ (0, 1) and I = [a, b) is any interval (possibly b = ∞) with adλ ≥ σ0 > 0 in the case of Z,
respectively aλ ≥ σ0 > 0 in the case of Zo, then

P(δ(Z) ≥ ε | ρo(Z) ∈ I) ≤ c exp
{

−c0ε(d+1)/2adλ
}

and
P(rd(Zo) ≥ ε | ρ(Zo) ∈ I) ≤ c exp

{

−c0ε(d+1)/2aλ
}

,

where c is a constant depending only on d, ε and σ0.

The proof will be sketched in Section 8.

2 The typical cell of a Poisson-Voronoi tessellation

We recall the definition of the typical cell of the Poisson-Voronoi mosaic X, generated by the
stationary Poisson point process X̃. In general, the notion of the typical cell of a stationary
random mosaic requires the choice of a centroid function (e.g., see Møller [12, Section 3.2]),
but for Voronoi cells there is a canonical choice, the nucleus. Let Kd

o denote the space of
convex bodies K in Rd with o ∈ K, equipped with the Hausdorff metric and corresponding
Borel structure. The distribution Q of the typical cell of X can be defined by

Q(A) =
1
λ

E
∑

x∈X̃

1A(C(x, X̃)− x)1B(x)
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(E denotes mathematical expectation) for Borel sets A ⊂ Kd
o , where B ⊂ Rd is an arbitrary

Borel set with λd(B) = 1; here λd denotes Lebesgue measure in Rd. The distribution Q
is commonly interpreted as the conditional distribution of C(o, X̃) given that o ∈ X̃. An
intuitive interpretation follows from the fact that stationary Poisson-Voronoi tessellations are
mixing ([16, Satz 6.4.1]) and hence ergodic. This implies that

Q(A) = lim
r→∞

card {x ∈ X̃ ∩ rBd : C(x, X̃)− x ∈ A}
card (X̃ ∩ rBd)

holds with probability one.

Since X̃ is a stationary Poisson process, it follows from Slivnyak’s theorem that the typical
cell of the Poisson-Voronoi mosaic X is stochastically equivalent to the random polytope

Z = C(o, X̃ ∪ {o})

(see [12, Remark 4.1.1]; see also [13]). Hence, we can consider Z as the typical cell of X, and
for this we obtain a convenient representation. For x ∈ Rd, we define

H(x) := {y ∈ Rd : 〈y, x〉 = ‖x‖2/2},

H−(x) := {y ∈ Rd : 〈y,x〉 ≤ ‖x‖2/2},

so that H(x) is the mid hyperplane of o and x. Then

Z =
⋂

x∈X̃

H−(x),

thus Z is the zero cell of the tessellation induced by the Poisson hyperplane process

Y := {H(x) : x ∈ X̃}.

The intensity measure EY (·) of this process can be represented as follows. For a Borel set
A in the space of hyperplanes, we have

EY (A) = E card (A ∩ Y ) = E card {x ∈ X̃ : H(x) ∈ A}

= λ · λd({x ∈ Rd : H(x) ∈ A}).

Writing

H(u, t) := {y ∈ Rd : 〈y, u〉 = t}, H−(u, t) := {y ∈ Rd : 〈y, u〉 ≤ t}

for u ∈ Sd−1 := {x ∈ Rd : ‖x‖ = 1} and t ∈ R, and introducing polar coordinates, we get

EY (·) = 2dλ
∫

Sd−1

∫ ∞

0
1{H(u, t) ∈ ·}td−1dt σ(du), (1)

where σ denotes spherical Lebesgue measure on the unit sphere Sd−1.

In particular, for K ∈ Kd
o let HK be the set of all hyperplanes H ⊂ Rd with H ∩K 6= ∅.

Then (1) gives
EY (HK) = 2dλU(K) (2)

with
U(K) :=

1
d

∫

Sd−1
h(K, u)d σ(du), (3)
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where h(K, ·) is the support function of K. Writing

Φ(K) := {y ∈ Rd : H(2y) ∩K 6= ∅},

we have U(K) = λd(Φ(K)). The star body Φ(K) is the union of all closed balls having a
diameter segment [o,x] with x ∈ K.

The relation (2), together with the Poisson property of the hyperplane process Y , implies
that

P(Y (HK) = k) =
[2dU(K)λ]k

k!
exp {−2dU(K)λ} (4)

for K ∈ Kd
o and k ∈ N0.

It is now clear that we are in a similar situation as in [7]. There, the zero cell of a stationary
(not necessarily isotropic) Poisson hyperplane process, with intensity measure given by [7,
(2)], was studied. This process is now replaced by the isotropic, non-stationary hyperplane
process Y , with intensity measure given by (1). The functional U(K), defined by (3), will
play the role of the mixed volume V1(B, K) in [7] (up to dimensional factors). In addition
to the volume functional considered in [7], we now treat general intrinsic volumes. All these
differences require a number of changes and new arguments, but also some parallel reasoning
is possible. In the latter cases, we will be brief and just list how the arguments of [7] have to
be modified.

3 A stability estimate

For K ∈ Kd
o , we trivially have K ⊂ Φ(K), hence U(K) ≥ vd(K). Here equality holds if and

only if K is a ball with centre o (this follows from the considerations below, but can also be
shown directly). A similar inequality can be obtained for the other intrinsic volumes. In the
following, we write h(K, ·) =: hK for the support function of K. Integrations with respect to
σ extend over Sd−1. By Hölder’s inequality,

U(K) ≥ 1
d
(dκd)1−d

(∫

hK dσ
)d

,

and since ∫

hK dσ = dv1(K),

we get
U(K)1/d ≥ κ(1−d)/d

d v1(K).

A well-known inequality (e.g., [15, p. 334]) says that

v1(K)k ≥ κk−1
d vk(K) (5)

for k = 1, . . . , d. Hence,
U(K) ≥ κ1−d/k

d vk(K)d/k. (6)

Equality for a number k ∈ {1, . . . , d} holds if and only if K is a ball with centre o. We will
need an improved version of (6), in the form of a stability estimate.

Lemma 1. For K ∈ Kd
o and k ∈ {1, . . . , d},

U(K) ≥ (1 + γδ(K)(d+3)/2)κ1−d/k
d vk(K)d/k, (7)
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where γ is a positive constant depending only on the dimension d.

Proof. We assume that K contains more than one point; otherwise the assertion is trivial. In
order to improve Hölder’s inequality, we use Lemma 4.2 of Gardner and Vassallo [2]. There
we put m = 2, f0 = f2 = 1, f1 = hK , w1 = 1/d, w2 = (d− 1)/d (hence w = 1/d), and obtain

1−
∫

hK dσ
(∫

hd
K dσ

)1/d (∫

1 dσ
)(d−1)/d

≥ 1
d

∫

[

hd/2
K

(∫

hd
K dσ

)1/2 −
1

(∫

1 dσ
)1/2

]2

dσ =: β(K).

Using (1− β)(1 + β) ≤ 1, we deduce that

U(K)1/d ≥ (1 + β(K))κ(1−d)/d
d v1(K). (8)

Next, we establish an estimate of the form β(K) ≥ cδ(K)α with α > 0. For this, we argue
similarly as in the proof of Lemma 1 in [5] (which is reproduced in [4], see inequality (2.3.3)).

From now on in this paper, c1, c2, . . . denote constants depending only on the dimension,
except in those cases where other dependences are explicitly indicated.

Let K ∈ Kd
o be given. Since β and δ are invariant under dilatations, we can assume that

∫

hd
K dσ =

∫

1 dσ = dκd. (9)

In this case, by (6),
κd = U(K) ≥ κ1−d

d v1(K)d ≥ c1D(K)d,

where D denotes the diameter, hence D(K) ≤ c2 and therefore

hK ≤ c2. (10)

Moreover,

β(K) = c3

∫

(

hd/2
K − 1

)2
dσ.

Suppose that ρoBd ⊂ K ⊂ RoBd, where ρo is maximal and Ro is minimal. It follows from
(9) that ρo ≤ 1 ≤ Ro.

Case 1: Ro − 1 ≥ 1− ρo.

We put Ro = 1 + h, then

δ(K) =
Ro − ρo

Ro + ρo
≤ 2h. (11)

There exists a vector u0 ∈ Sd−1 such that hK(u0) = Ro = 1+h, and the point p = (1+h)u0
belongs to K. For u ∈ Sd−1, let E(u) be the hyperplane through p and orthogonal to u. Let
ω denote the angle between u and u0, and let ω0 be the angle between u0 and any v such
that E(v) is tangent to Bd. Then cosω0 = 1/(1 + h) and (with σd−1 := (d− 1)κd−1)

∫

(

hd/2
K − 1

)2
dσ ≥ σd−1

∫ ω0

0

{

[(1 + h) cos ω]d/2 − 1
}2

(sinω)d−2 dω.

6



We set (1 + h)d/2 − 1 =: a and substitute [(1 + h) cos ω]d/2 − 1 = ax, to obtain
∫

(

hd/2
K − 1

)2
dσ

≥ 2σd−1a3

d(1 + h)d−2

∫ 1

0
x2[(1 + h)2 − (ax + 1)4/d](d−3)/2(ax + 1)(2−d)/d dx.

By (10), we can estimate
(1 + h)2−d ≥ c4

and, for 0 ≤ x ≤ 1,

(ax + 1)(2−d)/d ≥ (a + 1)(2−d)/d = (1 + h)(2−d)/2 ≥ c1/2
4 .

This gives

β(K) ≥ c5a3
∫ 1

0
x2[(1 + h)2 − (ax + 1)4/d](d−3)/2 dx.

The function
f(x) := (1 + h)2 − (ax + 1)4/d, 0 ≤ x ≤ 1,

satisfies f(0) = h(h + 2), f(1) = 0, and f ′(1) = −(4/d)a(1 + h)(4−d)/2. It is convex for d ≥ 4
and concave for d = 2, 3. For d ≥ 4 we deduce that

f(x) ≥ 4
d
a(1 + h)(4−d)/2(1− x) ≥ c6a(1− x),

and for d = 2, 3 we get
f(x) ≥ h(h + 2)(1− x) ≥ h(1− x).

Together with

a = (1 + h)d/2 − 1 ≥ d
2
h

this yields
β(K) ≥ c7h(d+3)/2.

From (11) we now get
β(K) ≥ c8δ(K)(d+3)/2.

Case 2: Ro − 1 < 1− ρo.

We put ρo = 1− h, then Ro < 1 + h, hence

K ⊂ (1 + h)Bd (12)

and
δ(K) ≤ 2h. (13)

There is a vector u0 ∈ Sd−1 such that hK(u0) = ρo = 1− h, and the hyperplane G through
ρou0 orthogonal to u0 supports K. Let p ∈ (∂(1 + h)Bd) ∩G. Let u1 ∈ Sd−1 be the vector,
positively spanned by u0 and p, that is orthogonal to a support plane of Bd through p. Let
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ω0 be the angle between u0 and u1. For u ∈ Sd−1, let ωu be the angle between u0 and u. If
ωu ≤ ω0, then hK(u) ≤ 1, hence 1− hK(u)d/2 ≥ 1− hK(u) ≥ 0 and thus

β(K) ≥ c3

∫

(1− hK(u))2 1{ωu ≤ ω0}σ(du).

Now exactly the argument of Case 2 in [5, pp. 71–72] leads to

β(K) ≥ c9h(d+3)/2,

which together with (13) gives

β(K) ≥ c10δ(K)(d+3)/2.

In each case, we conclude from (8) and (5) the inequality (7).

4 Probabilities involving small intervals

It is easy to obtain a lower bound for the probability of the event vk(Z) ≥ a, where a ≥ 0.
In fact, let Ba := (a/κd)1/kBd, then vk(Ba) = a and hence

P(vk(Z) ≥ a) ≥ P(Y (HBa) = 0) = exp
{

−2dU(Ba)λ
}

= exp
{

−2dκ1−d/k
d ad/kλ

}

.

In this section we prove an inequality which replaces the previous one if vk(Z) is contained
in a small interval.

For A ⊂ Rd we define
Z(A) :=

⋂

x∈A

H−(x)

and set Z(x1, . . . , xn) := Z({x1, . . . , xn}). For the random polytope Z(X̃), the typical cell
of X, we retain the notation Z.

Let k ∈ {1, . . . , d} be fixed.

Lemma 2. For each β > 0, there are constants h0 > 0, N ∈ N and c11 > 0, depending only
on β and d, such that for a > 0 and 0 < h < h0,

P(vk(Z) ∈ a(1, 1 + h)) ≥ c11h
(

ad/kλ
)N

exp
{

−(1 + β)d2dκ1−d/k
d ad/kλ

}

.

Proof. Let β > 0 and a > 0 be given. For n ≥ 2 we define

Qn :=
{

(x1, . . . , xn−1, u) ∈
(

(1 + β/2)Bd
)n−1

× Sd−1 :

Z(x1, . . . , xn−1, u) ⊂ 2−1(1 + β/2)Bd, vk(Z(x1, . . . , xn−1,u)) ≥ 2−kκd

}

.

A continuity argument shows that we can choose N = N(β, d) ∈ N (sufficiently large) so that
∫

Sd−1

∫

Rd
. . .

∫

Rd
1{(x1, . . . , xN−1,u) ∈ QN}dx1 . . . dxN−1σ(du) =: c12(d, β) > 0.
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If (x1, . . . , xN−1,u) ∈ QN , then

vk(Z(x1, . . . ,xN−1, u)) ≤ (1 + β/2)k2−kκd. (14)

Define h0 = h0(β) > 0 by (1+h0)1/k(1+β/2) = 1+β and suppose that 0 < h < h0. Putting
(a/κd)1/kBd = Ba as before, we can estimate (recall that X̃(ω), a realization of X̃, denotes
a simple counting measure and also its support)

P(vk(Z) ∈ a(1, 1 + h))

≥ P
(

X̃(2(1 + β)Ba) = N, Z(X̃ ∩ 2(1 + β)Ba) ⊂ (1 + β)Ba,

vk(Z(X̃ ∩ 2(1 + β)Ba)) ∈ a(1, 1 + h)
)

= P
(

X̃(2(1 + β)Ba) = N
)

P
(

Z(X̃ ∩ 2(1 + β)Ba) ⊂ (1 + β)Ba,

vk(Z(X̃ ∩ 2(1 + β)Ba)) ∈ a(1, 1 + h)
∣

∣ X̃(2(1 + β)Ba) = N
)

.

Since X̃ is a stationary Poisson process with intensity λ, we obtain (using Satz 3.2.3(b) of
[16])

P(vk(Z) ∈ a(1, 1 + h))

≥ λN

N !
exp {−vd(2(1 + β)Ba)λ}

×
∫

Rd
. . .

∫

Rd
1 {∀i : xi ∈ 2(1 + β)Ba}1 {Z(x1, . . . , xN ) ⊂ (1 + β)Ba}

× 1 {vk(Z(x1, . . . , xN )) ∈ a(1, 1 + h)} dx1 . . . dxN .

Assume that x1, . . . , xN ∈ Rd satisfy the conditions

(i) (x1, . . . , xN ) ∈ ‖xN‖QN ;

(ii) vk(Z(x1, . . . , xN )) ∈ a(1, 1 + h).

Then, using (ii), (i) and the definition of QN , we get

a(1 + h)
‖xN‖k ≥ vk(Z(x1, . . . ,xN ))

‖xN‖k ≥ 2−kκd,

hence
‖xN‖ ≤ 2a1/kκ−1/k

d (1 + h)1/k. (15)

The definition of h0 and (15) imply that

‖xN‖ ≤ 2(1 + β)a1/kκ−1/k
d .

Further, using (i), the definition of QN , (15) and the definition of h0, we find that, for
i = 1, . . . , N − 1,

‖xi‖ ≤ ‖xN‖(1 + β/2) ≤ 2a1/kκ−1/k
d (1 + h)1/k(1 + β/2) ≤ 2(1 + β)(a/κd)1/k,
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thus xi ∈ 2(1 + β)Ba. Finally, (i), the definition of QN , (15) and the definition of h0 imply
that

Z(x1, . . . , xN ) ⊂ 2−1‖xN‖(1 + β/2)Bd ⊂ (a/κd)1/k(1 + h)1/k(1 + β/2)Bd

⊂ (1 + β)Ba.

Hence, introducing polar coordinates, we obtain

P(vk(Z) ∈ a(1, 1 + h))

≥ λN

N !
exp {−vd(2(1 + β)Ba)λ}

∫

Rd
. . .

∫

Rd
1 {(x1, . . . , xN ) ∈ ‖xN‖QN}

× 1{vk(Z(x1, . . . , xN )) ∈ a(1, 1 + h)}dx1 . . . dxN

=
λN

N !
exp {−vd(2(1 + β)Ba)λ}

×
∫

Sd−1

∫ ∞

0

∫

Rd
. . .

∫

Rd
1 {(x1, . . . , xN−1, ru) ∈ rQN}

× 1{vk(Z(x1, . . . , xN−1, ru)) ∈ a(1, 1 + h)}rd−1dx1 . . .dxN−1dr σ(du).

Substituting xi = ryi for i = 1, . . . , N − 1, we get

P(vk(Z) ∈ a(1, 1 + h))

≥ λN

N !
exp {−vd(2(1 + β)Ba)λ}

×
∫

Sd−1

∫ ∞

0

∫

Rd
. . .

∫

Rd
1{(y1, . . . , yN−1, u) ∈ QN}

× 1{rkvk(Z(y1, . . . , yN−1, u)) ∈ a(1, 1 + h)}rNd−1dy1 . . .dyN−1dr σ(du)

=
λN

N !
exp {−vd(2(1 + β)Ba)λ}

×
∫

Sd−1

∫

Rd
. . .

∫

Rd
1{(y1, . . . , yN−1, u) ∈ QN}

× aNd/k

Nd
vk(Z(y1, . . . , yN−1, u))−Nd/k

(

(1 + h)Nd/k − 1
)

dy1 . . . dyN−1σ(du)

≥ λN

N !
exp {−vd(2(1 + β)Ba)λ}

aNd/k

Nd

(

2k(1 + β/2)−kκ−1
d

)Nd/k Nd
k

h c12(d, β)

≥ h
(

ad/kλ
)N

exp {−vd(2(1 + β)Ba)λ} c13(d, β),

where also (14) was used. Since vd(2(1 + β)Ba) = (1 + β)d2dκ1−d/k
d ad/k, this proves the

assertion.
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5 Probabilities involving elongated cells

We will later need estimates showing that typical cells which, compared to their value of vk,
are ‘too long’, occur only with small probability. This requires the following preparations.

We denote by Pd
o ⊂ Kd

o the subset of convex polytopes and by G(d, k) the Grassmannian
of k-dimensional linear subspaces of Rd. For K ∈ Kd

o and L ∈ G(d, k), the set K|L is the
image of K under orthogonal projection to L. For k ∈ {1, . . . , d}, we define

ηk(K) := min{D(K)/∆(K,L) : L ∈ G(d, k)},

where D(K) denotes the diameter of K and ∆(K, L) is the width of K|L evaluated in L.

Let a > 0 be given. For m ∈ N, we set

Kd,k
a (m) :=

{

K ∈ Kd
o : vk(K) ∈ a(1, 2), ηk(K) ∈ [mk, (m + 1)k)

}

.

Lemma 3. Let m ∈ N and k ∈ {1, . . . , d}. Then

(a) K ∈ Kd,k
a (m) implies that K ⊂ c14mka1/kBd =: C;

(b) there exists a measurable map Kd,k
a (m)∩Pd

o 3 P 7→ v(P ) such that v(P ) is a vertex of P
with ‖v(P )‖ ≥ c15ma1/k.

Proof. We use repeatedly that vk(K|L) is a constant multiple of the k-dimensional volume
of K|L.

(a) A special case of equation (5.3.23) in [15] and the monotoneity of mixed volumes imply
that

vk(K|L) ≤ c16vk(K)

holds for all K ∈ Kd
o and L ∈ G(d, k). Let K ∈ Kd,k

a (m), and choose L0 ∈ G(d, k) such that
ηk(K) = D(K)/∆(K, L0). Then

2a ≥ vk(K) ≥ c−1
16 vk(K|L0) ≥ c17∆(K, L0)k−1D(K|L0),

where the estimate (16) from [7] was used. Thus

2a ≥ c17∆(K, L0)k ≥ c17(m + 1)−k2
D(K)k

and therefore
D(K) ≤ c18mka1/k.

Since o ∈ K, this implies (a).

(b) For any L ∈ G(d, k), we enclose K|L in a rectangular parallelepiped in L with one
edge length equal to ∆(K,L) and the other edge lengths at most D(K|L). Then

vk(K|L) ≤ c19∆(K,L)D(K|L)k−1 ≤ c19m−kD(K)D(K)k−1

and hence, by an integral-geometric projection formula ([15], (5.3.27)),

a ≤ vk(K) ≤ c20m−kD(K)k.

11



Therefore, K has a point at distance at least 2−1c−1/k
20 ma1/k from the origin. If K is a

polytope, such a point can be chosen as a vertex. That a measurable selection is possible,
follows as in [7, Lemma 3.5(c)].

Remark. We have η1(K) = 1; moreover, Kd,1
a (m) 6= ∅ only for m = 1. Therefore, some of

the subsequent arguments simplify considerably, or can be omitted, in the case k = 1.

Let a > 0, ε > 0 be given. For m ∈ N, we define

Kd,k
a,ε (m) := {K ∈ Kd,k

a (m) : δ(K) ≥ ε} (16)

and
qk
a,ε(m) := P(Z ∈ Kd,k

a,ε (m)). (17)

Similarly as in [7], we prove two estimates concerning the decay of qk
a,ε(m) as ad/kλ → ∞.

The dependence on ε will not play a role until Lemma 6.

For u1, . . . , un ∈ Sd−1 and t1, . . . , tn ∈ (0,∞) we introduce the abbreviation

n
⋂

i=1

H−(ui, ti) =: P (u(n), t(n)).

Lemma 4. For m ∈ N and ad/kλ ≥ σ0 > 0,

qk
a,ε(m) ≤ c21(d, σ0) exp{−c22mdad/kλ}. (18)

Proof. Let C be the ball defined in Lemma 3(a). Then

qk
a,ε(m) =

∞
∑

N=d+1

P(Y (HC) = N)P(Z ∈ Kd,k
a,ε (m) | Y (HC) = N). (19)

Here,

pN := P(Z ∈ Kd,k
a,ε (m) | Y (HC) = N)

=
1

U(C)N

∫

Sd−1

∫ ∞

0
. . .

∫

Sd−1

∫ ∞

0
1

{

P (u(N), t(N)) ∈ Kd,k
a,ε (m)

}

(20)

×1{∀i : H(ui, ti) ∩ C 6= ∅}(t1 · · · tN )d−1 dt1 σ(du1) . . .dtN σ(duN ).

Suppose that u1, . . . , uN , t1, . . . , tN are such that the indicator functions occurring in the
multiple integral are all equal to one; then P := P (u(N), t(N)) ∈ K

d,k
a,ε (m) has a vertex v(P )

according to Lemma 3(b). This vertex is the intersection of d facets of P . Hence, there exists
an index set J ⊂ {1, . . . , N} with d elements such that

{v(P )} =
⋂

i∈J

H(ui, ti).

The segment S := [o, v(P )] satisfies

relintS ∩H(uj , tj) = ∅ for j ∈ {1, . . . , N} \ J.

12



Since S ⊂ C, we have
∫

Sd−1

∫ ∞

0
1{H(u, t) ∩ C 6= ∅, H(u, t) ∩ S = ∅}td−1 dt σ(du)

= U(C)− U(S) = U(C)− 2−dκd|S|d, (21)

where |S| denotes the length of S. Similarly as in the proof of [7, Lemma 3.6] we obtain

pN ≤
(

N
d

)

1
U(C)N

∫

Sd−1

∫ ∞

0
. . .

∫

Sd−1

∫ ∞

0
1{H(ui, ti) ∩ C 6= ∅, i = 1, . . . , d}

× [U(C)− c23mdad/k]N−d(t1 · · · td)d−1 dt1 σ(du1) . . . dtd σ(dud)

=
(

N
d

)

(

1− c23mdad/k

U(C)

)N−d

. (22)

This leads to the estimate

qk
a,ε(m) ≤

∞
∑

N=d+1

[2dU(C)λ]N

N !
exp{−2dU(C)λ}

(

N
d

)

(

1− c23mdad/k

U(C)

)N−d

=
1
d!

[2dU(C)λ]d exp{−2dU(C)λ}

×
∞

∑

N=d+1

1
(N − d)!

[

2dU(C)λ− c24mdad/kλ
]N−d

≤ 1
d!

[2dU(C)λ]d exp
{

−c24mdad/kλ
}

≤ c25mkd2
(

ad/kλ
)d

exp
{

−c24mdad/kλ
}

≤ c27(d, σ0) exp
{

−c26mdad/kλ
}

,

which completes the proof.

For a polytope P , let extP be the set of vertices and f0(P ) the number of vertices of P .

Lemma 5. Let α > 0 be given. There is a number ν ∈ N depending only on d and α such
that the following is true. For P ∈ Pd

o there exists a polytope L = L(P ) ∈ Pd
o satisfying

extL ⊂ extP , f0(L) ≤ ν, and U(L) ≥ (1 − α)U(P ). Moreover, there exists a measurable
selection P 7→ L(P ).

Proof. The following can be extracted from the proof of Lemma 4.2 in [7]. There exist
numbers k0 = k0(d) and b0 = b0(d) such that the following is true. Let P ∈ Pd

o be a
polytope and let P ⊂ RBd, where R is minimal. Let k ≥ k0. There is a measurable map
P 7→ L(P ) such that L = L(P ) is the convex hull of at most (k + 1)d vertices of P , o ∈ L,
and P ⊂ L + κRBd with κ = b0k−2/(d−1).
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There is a unit vector u such that R[o, u] ⊂ P and hence U(P ) ≥ U(R[o, u]) = 2−dκdRd.
By a suitable choice of k, depending only on d and α, we can achieve that κ ≤ 1 and 4dκ ≤ α.
Since hL ≤ R, we get

U(P ) ≤ 1
d

∫

Sd−1
[hL + κR]ddσ ≤ U(L) + κ · 2dκdRd ≤ U(L) + 4dκU(P ),

thus U(L) ≥ (1− α)U(P ), and ν = (k + 1)d is the required number.

Lemma 6. For m ∈ N, ε ∈ (0, 1) and a, λ > 0,

qk
a,ε(m) ≤ c28(d, ε)mkd2ν exp

{

−
(

1 + c29ε(d+3)/2
)

2dκ1−d/k
d ad/kλ

}

,

where ν depends only on d and ε.

Proof. We define C as in Lemma 3(a) and use (19) and (20) again. Assume that
u1, . . . , uN , t1, . . . , tN are such that the indicator functions in (20) are all equal to one. Then,
by Lemma 1,

U
(

P (u(N), t(N))
)

≥ (1 + γε(d+3)/2)κ1−d/k
d ad/k. (23)

Let α := γε(d+3)/2/(2 + γε(d+3)/2); then (1− α)(1 + γε(d+3)/2) = 1 + α. Put c30 := γ/(2 + γ);
then α > c30ε(d+3)/2. By Lemma 5, there are ν = ν(d, ε) vertices of P (u(N), t(N)) such that
the convex hull L = L

(

P (u(N), t(N)
)

of these vertices satisfies

U(L) ≥ (1− α)U
(

P (u(N), t(N))
)

. (24)

The inequalities (23) and (24) imply that

U(L) ≥ (1 + α) κ1−d/k
d ad/k. (25)

Now the same argument as in the proof of Lemma 5.2 in [7], with the obvious modifications,
yields

P(Z ∈ Kd,k
a,ε (m) | Y (HC) = N)[U(C)]N

≤
dν
∑

j=d+1

(

N
j

)(

j
d

)ν [

U(C)− (1 + α)κ1−d/k
d ad/k

]N−j
[U(C)]j .

Here j denotes the number of hyperplanes generating the vertices of L, and
(j
d

)

is the number
of points of intersection of these hyperplanes; thus

(j
d

)ν
estimates the possibilities to choose

the vertices of L. The probability that the other N − j hyperplanes intersecting C do not
meet L is given by [U(C)− U(L)]N−jU(C)−N+j , which is estimated using (25).

Inserting the inequality in (19), we can continue as in [7], finally using U(C) =
(c14mka1/k)dκd and α > c30ε(d+3)/2. This completes the proof.

6 Proof of Theorem 1

From now on, the proofs follow essentially the lines of those given in [7]. We will, therefore,
state only the necessary lemmas in their modified forms and refer to the corresponding proofs
in [7].
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Let a > 0 and ε ∈ (0, 1) be given. For h ∈ (0, 1] and m ∈ N we define

Kd,k
a,ε,h(m) :=

{

K ∈ Kd
o : vk(K) ∈ a(1, 1 + h), ηk(K) ∈ [mk, (m + 1)k), δ(K) ≥ ε

}

; (26)

thus

P(vk(Z) ∈ a(1, 1 + h), δ(K) ≥ ε) =
∞

∑

m=1

qk,h
a,ε (m)

with
qk,h
a,ε (m) := P

(

Z ∈ Kd,k
a,ε,h(m)

)

. (27)

Moreover, we put
qk,h
a,ε (m,n) := P

(

Z ∈ Kd,k
a,ε,h(m), fd−1(Z) = n

)

(28)

for n ∈ N; here fd−1(P ) denotes the number of facets of a polytope P . Then we have

P(vk(Z) ∈ a(1, 1 + h), δ(K) ≥ ε) =
∞

∑

m=1

∞
∑

n=d+1

qk,h
a,ε (m,n).

Finally, we define

Rk,h
a,ε (m, n) :=

{

(u1, . . . ,un, t1, . . . , tn) ∈ (Sd−1)n × (0,∞)n :

P (u(n), t(n)) ∈ K
d,k
a,ε,h(m), fd−1

(

P (u(n), t(n))
)

= n,

H(ui, ti) ∩ C 6= ∅ for i = 1, . . . , n
}

,

where the ball C is again defined as in Lemma 3(a), for the given a, ε,m.

Lemma 7. For m,n ∈ N, n ≥ d + 1 and h ∈ (0, 1],

qk,h
a,ε (m,n) =

(2dλ)n

n!

∫

· · ·
∫

︸ ︷︷ ︸

Rk,h
a,ε (m,n)

exp
{

−2dU
(

P (u(n), t(n))
)

λ
}

×(t1 · · · tn)d−1 dt1 . . . dtn σ(du1) . . . σ(dun).

The proof is the same as that for Lemma 6.1 in [7], with the obvious necessary changes.

Lemma 8. Let w > 0, h ∈ (0, 1/2) and r ≥ d− 1. Then

∫ k√1+h

1
xrexp{−wxd}dx

≤ c20hw[1 + (exp{w/2} − 1)−1]
∫ k√2

1
xrexp{−wxd}dx.

After the substitution xd = y, one can imitate the proof of Lemma 6.2 in [7] to obtain the
result.
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The next (technical) lemma states that each bound for qk,1
a,ε yields a bound for qk,h

a,ε which
is linear in h. This should be compared to the bound in Lemma 2 which is also linear in h.

Lemma 9. For m ∈ N, h ∈ (0, 1/2) and ad/kλ ≥ σ0 > 0,

qk,h
a,ε (m) ≤ c31(d, σ0)h ad/kλ mdkqk,1

a,ε (m).

Again, the proof is obtained by adapting the corresponding one from [7], namely that of
Lemma 6.3. After applying Lemmas 7 and 8, we arrive at the inequality

qk,h
a,ε (m,n) ≤ (2dλ)n

n!

∫

U(m,n)
t(ζ)d(n−1)+1c32hU(K(ζ, t(ζ)))λ

×
(

1 +
(

exp
{

2d−1U(K(ζ, t(ζ)))λ
}

− 1
)−1

)

×
∫ k√2

1
sd(n−1) exp

{

−2dU(K(ζ, t(ζ)))λsd
}

ds

× (t1 · · · tn−1)d−1dt1 . . . dtn−1σ(du1) . . . σ(dun),

where U(m,n), t(ζ) and K(·, ·) are defined as in [7], with the obvious changes. Now we have
to observe that vk(K(ζ, t(ζ)) = a, hence K(ζ, t(ζ)) ∈ Kd,k

a,ε (m), which implies that

c33mdad/k ≤ U(K(ζ, t(ζ))) ≤ c34mkdad/k,

by Lemma 3. The estimation can now be completed as in [7].

The following lemma establishes an upper estimate for an unconditional probability.

Lemma 10. Let ε ∈ (0, 1), h ∈ (0, 1/2) and ad/kλ ≥ σ0 > 0. Then

P(vk(Z) ∈ a(1, 1 + h), δ(Z) ≥ ε)

≤ c35(d, ε, σ0)h exp
{

−
(

1 + (c29/2)ε(d+3)/2
)

2dκ1−d/k
d ad/kλ

}

.

Here c29 is the constant appearing in Lemma 6. The proof of Lemma 10 follows the one of
Proposition 7.1 in [7] and uses Lemmas 9, 4 and 6, in this order.

The choice β = (c29/4)ε(d+3)/2 in Lemma 2 immediately proves Theorem 1 with b =
a(1 + h) in the case h ≤ min(h0, 1/2). As to arbitrary b ≥ a, we observe that Lemmas 2 and
10 have the same structure as Lemma 3.2 and Proposition 7.1, respectively, in [7]; they differ
only by the values of some parameters. It is, therefore, clear that Theorem 1 now follows
precisely in the same way as Theorem 1 of [7] was proved.

7 Proof of Theorem 2

In this section, Y denotes a stationary isotropic Poisson hyperplane process in Rd with
intensity λ > 0. For a convex body K ⊂ Rd and for k ∈ N, we have

P(Y (HK) = k) =
[2κ−1

d v1(K)λ]k

k!
exp {−2κ−1

d v1(K)λ}, (29)
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by [7, (4)], where B is now the ball with surface area 1, thus B = (dκd)−1/(d−1)Bd. Let Zo
be the zero cell of the tessellation induced by Y . Let k ∈ {1, . . . , d} be fixed.

Lemma 11. For each β > 0, there are constants h0 > 0, N ∈ N and c36 > 0, depending only
on β and d, such that for a > 0 and 0 < h < h0,

P(vk(Zo) ∈ a(1, 1 + h)) ≥ c36h
(

a1/kλ
)N

exp
{

−(1 + β)2κ−1/k
d a1/kλ

}

.

Proof. In order to be able to essentially copy the proof of Lemma 2, we define a measure ψ
on Rd by

ψ(A) :=
∫

Sd−1

∫ ∞

0
1A(tu) dt σ0(du)

for Borel sets A ⊂ Rd; here σ0 denotes the normalized spherical Lebesgue measure on Sd−1.
Let X̃ be the Poisson process in Rd with intensity measure λψ, and let Y ′ be the hyperplane
process defined by Y ′ := {H(x) : x ∈ X̃}. Then Y ′ is a Poisson process in the space H of
hyperplanes, and for a Borel set A ⊂ H we have

EY ′(A) = λψ({x ∈ Rd : H(x) ∈ A})

= 2λ
∫

Sd−1

∫ ∞

0
1A(H(u, t)) dt σ0(du).

This shows that Y ′ has the same intensity measure as Y . Since Y and Y ′ are Poisson
processes, they are stochastically equivalent. We can now repeat the proof of Lemma 2, where
we replace Z by Zo and dx by ψ(dx). Further, we observe that ψ(d(ru)) = (dκd)−1dr σ(du)
for ‖u‖ = 1 and ψ(d(ry)) = rψ(dy) for r > 0. In the exponential, vd(2(1 + β)Ba) (where
Ba = (a/κd)1/kBd) has to be replaced by ψ(2(1 + β)Ba) = 2(1 + β)(a/κd)1/k. With these
changes, the proof of Lemma 2 yields the assertion of Lemma 11.

We will need a stability version of the inequality (5).

Lemma 12. There is a positive constant γ, depending only on the dimension d, such that
for ε ∈ (0, 1) and every convex body K ⊂ Rd with rd(K) ≥ ε, the inequality

v1(K) ≥
(

1 + γε(d+3)/2
)

κ1−1/k
d vk(K)1/k (30)

holds for k = 2, . . . , d.

Proof. Without loss of generality, we assume that K has interior points, mean width 2 (the
same as the unit ball), and Steiner point o. We put vi := vi(K) for i = 0, . . . , d (v0 = κd) and
use the Aleksandrov-Fenchel inequalities v2

i ≥ vi−1vi+1 for i = 1, . . . , d−1 (see [15]). Theorem
6.6.6 and Lemma 6.6.5 of [15] provide an improvement of the first of these inequalities, namely

v2
1 − v0v2 ≥ c37δ(K, Bd)(d+3)/2,

where δ is the Hausdorff distance. This can be rewritten as

v1

v0
≥ v2

v1

(

1 +
c37

v0v2
δ(K, Bd)(d+3)/2

)

≥ v2

v1
(1 + α)

17



with α := c38δ(K, Bd)(d+3)/2, since v0v2 ≤ v2
1 = c39 (v1 being a constant multiple of the mean

width). From
v1

v0
≥ (1 + α)

v2

v1
≥ · · · ≥ (1 + α)

vk

vk−1

we get
(

v1

v0

)k−1

≥ (1 + α)k−1 vk

v1

and thus
vk
1

vk−1
0 vk

≥ 1 + c38δ(K, Bd)(d+3)/2.

If δ := δ(K,Bd) ≥ 1/2, then (since ε < 1)

vk
1

vk−1
0 vk

≥ 1 + c40ε(d+3)/2.

If δ ≤ 1/2, let rBd ⊂ K ⊂ sBd where r is maximal and s is minimal. Then (by the definition
of the Hausdorff metric) s ≤ 1 + δ and r ≥ 1 − δ ≥ 1/2, hence ε ≤ rd(K) ≤ (s/r) − 1 ≤ 4δ
and thus

vk
1

vk−1
0 vk

≥ 1 + c41ε(d+3)/2.

Both cases together give

v1 ≥
(

1 + c42ε(d+3)/2
)1/k

v1−1/k
0 v1/k

k ≥
(

1 + c43ε(d+3)/2
)

κ1−1/k
0 v1/k

k .

Theorem 2 can now be proved in essentially the same way as Theorem 1, and we list only the
necessary changes in Sections 5 and 6, in addition to those already mentioned in the proof of
Lemma 11. Definitions (16) and (17) are replaced by

Kd,k
a,ε (m) := {K ∈ Kd,k

a (m) : rd(K) ≥ ε}, qk
a,ε(m) := P(Zo ∈ Kd,k

a,ε (m)).

Lemma 13. For m ∈ N and a1/kλ ≥ σ0 > 0,

qk
a,ε(m) ≤ c44(d, σ0) exp{−c45ma1/kλ}. (31)

Proof. In the proof of Lemma 4, the number U(C) is replaced by dv1(C). In the integrations,
tdt is replaced by dt. Equation (21) now reads

∫

Sd−1

∫ ∞

0
1{H(u, t) ∩ C 6= ∅, H(u, t) ∩ S = ∅}dt σ(du)

= dv1(C)− dv1(S) = dv1(C)− κd−1|S|,

hence (22) reads

pN ≤
(

N
d

)

(

1− c46ma1/k

v1(C)

)N−d

.
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Continuing as in the proof of Lemma 4, we arrive at (31).

Lemma 14. Let k ∈ {2, . . . , d}. For m ∈ N, ε ∈ (0, 1) and a, λ > 0,

qk
a,ε(m) ≤ c47(d, ε)mkdν exp

{

−
(

1 + c48ε(d+3)/2
)

2κ−1/k
d a1/kλ

}

,

where ν depends only on d and ε.

Proof. We use (19) and (20), with the changes already made for the proof of Lemma 13.
Assume that u1, . . . ,uN , t1, . . . , tN are such that the indicator functions in (20) are all equal
to one. By Lemma 12,

v1(P (u(N), t(N))) ≥
(

1 + γε(d+3)/2
)

κ1−1/k
d a1/k.

We define α as in the proof of Lemma 6 and put c49 := γ/(2+γ), so that α > c49ε(d+3)/2. By
Lemma 4.2 of [7] (with B = (dκd)−1/(d−1)Bd), there are ν = ν(d, ε) vertices of P (u(N), t(N))
such that their convex hull L = L(P (u(N), t(N))) satisfies

v1(L) ≥ (1− α)v1(P (u(N), t(N))).

This gives
v1(L) ≥ (1 + α)κ1−1/k

d a1/k.

As in the proof of Lemma 6 (and of Lemma 5.2 in [7]) we deduce that

P(Zo ∈ Kd,k
a,ε (m) | Y (HC) = N)[dv1(C)]N

≤
dν
∑

j=d+1

(

N
j

)(

j
d

)ν [

dv1(C)− d(1 + α)κ1−1/k
d ad/k

]N−j
[dv1(C)]j .

By Lemma 3,
v1(C) = c50mka1/k.

The assertion is now obtained as in the proofs quoted above.

The further proof again follows the lines of [7] and of the proof of Theorem 1. Definitions
(26), (27) and (28) are replaced by

Kd,k
a,ε,h(m) :=

{

K ∈ Kd
o : vk(K) ∈ a(1, 1 + h), ηk(K) ∈ [mk, (m + 1)k), rd(K) ≥ ε

}

,

qk,h
a,ε (m) := P

(

Zo ∈ Kd,k
a,ε,h(m)

)

,

qk,h
a,ε (m,n) := P

(

Zo ∈ Kd,k
a,ε,h(m), fd−1(Zo) = n

)

Lemma 7 is replaced by

qk,h
a,ε (m,n) =

(2λ)n

n!

∫

· · ·
∫

︸ ︷︷ ︸

Rk,h
a,ε (m,n)

exp
{

−2κ−1
d v1

(

P (u(n), t(n))
)

λ
}

×dt1 . . . dtn σ0(du1) . . . σ0(dun).
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This is a special case of Lemma 6.1 in [7]. Instead of Lemma 8, we use Lemma 6.2 from
[7], with d replaced by k ≥ 2. Lemma 9 is replaced by the following assertion. For m ∈ N,
h ∈ (0, 1/2) and a1/kλ ≥ σ0 > 0,

qk,h
a,ε (m) ≤ c51(d, σ0)h a1/kλmkqk,1

a,ε (m).

The proof is obtained by adapting the proof of Lemma 6.3 in [7]. In the course of the proof,
one has to use that Lemma 3 implies

c52ma1/k ≤ v1(K) ≤ c53mka1/k

for K ∈ Kd,k
a,ε (m). The counterpart of Lemma 10 now reads as follows. Let ε ∈ (0, 1),

h ∈ (0, 1/2) and a1/kλ ≥ σ0 > 0. Then

P(vk(Zo) ∈ a(1, 1 + h), rd(Zo) ≥ ε)

≤ c54(d, ε, σ0)h exp
{

−
(

1 + (c48/2)ε(d+3)/2
)

2κ−1/k
d a1/kλ

}

.

With these preliminaries, the proof of Theorem 2 can now be completed in the same way as
that of Theorem 1.

8 Proof of Theorem 3

In large parts of the proofs of Theorems 1 and 2, only the following properties of the functional
vk are used: it is monotone under set inclusion, i.e., vk(K1) ≤ vk(K2) if K1 ⊂ K2, positively
homogeneous of degree k, i.e., vk(rK) = rkvk(K) for r ≥ 0, and continuous with respect to
the Hausdorff metric. These properties are shared, with k = 1, by the inradius functionals
ρo and ρ. Hence, the corresponding parts of the proofs apply also to Theorem 3. Additional
properties of the function vk were only needed for the stability estimates of Lemmas 1 and
12 and for Lemma 3. We replace these lemmas by the following ones.

Lemma 15. There is a positive constant γ, depending only on the dimension d, such that
for ε ∈ (0, 1) and every convex body K ∈ Kd

o with δ(K) ≥ ε the inequality

U(K) ≥ (1 + γε(d+1)/2)κdρo(K)d

holds.

Proof. Without loss of generality, we assume that ρo(K) = 1. Let K ⊂ RoBd, where Ro is
minimal. First we assume that Ro ≤ 3. Put Ro = 1 + h, then ε ≤ δ(K) ≤ h ≤ 2. Proceeding
similarly as in Case 1 of the proof of Lemma 1, we find that

U(K)− U(Bd) ≥ c55h(d+1)/2 ≥ c55ε(d+1)/2.

Now suppose that Ro > 3. Then there is a spherical cap A ⊂ Sd−1 with σ(A) = c56 > 0 on
which hK ≥ 2. It follows that

U(K)− U(Bd) ≥ 1
d

∫

A

(

hd
K − 1

)

dσ ≥ c57ε(d+1)/2,
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since ε < 1. Hence, both cases yield

U(K) ≥ U(Bd) + c58ε(d+1)/2 =
(

1 + c59ε(d+1)/2
)

κdρo(K)d.

Lemma 16. There is a positive constant γ, depending only on the dimension d, such that
for ε ∈ (0, 1) and every convex body K ∈ Kd

o with rd(K) ≥ ε the inequality

v1(K) ≥ (1 + γε(d+1)/2)κdρ(K)

holds.

The proof is similar to that of Lemma 15.

For a replacement of Lemma 3, let a > 0 be given. For m ∈ N we set

Kd
a(m) := {K ∈ Ko : ρ(K) ∈ a(1, 2), D(K)/ρ(K) ∈ [m,m + 1)}.

Lemma 17. Let m ∈ N. Then

(a) K ∈ Kd
a(m) implies that K ⊂ c60maBd;

(b) there exists a measurable map Kd
a(m) ∩ Pd

o 3 P 7→ v(P ) such that v(P ) is a vertex of P
with ‖v(P )‖ ≥ c61ma.

A similar result holds with ρo instead of ρ(K). The proof is immediate.

With these changes, the proofs of Theorems 1 and 2 yield the proof of Theorem 3.
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