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Abstract

Let C(K) denote the Banach algebra of continuous real functions, with the
supremum norm, on a compact Hausdorff space K. For two subsets of C(K), one
can define their product by pointwise multiplication, just as the Minkowski sum
of the sets is defined by pointwise addition. We study this for a special class of
closed convex sets, namely closed intervals. Our main interest is in correlations
between properties of the product of order intervals in C(K) and properties of the
underlying space K. When K is finite, the product of two intervals in C(K) is
always an interval. Surprisingly, the converse of this result is true for a wide class
of compacta. We show that a first-countable space K is finite whenever it has the
property that the product of two nonnegative intervals is closed, or the property
that the product of an interval with itself is convex. That some assumption on K is
needed, can be seen from the fact that, if K is the Stone–Čech compactification of
N, then the product of two intervals in C(K) with continuous boundary functions
is always an interval. For any K, it is proved that the product of two positive
intervals is always an interval, and that the product of two nonnegative intervals
is always convex. Finally, square roots of intervals are investigated, with results of
similar type.
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1 Introduction

The relations between properties of the Banach space C(K) of continuous real functions
on a compact Hausdorff space and properties of the underlying space K have been an
object of study in analysis and topology for decades. The vector addition of closed
convex sets in a real vector space, also called Minkowski addition, is a much investigated
operation with many applications. These two facts were a motivation to initiate in [9]
a study of Minkowski addition of closed convex sets in C(K). We restricted ourselves
there to particularly simple classes of convex sets, mainly intervals and intersections of
balls. An interval [f, g] in C(K) is the set of all h ∈ C(K) with f ≤ h ≤ g, where f and
g are bounded real functions on K (not necessarily elements of C(K)). Intervals in this
sense are closed and convex, and the set of intervals is closed under Minkowski addition
(a non-trivial fact). One of the aims of [9] was to investigate to what extent familiar
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properties of the Minkowski addition in Euclidean spaces carry over to intervals and
other convex sets in C(K). As it turned out, some of these properties characterize the
underlying space K as being extremally disconnected.

Now, C(K) is not only a Banach space, but a Banach algebra, and this fact sug-
gests to study not only the pointwise addition, but also the pointwise multiplication
of convex sets. That the multiplication of sets in C(K), even of open balls, bears
some surprises and difficulties, was already evident from the papers [2], [3], [4], [8].
The latter, for example, shows that multiplication in C(K) is an open mapping if
and only if K has topological (covering) dimension zero. In the following, we study
mainly the multiplication of intervals in C(K). Let us first mention that in R (that is,
when K is a singleton) the algebraic product of two compact intervals I, J , defined by
I · J := {ab : a ∈ I, b ∈ J}, is again an interval. In Rn (that is, when K is finite) the
same is true, replacing intervals by Cartesian products of intervals. Therefore, if the
product of two subsets ∅ 6= A,B ⊂ C(K) is defined by A · B = {hη : h ∈ A, η ∈ B},
it is natural to ask whether for two intervals [f, g], [ϕ,ψ] their product [f, g] · [ϕ,ψ] is
an interval. This is true, for example, if [f, g], [ϕ,ψ] satisfy f > 0, ϕ > 0 (Thm. 3.1).
Perhaps surprisingly, it becomes already false if only, say, f > 0 and ϕ ≥ 0. More to
the point, if K is first-countable and if the latter condition, together with continuity of
f, g, ϕ, ψ, is sufficient in order that [f, g] · [ϕ,ψ] be closed, then K must be finite (Thm.
4.1).

The condition that K be first countable is needed to ensure, when K is infinite, the
existence of a nontrivial convergent sequence, a technical tool used in our constructions.
That some assumption of this kind is necessary, is made evident by the fact that in
C(βN) (where βN denotes the Stone–Čech compactification of the discrete space N of
natural numbers) the product of two intervals [f, g], [ϕ,ψ] with continuous functions
f, g, ϕ, ψ is always an interval (Prop. 4.1).

While the product of intervals in C(K) for general K remains unexplored at present,
we exhibit more instances where first-countable spaces K with desirable properties of
the product of intervals in C(K) must be finite (thus, the exceptional role of extremally
disconnected spaces in [9] is here played by finite spaces). While the product of two
nonnegative intervals in C(K) is always convex (Thm. 4.2), all products [f, g] · [f, g]
with continuous f, g in C(K) with first-countable K are convex only if K is finite (Thm.
4.3).

Finally, we study square roots of intervals. A closed convex set C with C ·C = [f, g]
is called a square root of the interval [f, g]. In order that the interval [f, g] have a square
root which is an interval, it is necessary that g ≥ 0 and |f | ≤ g. If K is first-countable
and if every interval [f, g] with −g ≤ f ≤ 0 < g has a square root which is an interval,
then K is finite (Thm. 5.1).

We may remark that our results, as far as they characterize finite spaces K via prop-
erties of C(K), are in line with some other results existing in the literature. Probably
the best known of this type is the assertion that K is finite if C(K) has finite dimension,
or that K is finite if C(K) is reflexive. A less simple example is Prop. 4.3.12 in [1]:
Suppose that K is metrizable. If C(K) is order-complete, then K is finite.

2



2 Preliminaries

K is a compact Hausdorff space, and C(K) is the Banach space of continuous real
functions on K with the supremum norm ‖·‖∞. Besides the sum f+g of functions f, g ∈
C(K), there is also a (pointwise defined) product, denoted by fg. These operations
carry over to subsets A,B of C(K), by means of

A+B = {a+ b : a ∈ A, b ∈ B}, A ·B = {ab : a ∈ A, b ∈ B}.

Recall that by an interval in C(K) we understand a set of the form

[f, g] = {h ∈ C(K) : f ≤ h ≤ g},

where f, g : K → R are bounded functions (generally not elements of C(K)) and an
inequality f ≤ h is defined pointwise. Every interval is bounded and, as shown in [9],
closed and convex (but may be empty). For the handling of intervals, the notion of
semicontinuity is needed.

A bounded function f : K → R is lower semicontinuous (abbreviated by l.s.c.) if,
for each x ∈ K,

f(x) ≤ lim inf
y→x

f(y) := sup
U∈U(x)

inf
y∈U\{x}

f(y),

where U(x) denotes the system of neighbourhoods of x. The function f is upper semi-
continuous (abbreviated by u.s.c.) if −f is l.s.c. For a bounded function f , the function

f∧ = sup{h ∈ C(K) : h ≤ f}

is l.s.c. and is called the lower semicontinuous envelope of f . The function

f∨ = inf{h ∈ C(K) : h ≥ f}

is u.s.c. and is called the upper semicontinuous envelope of f .

As shown in [9], every interval [f, g] satisfies [f, g] = [f∨, g∧], and [f∨, g∧] 6= ∅ if
and only if f∨ ≤ g∧. Thus, every nonempty interval has a canonical representation,
that is, one of the form [f, g] with f u.s.c., g l.s.c. and f ≤ g. For the following result,
proved in [9], the canonical representation is crucial.

Proposition 2.1. If [f, g], [ϕ,ψ] are intervals in C(K) in canonical representation,
then

[f, g] + [ϕ,ψ] = [f + ϕ, g + ψ]. (2.1)

For intervals in C(K), the properties collected in the following definition will play
an important role.

Definition 2.1. An interval is called

(1) signed if it has a representation [f, g] where either f > 0 or g < 0,

(2) positive (nonnegative) if it has a representation [f, g] with f > 0 (with f ≥ 0),

(3) continuous if it has a representation [f, g] with continuous functions f, g.
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We note that for a signed interval, also its canonical representation [f, g] has the
property that either f > 0 or g < 0. Further, a representation [f, g] of an interval with
continuous f, g is its canonical representation. We also remark that in [9], Thm. 6.2,
the continuous intervals have been characterized as being precisely the summands of
balls.

Turning to products, we note an obvious fact on products of real intervals, which
will be used repeatedly. Let I, J ⊂ R be nonempty, compact intervals. Their (algebraic)
product is defined by

I · J := {ab : a ∈ I, b ∈ J}.

(We call this the ‘algebraic’ product, to distinguish it from the Cartesian product.) Let

u = min{ab : a ∈ I, b ∈ J}, v = max{ab : a ∈ I, b ∈ J}.

Then I · J ⊂ [u, v], trivially. If u = a0b0, v = a1b1 with a0, a1 ∈ I and b0, b1 ∈ J , define

f(t) := ((1− t)a0 + ta1) · ((1− t)b0 + tb1) for t ∈ [0, 1].

Then f(0) = u and f(1) = v. Let z ∈ [u, v]. By continuity, there exists τ ∈ [0, 1] with
f(τ) = z, hence

z = ((1− τ)a0 + τa1) · ((1− τ)b0 + τb1) ,

and here (1− τ)a0 + τa1 ∈ I and (1− τ)b0 + τb1 ∈ J . It follows that I · J = [u, v].

3 Products of intervals in C(K)

Recall that K is a compact Hausdorff space and C(K) is the Banach algebra of con-
tinuous real functions on K with the supremum norm. In view of the result (2.1) on
the sum of two intervals, it is natural to ask what is true for their product,

[f, g] · [ϕ,ψ] = {hη : h ∈ [f, g], η ∈ [ϕ,ψ]} .

A particular case is the product of a scalar with an interval (the scalar can be
considered as a constant function). Clearly, for an arbitrary interval [f, g] ∈ C(K), we
have λ[f, g] = [λf, λg] if λ > 0 and λ[f, g] = [λg, λf ] if λ < 0. The distributive law of
multiplication of a scalar with respect to the Minkowski addition of two intervals works
fine. By contrast, the multiplication of an interval with respect to the addition of scalars
satisfies the distributive law only when the scalars have the same sign. Consider, for
instance, the unit ball [−1̄, 1̄] of the space C(K) (we denote by c̄ the constant function
with value c). Then

[−1̄, 1̄] = (−1 + 2)[−1̄, 1̄] 6= (−1)[−1̄, 1̄] + 2[−1̄, 1̄] = [−1̄, 1̄] + [−2̄, 2̄] = [−3̄, 3̄].

Suppose now that [f, g], [ϕ,ψ] are intervals in C(K). For each x ∈ K we have

[f(x), g(x)] · [ϕ(x), ψ(x)] = [u(x), v(x)]
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with

u(x) = min{ab : a ∈ [f(x), g(x)], b ∈ [ϕ(x), ψ(x)]},

v(x) = max{ab : a ∈ [f(x), g(x)], b ∈ [ϕ(x), ψ(x)]}.

This defines bounded functions u, v on K. Trivially, we have

[f, g] · [ϕ,ψ] ⊂ [u, v].

We call (u, v) the pair of bounding functions corresponding to the quadruple (f, g, ϕ, ψ)
(although this correspondence is not shown in the notation).

Lemma 3.1. Let [f, g], [ϕ,ψ] be intervals in canonical representation in C(K), and let
(u, v) be the pair of bounding functions corresponding to (f, g, ϕ, ψ).

(1) If the product [f, g] · [ϕ,ψ] is an interval, then it is the interval [u∨, v∧].

(2) If f, g, ϕ, ψ are continuous, then u, v are continuous.

Proof. Let f, g, ϕ, ψ, u, v be as in the lemma. Assume that the product P := [f, g]·[ϕ,ψ]
is an interval. It is nonempty and hence has a unique canonical representation P =
[F,G]. For each H ∈ P we have u ≤ H ≤ v and hence also

u∨ ≤ H ≤ v∧.

Since [F,G] is in canonical representation, we have F = inf [F,G] and G = sup [F,G]
(see [9], p. 357) and hence u∨ ≤ F and G ≤ v∧. Since u(x) is an attained minimum,
there are numbers a, b with f(x) ≤ a ≤ g(x), ϕ(x) ≤ b ≤ ψ(x) and ab = u(x). By
[9], Lemma 4.2, there are functions h ∈ [f, g] and η ∈ [ϕ,ψ] such that h(x) = a and
η(x) = b. Then hη ∈ P = [F,G] and (hη)(x) = ab = u(x). It follows that u(x) ≥ F (x).
We conclude that u ≥ F , hence u∨ ≥ F∨ = F and thus u∨ = F . Simililary we obtain
that v∧ = G. This proves (1).

To prove (2), let f, g, ϕ, ψ be continuous. The mapping

x 7→ [f(x), g(x)]× [ϕ(x), ψ(x)]

fromK into the set of rectangles in R2 is continuous with respect to the Hausdorff metric
on the space of nonempty compact subsets of R2. The product mapping (a, b) 7→ ab from
R2 to R is continuous. Therefore, also the mapping x 7→ min[f(x), g(x)] · [ϕ(x), ψ(x)]
is continuous. Similar for max.

We return to the question whether to the representation (2.1) of the sum of two
intervals in canonical representation there is a counterpart for the algebraic product. It
turns out that such a counterpart exists only under very strong additional assumptions.
First we prove the following.

Theorem 3.1. The product of two signed intervals in C(K) is always a signed interval.
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Proof. Let [f, g], [ϕ,ψ] be intervals in C(K), without loss of generality in canonical
representation. We shall prove the following:

if f > 0, ϕ > 0, then [f, g] · [ϕ,ψ] = [fϕ, gψ], (3.1)

if f > 0, ψ < 0, then [f, g] · [ϕ,ψ] = [gϕ, fψ], (3.2)

if g < 0, ψ < 0, then [f, g] · [ϕ,ψ] = [gψ, fϕ], (3.3)

if g < 0, ϕ > 0, then [f, g] · [ϕ,ψ] = [fψ, gϕ]. (3.4)

Suppose, first, that f > 0, ϕ > 0. The relation [f, g] · [ϕ,ψ] ⊂ [fϕ, gψ] is trivial. To
prove the reverse inclusion, assume that H ∈ [fϕ, gψ]. Let

λ = max{f,H/ψ}, µ = min{g,H/ϕ}.

Since ψ is l.s.c. and H is continuous, the function H/ψ is u.s.c. Since also f is u.s.c.,
the function λ is u.s.c. Similarly, µ is l.s.c. Moreover, f ≤ g, f ≤ H/ϕ, H/ψ ≤ g,
H/ψ ≤ H/ϕ, hence λ ≤ µ. By the Katětov–Tong insertion theorem ([7], [10], or [6],
p. 61), there exists a function h ∈ [λ, µ]. Then f ≤ h ≤ g, and the function η := H/h
(which can be defined since f > 0 implies h > 0) satisfies ϕ ≤ η ≤ ψ, thus

H = hη ∈ [f, g] · [ϕ,ψ].

This completes the proof of (3.1).

Relations (3.2)–(3.4) follow from (3.1). For instance, in the case of (3.2) we have

[f, g] · [ϕ,ψ] = −[f, g] · [−ψ,−ϕ] = −[−fψ,−gϕ] = [gϕ, fψ].

Similarly, the remaining cases (3.3), (3.4) are settled.

4 Properties of products of intervals

One might be inclined to think that, for example, in (3.1) the positive intervals could
be replaced by nonnegative intervals. This, however, is generally not possible. Of
course, if the space K is discrete (and thus finite, since K is compact), then for any
two intervals [f, g], [ϕ,ψ] we have [f, g] · [ϕ,ψ] = [u, v] (with u, v as in Lemma 3.1),
since any H ∈ [u, v] can be written, for each x ∈ K, in the form H(x) = h(x)η(x) with
h(x) ∈ [f(x), g(x)] and η(x) ∈ [ϕ(x), ψ(x)], and every real function on K is continuous.
Under a restriction on the space K, we can reverse this observation. As it turns out,
none of the inequalities f > 0, ϕ > 0 can be relaxed in general, even if the functions
f, g, ϕ, ψ are continuous, and even if we do not require the full interval property of the
product, but only closedness.

Theorem 4.1. Assume that K is first-countable. If in C(K) the product of a positive
and a nonnegative interval, both continuous, is always closed, then K is finite.
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Proof. Assume that the assumptions are satisfied. Suppose that K is not finite. Then
(since K is compact) there is a point x0 ∈ K that is not an isolated point, that
is, every neighbourhood of x0 contains a point different from x0. Since K is a first-
countable Hausdorff space, there is in K a decreasing sequence (Un)n∈N of open sets
forming a neighbourhood basis of x0, and also a sequence (yn)n∈N of points satisfying
yn ∈ Un \ Un+1 for n ∈ N. Then the sequence (yn)n∈N is injective and converges to x0.

By induction, we show the existence of a sequence (pn)n∈N of continuous functions
pn : K → [1, 2] with special properties. First, we set p1 ≡ 1. If for the number n ∈ N
the continuous function pn : K → [1, 2] has already been defined, we use the Tietze
extension theorem to find a continuous function pn+1 : K → [1, 2] with

pn+1(yn+1) =

{
1, if n+ 1 is odd,

2, if n+ 1 is even,
pn+1(x) = pn(x) for x ∈ K \ Un+1.

After this inductive process, to each x ∈ K\{x0} there is some m ∈ N such that x /∈ Um

and therefore pk(x) = pm(x) for k ≥ m. We define p(x) = pm(x) and put p(x0) = 0.
Summarizing, we have:

The function p : K → [1, 2] is continuous on K \ {x0}, and it satisfies

p(yn) =

{
1, if n is odd,

2, if n is even.

Next, we define
ϕ(x0) = 0, ϕ(yn) = 1/n for n ∈ N,

and extend this to a continuous function ϕ : K → [0, 1]. Further, we define f, g : K → R
by f = 1̄ and g = 2̄.

The function
H = pϕ

is continuous on K, since p is continuous on K \ {x0}, ϕ is continuous on K, the
function p is bounded, and ϕ(x0) = 0. We claim that H is in the closure of the product
[f, g] · [ϕ,ϕ]. To prove this, let ε > 0 be given. We can choose a number m ∈ N with
ϕ(x) ≤ ε for x ∈ Um. Define

qm(x) =

{
p(x) for x ∈ K \ Um,

1 for x = x0,

and extend this to a continuous function qm : K → [1, 2]. Then qm ∈ [f, g], hence the
function Hm = qmϕ satisfies Hm ∈ [f, g] · [ϕ,ϕ]. Further, we have Hm(x) = H(x) for
x ∈ K \ Um, while for x ∈ Um we get

|Hm(x)−H(x)| = |qm(x)− p(x)|ϕ(x) ≤ ε.

Thus, ‖Hm −H‖∞ ≤ ε. Since ε > 0 was arbitrary, this shows that H is in the closure
of [f, g] · [ϕ,ϕ]. Since by assumption the latter is closed, we have H ∈ [f, g] · [ϕ,ϕ],
hence there is a function h ∈ [f, g] with H = hϕ. This yields h(x) = p(x) for x 6= x0,
in particular h(yn) = 1 for odd n and h(yn) = 2 for even n, which contradicts the
continuity of h at x0.
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In Theorem 4.1 (and in later theorems), first countability of K is assumed in order
to ensure that for every A ⊂ K and every x ∈ A, there exists a sequence in A that
converges to x. That some assumption of this kind cannot be avoided, can be seen
from the following.

Let N denote the discrete space of natural numbers (it could be replaced by any
infinite discrete space), and let βN be the Stone–Čech compactification of N (see, e.g.,
[5]). For K = βN, the proof of Theorem 4.1 breaks down, since βN does not contain a
nontrivial convergent sequence (see, e.g., Corollary 3.6.15 in [6]). And indeed, in C(βN)
the product of two intervals defined by continuous functions is always an interval. To
show this, we use the fact that there is an order-preserving linear isometry Φ : `∞(N)→
C(βN), where `∞(N) is the Banach space of all bounded real functions on N with the
supremum norm.

Proposition 4.1. In C(βN), the product of any two continuous intervals is an interval.

Proof. The Stone–Čech compactification βN contains a dense subspace homeomorphic
to N, and we can assume that N is already a dense subspace of βN. The linear isometry
Φ is then the extension of a function in `∞(N) to a function in C(βN).

Let [f, g], [ϕ,ψ] be intervals in C(βN), where f, g, ϕ, ψ are continuous, and let (u, v)
be the pair of bounding functions corresponding to the quadruple (f, g, ϕ, ψ). According
to Lemma 3.1, the functions u, v are also continuous. We state that

[f, g] · [ϕ,ψ] = [u, v]. (4.1)

The inclusion [f, g] · [ϕ,ψ] ⊂ [u, v] is clear.

Let H ∈ [u, v]. For each n ∈ N we have

[f(n), g(n)] · [ϕ(n), ψ(n)] = [u(n), v(n)],

by the definition of u, v. Since H(n) ∈ [u(n), v(n)], there are numbers h̃(n) ∈
[f(n), g(n)] and η̃(n) ∈ [ϕ(n), ψ(n)] such that

h̃(n)η̃(n) = H(n).

The functions h̃, η̃ thus defined on N are bounded and hence elements of `∞(N). Let
h = Φ(h̃), η = Φ(η̃) be their extensions to C(βN). Since on the dense subspace N the
continuous functions f, g, ϕ, ψ, h, η satisfy f ≤ h ≤ g, ϕ ≤ η ≤ ψ and H = hη, they
satisfy the same relations on βN. This proves that h ∈ [f, g], η ∈ [ϕ,ψ], H = hη on βN
and thus H ∈ [f, g] · [ϕ,ψ], which completes the proof of (4.1).

In contrast, in C(αN), where αN denotes the one point compactification of N, the
product of two continuous intervals need not be an interval. This follows from Theorem
4.1, since αN is a first-countable compact Hausdorff space.

Intervals are closed and convex. As the product of two intervals [f, g], [ϕ,ψ] need
not be closed, even if they are nonnegative, it is a natural question whether it must
at least be convex. That this is not a trivial question, can be seen from Theorem 4.3,
where the nonnegativity assumption is deleted and convexity does not hold generally.
With the nonnegativity assumption, however, convexity can be proved.
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Theorem 4.2. The product of two nonnegative intervals in C(K) is always convex.

Proof. Let bounded functions 0 ≤ f ≤ g, 0 ≤ ϕ ≤ ψ be given, and let H1, H2 ∈
[f, g] · [ϕ,ψ]. Thus, there are functions h1, h2 ∈ [f, g], η1, η2 ∈ [ϕ,ψ] such that Hi = hiηi
for i = 1, 2. Let 0 < t < 1. We have to show that

H := (1− t)H1 + tH2 = (1− t)h1η1 + th2η2 satisfies H ∈ [f, g] · [ϕ,ψ]. (4.2)

To prepare this, let M = {(a, α, b, β) ∈ R4 : a, α, b, β ≥ 0} and z = (a, α, b, β) ∈M .
We consider (a, α) and (b, β) as points in the Euclidean plane R2 with the standard
basis. They are opposite vertices of a unique rectangle (possibly degenerate) with edges
parallel to the coordinate axes. We denote this rectangle by Rec(z). Further, we define
the hyperbola

Hyp(z) = {(c, γ) ∈ R2 : cγ = (1− t)aα+ tbβ}

(which may be degenerate). The function p defined by

p(τ) =
(
(1− τ)a+ τb

)
·
(
(1− τ)α+ τβ

)
, 0 ≤ τ ≤ 1,

satisfies p(0) = aα, p(1) = bβ, hence there is some τ0 ∈ [0, 1] with p(τ0) = (1−t)aα+tbβ.
Thus, the rectangle Rec(z) has a nonempty intersection with the hyperbola Hyp(z).
We need to find a continuous map

P : M → R2 with P (z) ∈ Rec(z) ∩Hyp(z) for all z ∈M. (4.3)

Given such a map, we can proceed as follows. For x ∈ K, we define

z(x) = (h1(x), η1(x), h2(x), η2(x))

Then we define P(x) = P (z(x)) for x ∈ K and thus a mapping P : K → R2. It is
continuous and satisfies P(x) ∈ Rec(z(x))∩Hyp(z(x)). Hence, if we define functions h, η
onK by P(x) = (h(x), η(x)), then h and η are continuous, they satisfy h(x)η(x) = H(x)
since P(x) ∈ Hyp(z(x)), and f ≤ h ≤ g, ϕ ≤ η ≤ ψ since P(x) ∈ Rec(z(x)) and
the latter rectangle is contained in the rectangle Rec(f(x), g(x), ϕ(x), ψ(x)). Thus,
h ∈ [f, g], η ∈ [ϕ,ψ] and hη = H, which shows that H ∈ [f, g] · [ϕ,ψ] and thus proves
(4.2).

We proceed to construct the mapping P . First, if a = b = 0, we define

P (z) = (0, (1− t)α+ tβ).

If α = β = 0, we define
P (z) = ((1− t)a+ tb, 0).

Now we assume that max{a, b} > 0 and max{α, β} > 0. Then (1− t)a+ tb 6= 0 and
(1− t)α+ tβ 6= 0, hence we can define

A =

(
(1− t)aα+ tbβ

(1− t)α+ tβ
, (1− t)α+ tβ

)
, (4.4)

B =

(
(1− t)a+ tb,

(1− t)aα+ tbβ

(1− t)a+ tb

)
. (4.5)
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The point A belongs to Hyp(z) (trivially) and to Rec(z) (observe that its first coordinate
is a convex combination of a and b, and its second coordinate is a convex combination
of α and β). Similarly, B ∈ Hyp(z) ∩ Rec(z). The point

C =
((1− t)α+ tβ)A+ ((1− t)a+ tb)B

(1− t)α+ tβ + (1− t)a+ tb
, (4.6)

is a convex combination of A and B and hence belongs to Rec(z). Let L be the line in
R2 that is parallel to the vector (1, 1) and passes through C. Either the points A and
B coincide, then C is this point and hence lies on Hyp(z), or the points A and B lie
on different sides of L. Since the part of Hyp(z) between A and B lies in Rec(z), the
line L intersects Hyp(z) in a unique point belonging to Rec(z). This point we define
as P (z).

We have to show that the mapping P thus defined is continuous. Let z =
(a, α, b, β) ∈ M . Suppose, first, that max{a, b} > 0 and max{α, β} > 0. Then there
is a neighbourhood V of z in M such that max{a′, b′} > 0 and max{α′, β′} > 0 for
all z′ = (a′, α′, b′, β′) ∈ V . Since A,B,C defined above are continuous functions of
a, α, b, β and also the intersection point of L and Hyp defines a continuous function,
the mapping P is continuous at z.

Suppose, second, that z = (0, 0, 0, 0). Then Rec(z) = {(0, 0)} and P (z) = (0, 0).
Let U be a neighbourhood of (0, 0) in R2. There is a neighbourhood V of z in M such
that for all z′ ∈ M we have Rec(z′) ⊂ U and hence P (z′) ∈ U . Thus, P is continuous
at z.

Third, let z = (a, α, b, β) ∈ M belong to one of the remaining cases, that is, either
α = β = 0, max{a, b} > 0, or a = b = 0, max{α, β} > 0. Suppose, first, that α = β = 0,
max{a, b} > 0. By definition, P (z) = ((1 − t)a + tb, 0). Let U be a neighbourhood of
P (z) in R2. Let zi = (ai, αi, bi, βi) ∈M , i ∈ N, be such that zi → z for i→∞. We may
assume that max{ai, bi} > 0, since this holds for all sufficiently large i. If αi = βi = 0,
then P (zi) = ((1− t)ai + tbi, 0), which is in U for sufficiently large i. In the following,
we consider the indices i for which (αi, βi) 6= (0, 0). First we notice that the parameter
(1− t)aiαi + tbiβi of the hyperbola Hyp(zi) tends to zero for i→∞. Therefore, there
is a neighbourhood U ′ ⊂ U with the following property. If C ∈ U ′, then the line in
R2 that is parallel to the vector (1, 1) and passes through C, intersects the hyperbola
Hyp(zi) in a point inside U . Define Ai, Bi, Ci by (4.4), (4.5), (4.6) with z replaced by
zi. Then Bi → ((1− t)a+ tb, 0), and Ai remains bounded, since the functions f, g, ϕ, ψ
are bounded. The weight of Ai in

Ci =
((1− t)αi + tβi)Ai + ((1− t)ai + tbi)Bi

(1− t)αi + tβi + (1− t)ai + tbi

tends to zero for i→∞, and it follows that Ci → ((1− t)a+ tb, 0). Therefore, Ci ∈ U ′
and hence P (zi) ∈ U for sufficiently large i. This shows that P is continuous at z. The
case a = b = 0, max{α, β} > 0, is treated similarly.

In the proof of Theorem 4.1, it was important that we can take products of different
intervals. In fact, the product [f, g] · [f, g] with f ≥ 0 is always an interval, since
for H ∈ [f2, g2], the function h = H1/2 satisfies h ∈ [f, g] and h2 = H. That the
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assumption f ≥ 0 cannot be deleted, is shown by the following theorem. It reveals that
in general the product [f, g] · [f, g], even for continuous f, g, need not be an interval,
because it need even not be convex.

Theorem 4.3. Assume that K is first-countable. If for any continuous interval [f, g]
in C(K) the product [f, g] · [f, g] is convex, then K is finite.

Proof. Assume that the assumptions are satisfied, but K is not finite. Then there is
a point x0 ∈ K which is not an isolated point. Since K is a first-countable Hausdorff
space, there is an injective sequence (yn)n∈N in K \ {x0} that converges to x0. The set
X = {yn : n ∈ N} ∪ {x0} is closed. Define f : X → [−2, 0] and g : X → [0, 2] by

f(yn) = −1 + (−1)n/n, g(yn) = 1 + (−1)n/n for n ∈ N

and f(x0) = −1, g(x0) = 1. SinceK is a normal space, there exist continuous extensions
f : K → [−2, 0] and g : K → [0, 2]. Then f ≤ g on K.

Define

H =
1

2
f2 +

1

2
g2, then H(yn) = 1 +

1

n2
for n ∈ N.

Since f2, g2 ∈ [f, g] · [f, g] and the latter is convex by assumption, we have

H ∈ [f, g] · [f, g].

Therefore, there are functions h, η ∈ [f, g] such that hη = H. For each n ∈ N we have

h(yn)η(yn) = 1 +
1

n2
.

In particular, h(yn) and η(yn) have the same sign. Let n be even. If h(yn) and η(yn)
are both negative, then

h(yn)η(yn) ≤
(
−1 +

1

n

)2

< 1 +
1

n2
,

a contradiction. Therefore, h(yn) and η(yn) are both positive, which implies that

1 +
1

n2
= h(yn)η(yn) ≤ h(yn)g(yn) = h(yn)

(
1 +

1

n

)
and thus h(yn) ≥ 1− 1/n. Let n be odd. If h(yn) and η(yn) are both positive, then

h(yn)η(yn) ≤
(

1− 1

n

)2

< 1 +
1

n2
,

a contradiction. Therefore, h(yn) and η(yn) are both negative, and

1 +
1

n2
= |h(yn)η(yn)| ≤ |h(yn)||f(yn)| = |h(yn)|

(
1 +

1

n

)
,

hence h(yn) ≤ −1 + 1/n. Thus, every neighbourhood of x0 contains points where h is
arbitrarily close to 1 and points where h is arbitrarily close to −1. Since h is continuous,
this is a contradiction. It shows that the space K is finite.
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5 Square roots of intervals

A convex body in C(K) is a nonempty bounded closed convex subset of C(K). In [9],
Theorem 4.3, the following was shown. If C,D ⊂ C(K) are convex bodies such that
the closure of the sum C+D is an interval, then each of C and D is an interval. One
may ask whether an analogous result is true for products instead of sums. But it is
easily seen that this is not the case (see the example below).

Now we restrict ourselves to products of a convex body with itself, and we say that
the convex body C is a square root of the interval [f, g] if C · C = [f, g]. It is easy to
see that an interval can have a square root that is not an interval, provided that K is
not a singleton. For example, let x0, x1 be distinct points of K, let

A = {f ∈ [−1̄, 1̄] : f(x0) ≥ 0}, B = [−1̄,−1̄].

Then A and B are convex bodies in C(K). Let C be the convex hull of A ∪ B; it is
closed. Then C · C ⊂ [−1̄, 1̄] trivially. Conversely, f ∈ [−1̄, 1̄] satisfies either f(x0) ≥ 0
and hence f = f ·1 ∈ C ·C, or f(x0) < 0 and hence f = (−f) · (−1̄) ∈ C ·C. Thus, C is
a square root of [−1̄, 1̄]. On the other hand, C is not an interval. If it were an interval,
it could only be the interval [−1̄, 1̄], but a function h ∈ [−1̄, 1̄] with h(x0) = −1 and
h(x1) = 1 (which exists by Urysohn’s lemma) does not belong to C.

This raises the question: which intervals have a square root that is an interval.
Trivially, this holds for intervals [f, g] with f ≥ 0. In fact, if f ≥ 0 and if H ∈ [f, g],
then

√
H ∈ [

√
f,
√
g], which shows that [

√
f,
√
g] · [
√
f,
√
g] = [f, g].

The following result provides additional information, which will be used below to
show that also an assumption on the existence of square roots leads to finite spaces.

Proposition 5.1. Let [f, g] be an interval in C(K).

(1) In order that [f, g] have a square root which is an interval, it is necessary that

g ≥ 0 and |f | ≤ g. (5.1)

(2) In order that [f, g] have a square root which is an interval, it is sufficient that

−g ≤ f ≤ 0 < g (5.2)

and that g is continuous.

Proof. (1) Consider, first, an interval [a, b] with a ≤ b in R, and suppose that it has a
square root (that is, an interval [c, d] with [c, d] · [c, d] = [a, b]). Then b ≥ 0 trivially.
If a ≥ 0, then [

√
a,
√
b] and [−

√
b,−
√
a] are the square roots of [a, b]. Let a < 0 ≤ b.

A square root of [a, b] must be of the form [c, d] with c ≤ 0 ≤ d. If d ≥ |c|, then
[c, d] · [c, d] = [cd, d2], hence [a/

√
b,
√
b] is a square root of [a, b]. If d < |c|, then

[c, d] · [c, d] = [cd, c2], hence [−
√
b,−a/

√
b] is a square root of [a, b]. In either case,

[a/
√
b,
√
b] and [−

√
b,−a/

√
b] are the square roots of [a, b], and we have |a| ≤ b.

Now let [f, g] be an interval in C(K). Applying the preceding to [a, b] = [f(x), g(x)]
for each x ∈ K, we see that condition (5.1) is necessary, as stated.
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(2) Suppose that (5.2) is satisfied and that g is continuous. Define

ϕ(x) = f(x)/
√
g(x), ψ(x) =

√
g(x) for x ∈ K.

For each x ∈ K we have [ϕ(x), ψ(x)] · [ϕ(x), ψ(x)] = [f(x), g(x)]. This shows that
[ϕ,ψ] · [ϕ,ψ] ⊂ [f, g]. If H ∈ [f, g], the functions h =

√
g and η = H/

√
g satisfy

h, η ∈ [ϕ,ψ] and hη = H. It follows that [ϕ,ψ] · [ϕ,ψ] = [f, g].

The continuity in part (2) of Proposition 5.1 is essential, as the following theorem
shows.

Theorem 5.1. Let K be first-countable. If every interval [f, g] in C(K) satisfying
(5.2) has a square root which is an interval, then K is finite.

Proof. Let K be first-countable, and suppose every nonempty interval satisfying (5.2)
has a square root which is an interval. Assume that K is not finite. Then K has a point
x0 that is not isolated. Let (yn)n∈N be an injective sequence in K \ {x0} converging to
x0. We define f = −1/2 on K and

g(x) =

{
1/2 for x = yn with odd n and for x = x0,

1 for the remaining x ∈ K.

Then g is l.s.c., and [f, g] is an interval satisfying (5.2). By assumption, it has a square
root which is an interval, say [ϕ,ψ]. Therefore, in particular, the function f has a
representation f = hη with h, η ∈ [ϕ,ψ].

Let x = yn with even n. Then [f(x), g(x)] = [−1/2, 1]. As shown in the proof of
Proposition 5.1, we must have either [ϕ(x), ψ(x)] = [−1/2, 1] or [ϕ(x), ψ(x)] = [−1, 1/2].
Since −1/2 = f(x) = h(x)η(x), this yields

h(x) ∈ {±1/2,±1}.

Let x = yn with odd n. Then [f(x), g(x)] = [−1/2, 1/2] and [ϕ(x), ψ(x)] =
[−1/

√
2, 1/
√

2]. Since −1/2 = f(x) = h(x)η(x), this yields

h(x) ∈ {±1/
√

2}.

Thus, in every neighbourhood of x0, there are points (namely yn with sufficiently
large even n) were h attains one of the values ±1/2,±1, and points (namely yn with
sufficiently large odd n) were h attains one of the values ±1/

√
2. This contradicts the

continuity of h.

We remark that, in analogy to Proposition 4.1, in C(βN) any interval [f, g] with
continuous functions f, g satisfying (5.2), has a square root that is an interval.
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