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Stochastic Geometry studies randomly generated geometric objects. In recent
decades, this field has developed considerably, mainly due to its applications in
various sciences, where two and three dimensions are dominant, but also due
to its inherent mathematical interest. In these lectures, I want to introduce
and study two basic and frequently employed models of stochastic geometry
in d-dimensional space, which deserve particular interest also from a purely
mathematical point of view. The first of these is the so-called Boolean model,
providing a class of random closed sets which are well accessible to mathemat-
ical investigation. The second one are special random mosaics – tessellations
of space generated by random hyperplanes or by the Dirichlet-Voronoi cells of
a point process. The underlying probabilistic object in each case is a Poisson
point process; the ‘points’ are either convex bodies, or hyperplanes, or ordi-
nary points of Rd. The emphasis is on the combination of probabilistic and
convex-geometric arguments. We will, in fact, meet several instances where
results from convex geometry are crucial for obtaining explicit answers to
questions from stochastic geometry.

The first topic, Boolean models, is well established; the second topic com-
prises also some recent research.

1 Poisson point processes

We start with a brief introduction to Poisson point processes. Since the ‘points’
will later be subsets of Euclidean space, we choose a general and abstract
viewpoint.

For a topological space E, we denote by B(E) the σ-algebra of Borel sets
of E; this is the smallest σ-algebra containing all open sets. A measure on E
in the following is always understood as a measure on B(E).

Let E be a locally compact space with a countable base. A subset of E is
locally finite if its intersection with every compact set is finite. Let N denote
the system of locally finite subsets of E. If N ∈ N and A ∈ B(E) is a Borel
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set, card (N ∩A) is the number (possibly ∞) of elements in N ∩A. By N we
denote the smallest σ-algebra in N for which all functions N 7→ card (N ∩A)
(N ∈ N), with A ∈ B(E), are measurable.

Definition. A simple point process in E is a measurable map X from some
probability space (Ω,A, P) into (N,N ). The intensity measure of X is the
measure Θ on E defined by

Θ(A) := E card (X ∩A) for A ∈ B(E).

Here E denotes mathematical expectation. As usual, the image measure PX

of P under the map X is called the distribution of X, thus

PX(A) = P(X−1(A)) = P({ω ∈ Ω : X(ω) ∈ A}) =: P(X ∈ A)

for A ∈ N .
Since in the following we consider only simple point processes, we will omit

the word ‘simple’.

Definition. The point process X is a Poisson process if its intensity mea-
sure Θ is locally finite (i.e., finite on compact sets) and if

P(card (X ∩A) = j) =
Θ(A)j

j!
e−Θ(A)

holds for all A ∈ B(E) with Θ(A) < ∞ and all j ∈ N0.

As known from elementary probability, a Poisson distribution can be ob-
tained from binomial distributions by a limit procedure. This fact is reflected
in the important independence properties that a Poisson process has, similar
to those of the models leading to binomial distributions.

Let X be a Poisson process in E with intensity measure Θ.

1.1 Proposition. If A1, A2, . . . ∈ B(E) are pairwise disjoint and Θ(Ai) < ∞
for i = 1, 2, . . . , then the point processes X∩A1, X∩A2, . . . are stochastically
independent.

1.2 Proposition. Let A ∈ B(E) be a Borel set with 0 < Θ(A) < ∞, let
k ∈ N. Under the condition that A contains precisely k points of X, the
process X∩A is stochastically equivalent to the point process defined by the set
of k independent, identically distributed random points in E with distribution
(Θ A)/Θ(A).

Here denotes the restriction of a measure, thus (Θ A)(B) := Θ(A∩B)
for B ∈ B(E).

More formally, the assertion of Proposition 1.2 says that

P(X ∩A ∈ · | card (X ∩A) = k) = P{ξ1,...,ξk},

where ξ1, . . . , ξk are independent, identically distributed random points in E
with distribution
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Pξi
:=

Θ A

Θ(A)
, i = 1, . . . , k.

The following more technical property, to be used later, combines the
so-called Campbell formula with the independence properties of the Poisson
process. Here Am

6= denotes the set of all m-tuples (x1, . . . , xm) in the cartesian
product Am for which x1, . . . , xm are pairwise distinct.

1.3 Proposition. For m ∈ N and any nonnegative measurable function f on
Em,

E
∑

(x1,...,xm)∈Xm
6=

f(x1, . . . , xm) =
∫

E

. . .

∫
E

f(x1, . . . , xm) Θ(dx1) · · ·Θ(dxm).

The existence of many Poisson processes is guaranteed by the following
proposition.

1.4 Proposition. Let Θ be a locally finite measure on E satisfying Θ({x}) =
0 for all x ∈ E. Then there exists a Poisson process on E with intensity
measure Θ. Two Poisson processes on E with the same intensity measure are
stochastically equivalent, that is, they have the same distribution.

2 Particle processes

In the preceding section, we have introduced point processes in a general lo-
cally compact, second countable space E. This will be applied to the following
concrete spaces:

• E = Rd, the d-dimensional real Euclidean vector space,
• E = Kd, the space of convex bodies (nonempty, compact, convex sets) in

Rd, equipped with the Hausdorff metric,
• E = Hd, the space of hyperplanes of Rd, with its standard topology.

Let E be one of these spaces. Then E is locally compact and has a count-
able base. The group of translations of Rd, the group SOd of rotations of Rd,
and the group Gd of (proper) rigid motions of Rd operate also on E, in the
canonical way. Each of these operations is continuous. A point process X in
E is called stationary (or homogeneous) if X and X + t have the same
distribution, for every t ∈ Rd, and it is called isotropic if X and ϑX have the
same distribution, for every rotation ϑ ∈ SOd. Stationary point processes are
easier to handle than general ones, they are more aesthetic from a geometric
point of view, and even in applications they are preferred as long as possible.
We will, therefore, restrict ourselves to stationary point processes.

Let X be a stationary point process in Rd with a locally finite intensity
measure Θ. For t ∈ Rd, the point processes X and X + t have the same
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distribution, hence Θ(A + t) = Θ(A) for A ∈ B(Rd). Since the Lebesgue
measure λd on Rd is, up to a constant factor, the only translation invariant,
locally finite measure on Rd, we have Θ = γλd with a constant γ ≥ 0. This
number is called the intensity of the point process X.

Let X be a stationary point process in Kd. In this case, we impose a
stronger finiteness condition on the intensity measure. We put

KC := {K ∈ Kd : K ∩ C 6= ∅} for C ⊂ Rd

and assume that

Θ(KC) < ∞ for every compact set C ⊂ Rd. (1)

If this is satisfied, X is called a particle process in Rd (with convex grains,
but we omit this specification, since no other particle processes will be con-
sidered here).

Let X be a stationary particle process in Rd. The stationarity implies a de-
composition property of its intensity measure Θ. For this, let c(K) denote the
circumcentre of the convex body K (the centre of the smallest ball containing
K), and put

K0 := {K ∈ Kd : c(K) = 0}.

We define a homeomorphism Φ : K0 × Rd → Kd by Φ(K, t) := K + t.

2.1 Lemma. Suppose that Θ 6≡ 0. There exist a number γ ∈ (0,∞) and a
probability measure Q on K0 such that

Θ = γ Φ(Q⊗ λd),

hence, for every Θ-integrable function f on Kd,∫
Kd

f dΘ = γ

∫
K0

∫
Rd

f(K + x) λd(dx) Q(dK). (2)

Proof. Fix A ∈ B(K0) and define µA(B) := Θ(Φ(A × B)) for B ∈ B(Rd).
Then µA is a translation invariant measure on Rd. If C ⊂ Rd is compact, then
µA(C) = Θ(Φ(A × C)) ≤ Θ(KC) < ∞, thus µA is locally finite. It follows
that µA = ϕ(A)λd with 0 ≤ ϕ(A) < ∞. If Cd denotes a unit cube, then
ϕ(A) = µA(Cd) = Θ(Φ(A×Cd)) for A ∈ B(K0), hence ϕ is a measure on K0,
and γ := ϕ(K0) satisfies 0 < γ < ∞. For the probability measure Q := γ−1ϕ
we have

Θ(Φ(A×B)) = γ(Q⊗ λd)(A×B)

for A ∈ B(K0), B ∈ B(Rd). From this, the assertion follows. ut

We call γ the intensity and Q the grain distribution of the particle
process X.

A similar decomposition property for the intensity measure of a stationary
point process in the space Hd of hyperplanes will be stated in Section 4.
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Let us now consider a particle process X in Rd and a fixed convex body
L ∈ Kd. It is a natural question to ask for the distribution of the random
variable

card {K ∈ X : K ∩ L 6= ∅},

the number of particles hitting the ‘test body’ L. Thus, we are asking for the
probabilities

pj := P(card (X ∩ KL) = j), j ∈ N0.

In general, this question seems hopeless, but we will see that an explicit answer
is possible by combining

• geometric and probabilistic assumptions on the particle process,
• results from convex geometry.

One such geometric assumption on the particle process X has already been
made, namely that the particles are convex. Another geometric assumption
will be the stationarity. From the probabilistic side, it seems unavoidable to
have strong independence properties; we will, in fact, assume that X is a
Poisson process.

So we assume now that X is a stationary Poisson particle process, with
intensity measure Θ 6≡ 0. Then we immediately have

pj =
Θ(KL)j

j!
e−Θ(KL) (3)

(observe that Θ(KL) < ∞ by assumption (18)). It remains to determine the
parameter Θ(KL). Applying the decomposition formula (19) with f = 1KL

,
the indicator function of KL on Kd, we get

Θ(KL) = γ

∫
K0

∫
Rd

1KL
(K + x)λd(dx) Q(dK) (4)

= γ

∫
K0

λd(K − L) Q(dK), (5)

since 1KL
(K + x) = 1 ⇔ (K + x)∩L 6= ∅ ⇔ x ∈ L−K (:= {l− k : l ∈ L, k ∈

K}) and λd(L−K) = λd(K − L).
Now convex geometry enters the scene. Let us first consider the case where

L = rBd, the ball of radius r and centre 0 in Rd. The classical Steiner
formula tells us that λd(K + rBd) is a polynomial in r, of degree at most d.
It is usually written in the form

λd(K + rBd) =
d∑

m=0

rd−mκd−mVm(K), (6)

with κd := λd(Bd). This defines important functionals Vm : Kd → R, the
intrinsic volumes. For example, Vd(K) is the volume of K, 2Vd−1(K) is the
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surface area of K (if K has interior points), and V0(K) = 1 = χ(K), the
Euler characteristic of K. We see that the intrinsic volumes are inevitable
if we want an explicit answer to our question. In particular, inserting (23) in
(21), we obtain

Θ(KrBd) =
d∑

m=0

rd−mκd−mVm(X), (7)

where we have put

Vm(X) := γ

∫
K0

Vm(K) Q(dK). (8)

The number Vm(X) is called the mth intrinsic volume intensity of the
particle process X. It can be defined, by (25), for general stationary (not nec-
essarily Poisson) particle processes X. The intensities are means in a twofold
sense: they are obtained by spatial as well as by stochastic averaging. This
averaging is made evident by some more intuitive representations of the in-
tensity. If B ∈ B(Rd) is any Borel set with λd(B) > 0, then

Vm(X) =
1

λd(B)
E

∑
K∈X, c(K)∈B

Vm(K). (9)

For the proof, we use Campbell’s formula

E
∑

K∈X

f(K) =
∫
Kd

f dΘ,

which holds for all nonnegative measurable functions f on Kd (for indicator
functions of Borel sets, it holds by the definition of Θ, and the extension to
nonnegative measurable functions is a standard argument). This gives

E
∑

K∈X, c(K)∈B

Vm(K)

=
∫
Kd

1B(c(K))Vm(K)Θ(dK)

= γ

∫
K0

∫
Rd

1B(c(K + x))Vm(K + x) λd(dx) Q(dK)

= γ

∫
K0

Vm(K)λd(B − c(K)) Q(dK)

= λd(B)Vm(X),

by the translation invariance of Vm and λd.
We mention without proof two other representations of Vm(X). They in-

volve an arbitrary convex body W ∈ Kd with Vd(W ) > 0 (an ‘observation
window’) and assert that
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Vm(X) = lim
r→∞

1
Vd(rW )

E
∑

K∈X, K⊂rW

Vm(K)

and
Vm(X) = lim

r→∞

1
Vd(rW )

E
∑

K∈X

Vm(K ∩ rW ).

We return to a stationary Poisson particle process X and recall that we
have obtained an explicit formula for the probability (20) in the case where
L is a ball. Through (24), the result involves the intensities of the intrinsic
volumes of the particle process X. For a general convex body L, a similarly
explicit result can be obtained if we introduce a further geometric assumption
on the particle process X, namely that it be isotropic.

Let X be a stationary, isotropic Poisson particle process in Rd. Its intensity
measure Θ is now invariant under translations and rotations, hence the grain
distribution Q is invariant under rotations. Therefore, the right-hand side of
(4) remains unchanged if we replace K by ϑK, where ϑ ∈ SOd is a rotation.
We can then integrate the resulting expression over all ϑ ∈ SOd, with respect
to the invariant probability measure ν on the rotation group SOd. After an
application of Fubini’s theorem we obtain

Θ(KL) = γ

∫
K0

[∫
SOd

∫
Rd

1KL
(ϑK + x)λd(dx) ν(dϑ)

]
Q(dK).

The double integral in brackets can be written as an integral over the mo-
tion group Gd with respect to its (suitably normalized) invariant measure µ,
namely

[· · · ] =
∫

Gd

1KL
(gK) µ(dg) =

∫
Gd

χ(L ∩ gK) µ(dg),

where χ(M) = 1 for a (nonempty) convex body M and χ(∅) = 0. Another
classical result from convex geometry, the principal kinematic formula for
convex bodies, tells us that∫

Gd

χ(L ∩ gK) µ(dg) =
d∑

m=0

αdmVm(L)Vd−m(K)

with

αdm :=
m!κm(d−m)!κd−m

d!κd
.

This gives

Θ(KL) =
d∑

m=0

αdmVm(L)Vd−m(X). (10)

We have obtained the following explicit result: The probability that the fixed
convex body L is hit by precisely j bodies of the stationary isotropic Poisson
particle process X is given by
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pj =
Θ(KL)j

j!
e−Θ(KL),

where the parameter Θ(KL) is given by (10). Thus, this probability depends
only on the intrinsic volumes of L and the intrinsic volume intensities of X.

3 Boolean models

Particle processes, as considered in the previous section, are often used to
generate random closed sets. To explain the notion of a random closed set in
Rd, let F denote the system of all closed subsets of Rd (including the empty
set). For A ⊂ Rd, one sets

FA := {F ∈ F : F ∩A 6= ∅}, FA := {F ∈ F : F ∩A = ∅}.

The system

{FG : G ⊂ Rd open} ∪ {F C : C ⊂ Rd compact}

is the subbasis of a topology on F , which is called the topology of closed
convergence. By B(F) we denote the corresponding σ-algebra of Borel sets.
It can be shown that B(F) is generated by {FG : G ⊂ Rd open}, for example.
Now a random closed set in Rd, briefly a RACS, is defined as a random
variable with values in F , more explicitly, as a measurable map Z from some
probability space (Ω,A, P) into the measurable space (F ,B(F)). The image
measure PZ := Z(P) is called the distribution of Z. The RACS Z is called
stationary if Z + t and Z have the same distribution for all t ∈ Rd, and
isotropic if ϑZ and Z have the same distribution for all ϑ ∈ SOd.

General random closed sets, although the subject of some deep results,
are not easy to handle. One seeks, therefore, for classes of random closed sets
which are more accessible. Suitable such sets are obtained as union sets of
particle processes. If X is a particle process in Rd, then

ZX :=
⋃

K∈X

K

is its union set. One can deduce from condition (1) that ZX is almost surely
a closed set. Also the necessary measurability property can be verified, so
that ZX is a random closed set. If X is especially a Poisson particle process,
then ZX is called a Boolean model. If X is stationary (isotropic), then the
Boolean model ZX is stationary (isotropic).

Let ZX be a stationary Boolean model, generated by the stationary Poisson
particle process X. The investigation of such a RACS begins with a search for
simple numerical parameters describing quantitative properties. A parameter
immediately coming to mind is given by
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p := P(0 ∈ ZX),

the probability that 0 is covered by the random set ZX . For y ∈ Rd, the
random sets ZX and ZX−y have the same distribution, hence

p = P(y ∈ ZX) = E1ZX
(y).

Let W ⊂ Rd be a Borel set with 0 < λd(W ) < ∞. Using Fubini’s theorem,
we get

pλd(W ) =
∫

W

E1ZX
(y) λd(dy) = E

∫
W

1ZX
(y) λd(dy) = E λd(ZX ∩W ),

thus

p =
E λd(ZX ∩W )

λd(W )
=: Vd(ZX)

is independent of the set W . This number is called the volume intensity of
ZX .

We can find a connection with the volume intensity Vd(X) of the under-
lying Poisson particle process. In fact,

Vd(ZX) = P(0 ∈ ZX) = 1− P(0 /∈ ZX)

= 1− P(card (X ∩ K{0}) = 0) = 1− e−Θ(K{0})

and

Θ(K{0}) = γ

∫
K0

∫
Rd

1K{0}(K + x) λd(dx) Q(dK)

= γ

∫
K0

Vd(K) Q(dK) = Vd(X).

Thus we have found
Vd(ZX) = 1− e−Vd(X). (11)

This equality should have come as a surprise: it says that the volume intensity
Vd(X) of the particle process X can be determined from the volume intensity
Vd(ZX) of the union set. This is surprising since in a given realization of
ZX one cannot identify the generating particles, since they overlap, and some
particles may even be covered totally by others. The reason for the existence of
the exact relation above lies in the strong independence properties of Poisson
processes.

The elegant connection between quantitative properties of a stationary
Boolean model and its underlying particle process is not restricted to the
volume. Let us consider, in heuristic terms, a question which has its origin in
practice. Assume that we observe a realization of a random system of convex
sets in the plane, for example a microscopic image of blood cells or, in material
sciences, the polished surface of some material that contains particles of some
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other material. Assume we need to know some quantitative aspects, like the
mean number of particles per unit area, or the mean perimeter, or the mean
area. In general, we will not be able to observe individual particles, but only
their union set. We assume that for the union set we can measure, for a given
realization inside an observation window, the area, the perimeter, the Euler
characteristic. Can we obtain estimators for the corresponding parameters of
the underlying particle process? Such a correspondence can only be expected
if the particle process satisfies strong independence assumptions. We shall
see that stationary Poisson particle processes and their union sets provide a
perfect model to permit such conclusions.

We replace the volume by a general continuous function ϕ : Kd → R. Since
we intend to investigate sets arising as unions of convex bodies, we must be
able to control the behaviour of ϕ under unions, therefore ϕ is assumed to
satisfy

ϕ(K ∪ L) = ϕ(K) + ϕ(L)− ϕ(K ∩ L) (12)

whenever K, L, K ∪ L ∈ Kd; we also set ϕ(∅) = 0. Such a function ϕ is
called additive or a valuation. By a theorem of Groemer, a continuous
additive function ϕ : Kd → R has an additive extension to the system Rd

of polyconvex sets, which are defined as unions of finitely many convex
bodies. The extension, also denoted by ϕ, satisfies (12) for K, L ∈ Rd. If we
start with ϕ = Vd on Kd, the extension will, of course, be the volume on Rd.
The extension of the surface area is the surface area, and the extension of the
function V0 (which is 1 on Kd) gives the Euler characteristic of polyconvex
sets.

It follows by induction that an additive function ϕ on Rd satisfies the
inclusion-exclusion principle

ϕ(K1 ∪ · · · ∪Km) =
m∑

r=1

(−1)r−1
∑

i1<···<ir

ϕ(Ki1 ∩ · · · ∩Kir
). (13)

Now let X be a stationary Poisson particle process with intensity mea-
sure Θ, and let ZX be the generated Boolean model. Motivated by practical
applications (in small dimensions), we assume that a sampling window, a
convex body W with Vd(W ) > 0, is given in which ZX ∩W can be observed.
Since ZX ∩W is a polyconvex set, ϕ(ZX ∩W ) is defined and yields a random
variable. We want to investigate how its expectation is related to the char-
acteristics of the underlying particle process, that is, to the intensity γ and
the grain distribution Q of X. In applications, such relations may be used to
fit a Boolean model to given data, or to estimate functional densities of the
particle process, in particular its intensity, from measurements at realizations
of the union set.

To begin with the computation of E ϕ(ZX ∩ W ), let ν be the random
number of particles of X hitting W , and let M1, . . . ,Mν be these particles
(with any numbering). Then (13) gives
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ϕ(ZX ∩W ) = ϕ

( ⋃
K∈X

K ∩W

)

=
ν∑

k=1

(−1)k−1
∑

1≤i1<···<ik≤ν

ϕ(W ∩Mi1 ∩ · · · ∩Mik
)

=
ν∑

k=1

(−1)k−1

k!

∑
(K1,...,Kk)∈Xk

6=

ϕ(W ∩K1 ∩ · · · ∩Kk). (14)

Here Xk
6= is the set of pairwise distinct k-tuples from X. In (14) we may extend

the first summation to ∞, since ϕ(∅) = 0.
The function ϕ is continuous on Kd and hence bounded on the set of

convex bodies contained in W . Thus, there exists a number c (depending on
W ) with |ϕ(L)| ≤ c for all L ∈ Kd with L ⊂ W . This gives∣∣∣∣∣∣

ν∑
k=1

(−1)k−1

k!

∑
(K1,...,Kk)∈Xk

6=

ϕ(W ∩K1 ∩ · · · ∩Kk)

∣∣∣∣∣∣
≤

ν∑
k=1

(
ν

k

)
c ≤ 2νc = 2card(X∩KW )c.

Since card(X ∩ KW ) has a Poisson distribution,

E 2card(X∩KW ) =
∞∑

k=0

2k P(card(X ∩ KW ) = k)

= e−Θ(KW )
∞∑

k=0

[2Θ(KW )]k

k!

= e−Θ(KW )e2Θ(KW ) = eΘ(KW ) < ∞,

by (1). It follows that ϕ(ZX ∩W ) is integrable. By the bounded convergence
theorem, we can interchange expectation and summation. Using Proposition
1.3, we obtain

E ϕ(ZX ∩W )

=
∞∑

k=1

(−1)k−1

k!
E

∑
(K1,...,Kk)∈Xk

6=

ϕ(W ∩K1 ∩ · · · ∩Kk)

=
∞∑

k=1

(−1)k−1

k!

∫
Kd

· · ·
∫
Kd

ϕ(W ∩K1 ∩ · · · ∩Kk) Θ(dK1) · · ·Θ(dKk).

So far, we have not used the stationarity. But if we now employ this as-
sumption, we can use the decomposition (3) of the intensity measure, put
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Φ(W,K1, . . . ,Kk)

:=
∫

Rd

· · ·
∫

Rd

ϕ(W ∩ (K1 + x1) ∩ · · · ∩ (Kk + xk))λd(dx1) · · ·λd(dxk)

and end up with the formula

E ϕ(ZX ∩W )

=
∞∑

k=1

(−1)k−1

k!
γk

∫
K0

· · ·
∫
K0

Φ(W,K1, . . . ,Kk) Q(dK1) · · ·Q(dKk).

Further progress requires the computation of the integrals

I :=
∫

Rd

· · ·
∫

Rd

ϕ(W ∩ (K1 + x1) ∩ · · · ∩ (Kk + xk))λd(dx1) · · ·λd(dxk).

This is possible either for special choices of ϕ or under isotropy assumptions
on the Boolean model (alternatively, by randomizing the observation window
by an isotropic rotation).

Let us first consider the volume, ϕ = Vd. In that case, it is not difficult to
show that∫

Rd

· · ·
∫

Rd

Vd(K0∩(K1+x1)∩· · ·∩(Kk+xk))λd(dx1) · · ·λd(dxk) =
k∏

i=0

Vd(Ki).

Thus we obtain

EVd(ZX ∩W ) =
∞∑

k=1

(−1)k−1

k!
Vd(W )Vd(X)k = Vd(W )

(
1− e−Vd(X)

)
.

This is nothing but relation (11) again.
More interesting is the case of the intrinsic volume Vd−1, which is half the

surface area (for convex bodies with interior points). It is again not difficult
to prove that∫

Rd

· · ·
∫

Rd

Vd−1(K0 ∩ (K1 + x1) ∩ · · · ∩ (Kk + xk))λd(dx1) · · ·λd(dxk)

=
k∑

j=0

Vd−1(Kj)
Vd(Kj)

k∏
i=0

Vd(Ki).

This leads to

EVd−1(ZX ∩W ) = Vd(W )Vd−1(X)e−Vd(X) + Vd−1(W )
(
1− e−Vd(X)

)
.

In contrast to the case of the volume, the quotient
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EVd−1(ZX ∩W )
Vd(W )

= Vd−1(X)e−Vd(X) +
Vd−1(W )
Vd(W )

(
1− e−Vd(X)

)
still depends on the observation window W . This influence disappears for
increasing W . More precisely, we see that

lim
r→∞

EVd−1(ZX ∩ rW )
Vd(rW )

= Vd−1(X)e−Vd(X).

The limit on the left-hand side is denoted by Vd−1(ZX) and is, up to a factor
1/2, the surface area intensity of ZX .

We repeat that we have obtained the two relations

Vd(ZX) = 1− e−Vd(X),

Vd−1(ZX) = Vd−1(X)e−Vd(X),

connecting intrinsic volume intensities of the Boolean model ZX with those
of the underlying particle process X.

Now we assume that the considered Boolean model ZX is also isotropic.
Then we can obtain an explicit formula for a general additive function ϕ (con-
tinuous on Kd). Since the grain distribution Q of X is now rotation invariant,
we can argue as in the case of isotropic particle processes. We insert rotations,
integrate over the rotation group and apply Fubini’s theorem, to obtain∫

K0

· · ·
∫
K0

Φ(W,K1, . . . ,Kk) Q(dK1) · · ·Q(dKk)

=
∫
K0

· · ·
∫
K0

∫
Gd

· · ·
∫

Gd

ϕ(W ∩ g1K1 ∩ · · · ∩ gkKk) µ(dg1) · · ·µ(dgk)

× Q(dK1) · · ·Q(dKk).

To compute the inner integrals over the motion group, again heavy use is
made of convex geometry. To calculate, for example, the integral∫

Gd

ϕ(W ∩ gK) µ(dg), (15)

one uses Hadwiger’s celebrated characterization theorem for the intrinsic vol-
umes. In order to get simple formulas, it is now advisable to renormalize the
intrinsic volumes by putting

vj :=
j!κj

d!κd
Vj ,

with corresponding definitions of the intensities vj(X), vj(ZX).
As a function of K, the integral (15) turns out to be additive, continuous,

and invariant under rigid motions. By Hadwiger’s theorem, it must be a linear
combination of the intrinsic volumes, thus
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Gd

ϕ(W ∩ gK) µ(dg) =
d∑

j=0

ϕ(d−j)(W )vj(K).

For the coefficients, one finds that

ϕ(d−j)(W ) =
d!κd

j!κj

∫
Ed

j

ϕ(W ∩ E)µj(dE),

where Ed
j is the space of j-dimensional planes in Rd and µj is its motion

invariant measure, suitably normalized. By induction, we then get the general
formula ∫

Gd

· · ·
∫

Gd

ϕ(W ∩ g1K1 ∩ · · · ∩ gkKk) µ(dg1) · · ·µ(dgk)

=
d∑

r0,...,rk=0
r0+···+rk=kd

ϕ(r0)(W )vr1(K1) · · · vrk
(Kk).

Inserting this in the expression for E ϕ(ZX ∩W ) and rearranging, we finally
obtain the following result.

3.1 Theorem. Let ZX be the Boolean model generated by the stationary,
isotropic Poisson particle process X. If ϕ : Kd → R is an additive, continuous
functional, additively extended to the polyconvex sets, then, for any W ∈ Kd

with Vd(W ) > 0,

E ϕ(ZX ∩W ) = ϕ(W )
(
1− e−Vd(X)

)
−

−e−Vd(X)
d∑

m=1

ϕ(m)(W )
m∑

s=1

(−1)s

s!

d−1∑
m1,...,ms=0

m1+···+ms=sd−m

s∏
i=1

vmi(X).

Now we choose ϕ = vj , the renormalized jth intrinsic volume. By the
Crofton formula from integral geometry, we have

(vj)(m) = vm+j ,

with vm+j = 0 if m + j > d. Inserting this, we obtain

E vj(ZX ∩W ) = vj(W )
(
1− e−Vd(X)

)
−

−e−Vd(X)
d∑

m=j+1

vm(W )
m−j∑
s=1

(−1)s

s!

d−1∑
m1,...,ms=j

m1+···+ms=sd+j−m

s∏
i=1

vmi(X).

Here we can replace W by rW with r > 0 and then let r tend to infinity.
We obtain the following result. The limit
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lim
r→∞

E vj(ZX ∩ rW )
Vd(rW )

=: vj(ZX)

exists and is given by

vj(ZX) = e−Vd(X)

vj(X)−
d−j∑
s=2

(−1)s

s!

d−1∑
m1,...,ms=j+1

m1+···+ms=(s−1)d+j

s∏
i=1

vmi(X)


for j = 0, . . . , d− 1. The cases j = d and j = d− 1 have been obtained earlier,
without the isotropy assumption.

We specialize the formulas to two and three dimensions, using classical
notation:

n = 2 : n = 3 :
A = V2, area V = V3, volume
P = 2V1, perimeter S = 2V2, surface area
χ = V0, Euler characteristic M = πV1, integral of mean curvature

χ = V0, Euler characteristic.

We obtain the following relations: For n = 2,

A(ZX) = 1− e−A(X),

P (ZX) = e−A(X)P (X),

χ(ZX) = e−A(X)

(
χ(X)− 1

4π
P (X)2

)
.

For n = 3,

V (ZX) = 1− e−V (X),

S(ZX) = e−V (X)S(X),

M(ZX) = e−V (X)

(
M(X)− π2

32
S(X)2

)
,

χ(ZX) = e−V (X)

(
χ(X)− 1

4π
M(X)S(X) +

π

384
S(X)3

)
.

Observe that χ(X) = γ, the intensity of X. Thus, these formulas provide
a possibility to determine the intensity of the underlying particle process from
measurements at the union set. It was a priori clear that such a possibility
cannot exist without strong independence properties. It was less easy to expect
which functional intensities of the union set would be necessary to achieve this
goal. As we have seen, the answer comes from convex geometry, in particular
from integral geometric results for convex bodies.
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Hints to the literature. The standard books on Stochastic Geometry are
Matheron [7] and Stoyan-Kendall-Mecke [13]. Closer to the foregoing presen-
tation are the Lecture Notes [12] on Stochastic Geometry and [11] on Integral
Geometry. The monograph by Molchanov [8] is devoted particularly to the
Boolean model. Further details from Convex Geometry are found in [10].

4 Poisson hyperplane and Poisson-Voronoi mosaics

The second part of these lectures is devoted to another prominent model of
stochastic geometry, which has many applications in two and three dimensions
and which will be studied here in Rd from a theoretical point of view. We will
consider random mosaics which are generated either by Poisson processes of
hyperplanes or by the Voronoi cells of a Poisson point process. Again there
will be a close connection to results from convex geometry.

A mosaic in Rd, or a tessellation of Rd, is a locally finite system of
d-dimensional polytopes in Rd which cover Rd and have pairwise no common
interior points. If m is a mosaic in Rd, its elements are called the cells of
m. We restrict ourselves to two particular types of mosaics. First, let H be
a locally finite system of hyperplanes in Rd. The connected components of
Rd \

⋃
H∈HH are open polyhedral sets. Their closures are the cells induced

by H. A mosaic is called a hyperplane mosaic if its cells are induced by
some system of hyperplanes. Second, let A be a locally finite set of points in
Rd. For x ∈ A, the set

C(x,A) := {y ∈ Rd : ‖y − x‖ ≤ ‖y − a‖ for all a ∈ A}

consists of all points of Rd for which x is the nearest point in A. It is a closed
polyhedral set, called the Voronoi cell (or Dirichlet cell) of x (with respect
to A). A mosaic is called a Voronoi mosaic if its cells are the Voronoi cells
of some point set.

A random mosaic in Rd is defined as a particle process in Rd which is
almost surely a mosaic. We consider two types of random mosaics which are
particularly accessible to mathematical investigation.

Let X̂ be a stationary Poisson point process in the spaceHd of hyperplanes
in Rd; it is called a stationary Poisson hyperplane process. Its intensity
measure Θ is a measure on Hd which is finite on compact sets. If C ⊂ Rd is
compact, the set {H ∈ Hd : H ∩ C 6= ∅} is compact and hence has finite Θ
measure. It follows that the realizations of X̂ are almost surely locally finite
systems of hyperplanes. We assume that X̂ is nondegenerate, which means
that not almost surely all hyperplanes of X̂ are parallel to some fixed line.
Under this assumption, the system of the cells induced by X̂ forms a random
mosaic; it is denoted by X and called a stationary Poisson hyperplane
mosaic.

In analogy to Lemma 2.1, the intensity measure Θ of the stationary Poisson
hyperplane process X̂ has a useful decomposition. For u ∈ Sd−1 and t ∈ R,
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we write

H(u, t) := {x ∈ Rd : 〈x, u〉 = t}, H−(u, t) := {x ∈ Rd : 〈x, u〉 ≤ t}.

4.1 Lemma. There exist a number γ ∈ (0,∞) and an even probability measure
ϕ on the unit sphere Sd−1 such that

Θ = γ

∫
Sd−1

∫ ∞

−∞
1{H(u, t) ∈ ·} dt ϕ(du). (16)

We call γ the intensity and ϕ the direction distribution of X̂. The as-
sumption that X̂ be nondegenerate is equivalent to the fact that ϕ is not
concentrated on some great subsphere of Sd−1.

Let X̃ be a stationary Poisson point process in Rd. Then

X := {C(x, X̃) : x ∈ X̃}

is a stationary mosaic, called the Poisson-Voronoi mosaic induced by X̃.
The point x is called the nucleus of the cell C(x, X̃).

If one wants to investigate the shapes of the cells in a stationary random
mosaic m, one needs a notion of ‘average’ cell. One possibility is to consider
the cell containing a given fixed point in its interior. By the stationarity of
the mosaic, the resulting random shape will not depend on the choice of the
fixed point, hence we may take 0 as this point. With probability one there is
a unique cell containing 0 in its interior; this random polytope is called the
zero cell or the Crofton cell of the mosaic m.

Another natural way of selecting an average cell of a mosaic m makes
use of a ‘centre function’, like the circumcentre or, in the case of Voronoi
cells, the nucleus. Within a large region one picks out a cell at random, with
equal chances for each cell to be picked, and translates it so that its centre
becomes the origin. The random polytope obtained in this way is called the
typical cell of the mosaic. We give the precise definition only for a stationary
Poisson-Voronoi mosaic, using the nucleus. In this case, the distribution Q of
the typical cell can be defined by

Q(A) = γ−1E card{x ∈ X̃ ∩B : C(x, X̃)− x ∈ A}

for Borel sets A ⊂ Kd; here γ is the intensity of X̃ and B ⊂ Rd is an arbitrary
Borel set with λd(B) = 1. It is also true (using ergodicity properties) that

Q(A) = lim
r→∞

card{x ∈ X̃ ∩ rBd : C(x, X̃)− x ∈ A}
card(X̃ ∩ rBd)

almost surely.

A particular property of Poisson processes (Slivnyak’s theorem) entails that
the typical cell of the Poisson-Voronoi mosaic X is stochastically equivalent
to the random polytope
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Z = C(0, X̃ ∪ {0}).

The Voronoi cell C(0, X̃ ∪ {0}), by its definition, can be obtained as the
intersection ⋂

x∈X̃

H−(x),

where H(x) is the mid hyperplane of 0 and x and H−(x) is the closed halfspace
bounded by it and containing 0. Therefore, the typical cell Z of the Poisson-
Voronoi mosaic X is the zero cell of the hyperplane mosaic generated by the
hyperplane process

Y := {H(x) : x ∈ X̃}.

This is a nonstationary Poisson hyperplane process. For its intensity measure
Θ one finds an expression similar to (16), namely

Θ = 2dγ

∫
Sd−1

∫ ∞

0

1{H(u, t) ∈ ·} td−1 dt σ(du), (17)

where σ denotes the spherical Lebesgue measure on the unit sphere Sd−1.

5 Asymptotic shapes of large cells

The starting point for the following was a conjecture of David G. Kendall
from the early 1940s. It became wider known when it was reformulated in the
preface to the first edition of the book by Stoyan-Kendall-Mecke [13]. Kendall
considered stationary and isotropic Poisson line processes in the plane and the
induced mosaics. He asked whether cells of large area must be approximately
circular. The question makes sense for the zero cell Z0 and for the typical cell.
The following is a slight modification of Kendall’s conjecture.

D.G. Kendall’s conjecture (slightly modified). The conditional law for the
shape of Z0, given a lower bound for the area A(Z0) of Z0, converges weakly, as
the lower bound tends to ∞, to the degenerate law concentrated at the circular
shape.

A proof was given by I.N. Kovalenko [4], who also obtained in [5] an
analogous result for the typical cell of a stationary Poisson-Voronoi mosaic in
the plane. In the following, we want to present joint work with Daniel Hug and
Matthias Reitzner [1], [2], [3], which extends this work to higher dimensions
and generalizes and strengthens it under various aspects. Generally speaking,
we investigate asymptotic shapes of large zero cells of Poisson hyperplane
mosaics. The generality of our approach involves the following features:

• more general Poisson hyperplane processes,
• more general functionals to measure how ‘large’ a cell is,
• identification of asymptotic shapes where limit shapes do not exist,
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• explicit estimates for deviations from asymptotic shapes.

The class of Poisson hyperplane processes to be considered is chosen so that
the cases of zero cells of stationary Poisson hyperplane mosaics and of typical
cells of stationary Poisson-Voronoi mosaics are both covered, but the concept
is considerably more general, as we now explain.

By Hd we denote the space of hyperplanes in Rd not containing 0, with its
usual topology and Borel structure. Every hyperplane H ∈ Hd has a unique
representation H = H(u, t) with u ∈ Sd−1 and t > 0, thus 0 ∈ H−(u, t);
we call this the standard representation. For H ∈ Hd, we denote by H− the
closed halfspace bounded by H that contains 0. For a set A ⊂ Hd, we define

P (A) :=
⋂

H∈A
H−.

Let X be a Poisson hyperplane process in Rd. We assume that the intensity
measure Θ = E card (X ∩ ·) is of the form

Θ = γ

∫
Sd−1

∫ ∞

0

1{H(u, t) ∈ ·}tr−1 dt ϕ(du). (18)

Here γ > 0, r ≥ 1, and ϕ is a probability measure on Sd−1 with the property
that its support is not contained in some closed hemisphere. The measure ϕ
is called the direction distribution of the hyperplane process X, and to the
number r we refer as the distance exponent. Note that (18) includes the
two cases (16) (but with different γ) and (17).

The random polytope

Z0 := P (X) =
⋂

H∈X

H−

is the zero cell, or Crofton cell, of the mosaic induced by X.
Let Kd

o denote the space of convex bodies in Rd containing the origin,
but not only the origin. Our investigation of asymptotic shapes of large zero
cells is governed by three continuous homogeneous functionals on the space
Kd

o : the parameter, size, and deviation functional, respectively. We introduce
them now.

For K ∈ Kd
o , we define

HK := {H ∈ Hd : H ∩K 6= ∅}.

We have
E card (X ∩HK) = γ Φ(K) (19)

with
Φ(K) := γ−1Θ(HK) =

1
r

∫
Sd−1

h(K, u)rϕ(du), (20)
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as follows from (18). Here, h(K, u) = max{〈x, u〉 : x ∈ K} is the value of the
support function of K at u. We call Φ the parameter functional of the
process X, since multiplied by the intensity γ it gives the parameter of the
Poisson distribution of the random variable card (X ∩HK), for K ∈ Kd

o :

P(card (X ∩HK) = n) =
[Φ(K)γ]n

n!
exp{−Φ(K)γ}

for n ∈ N0. The function Φ is continuous on Kd
o and homogeneous of degree

r, that is, it satisfies Φ(αK) = αrΦ(K) for α ≥ 0.
The size of the zero cell can be measured by any real function Σ on K ∈ Kd

o

satisfying only the following natural axioms:

(a) Σ is continuous,
(b) not identically zero,
(c) homogeneous of some degree k > 0,
(d) increasing under set inclusion (K ⊂ M ⇒ Σ(K) ≤ Σ(M)).

Let a function Σ with these properties be given. We call it the size func-
tional. Typical examples are volume, surface area, diameter, inradius.

It is easy to see (using continuity and homogeneity properties) that Φ and
Σ satisfy a sharp inequality of isoperimetric type, of the form

Φ(K) ≥ τ Σ(K)r/k for K ∈ Kd
o , (21)

with some number τ > 0. That the inequality is sharp means that (after the
correct choice of τ) there exist convex bodies K ∈ Kd

o for which equality holds;
every such body is called an extremal body (for given Φ and Σ).

We remark that the extremal bodies have the following probabilistic char-
acterization. Among all convex bodies K ∈ Kd

o of size Σ(K) = 1, precisely the
extremal bodies maximize the probability P(K ⊂ Z0). In fact, if K satisfies the
assumptions, then

P(K ⊂ Z0) = P(card (X ∩HK) = 0)

= exp{−Φ(K)γ} ≤ exp{−τΣ(K)r/kγ} = e−τγ ,

with equality if and only if equality holds in (21).
The realizations and the asymptotic shapes of the zero cell belong to a

special class of convex bodies, which we now introduce.
By suppϕ we denote the support of the direction distribution ϕ. This is

a closed set on Sd−1, not lying in a closed hemisphere. We say that a convex
body K ∈ Kd

o is ϕ-adapted if

K =
⋂

u∈supp ϕ

H−(u, h(K, u)),

that is, if K is the intersection of its supporting halfspaces which have an
outer unit normal vector in the support of ϕ. The class of all ϕ-adapted convex
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bodies inKd
o is denoted byKϕ. In the subspace of d-dimensional convex bodies,

the subset of ϕ-adapted bodies is closed. It is not difficult to show that the
isoperimetric inequality (21) always has extremal bodies which are ϕ-adapted.

Our third functional measures the deviation of a convex body from the
class of extremal bodies in Kϕ. Again, we introduce it axiomatically. We as-
sume that Φ and Σ are given. A real function ϑ on {K ∈ Kϕ : Σ(K) > 0} is
called a deviation functional if

(a) ϑ is continuous,
(b) nonnegative,
(c) homogeneous of degree zero,
(d) ϑ(K) = 0 for some K ∈ Kϕ holds if and only if K is an extremal body.

Such deviation functionals always exist. For example, one could take

ϑ(K) :=
Φ(K)

τΣ(K)r/k
− 1. (22)

However, in concrete examples, the deviation functional should be chosen in
such a way that the deviation has a simple intuitive geometric meaning, and
an inequality ϑ(K) < ε should allow an explicit estimate of some geometric
distance of K from an extremal body in Kϕ.

It follows from the properties of the involved functionals that the inequality
(21) admits a strengthening in the form of a stability estimate: there exists a
continuous function f with f(ε) > 0 for ε > 0 and f(0) = 0 such that

Φ(K) ≥ (1 + f(ε))τΣ(K)r/k if ϑ(K) ≥ ε, (23)

for K ∈ Kϕ. Any such function f will be called a stability function for
Φ,Σ, ϑ.

After these preparations, we can formulate a general result.

5.1 Theorem. Suppose that a Poisson hyperplane process X with direction
distribution ϕ and distance exponent r (which determine the parameter func-
tional Φ), a size functional Σ, a deviation functional ϑ, and a stability function
f for Φ,Σ, ϑ as explained are given. With a suitable constant c0 > 0, the fol-
lowing holds. If ε ∈ (0,∞) and I = [a, b) is an interval (possibly b = ∞) with
ar/kγ ≥ σ0, where σ0 > 0 is a constant, then

P(ϑ(Z0) ≥ ε | Σ(Z0) ∈ I) ≤ c exp
{
−c0f(ε)ar/kγ

}
, (24)

where c is a constant depending only on ϕ, r,Σ, f, ε, σ0.

Before turning to (a sketch of) the proof of this theorem, we want to explain
what it tells us about asymptotic shapes of large cells in more concrete cases.
First, we see that (24) implies

lim
a→∞

P(ϑ(Z0) < ε | Σ(Z0) ≥ a) = 1
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for every ε > 0. Roughly, this shows that zero cells which are ‘large’ in the sense
of Σ have a small deviation from an extremal body, with high probability.

In order to draw precise conclusions about the existence of limit shapes,
we introduce a notion of shape. It is common to consider two convex bodies
to be of the same shape if they are similar to each other. We need a more
general notion. Let G be a subgroup of the group S of similarities of Rd which
contains the group D of all positive dilatations. A typical example is the group
H of homotheties. Two convex bodies K, M ∈ Kd have the same G-shape,
also written as K ∼G M , if K = gM with some g ∈ G. The quotient space
SG := Kd/∼G is called the space of G-shapes. Let sG : Kd → SG be the
projection, thus sG(K) = {gK : g ∈ G} is the class of all convex bodies in Kd

having the same G-shape as K.
Let the Poisson hyperplane process X, the zero cell Z0 and the size func-

tional Σ be as above.

Definition. The conditional law of the G-shape of Z0, given the lower
bound a for the size Σ, is the image measure µa of the probability measure
P(Z0 ∈ · | Σ(Z0) ≥ a) under the map sG. A shape sG(B), where B ∈ Kd

o , is
the limit shape of Z0 with respect to Σ if the measure µa converges weakly,
as a → ∞, to the Dirac measure δsG(B) concentrated at the fixed G-shape
sG(B).

Now we can formulate a general theorem on the existence of limit shapes.

5.2 Theorem. Let X, Z0, Σ be as above. Suppose there exists a subgroup G
of the group of similarities such that Kϕ and the function (22) are invariant
under G and that the extremal bodies of the inequality (21) in Kϕ have a
unique G-shape sG(B). Then sG(B) is the limit shape of Z0 with respect to Σ.

Proof. We deduce this from Theorem 5.1, assuming that all data are as given
in that theorem and ϑ is chosen according to (22). For proving the asserted
weak convergence of the measure µa, we have to show that

lim sup
a→∞

µa(C) ≤ δsG(B)(C) (25)

for every closed set C ⊂ SG. This holds if sG(B) ∈ C, hence we assume
that sG(B) /∈ C. Every zero cell Z0 is ϕ-adapted with probability one, hence
µa(C) = P(sG(Z0) ∈ C | Σ(Z0) ≥ a) = µa(C ∩ sG(Kϕ)). Suppose there ex-
ists a convex body K ∈ Kϕ such that sG(K) ∈ C and ϑ(K) = 0. Then K
is an extremal body. Since it is in Kϕ, its G-shape is uniquely determined,
hence sG(K) = sG(B) and thus sG(B) ∈ C, a contradiction. Thus, ϑ is pos-
itive on Kϕ ∩ s−1

G (C). Since this set is closed and invariant under positive
dilatations, and since the function ϑ is continuous and positively homoge-
neous of degree zero, ϑ attains a positive minimum ε on Kϕ ∩ s−1

G (C), hence
Kϕ ∩ s−1

G (C) ⊂ {K ∈ Kd
o : ϑ(K) ≥ ε}. This gives

µa(C) = P(Z0 ∈ Kϕ ∩ s−1
G (C) | Σ(Z0 ≥ a) ≤ P(ϑ(Z0) ≥ ε | Σ(Z0) ≥ a) → 0
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for a →∞, by Theorem 5.1. This proves Theorem 5.2. ut

Some special cases

We consider some special cases of the preceding theorems.

(1) The zero cell of a stationary Poisson hyperplane process; the size measured
by the volume (this was treated in [1])

This is the higher-dimensional version of Kendall’s problem, extended to
the non-isotropic case. In this case, r = 1, Σ = Vd, and the parameter func-
tional can be expressed as a mixed volume:

Φ(K) = 2dV1(B,K) = 2dV (B, . . . , B, K),

where B is the convex body with centre 0 for which the direction distribution
ϕ is the area measure; it exists by Minkowski’s existence theorem from con-
vex geometry. The isoperimetric inequality (21) is now Minkowski’s classical
inequality

V1(B,K)d ≥ Vd(B)d−1Vd(K).

Equality holds if and only if K is homothetic to B. Hence, sH(B) is the limit
shape of the zero cell with respect to the volume. If the hyperplane process
is isotropic, then B is a ball, thus we get a higher dimensional version of
Kendall’s original problem.

A deviation functional with a simple intuitive meaning is given by

rB(K) := inf{s/r − 1 : rB ⊂ K + z ⊂ sB, z ∈ Rd, r, s > 0}. (26)

A stability version of Minkowski’s inequality due to Groemer then leads to
the following deviation estimate:

P(rB(Z0) ≥ ε | V (Z0) ∈ [a, b)) ≤ c exp
{
−c0ε

d+1a1/dγ
}

.

(2) The typical cell of a stationary Poisson-Voronoi mosaic; the size measured
by the kth intrinsic volume Vk (this is treated in [2], among other results)

In this case, r = d, the direction distribution ϕ is rotation invariant, Σ =
Vk, and the parameter functional is

Φ(K) =
1
d

∫
Sd−1

h(K, u)d σ(du).

The isoperimetric inequality (21) now reads

Φ(K) ≥ τ(d, k)Vk(K)d/k (27)

with an explicit constant τ(d, k), which is obtained by combining Hölder’s
inequality with the Aleksandrov-Fenchel inequalities. The extremal bodies
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are precisely the balls with centre 0, hence the set of centred balls is the
limit shape of the typical cell Z with respect to Vk. A convenient deviation
functional is given by

ϑ(K) :=
Ro(K)− ρo(K)
Ro(K) + ρo(K)

, (28)

where Ro(K) (respectively ρo(K)) is the smallest (largest) ball with centre
0 containing K (contained in K). Using this deviation function, a stability
version of (27) can be proved; the obtained estimate corresponding to (24) is

P(ϑ(Z) ≥ ε | Vk(Z) ∈ [a, b)) ≤ c exp
{
−c0ε

(d+3)/2ad/kγ
}

.

(3) The zero cell of a stationary, nonisotropic Poisson hyperplane process; the
size measured by the inradius

For a convex body K ∈ Kd, the inradius ρ(K) is the radius of a largest
ball contained in K. For the zero cell Z0 of a stationary and isotropic Poisson
hyperplane process X it was proved in [2] that the limit shape with respect
to the inradius is the class of balls. We are now in a position to treat the
nonisotropic case. In this case, the consideration of ϕ-adapted convex bodies
is essential.

Since X is stationary, the direction distribution ϕ is even, hence the pa-
rameter functional

Φ(K) =
∫

Sd−1
h(K, u) ϕ(du), K ∈ Kd,

is translation invariant. We may therefore assume that 0 is the centre of a
largest ball contained in K. Then h(K, u) ≥ ρ(K), hence

Φ(K) ≥ ρ(K). (29)

Equality holds if and only if h(K, u) = ρ(K) for all u in the support of the
measure ϕ. Thus, equality in (29) holds for the convex body

Bϕ :=
⋂

u∈supp ϕ

H−(Bd, 1),

and for K ∈ Kϕ equality in (29) holds if and only if K is homothetic to Bϕ

(in general, there are many convex bodies not in Kϕ which yield equality in
(29)). Thus, sH(Bϕ) is the limit shape of Z0 with respect to the inradius ρ.

A stability improvement of (29) involving a simple geometrically resason-
able deviation functional, like (26) or (28), can apparently not be achieved
without special assumptions on the direction distribution ϕ.

In the nonstationary case, the parameter functional
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Φ(K) =
1
r

∫
Sd−1

h(K, u)r ϕ(du)

is not translation invariant, therefore we replace the inradius ρ(K) by the
centred inradius ρo(K). As above, we obtain

Φ(K) ≥ 1
r
ρo(K)r for K ∈ Kd

o ,

with equality for K ∈ Kϕ if and only if K is a dilate of Bϕ. Hence, sD(Bϕ) is
the limit shape of Z0 with respect to the centred inradius ρo.

(4) The zero cell of a stationary, isotropic Poisson hyperplane process; the
size measured by the diameter

Let D denote the diameter. If K ∈ Kd, then K contains a segment of
length D(K), without loss of generality with centre at 0. We conclude that

Φ(K) ≥ κd−1D(K),

with equality if and only if K is a segment. Thus, the limit shape of Z0 with
respect to the diameter is the class of segments.

A suitable deviation functional η(K) can be defined as the Hausdorff dis-
tance of K from the set of all segments, divided by the diameter D(K). With
this choice, the deviation estimate

P(η(Z0) ≥ ε | D(Z0) ∈ [a, b)) ≤ c exp
{
−c0ε

2aγ
}

can be proved.

(5) The typical cell of a stationary Poisson-Voronoi process; the size measured
by the largest distance of a vertex from the nucleus

Similarly as above, one obtains the inequality

Φ(K) ≥ τ(d)Ro(K)d

with an explicit constant τ(d). Equality holds if and only if K is a segment
with one endpoint at 0. Thus, in this case the limit shape is the class of all
segments with one endpoint at the origin.

6 Principle ideas of the proof

To explain the approach to Theorem 5.1, we first extend a heuristic argument
from [1], trying to make plausible why an estimate as in Theorem 5.1 can be
expected. In these heuristics, we restrict ourselves to an interval I = [a,∞),
with a > 0. We have to estimate the conditional probability

P(ϑ(Z0) ≥ ε | Σ(Z0) ≥ a) =
P(ϑ(Z0) ≥ ε, Σ(Z0) ≥ a)

P(Σ(Z0) ≥ a)
.
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Estimation of the denominator is easy. As mentioned above, there exists an
extremal body B ∈ Kϕ. Let Ba be the dilate of B with Σ(Ba) = a. Then, by
the monotonicity of Σ,

P(Σ(Z0) ≥ a) ≥ P(card (X ∩HBa
) = 0) = exp{−Φ(Ba)γ}.

Since Ba is an extremal body, we have

Φ(Ba) = τΣ(Ba)r/k = τar/k, (30)

hence
P(Σ(Z0) ≥ a) ≥ exp{−τar/kγ}. (31)

For the estimation of the numerator, we try to compare the occurring zero
cells with a deterministic convex body with similar properties, that is, not
cut by hyperplanes of the process, with large size and large deviation from B.
Suppose that K ∈ Kϕ is a convex body satisfying

ϑ(K) ≥ ε > 0 and Σ(K) ≥ a.

Then, by (23),

P(card (X ∩HK) = 0) = exp{−Φ(K)γ} ≤ exp{−(1 + f(ε))τar/kγ}.

Heuristically, we hope that here we may replace the deterministic body K
satisfying

card (X ∩HK) = 0, ϑ(K) ≥ ε, Σ(K) ≥ a

by the random polytope Z0 satisfying

card (X ∩Hint Z0) = 0, ϑ(Z0) ≥ ε, Σ(Z0) ≥ a,

at the cost of only a slight weakening of the inequality, say

P(ϑ(Z0) ≥ ε, Σ(Z0) ≥ a) ≤ c′ exp{−(1 + c′′f(ε))τar/kγ} (32)

with c′, c′′ > 0. If (32) can be proved, then together with (31) this implies

P(ϑ(Z0) ≥ ε | Σ(Z0) ≥ a) ≤ c′ exp{−c′′f(ε)τar/kγ},

which is of the form asserted in Theorem 5.1. The bulk of the proof consists
in replacing this heuristic argument by precise reasoning.

The actual proof is too technical to allow more than a short sketch of
some ideas. Returning to the general case, we have to estimate the conditional
probability

P(ϑ(Z0) ≥ ε | Σ(Z0) ∈ a(1, 1 + h)) =
P(ϑ(Z0) ≥ ε, Σ(Z0) ∈ a(1, 1 + h))

P(Σ(Z0) ∈ a(1, 1 + h))
,
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where Σ(Z0) now ranges in an interval (a, b) = a(1, 1+h). In a first stage, this
is only possible for sufficiently small positive h. The case of a more general
range can later be deduced from the local version by means of a covering
argument. We concentrate on the more difficult part, the estimation of the
numerator. Here it is convenient to first assume that h = 1; a transformation
will later give the general case. Thus we are aiming at an upper estimate for
the probability

P(ϑ(Z0) ≥ ε, Σ(Z0) ∈ (a, 2a)).

The random polytope Z0 can, in principle, have an arbitrarily large diam-
eter and arbitrarily many facets. To deal with this, we introduce the ‘relative
diameter’

δ(K) :=
D(K))

cΣ(K)1/k
for K ∈ Kd

0,

where D is the diameter and the constant c is chosen so that δ(K) ≥ 1 and
the value 1 is attained. Putting

Ka,ε(m) := {K ∈ Kϕ : ϑ(K) ≥ ε, Σ(K) ∈ (a, 2a), δ(K) ∈ [m,m + 1)}

and
qa,ε(m) := P(Z0 ∈ Ka,ε(m)),

we have

P(ϑ(Z0) ≥ ε, Σ(Z0) ∈ (a, 2a)) =
∞∑

m=1

qa,ε(m).

The reason for introducing the additional restriction δ(Z0) ∈ [m,m + 1) lies
in the fact that it allows us to consider in a first step only zero cells lying in
some fixed bounded set. More precisely:

If Z0 ∈ Ka,ε(m) then

Z0 ⊂ c1ma1/kBd =: C, (33)

and Z0 has a vertex v with

‖v‖ ≥ c2ma1/k. (34)

By c1, c2, . . . we denote constants depending on various data, but not on a.
Now comes the moment to exploit the fact that the hyperplane process X

is Poisson. The essential property is Proposition 1.2. Therefore, we consider
separately each case where the set C defined by (33) is hit by exactly N
hyperplanes of the process. We have

qa,ε(m)

=
∞∑

N=d+1

P(card (X ∩HC) = N) P(Z0 ∈ Ka,ε(m) | card (X ∩HC) = N).
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By the Poisson distribution,

P(card (X ∩HC) = N) =
[Φ(C)γ]N

N !
exp{−Φ(C)γ}.

We must estimate the conditional probability

pN := P(Z0 ∈ Ka,ε(m) | card (X ∩HC) = N).

By Proposition 1.2,

pN =

1
[Φ(C)γ]N

∫
HC

. . .

∫
HC

1{H−
1 ∩ · · · ∩H−

N ∈ Ka,ε(m)}Θ(dH1) · · ·Θ(dHN ).

Suppose that the integrand is equal to 1, that is,

P (H(N)) := H−
1 ∩ · · · ∩H−

N ∈ Ka,ε(m),

in particular ϑ(P (H(N))) ≥ ε. Thus the polytope P (H(N)) is not too close to
an extremal body of the isoperimetric inequality (21). We choose an extremal
body Ba with Σ(Ba) = a. By the stability version (23) of the isoperimetric
inequality,

Φ(P (H(N))) ≥ (1 + f(ε))Φ(Ba).

In principle, the polytope P (H(N)) can have as many as N facets. For an
effective estimation, we must restrict its number of vertices. Using an approx-
imation theorem from convex geometry, we can show, for given α > 0, the
existence of a number ν independent of N such that the convex hull Q(H(N))
of ν suitably chosen vertices of P (H(N)) satisfies

Φ(Q(H(N))) ≥ (1− α)Φ(P (H(N))).

With g(ε) := f(ε)/(2 + f(ε)) we obtain

Φ(Q(H(N))) ≥ (1 + g(ε))Φ(Ba). (35)

For each N -tuple (H1, . . . ,HN ) such that P (H(N)) ∈ Ka,ε(m), we make a
definite choice of Q = Q(H(N)). This selection can be made so that Q(H(N))
is a measurable function of (H1, . . . ,HN ).

Excluding a set of N -tuples (H1, . . . ,HN ) of ΘN measure zero, we can
assume that each of the vertices of Q lies in precisely d of the hyperplanes
H1, . . . ,HN , and the remaining hyperplanes are disjoint from Q. Hence, at
most dν of the hyperplanes H1, . . . ,HN meet Q; let j ∈ {d+1, . . . , dν} denote
their precise number. This leads to
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pN [Φ(C)γ]N

≤
dν∑

j=d+1

(
N

j

)∫
HC

. . .

∫
HC︸ ︷︷ ︸

j

[∫
HC

. . .

∫
HC︸ ︷︷ ︸

N−j

1
{
P (H(N)) ∈ Ka,ε(m)

}
1{Hi ∩Q(H(N)) 6= ∅ for i = 1, . . . , j}

1{Hi ∩Q(H(N)) = ∅ for i = j + 1, . . . , N}Θ(dHj+1) · · ·Θ(dHN )

]
Θ(dH1) · · ·Θ(dHj).

If the integrand is equal to 1, then (35) holds. Since, for any convex body
K ⊂ C, ∫

HC

1{H ∩K = ∅}Θ(dH) = Φ(C)γ − Φ(K)γ,

the integral in brackets (where Q(H(N)) is fixed and independent of Hj+1, . . . ,HN )
can be estimated by

[. . . ] ≤ [Φ(C)γ − Φ(Q(H(N)))γ]N−j ≤ [Φ(C)γ − (1 + g(ε))Φ(Ba)γ]N−j ,

and we obtain

pN [Φ(C)γ]N ≤
dν∑

j=d+1

(
N

j

)
[Φ(C)γ − (1 + g(ε))Φ(Ba)γ]N−j [Φ(C)γ]j .

Here
Φ(C) = c3m

rar/k,

by the definition (33) of C and the homogeneity of Φ. Summation over N
finally leads to

qa,ε(m) ≤ c4m
rdν exp{−(1 + f(ε)/3)τar/kγ}.

This estimate can be applied for small numbers m. For large m, the estimate

qa,ε(m) ≤ c5 exp{−c6m
rar/kγ}

is used, which is obtained in a similar though somewhat easier way, using (34).
Now we have to combine both estimates and extend the considered range of

Σ(Z0) from intervals a(1, 2) to intervals a(1, 1+h). This extension is achieved
by a kind of transformation. We end up with the following estimate for the
numerator of our conditional probability:

6.1 Lemma. Let ε ∈ (0, 1), h ∈ (0, 1/2) and ar/kγ ≥ σ0, where σ0 > 0 is a
constant. Then
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P(ϑ(Z0) ≥ ε, Σ(Z0) ∈ a(1, 1 + h)) ≤ c7h exp
{
−(1 + f(ε)/6)τar/kγ

}
.

Since this upper bound for the numerator contains the number h as a
factor, it is necessary to estimate the denominator from below by a suitable
bound which is also linear in h, so that this factor cancels out. This is achieved
by the following lemma.

6.2 Lemma. For each β > 0, there are constants h0 > 0, N ∈ N and c8 > 0
such that, for a > 0 and 0 < h < h0,

P(Σ(Z0) ∈ a(1, 1 + h)) ≥ c8h(ar/kλ)N exp{−(1 + β)τar/kλ}.

The proof of this lemma is essentially constructive, exhibiting sufficiently
many situations in which the event Σ(Z0) ∈ a(1, 1+h) occurs. In both lemmas
the number h must be sufficiently small. The final proof of Theorem 1 extends
the estimates from the special intervals a(1, 1 + h), with small h, to general
intervals (a, b) by a covering argument.

The complete proof requires many more details, but already this sketch
should make clear how essential the Poisson assumption was. Without it, we
could not have worked with finitely many independent hyperplanes, that is,
with product integrals over spaces like HC × · · · × HC , and would not have
been able to deduce any general estimate.

Hints to the literature. General information about random mosaics can be
found in [13] and [12]; random Voronoi tessellations are treated in [9]. First
solutions of Kendall’s problem in the plane are due to Kovalenko [4], [5], [6].
Higher-dimensional versions of Kendall’s problem were investigated in [1] and
[2]. The general theorem 5.1 is contained in [3], together with further results.
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