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A closed convex cone in Rd , briefly a cone, is a closed, convex
set ∅ 6= C ⊆ Rd with λx ∈ C for x ∈ C and λ ≥ 0.

We consider the following question:

Let C,D be cones. Let D undergo a uniform random rotation Θ.

What is the probability that C and ΘD have a nontrivial
intersection, that is, C ∩ΘD 6= {o}?
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The answer is immediate if C and D happen to be subspaces:

P(C ∩ΘD 6= {o}) =

{
0 if dim C + dim D ≤ d ,

1 if dim C + dim D > d .

Thus, the probability depends only on the sum of the
dimensions of C and D.

The great surprise is that for cones one can define a number,
the statistical dimension, such that a similar result holds
approximately.

Where does this come from?

The use of convex optimization for signal demixing under a
certain random model.
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Michael B. McCoy: A geometric analysis of convex demixing. PhD
Thesis, California Institute of Technology, 2013.

Quotation:

“Our framework includes a random orientation model for the
constituent signals that ensures the structures are incoherent.
This work introduces a summary parameter, the statistical
dimension, that reflects the intrinsic complexity of a signal.

. . . demixing succeeds with high probability when the sum of
the complexities is less than the ambient dimension; otherwise,
it fails with high probability.

The fact that a phase transition between success and failure
occurs in demixing is a consequence of a new inequality in
conic integral geometry. Roughly speaking, this inequality
asserts that a convex cone behaves like a subspace whose
dimension is equal to the statistical dimension of the cone.”
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This was continued and expanded in

D. Amelunxen, M. Lotz, M.B. McCoy, J.A. Tropp: Living on the edge:
phase transitions in convex programs with random data. Information
and Inference 3 (2014), 224–294.

(Winner of the “Information and Inference Best Paper Prize”
2015).

Quotation: “This paper introduces a summary parameter, called
the statistical dimension, that canonically extends the
dimension of a linear subspace to the class of convex cones.

The main technical result demonstrates that the sequence of
intrinsic volumes of a convex cone concentrates sharply around
the statistical dimension.

This fact leads to accurate bounds on the probability that a
randomly rotated cone shares a ray with a fixed cone.”
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Applications described in that paper: Phase transitions in
random convex optimization problems

• compressed sensing; `1 minimization for identifying a sparse
vector from random linear measurements

• regularized linear inverse problems with random
measurements

• demixing problems under a random incoherence model

• cone programs with random affine constraints
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The core from the viewpoint of convex geometry

C,D are cones, not both subspaces, and Θ is a uniform
random rotation.

We ask for the probability

P(C ∩ΘD 6= {o}).
In principle, the answer is known for a long time:

Spherical integral geometry (Santaló 1976, Glasauer 1995),
translated into the conical setting, yields the following.

First, one needs to define the conic intrinsic volumes
v1(C), . . . , vd (C) of a closed convex cone C ⊆ Rd .

Second, the conic kinematic formula provides the expectation

Evk (C ∩ΘD) =
d∑

i=k

vi(C)vd+k−i(D)

for k = 1, . . . ,d .
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Third, a version of the spherical Gauss–Bonnet theorem says
that

2
b d−1

2 c∑
k=0

v2k+1(C) = 1 if C is not a subspace.

Since C ∩ΘD is, with probability one, either {o} (in which case
vk (C ∩ΘD) = 0 for k ≥ 1) or not a subspace, this implies that

1{C ∩ΘD 6= {o}} = 2
b d−1

2 c∑
k=0

v2k+1(C ∩ΘD) almost surely

and hence

P(C ∩ΘD 6= {o}) = 2
b d−1

2 c∑
k=0

d∑
i=2k+1

vi(C)vd+2k+1−i(D).

10 / 93



This is the promised explicit answer.

However, it is useless for most applications, since one cannot
compute the conic intrinsic volumes.

Fortunately, one can prove concentration of the conic intrinsic
volumes around the statistical dimension, and this allows
valuable conclusions.

————————————————————————————

The following gives an introduction to the conic intrinsic
volumes, the conic kinematic formula, and the concentration
result.
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Convex cones

Cd denotes the set of closed convex cones in Rd .

Let C ∈ Cd .

The dual or polar cone of C is

C◦ := {x ∈ Rd : 〈x , y〉 ≤ 0 for all y ∈ C}.

We have C◦◦ = C.

For each x ∈ Rd , there is a unique point ΠC(x) ∈ C such that

‖x − ΠC(x)‖ = min{‖x − y‖ : y ∈ C}.

This defines the metric projection or nearest-point map ΠC of C.
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Lemma. (Moreau decomposition)

For all x ∈ Rd ,
x = ΠC(x) + ΠC◦(x),

where
〈ΠC(x),ΠC◦(x)〉 = 0.

Proof.

W.l.o.g., x ∈ Rd \ (C ∪ C◦) (otherwise trivial).

u := x − ΠC(x) is an outer normal vector of a supporting
hyperplane H of C through ΠC(x). We have o ∈ H.

⇒ u ∈ C◦
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o ∈ H ⇒ ΠC(x) ⊥ u

The hyperplane H ′ ⊥ ΠC(x) through o supports C◦.

⇒ ΠC◦(x), the point in C◦ nearest to x , is also the point in H ′

nearest to x .

⇒ ΠC◦(x) = u

The points x ,ΠC(x),ΠC◦(x),o are the vertices of a rectangle.

⇒ assertion
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Conic intrinsic volumes of polyhedral cones

First, we consider only polyhedral cones.

For these, the quickest definition of the conic intrinsic volumes
requires the k -skeleton

skelk (C) :=
⋃

F∈Fk (C)

relint F ,

where Fk denotes the set of k -faces of C.

Let g be a standard Gaussian random vector in Rd .

Definition. For k = 0, . . . ,d , the k th conic intrinsic volume of C
is defined by

vk (C) := P(ΠC(g) ∈ skelk (C)).
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Some explanations:

The distribution of g is the standard Gaussian measure,

γd (A) =
1

√
2π

d

∫
A

e−
1
2‖x‖

2
dx .

The Gaussian measure on a subspace L is denoted by γL.

The relation between the spherical Lebesgue measure σd−1 of
a Borel set A ⊆ Sd−1 (unit sphere) and the Gaussian measure
of the spanned cone A∨ := {λa : a ∈ A, λ ≥ 0} is given by

γd (A∨) =
σd−1(A)

σd−1(Sd−1)
.

(Hence, ‘angles’ in the following are spherical volumes.)
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We define the internal angle of C at o by

β(o,C) := γ〈C〉(C),

where 〈C〉 is the linear hull of C, and the external angle of C at
its face F by

γ(F ,C) := γ〈F 〉⊥(N(C,F )),

where N(C,F ) is the normal cone of C at F .

Recall that
vk (C) := P(ΠC(g) ∈ skelk (C)).

For a face F ∈ Fk (C) we have

ΠC(x) ∈ relint F ⇔ x ∈ (relint F ) + N(C,F ).
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Therefore,

P(ΠC(g) ∈ relint F ) = γd (F + N(C,F )) = β(o,F )γ(F ,C).

The latter holds since the Gauss measure of a direct sum is the
product of the Gauss measures of the summands.

We conclude that

vk (C) = P(ΠC(g) ∈ skelk (C))

=
∑

F∈Fk (C)

γd (F + N(C,F ))

=
∑

F∈Fk (C)

β(o,F )γ(F ,C).
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Relations between conic intrinsic volumes

A duality relation

Let F ∈ Fk (C), then G := N(C,F ) ∈ Fd−k (C◦) and
N(C◦,G) = F , hence F + N(C,F ) = G + N(C◦,G).
It follows that

vk (C) = vd−k (C◦) for k = 0, . . . ,d .

A trivial relation

From the definition

vk (C) := P(ΠC(g) ∈ skelk (C)),

it follow immediately that

v0 + · · ·+ vd = 1.
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A nontrivial relation

If C is not a subspace, then

v0(C)− v1(C) + v2(C)− · · ·+ (−1)dvd (C) = 0.

This follows from the identity∑
F∈F(C)

(−1)dim F
1F−N(C,F )(x) = 0 for x ∈ Rd \ U,

where U is the union of all faces of dimension < d − 1 of all
cones F − N(C,F ), F ∈ F(C).

The identity is due to P. McMullen (sketched 1975, proved
1981, reproduced in Schneider and Weil, Stochastic and
Integral Geometry, 2008).
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A side remark

The identity

(∗)
∑

F∈F(C)

(−1)dim F
1F−N(C,F )(x) = 0

was recently proved for all x ∈ Rd , without an exceptional set.

More generally, the following identity for convex polyhedra (not
necessarily bounded) holds.

Let P be a convex polyhedron,
• F a face of P,
• A(F ,P) the angle cone of P at F ,
• N(P,F ) the normal cone of P at F .
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Theorem 1. Let E 6= P be a face of P. Then∑
E⊆F∈F(P)

(−1)dim F
1A(E ,F )−N(P,F ) = 0.

The proof, in

R. Schneider, Combinatorial identities for polyhedral cones. Algebra i
Analiz 29 (2017), 279–295

uses the generalized Brianchon–Gram–Sommerville relation
(on the level of indicator functions) and employs the incidence
algebra of the face lattice of P.

If P is a cone (not a subspace) and E is the lineality space of P,
then A(E ,F ) = F , hence Theorem 1 gives (*).
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The identity

(∗)
∑

F∈F(C)

(−1)dim F
1F−N(C,F ) = 0

was extended to all polyhedra by Hug and Kabluchko 2018.

(End of the side remark)
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Back to the identity

v0(C)− v1(C) + v2(C)− · · ·+ (−1)dvd (C) = 0.

Above, we had excluded subspaces. If C is a subspace, then

v0(C)− v1(C) + v2(C)− · · ·+ (−1)dvd (C) = (−1)dim C .

For a formula comprising both cases, we need the Euler
characteristic.
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More generally, for a closed convex set K ⊂ Rd , define

type(K ) := (k , ε),

where k is the largest dimension of an affine subspace
contained in K , and ε = 1 or 0 according to whether the
line-free kernel of K is bounded or not.

Theorem and Definition. There is a unique real valuation χ on
U(CCd ) (the set of all finite unions of closed convex sets), the
Euler characteristic, with

χ(K ) = (−1)kε if type(K ) = (k , ε), for K ∈ CCd .

Hadwiger’ (1955) elementary existence proof extends.
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With this definition, we have for any polyhedral cone C

d∑
k=0

(−1)kvk (C) = χ(C).

Together with
d∑

k=0

vk (C) = 1,

this yields

2
b d−1

2 c∑
k=0

v2k+1(C) = 1− χ(C).

This is important for our initial question, since almost surely

2
b d−1

2 c∑
k=0

v2k+1(C ∩ΘD) =

{
1 if C ∩ΘD 6= {o},
0 if C ∩ΘD = {o}.
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Remark. The relation

2
b d−1

2 c∑
k=0

v2k+1(C) = 1− χ(C)

is a version of the spherical Gauss–Bonnet theorem.

For smooth submanifolds of the sphere, it appears in Santaló
1955, 1976.

————————————————————————————

Up to now, we have only considered polyhedral cones.

We use a Steiner formula to extend the conic intrinsic volumes
to general closed convex cones.
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Steiner formulas

M.B. McCoy, J.A.Tropp, From Steiner formulas for cones to
concentration of intrinsic volumes. Discrete Comput. Geom. 51
(2014), 926–963:

Theorem 2. (Master Steiner formula) For a polyhedral cone C
and a measurable function f : R2

+ → R+ define

ϕf (C) := Ef
(
‖ΠC(g)‖2, ‖ΠC◦(g)‖2

)
.

Then

ϕf (C) =
d∑

k=0

Ik (f ) · vk (C),

where
Ik (f ) = ϕf (Lk ), Lk ∈ G(d , k).
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Explicitly,

Ik (f ) =
ωkωd−k
√

2π
d

∫ ∞
0

∫ ∞
0

f (r2, s2)e−
1
2 (r2+s2)r k−1sd−k−1 ds dr

for k = 1, . . . ,d − 1 and

I0(f ) =
ωd
√

2π
d

∫ ∞
0

f (0, s2)e−
1
2 s2

sd−1 ds,

Id (f ) =
ωd
√

2π
d

∫ ∞
0

f (r2,0)e−
1
2 r2

rd−1 dr .
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Essentials of the proof:

ϕf (C)

= Ef
(
‖ΠC(g)‖2, ‖ΠC◦(g)‖2

)
=

d∑
k=0

∑
F∈Fk (C)

E
[
f
(
‖ΠC(g)‖2, ‖ΠC◦(g)‖2

)
1relint F (ΠC(g)

]
.

In the following, we use the Moreau decomposition.

Then we use the fact that the Gauss measure of a direct sum is
the product of the Gauss measures of the summands.
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For F ∈ Fk (C),

E
[
f
(
‖ΠC(g)‖2, ‖ΠC◦(g)‖2

)
1relint F (ΠC(g)

]
=

1
√

2π
d

∫
F⊕N(C,F )

f
(
‖ΠC(z)‖2, ‖ΠC◦(z)‖2

)
e−

1
2‖z‖

2
λd (dz)

=
1

√
2π

d

∫
F

∫
N(C,F )

f (‖x‖2, ‖y‖2)e−
1
2 (‖x‖2+‖y‖2)λd−k (dy)λk (dx).

The rest is computation.

Specializations of the Master Steiner formula yield ‘usual’
Steiner formulas, for the volume of parallel sets.

But for cones, we replace ‘volume’ by Gauss measure, and
‘parallel sets’ can be interpreted differently.
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(a) The Gaussian Steiner formula

Here we consider the usual parallel set of C at distance λ ≥ 0,

{x ∈ Rd : dist(x ,C) ≤ λ} = C + λBd .

The choice

f (a,b) =

{
1 if b ≤ λ2,
0 otherwise

in the Master Steiner formula yields

35 / 93



Corollary 1. For a polyhedral cone C, the Gaussian measure
of the parallel set C + λBd is given by

γd (C + λBd ) =
d∑

k=0

fk (λ) · vk (C)

with

fk (λ) =
ωd−k
√

2π
d−k

∫ λ

0
e−

1
2 s2

sd−k−1 ds

for k = 0, . . . ,d − 1 and fd ≡ 1.

This allows an approach to the conic intrinsic volumes that
parallels the approach to the classical intrinsic volumes of
convex bodies.
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(b) The spherical Steiner formula
(in a conic interpretation)

Let da(x , y) denote the angle between the vectors x , y ∈ Rd ,

da(x , y) = arccos
〈

x
‖x‖

,
y
‖y‖

〉
, x , y 6= o.

The angular distance of x ∈ Rd \ C◦ from a cone C 6= {o} is

da(x ,C) = min{da(x , y) : y ∈ C \ {o}}

= arccos
‖ΠC(x)‖
‖x‖

.

The angular parallel set of C 6= {o} at distance λ ≥ 0 is

Ca
λ = {x ∈ Rd \ C◦ : da(x ,C) ≤ λ}.
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The choice

f (a,b) =

{
1 if a ≤ b tan2 λ,
0 otherwise

in the Master Steiner formula yields:

Corollary 2. For a polyhedral cone C, the Gaussian measure of
the angular parallel set Ca

λ at distance 0 ≤ λ < π/2 is given by

γd (Ca
λ) =

d∑
k=0

gk (λ) · vk (C)

with

gk (λ) =
ωkωd−k

ωd

∫ λ

0
cosk−1 ϕ sind−k−1 ϕdϕ

for k = 1, . . . ,d − 1 and gd ≡ 1.
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McCoy and Tropp (2014) have elegant reformulations of the
special Steiner formulas:

Corollary 3. For λ ≥ 0,

P(dist 2(g,C) ≤ λ) =
d∑

k=0

P(Xd−k ≤ λ) · vk (C),

where Xd−k is a random variable following the chi-square
distribution with d − k degrees of freedom.

Corollary 4. If u is a uniform random vector in the sphere Sd−1,
then, for λ ∈ [0,1],

P(dist 2(u,C) ≤ λ) =
d∑

k=0

P(Bd−k ,k ≤ λ) · vk (C),

where Bd−k ,k is a random variable following the beta
distribution with parameters j/2 and k/2.
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We can now extend all this by continuity.

Let Cd
∗ denote the set of closed convex cones 6= {o} in Rd .

On Cd
∗ , we define the angular Hausdorff metric by

δa(C,D) := min{ε ≥ 0 : C ⊆ Da
ε , D ⊆ Ca

ε }.

With respect to this metric, polarity is a local isometry:
If C,D ∈ Cd

∗ are cones 6= Rd with δa(C,D) < π/2, then

δa(C◦,D◦) = δa(C,D)

(Glasauer 1995).
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For 0 ≤ λ < π/2, let

µλ(C) := γd (Ca
λ)

denote the Gaussian measure of the angular parallel set of C at
angular distance λ.

If Ci ,C ∈ Cd
∗ and Ci → C in the angular Hausdorff metric, then

µλ((Ci)
a
λ)→ µλ(Ca

λ).

Further, any cone C ∈ Cd
∗ can be approximated arbitrarily

closely by polyhedral cones, with respect to the angular
Hausdorff metric.

With this, the following theorem can be proved.
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Theorem 3.
To every cone C ∈ Cd

∗ , there exist nonnegative numbers
v0(C), . . . , vd (C) such that, for every λ with 0 ≤ λ < π/2, the
Gaussian measure of the angular parallel set Ca

λ is given by

γd (Ca
λ) =

d∑
k=1

gk (λ) · vk (C)

with

gk (λ) =
ωkωd−k

ωd

∫ λ

0
cosk−1 ϕ sind−k−1 ϕdϕ

for k = 1, . . . ,d − 1 and gd ≡ 1. Further, vk ({o}) = δk ,0.

Each mapping vk : Cd → R is a continuous valuation.

vk (C) is called the k th conic intrinsic volume of the cone C.
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Let us briefly resume where we are.

Our goal is to compute and estimate the probability

P(C ∩ΘD 6= {o}),

where C,D are given convex cones (not both subspaces) and
Θ is a uniform random rotation.

By now, we know how to express the indicator function of the
crucial event C ∩ΘD 6= {o} in terms of conic intrinsic volumes
of C ∩ΘD, namely (a.s.)

2
b d−1

2 c∑
k=0

v2k+1(C ∩ΘD) =

{
1 if C ∩ΘD 6= {o},
0 if C ∩ΘD = {o}.
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Recall that Θ is a uniform random rotation, that is, a random
variable with values in the rotation group SOd , with distribution
given by the Haar probability measure ν on SOd .

Hence, we have to compute

Evk (C ∩ΘD) =

∫
SOd

vk (C ∩ ϑD) ν(dϑ).

The computation of such integrals is a task of integral geometry.
The relevant kinematic formulas are well known in Euclidean
space, and moderately well known in spherical space.

Spherical integral geometry, from the conic viewpoint, received
new interest when its applicability in convex programming was
discovered.
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Theorem 4. (Conic kinematic formula)
If C,D ∈ Cd are closed convex cones, then∫

SOd

vk (C ∩ ϑD) ν(dϑ) =
d∑

i=k

vi(C)vd+k−i(D)

for k = 1, . . . ,d, and∫
SOd

v0(C ∩ ϑD) ν(dϑ) =
d∑

i=0

d−i∑
j=0

vi(C)vj(D).

The second part of the theorem follows from the first, since
v0 + · · ·+ vd = 1.
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Duality at work

Duality immediately yields the following:

Theorem 5.
If C,D ∈ Cd are closed convex cones, then∫

SOd

vd−k (C + ϑD) ν(dϑ) =
d−k∑
i=0

vi(C)vd−k−i(D)

for k = 1, . . . ,d, and∫
SOd

vd (C + ϑD) ν(dϑ) =
d∑

i=0

d∑
j=d−r

vi(C)vj(D).
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In the following, we sketch a new proof, which is due to

D. Amelunxen, M. Lotz, Intrinsic volumes of polyhedral cones: a
combinatorial perspective. Discrete Comput. Geom. 58 (2017),
371–409.

We restrict ourselves to polyhedral cones (the general case can
be obtained by approximation) and to the principal ideas.

These consist in clever integrations over suitable subgroups of
the rotation group and applying (of course) Fubini’s theorem.

First we prove two special subcases of the two theorems above
(which are used in the general proof).
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Lemma 1. Let C,D ⊂ Rd be polyhedral cones, where

dim C = i , dim D = j , i + j = d + k > d .

Then ∫
SOd

vk (C ∩ ϑD) ν(dϑ) = vi(C)vj(D).

For the proof, recall that we use 〈C〉 for the linear hull of the
cone C.

We also use SO〈C〉 for the rotation group of the subspace 〈C〉
and ν〈C〉 for its Haar probability measure.
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For ν-almost all ϑ ∈ SOd , we have dim(〈C〉 ∩ ϑ〈D〉) = k .
Therefore,∫

SOd

vk (C ∩ ϑD) νdϑ)

=

∫
SOd

γ〈C〉∩ϑ〈D〉(C ∩ ϑD) ν(dϑ)

=

∫
SOd

∫
〈C〉∩ϑ〈D〉

1C(x)1ϑD(x)γ〈C〉∩ϑ〈D〉(dx) ν(dϑ).

Here we replace ϑ by ϑρ with ρ ∈ SO〈D〉, which does not
change the outer integral (and observe that ρ〈D〉 = 〈D〉).

Hence, we can integrate over all ρ with respect to ν〈D〉.

This gives
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∫
SOd

vk (C ∩ ϑD) νdϑ)

=

∫
SO〈D〉

∫
SOd

∫
〈C〉∩ϑ〈D〉

1C(x)1D(ρ−1ϑ−1x)

×γ〈C〉∩ϑ〈D〉(dx) ν(dϑ) ν〈D〉(dρ)

=

∫
SOd

∫
〈C〉∩ϑ〈D〉

1C(x)

[∫
SO〈D〉

1D(ρ−1ϑ−1x) ν〈D〉(dρ)

]
×γ〈C〉∩ϑ〈D〉(dx) ν(dϑ).

By properties of the Haar measure, the integral in brackets is
equal to

γ〈D〉(D) = vj(D).
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Thus, we obtain:

∫
SOd

vk (C ∩ ϑD) νdϑ)

= vj(D)

∫
SOd

∫
〈C〉∩ϑ〈D〉

1C(x) γ〈C〉∩ϑ〈D〉(dx) ν(dϑ).

Now we play the same trick again.

The outer integral does not change if we replace ϑ by σϑ with
σ ∈ SO〈C〉.

Integrating over all σ, we get
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∫
SOd

vk (C ∩ ϑD) νdϑ)

= vj(D)

∫
SO〈C〉

∫
SOd

∫
σ(〈C〉∩ϑ〈D〉)

1C(x)

×γσ(〈C〉∩ϑ〈D〉)(dx) ν(dϑ) ν〈C〉(dσ)

= vj(D)

∫
SOd

∫
〈C〉∩ϑ〈D〉

[∫
SO〈C〉

1C(σx) ν〈C〉(dσ)

]
×γ〈C〉∩ϑ〈D〉(dx) ν(dϑ)

= vj(D)vi(C),

since γ〈C〉∩ϑ〈D〉 and ν are probability measures.
This proves Lemma 1.

52 / 93



Lemma 2. Let C,D ⊂ Rd be polyhedral cones, where

dim C = i , dim D = j , i + j = d − k < d .

Then ∫
SOd

vd−k (C + ϑD) ν(dϑ) = vi(C)vj(D).

For ν-almost all ϑ we have dim(〈C〉+ ϑ〈D〉) = i + j = d − k .
Therefore, using the product property of the Gaussian measure,

vd−k (C + ϑD) =

∫
〈C〉+ϑ〈D〉

1C+ϑD(y)γ〈C〉+ϑ〈D〉(dy)

=

∫
Rd
1C+ϑD+(〈C〉+ϑ〈D〉)⊥(x) γd (dx).
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For ν-almost all ϑ, there is the unique ϑ-decomposition

x = xC,ϑ + xD,ϑ + xϑ

with

xC,ϑ ∈ 〈C〉, xD,ϑ ∈ ϑ〈D〉, xϑ ∈ (〈C〉+ ϑ〈D〉)⊥.

Apply ρ ∈ SO〈C〉, to get

ρx = ρxC,ϑ + ρxD,ϑ + ρxϑ

with

ρxC,ϑ ∈ 〈C〉, ρxD,ϑ ∈ ρϑ〈D〉, ρxϑ ∈ (〈C〉+ ρϑ〈D〉)⊥,

which is the ρϑ-decomposition of ρx .
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Thus, we obtain∫
SOd

vd−k (C + ϑD) ν(dϑ)

as rewritten above

=

∫
SOd

∫
Rd
1C+ϑD+(〈C〉+ϑ〈D〉)⊥(x) γd (dx) ν(dϑ)

apply the ϑ-decomposition

=

∫
SOd

∫
Rd
1C(xC,ϑ)1ϑD(xD,ϑ) γd (dx) ν(dϑ)

replace ϑ by ρϑ and x by ρx with ρ ∈ SO〈C〉

=

∫
SOd

∫
Rd
1C((ρx)C,ρϑ)1ρϑD((ρx)D,ρϑ) γd (dx) ν(dϑ)

(ρϑ)-decomposition of ρx = ρ(ϑ-decomposition of x)
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=

∫
SOd

∫
Rd
1C(ρxC,ϑ)1ρϑD(ρxD,ϑ) γd (dx) ν(dϑ)

integrate over all ρ

=

∫
SO〈C〉

∫
SOd

∫
Rd
1C(ρxC,ϑ)1ϑD(xD,ϑ) γd (dx) ν(dϑ) }ν〈C〉(dρ)

apply Fubini

=

∫
SOd

∫
Rd

[∫
SO〈C〉

1C(ρxC,ϑ)ν〈C〉(dρ)

]
1D(ϑ−1xD,ϑ) γd (dx) ν(dϑ)

integral in brackets = vi (C)

= vi(C)

∫
SOd

∫
Rd
1D(ϑ−1xD,ϑ) γd (dx) ν(dϑ)

replace ϑ by ϑσ−1 with σ ∈ SO〈D〉, integrate over all σ

= vi(C)vj(D). This proves Lemma 2.
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Aiming at the proof of the conic kinematic formula for
polyhedral cones, we recall that

vk (C) =
∑

F∈Fk (C)

β(o,F )γ(F ,C)

=
∑

F∈Fk (C)

vk (F )vd−k (N(C,F )).

Here we introduce the abbreviation

ϕF (C) := vk (F )vd−k (N(C,F )) if dim F = k .

Hence, we have to integrate

vk (C ∩ ϑD) =
∑

J∈Fk (C∩ϑD)

ϕJ(C ∩ ϑD).

Thus, we need to consider the k -faces of C ∩ ϑD.
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Definition. The cones F ,G intersect transversally, written
F t G, if

dim(F ∩G) = dim F + dim G − d and relint F ∩ relint G 6= ∅.

Lemma. Let C,D be polyhedral cones. For ν-almost all
ϑ ∈ SOd , each k face J of C ∩ ϑD is of the form

J = F ∩ ϑG

with F ∈ Fi(C), G ∈ Fj(D), where i + j = d + k and F t ϑG.
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Therefore,∫
SOd

vk (C ∩ ϑD) ν(dϑ)

=
∑

i+j=k+d

∑
F∈Fi (C)

∑
G∈Fj (D)

∫
SOd

ϕF∩ϑD(C ∩ ϑD)1{F t ϑG} ν(dϑ).

We have to show that∫
SOd

ϕF∩ϑD(C ∩ ϑD)1{F t ϑG} ν(dϑ) = ϕF (C)ϕG(D)

for dim F + dim G = d + k .
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For ν-almost all ϑ,

ϕF∩ϑD(C ∩ ϑD) = vk (F ∩ ϑG)vd−k (N(C,F ) + ϑN(D,G)),

thus we have to prove that∫
SOd

vk (F ∩ ϑG)vd−k (N(C,F ) + ϑN(D,G)) ν(dϑ)

= ϕF (C)ϕG(D)

for dim F + dim G = d + k .

Lemmas 1 and 2 treated corresponding integrals where one of
the factors in the integrand is missing.
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The proof:∫
SOd

vk (F ∩ ϑG)vd−k (N(C,F ) + ϑN(D,G)) ν(dϑ)

replace ϑ by ρϑ with ρ ∈ SO〈F〉 and integrate over all ρ

=

∫
SO〈F〉

∫
SOd

vk (F ∩ ρϑG)vd−k (N(C,F ) + ρϑN(D,G)) ν(dϑ)

×ν〈F 〉(dρ)

Fubini; N(C,F ) = ρN(C,F ); SOd -invariance of vd−k

=

∫
SOd

[∫
SO〈F〉

vk (F ∩ ρϑG) ν〈F 〉(dρ)

]
×vd−k (N(C,F ) + ϑN(D,G)) ν(dϑ)
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apply Lemma 1 in 〈F 〉 to the integral in brackets

= vi(F )

∫
SOd

vk (ϑG ∩ 〈F 〉)vd−k (N(C,F ) + ϑN(D,G)) ν(dϑ)

use SOd -invariance of vk

= vi(F )

∫
SOd

vk (G ∩ ϑ−1〈F 〉)vd−k (N(C,F ) + ϑN(D,G)) ν(dϑ)

replace ϑ by ϑσ with σ ∈ SO〈G〉 and integrate over all σ

= vi(F )

∫
SO〈G〉

∫
SOd

vk (σG ∩ ϑ−1〈F 〉)vd−k (N(C,F ) + ϑN(D,G))

×ν(dϑ) ν〈G〉(dσ)

Fubini
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= vi(F )

∫
SOd

[∫
SO〈G〉

vk (σG ∩ ϑ−1〈F 〉) ν〈G〉(dσ)

]
×vd−k (N(C,F ) + ϑN(D,G)) ν(dϑ)

apply Lemma 1 in 〈G〉 to the integral in brackets

= vi(F )vj(G)

∫
SOd

vd−k (N(C,F ) + ϑN(D,G)) ν(dϑ)

apply Lemma 2

= vi(F )vj(G)vd−k (N(C,F ))vd−j(N(D,G)

= ϕF (C)ϕG(D).

This finishes the proof of the conic kinematic formula for
polyhedral cones.
Approximation extends this to general convex cones.
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A side remark

Much of this can be localized.

For η ⊂ Rd × Rd , let

η+ := {(λx , µy) : (x , y) ∈ η, λ, µ > 0}.

The biconic σ-algebra is defined by

B̂(Rd × Rd ) := {η ∈ B(Rd × Rd ) : η+ = η}.

For a polyhedral cone C and for η ∈ B̂(Rd × Rd ), let

Ωk (C, η) := P (ΠC(g) ∈ skel (C), (ΠC(g),ΠC◦(g)) ∈ η) .

Then Ωk (C, ·) is a measure, the k th conic support measure of
C, and Ωk (C,Rd × Rd ) = vk (C).
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Much of what we said about conic intrinsic volumes extends to
conic support measures.

• Explicit representation:

Ωk (C, η) =
∑

F∈Fk

∫
F

∫
N(C,F )

1η(x , y) γ〈F 〉⊥(dy) γ〈F 〉(dx).

• Duality:

Ωk (C, η) = Ωd−k (C◦, η∗), η∗ := {(y , x) : (x , y) ∈ η}.

• Od -equivariance:

Ωk (ϑC, ϑη) = Ωk (C, η), ϑ ∈ Od .

66 / 93



• Master Steiner formula: Set

ϕf (C, η) := E
[
f
(
‖ΠC(g)‖2, ‖ΠC◦(g)‖2

)
1η(ΠC(g),ΠC◦(g))

]
.

Then

ϕf (C, η) =
d∑

k=0

Ik (f ) · Ωk (C, η).

• Conic kinematic formula: Define the conic curvature
measures by

Φk (C,A) := Ωk (C,A× Rd ), A ∈ B̂(Rd ).

Then, for A,B ∈ B̂(Rd ),∫
SOd

Φk (C ∩ ϑD,A ∩ ϑB) ν(dϑ) =
d∑

i=k

Φi(C,A)Φd+k−i(D,B).

By approximation and weak continuity, an extension to general
closed convex cones is possible.
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Some references:

R. Schneider: Intersection probabilities and kinematic formulas for
polyhedral cones. Acta Math. Hungar. 155 (2018), 3–24.

R. Schneider: Conic support measures. arXiv:1807.03614v1

(end of side remark)
————————————————————————————
The following is based on:

D. Amelunxen, M. Lotz, M.B. McCoy, J.A. Tropp: Living on the edge:
phase transitions in convex programs with random data. Information
and Inference 3 (2014), 224–294.

M.B. McCoy, J.A. Tropp, From Steiner formulas for cones to
concentration of intrinsic volumes. Discrete Comput. Geom. 51
(2014), 926–963:
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Back to the initial question! It now has the following answer:

P (C ∩ΘD 6= {o}) = E1 {C ∩ΘD 6= {o}}

= 2
b d−1

2 c∑
k=0

d∑
j=2k+1

vj(C)vd+2k+1−j(D)

=
d−1∑
i=1

(1 + (−1)i+1)
d∑

j=i

vj(C)vd+i−j(D).

An explicit computation of the conic intrinsic volumes is only
possible in very special cases.

One example: If C is the nonnegative orthant in Rd , then

vk (C) = 2−d
(

d
k

)
.
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Concentration of the conic intrinsic volumes

The dimension of a linear subspace L plays a particular role:

vk (L) =

{
1 if dim L = k ,
0 otherwise.

If also C is a subspace, then

P(C ∩ΘL 6= {o}) =

{
0 if dim C + dim L ≤ d ,
1 if dim C + dim L > d .

The statistical dimension δ(C) of a general closed convex cone
C has the property that the conic intrinsic volumes of C
concentrate near δ(C), therefore:

P(C ∩ΘL 6= {o}) is close to 0 if δ(C) + dim L is smaller than d ,

P(C ∩ΘL 6= {o}) is close to 1 if δ(C) + dim L is larger than d .

70 / 93



uk(c)

d(c)

Flc' 3' conctnratioh of conic in§insic.volumes' This plor displays thc conic inuinsic volumes,t(c) ofa circularcone c c Rtlt
withangler/6'Thedisributionccrnced'*te§rharplyaroundthe§iati§ticaldimensionä(C)^c32.5.SeeSection3:4lorfurther
discussi,on of this example.

Ao*eIr,,.n^xe"r, L rtt, I't* CoY, TvoPf L üA1

ü*(CI

d{c)

FIc. 3. Cooceotration of conic intrinsic.volumes. This plot displays the conic intrinsic volumes v1(C) of a circular cotro C C ßr28
with angle rl6.T\e distibution cönoentrate6 shalply around ths statistical dimension .t(cJ 

^r 
32.5. §ee Section 33 for further

discussion of this example.

A*t-[u..,^xt^, L ott, l.t.Coy, TT oP1' L 041

71 / 93



The statistical dimension

Recall that the conic intrinsic volumes of a cone C satisfy

vk (C) ≥ 0, v0(C) + · · ·+ vd (C) = 1.

Definition. The intrinsic volume random variable VC of a cone
C ∈ Cd is defined as a random variable with values in
{0, . . . ,d} and with distribution

P(VC = k) = vk (C), k = 0, . . . ,d .

By duality,

P(VC◦ = k) = vk (C◦) = vd−k (C) = P(VC = d−k) = P(d−VC = k),

hence
VC◦ ∼ d − VC

(where ∼ means equality in distribution).
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Definition and Theorem. The statistical dimension of the cone
C ∈ Cd is the number

δ(C) := EVC =
d∑

k=0

kvk (C) = E‖ΠC(g)‖2.

Proof of the last equality:

E‖ΠC(g)‖2 =

∫
Rd
‖ΠC(g)‖2 γd (dx)

=

∫ ∞
0

γd

(
{x ∈ Rd : ‖Πc(x)‖2 > t}

)
dt

=

∫ ∞
0

P
(
‖ΠC(g)‖2 > t

)
dt .

Let C be polyhedral. By the Gaussian Steiner formula in the
version of Corollary 1,
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P(‖ΠC(g)‖2 > t) = P(dist2(g,C◦) > t)

= 1− P(dist2(g,C◦) ≤ t)

= 1−
d∑

k=0

P(Xd−k ≤ t)vk (C◦)

= 1−
d∑

k=0

[1− P(Xk > t)] vk (C)

=
d∑

k=0

P(Xk > t)vk (C).

Since
∫∞

0 P(Xk > t) dt = EXk = k , the assertion follows (then
approximation).
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Properties of the statistical dimension:

• intrinsic

• rotation-invariant, continuous valuation

• increasing under set inclusion

• δ(C) + δ(C◦) = d

• δ(L) = dim L for a subspace L

• δ(C) = 1
2d if C is self-dual (i.e., C◦ = −C)

• δ(C × D) = δ(C) + δ(D)

The last relation will be explained later.
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A variance estimate

By the same argument that above yielded

E‖ΠC(g)‖2 =
d∑

k=0

(EXk ) vk (C),

we can prove that

E‖ΠC(g)‖4 =
d∑

k=0

(
EX 2

k

)
vk (C).

Since EX 2
k = k2 + 2k , we obtain

E‖ΠC(g)‖4 = EV2
C + 2δ(C).

This yields an expression for the variance of the intrinsic
volume random variable VC :
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Var VC = EV2
C − (EVC)2

= E‖ΠC(g)‖4 − 2δ(C)− δ(C)2

= E‖ΠC(g)‖4 − (E‖ΠC(g)‖2)2 − 2δ(C)

= Var(‖ΠC(g)‖2)− 2δ(C).

We apply the Gaussian Poincaré inequality

Var f (g) ≤ E(‖∇f (g)‖2)

to the function f (x) = ‖ΠC(x)‖2 and use that

∇‖ΠC(x)‖2 = 2ΠC(x).

The result is that
Var VC ≤ 2δ(C).
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Possibly an improvement: Since VC◦ ∼ d − VC , we have

Var VC = Var VC◦

and hence
Var VC ≤ 2(δ(C) ∧ δ(C◦)),

where a ∧ b := min{a,b}.

Tschebyscheff’s inequality yields a first concentration result:

P
(
|VC − δ(C)| ≥ λ

√
δ(C)

)
≤ Var VC

λ2δ(C)
≤ 2
λ2 .

The following gives sharper concentration.
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Theorem 6. For a closed convex cone C, define

ω(C)2 := δ(C) ∧ δ(C◦)

and

pC(λ) := exp
(

−λ2/4
ω(C)2 + λ/3

)
for λ ≥ 0.

Then
P(|VC − δ(C)| ≥ λ) ≤ pC(λ)

for λ ≥ 0.

Before saying a few words about the proof, we indicate how this
leads to estimates of

P(C ∩ΘD 6= {o}).

We consider first the special case where D is a subspace L.
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Theorem 7. Let C ∈ Cd , and let L be a subspace. Then the
following holds for λ ≥ 0:

δ(C) + dim L ≤ d − λ ⇒ P(C ∩ΘL 6= {o}) ≤ pC(λ),

δ(C) + dim L ≥ d + λ ⇒ P(C ∩ΘL 6= {o}) ≥ 1− pC(λ).

Proof. We write dim L = d −m, then

δ(C) + dim L ≤ d − λ⇔ m ≥ δ(C) + λ,

and similarly in the second case.

We recall the general formula (C not a subspace)

P (C ∩ΘD 6= {o}) = 2
b d−1

2 c∑
k=0

d∑
j=2k+1

vj(C)vd+2k+1−j(D)

and observe that now vk (D) = δk ,d−m (Kronecker symbol).
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This gives
P(C ∩ΘL 6= {o}) = 2hm+1(C)

with the half-tail function

hm(C) := vm(C) + vm+2(C) + . . .

Define also the tail function

tm(C) := vm(C) + vm+1(C) + . . .

Then, with a subspace E ⊃ L of dimension d −m + 1,

2hm+1(C) = P(C ∩ΘL 6= {o}) ≤ P(C ∩ΘE 6= {o}) = 2hm(C)

and hence 2hm+1(C) ≤ hm+1(C) + hm(C) = tm(C), thus

P(C ∩ΘL 6= {o}) ≤ tm(C).
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Since, by the definition of VC ,

P(VC − δ(C) ≥ λ) =
∑

k≥δ(C)+λ

vk (C)

assumption m ≥ δ(C) + λ

≥
∑
k≥m

vk (C) = tm(C),

we get

P(C ∩ΘL 6= {o}) ≤ tm(C) ≤ P(VC − δ(C) ≥ λ) ≤ pC(λ)

by Theorem 6.

This is the first assertion of Theorem 7.

The second assertion is obtained similarly.
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Some remarks about the crucial

Theorem 6. For a closed convex cone C, define

ω(C)2 := δ(C) ∧ δ(C◦)

and

pC(λ) := exp
(

−λ2/4
ω(C)2 + λ/3

)
for λ ≥ 0.

Then
P(VC − δ(C) ≥ λ) ≤ pC(λ),

P(VC − δ(C) ≤ −λ) ≤ pC(λ)

for λ ≥ 0.
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McCoy and Tropp derive it from the stronger

Theorem 8.
Let C ∈ Cd . Define the function ψ by

ψ(u) := (u + 1) log(u + 1)− u for u ≥ −1,

and ψ(u) =∞ for u < −1. Then, for all λ ≥ 0,

P {VC − δ(C) ≥ λ}

≤ exp
(
−1

2
max

{
δ(C)ψ

(
λ

δ(C)

)
, δ(C◦)ψ

(
−λ
δ(C◦)

)})
and

P {VC − δ(C) ≤ −λ}

≤ exp
(
−1

2
max

{
δ(C)ψ

(
−λ
δ(C)

)
, δ(C◦)ψ

(
λ

δ(C◦)

)})
.
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Their proof first expresses the moment generating function of
the intrinsic volume random variable as

EeηVC = Eeξ‖ΠC(g)‖2
with ξ =

1
2

(
1− e−2η

)
.

The proof uses the Master Steiner formula and the moment
generating functions of chi-square random variables.

The main ingredient of the subsequent estimations is the
Gaussian logarithmic Sobolev inequality.

The rest is analysis.
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After the special case C,L, where L is a subspace, it remains to
consider the case of two general cones C,D.

It is convenient to consider their product C × D.

Convention. For two Euclidean spaces Rd1 , Rd2 , their
Cartesian product Rd1 × Rd2 is always equipped with the scalar
product given by

〈(x , y), (x ′, y ′)〉 := 〈x , x ′〉1 +〈y , y ′〉2, (x , y), (x ′, y ′) ∈ Rd1×Rd2 ,

where 〈· , ·〉r denotes the scalar product in Rdr , r = 1,2.

Then C × D can be considered as a direct orthogonal sum
C ⊕ D.
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Some remarks about C × D

First remark:

ΠC×D(x , y) = (ΠC(x),ΠD(y)) for (x , y) ∈ Rd × Rd .

The proof makes use of the Moreau decomposition.

Second remark:

δ(C × D) = δ(C) + δ(D).

Proof:

Assume R2d = L1 ⊕ L2, dim Lr = d , C ⊂ L1, D ⊂ L2;
identify C × D with C ⊕ D.

87 / 93



δ(C ⊕ D) = E‖ΠC⊕D(g)‖2 =

∫
R2d
‖ΠC⊕D(x)‖2 γ2d (dx)

=

∫
L1

∫
L2

(
‖ΠC(y)‖2 + ‖ΠD(z)‖2

)
γL2(dz) γL1(dy))

= δ(C) + δ(D).

Third remark:

vk (C × D) =
∑

i+j=k

vi(C)vj(D).
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To prove
vk (C × D) =

∑
i+j=k

vi(C)vj(D),

we can assume that C,D ⊂ Rd × Rd ; C ⊂ Rd × {o};
D ⊂ {o} × Rd and C × D is the direct orthogonal sum C ⊕ D.

Each face F ∈ Fk (C ⊕ D) is of the form F = Fi ⊕Gj with
Fi ∈ Fi(C), Gj ∈ Fj(D), i + j = k .

We have

N(C ⊕ D,Fi ⊕Gj) = N(C,Fi)⊕ N(D,Gj).

The assertion then follows after computing the internal and
external angles.
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Theorem 9. For closed convex cones C,D, define

σ(C,D)2 := (δ(C) ∧ δ(C◦)) + (δ(D) + δ(D◦))

and

pC,D(λ) := exp
(

−λ2/4
σ(C,D)2 + λ/3

)
for λ ≥ 0.

Then
P(|VC×D − δ(C × D)| ≥ λ) ≤ pC,D(λ)

for λ ≥ 0.

The proof uses the previous estimates, and in addition that

vk (C × D) =
∑

i+j=k

vi(C)vj(D).
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With this, we can write (if C,D are not both subspaces)

P(C ∩ΘD 6= {o}) = 2
b d−1

2 c∑
k=0

∑
i+j=d+2k+1

vi(C)vj(D)

= 2
b d−1

2 c∑
k=0

vd+2k+1(C × D)

= 2hd+1(C × D).

This is convenient for the proof of the following theorem.
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Theorem 10. Let C,D ∈ Cd be cones. Then, for λ ≥ 0,

δ(C) + δ(D) ≤ d − λ ⇒ P(C ∩ΘD 6= {o}) ≤ pC,D(λ),

δ(C) + δ(D) ≥ d + λ ⇒ P(C ∩ΘD 6= {o}) ≥ 1− pC,D(λ).

Proof.

We can assume that D,C are not both subspaces. Then, as
shown above,

P(C ∩ΘD 6= {o}) = 2hd+1(C × D).

As shown before,

2hd+1(C × D) ≤ td (C × D).
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The assumption δ(C) + δ(D) ≤ d − λ gives

d ≥ δ(C) + δ(D) + λ = δ(C × D) + λ

and hence

P(VC×D − δ(C × D) ≥ λ)

=
∑

k≥δ(C×D)+λ

vk (C × D) ≥
∑
k≥d

vk (C × D) = td (C × D).

Thus,

P(C ∩ΘD 6= {o}) ≤ P(VC×D − δ(C × D) ≥ λ) ≤ pC,D(λ),

by Theorem 9.

The second estimate is obtained similarly.

93 / 93


