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Abstract

It is well known that the vertex number of the typical cell of a stationary hyperplane
tessellation in Rd has, under some mild conditions, an expectation equal to 2d, indepen-
dent of the underlying distribution. The variance of this vertex number can vary widely.
Under Poisson assumptions, we give sharp bounds for this variance, showing, in partic-
ular, that its maximum is attained if and only if the tessellation is isotropic (that is, its
distribution is rotation invariant) with respect to a suitable scalar product on Rd.

The employed representation of the second moment of the vertex number is a special
case of formulas providing the covariance matrix of the random vector (`0, . . . , `d), where
`k is the total k-face content of the typical cell of a stationary Poisson hyperplane mo-
saic. In the isotropic case, such formulas were first obtained by Miles. We give a more
elementary proof and extend the formulas to general orientation distributions.

Key words. Hyperplane tessellation, typical cell, face content, second moment, isotropic
process, covariance matrix

1 Introduction

Under suitable assumptions, a stationary random hyperplane process X̂ in Rd induces a
tessellation of Rd into bounded polytopes. The typical cell of such a tessellation, intuitively
and heuristically speaking, is obtained by choosing at random, with equal chances, one of the
d-dimensional polytopes of the tessellation within a ‘large’ region of Rd; a precise definition
is recalled in the next section. It is well known that a number of combinatorial quantities
connected with this typical cell have expectations that are essentially independent of the
distribution of the underlying hyperplane process (see, e.g., Theorem 10.3.1 in [8]). For
example, the expected vertex number of the typical cell is equal to 2d, which is the obvious
value for a parallel process, where the hyperplanes belong to only d translation classes. In the
latter case, the typical cell is a parallelepiped and thus its vertex number is constant, hence
it has variance zero. In this note, we determine the stationary Poisson hyperplane processes
for which the variance of the vertex number of the typical cell attains its maximum.

Let X̂ be a nondegenerate stationary Poisson hyperplane process in Rd, and let X be its
induced mosaic. We use the terminology of [8], in particular, X is considered as the particle
process defined by the cells (the d-dimensional polytopes) of the tessellation defined by X̂.
The typical grain of this particle process is, by definition, the typical cell of X. We denote it
by Z. The vertex number of a convex polytope P is denoted by f0(P ). If Rd is equipped with
a scalar product, then X̂ and X are called isotropic if their distribution is invariant under
rotations.
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Theorem 1. Let X̂ be a nondegenerate stationary Poisson hyperplane process in Rd, and let
Z be the typical cell of its induced mosaic. The variance of the vertex number f0(Z) satisfies

0 ≤ Var f0(Z) ≤

2dd!
d∑
j=0

κ2j
4j(d− j)!

− 22d. (1)

Here κj is the volume of the j-dimensional unit ball. Equality on the left side of (1) holds if

and only if X̂ is a parallel process, and on the right side if and only if X̂ is isotropic with
respect to a suitable scalar product on Rd.

The vertex number f0 = L0 is just the first polytope functional in the series L0, . . . , Ld
of total k-face contents. These are defined by

Lk(P ) =
∑

F∈Fk(P )

Hk(F ),

for convex polytopes P ⊂ Rd and for k ∈ {0, . . . , d}. Here Fk(P ) is the set of k-dimensional
faces of P and Hk denotes the k-dimensional Hausdorff measure. In particular, Ld is the
volume, Ld−1 the surface area, L1 the total edge length, and L0 = f0 the number of vertices.
For the typical cell Z of a stationary, isotropic Poisson hyperplane mosaic, Miles [4] has
determined all expectations E (LrLs)(Z), r, s ∈ {0, . . . , d}. The result is reproduced, without
proof, in [5], formula (63). The proof given by Miles in [4] makes heavy use of ergodic theory
and is not explicitly carried out in all details. Below, we give a short proof, based only
on the Slivnyak–Mecke formula, and extend the result to not necessarily isotropic mosaics
(Theorem 2 in Section 4). This is in contrast to a remark of Miles, who after the treatment
of the isotropic case in [4], Sec. 11.7, wrote: “It does not seem at all practicable to generalise
the theory of §§3–7 to the case of a general orientation distribution”. Of course, the general
result cannot be so explicit as in the isotropic case, since the second moments heavily depend
on the directional distribution of the underlying hyperplane process. The result makes this
dependence as explicit as possible, in terms of the associated zonoid. The special case of
E (L0L0)(Z) is the foundation for the proof of Theorem 1.

After collecting some preparations in the next section, we describe in Section 3 the ap-
proach of Favis and Weiss [3] to k-face-content weighted typical cells. This is used in Section
4 to prove Theorem 2. The proof of Theorem 1 is then completed in Section 5.

2 Preliminaries

We fix some notation and recall some definitions. We work in the d-dimensional real vector
space Rd (d ≥ 2) and use its standard scalar product 〈·, ·〉 to define, for example, its unit
sphere Sd−1. Lebesgue measure on Rd is denoted by λ. The space of hyperplanes in Rd
is denoted by A(d, d − 1); it is equipped with its usual topology. Hyperplanes are often
parametrized in the form

H(u, τ) = {x ∈ Rd : 〈x, u〉 = τ}

with u ∈ Sd−1 and τ ∈ R. The hyperplane through 0 orthogonal to u is denoted by u⊥, so
that we can also write H(u, τ) = u⊥ + τu.

By Pd we denote the space of (nonempty, compact, convex) polytopes in Rd, endowed with
the topology induced by the Hausdorff metric. For a polytope P ∈ Pd and for k ∈ {0, . . . , d},
we denote, as already mentioned, by Fk(P ) the set of its k-dimensional faces.
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Probabilities are denoted by P and expectations by E . Let T be a topological space.
Then B(T ) is the σ-algebra of its Borel sets. By Ns(T ) we denote the set of simple counting
measures on T ; it is equipped with its usual σ-algebra (see [8], Sec. 3.1). It is convenient
to identify a simple counting measure η with its support; with this identification made,
η({x}) = 1 and x ∈ η are used synonymously, and so are η ∪ η′ and η + η′, as long as the
latter is simple.

Let X̂ be a stationary Poisson hyperplane process in Rd, with intensity measure Θ̂ and
intensity γ̂ > 0. Its spherical directional distribution is denoted by ϕ̂. We refer to [8], in
particular Sections 4.4 and 10.3, for notions that are not explained here. We assume that
X̂ is nondegenerate, which means that ϕ̂ is not concentrated on some great subsphere of
Sd−1. It follows from this assumption that X̂ almost surely induces a tessellation of Rd into
bounded polytopes. For k = 0, . . . , d, we denote by Fk(X̂) the set of k-faces of the tessellation
induced by X̂. In particular, the random system Fd(X̂) of its d-dimensional polytopes or
cells is the Poisson mosaic induced by X̂; it is interpreted as a particle process and denoted
by X. The intensity measure of X is denoted by Θ and its intensity by γ. The definition of
the typical cell involves a centre function c : Pd → Rd, for which we choose (as in [8], Sec.
4.1) the circumcentre, that is, c(P ) is the centre of the smallest ball containing P . We write
Pd0 := {P ∈ Pd : c(P ) = 0}. The typical cell of X, denoted by Z, is by definition a random
polytope whose distribution, denoted by Q, is the grain distribution of X. This distribution
Q is obtained by decomposing the intensity measure of the particle process X in the form∫

Pd

g dΘ = γ

∫
Pd
0

∫
Rd

g(K + x)λ(dx)Q(dK), (2)

for any nonnegative, measurable function g : Pd → R (see [8], (4.3)). Explicitly, for A ∈
B(Pd0 ) we have

Q(A) =
1

γ
E
∑
K∈X

1A(K − c(K))1B(c(K)), (3)

where B ⊂ Rd is an arbitrary Borel set with λ(B) = 1, and also

Q(A) = lim
r→∞

E
∑

K∈X,K⊂rW 1A(K − c(K))

E
∑

K∈X,K⊂rW 1
,

where W ⊂ Rd is an arbitrary convex body with interior points; this follows from Theorem
4.1.3 in [8].

A very useful tool for the treatment of Poisson processes is the Slivnyak–Mecke formula
(e.g., [8], Corollary 3.2.3), which we formulate here for the stationary Poisson hyperplane
process X̂. By X̂m

6= we denote the set of ordered m-tuples of pairwise distinct elements from

X̂, for m ∈ N. Let
f : Ns(A(d, d− 1))×A(d, d− 1)m → [0,∞)

be measurable. Then the Slivnyak–Mecke formula states that

E
∑

(H1,...,Hm)∈X̂m
6=

f(X̂,H1, . . . ,Hm) (4)

=

∫
A(d,d−1)m

Ef
(
X̂ ∪ {H1, . . . ,Hm}, H1, . . . ,Hm

)
Θ̂m(d(H1, . . . ,Hm)).
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We use this together with the decomposition of the intensity measure, given by∫
A(d,d−1)

g dΘ̂ = γ̂

∫
Sd−1

∫ ∞
−∞

g(H(u, τ)) dτ ϕ̂(du), (5)

for any nonnegative, measurable function g : A(d, d− 1)→ R (see [8], (4.33)).

We shall make essential use of the associated zonoid of the hyperplane process X̂ (see [8],
p. 156). This is the convex body Π

X̂
with support function given by

h(Π
X̂
, u) =

γ̂

2

∫
Sd−1

|〈u, v〉| ϕ̂(dv), u ∈ Rd. (6)

Let L ⊂ Rd be a linear subspace of dimension at least 1. Then the section process X̂ ∩ L is
a stationary Poisson hyperplane process with respect to L, and its associated zonoid is given
by

Π
X̂∩L = Π

X̂
|L,

where (·)|L denotes the orthogonal projection to L.

The intrinsic volumes of the associated zonoids will play an important role. For a convex
body K, we denote by Vj(K) its jth intrinsic volume. If K is centrally symmetric with
respect to 0 (as it holds for Π

X̂
and its projections), then K◦ denotes the polar body of K,

constructed within the linear hull of K.

3 Face-content weighted cells

Following the approach of Favis and Weiss [3], we first introduce a random polytope which
can be considered as the (d− k)-face-content weighted typical cell of the stationary Poisson
random mosaic X.

Let h : Pd0 → [0,∞) be a Borel measurable function, and let B ∈ B(Rd) be a set with
λ(B) = 1. Using the Campbell theorem ([8], Thm. 3.1.2), the decomposition (2) and Fubini’s
theorem, we get

E
∑
K∈X

h(K − c(K))
∑

F∈Fd−k(K)

Hd−k(F ∩B)

=

∫
Pd

h(K − c(K))
∑

F∈Fd−k(K)

Hd−k(F ∩B) Θ(dK)

= γ

∫
Pd
0

h(K)Ld−k(K)Q(dK). (7)

Since ∫
Pd
0

Ld−k(K)Q(dK) = ELd−k(Z)

is finite (by (16) below), the measure

A 7→ 1

ELd−k(Z)

∫
Pd
0

1A(K)Ld−k(K)Q(dK), A ∈ B(Pd0 ),
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is a probability measure. Let Dk be a random polytope with this distribution. Then

Eh(Dk) =
1

ELd−k(Z)

∫
Pd
0

h(K)Ld−k(K)Q(dK) =
E (hLd−k)(Z)

ELd−k(Z)
. (8)

Thus, the random polytope Dk can be considered as the (d−k)-face-content weighted typical
cell of X.

We assume now that the function h is translation invariant. We need a more explicit
expression for Eh(Dk) if k ≥ 1, which is given by (10) below. This corresponds to [3],
Proposition 4.1. For the reader’s convenience, we present a slightly modified version of the
proof, which avoids the use of d-fold Palm distributions and is simplified at the end. From
(8) and (7),

Eh(Dk) =
1

γ ELd−k(Z)
E
∑
K∈X

h(K)
∑

F∈Fd−k(K)

Hd−k(F ∩B). (9)

First we assume now that k ≥ 1. Since the (d − k)-faces of K ∈ X are precisely the
(d− k)-faces in F(X̂) that are contained in K, we may rewrite the expectation on the right
side of (9) as

E
∑
K∈X

h(K)
∑

F∈Fd−k(X̂)

1{F ⊂ K}
∫
F
1B(x)Hd−k(dx)

= E
∑

F∈Fd−k(X̂)

∫
F
1B(x)

∑
K∈X

1{F ⊂ K}h(K)Hd−k(dx)

=
1

k!
E

∑
(H1,...,Hk)∈X̂k

6=

∫
H1∩···∩Hk

1B(x)
∑
K∈X

1{x ∈ K}h(K)Hd−k(dx).

Here we have used that Hd−k-almost every x ∈ H1 ∩ · · · ∩ Hk is contained in the relative
interior of a unique face F ∈ Fd−k(X̂), and if this holds, then the relations F ⊂ K and
x ∈ K are equivalent for all K ∈ X. Now we apply the Slivnyak–Mecke formula (4), Fubini’s
theorem and the decomposition (5) of the intensity measure, to obtain

(γk!ELd−k(Z))Eh(Dk)

=

∫
A(d,d−1)k

E
∫
H1∩···∩Hk

1B(x)

×
∑

K∈Fd(X̂∪{H1,...,Hk})

1{x ∈ K}h(K)Hd−k(dx) Θ̂k(d(H1, . . . ,Hk))

=

∫
A(d,d−1)k

∫
H1∩···∩Hk

1B(x)

×E
∑

K∈Fd(X̂∪{H1,...,Hk})

1{x ∈ K}h(K)Hd−k(dx) Θ̂k(d(H1, . . . ,Hk))

5



= γ̂k
∫
(Sd−1)k

∫ ∞
−∞
· · ·
∫ ∞
−∞

[∫
H(u1,τ1)∩···∩H(uk,τk)

1B(x)

×E
∑

K∈Fd(X̂∪{H(u1,τ1),...,H(uk,τk)})

1{x ∈ K}h(K)Hd−k(dx)

]
dτ1 · · · dτk

× ϕ̂k(d(u1, . . . , uk)).

To simplify the bracket, we may assume that u1, . . . , uk are linearly independent. Let su,τ ∈
lin{u1, . . . , uk} be the vector for which

H(ui, τi) = u⊥i + su,τ for i = 1, . . . , k.

Inserting this in the integral in the bracket and using, in this order, the translation invariance
of Hd−k, the stationarity of X̂ and the translation invariance of h, we obtain∫

H(u1,τ1)∩···∩H(uk,τk)
1B(x)E

∑
K∈Fd(X̂∪{H(u1,τ1),...,H(uk,τk)})

1{x ∈ K}h(K)Hd−k(dx)

=

∫
u⊥1 ∩···∩u⊥k

1B(x+ su,τ )E
∑

K∈Fd(X̂∪{u⊥1 ,...,u⊥k })

1{x ∈ K}h(K)Hd−k(dx).

Again by the stationarity of X̂ and the translation invariance of h, the expectation

E
∑

K∈Fd(X̂∪{u⊥1 ,...,u⊥k })

1{x ∈ K}h(K),

where x ∈ u⊥1 ∩ · · · ∩ u⊥k , does not change if we replace x by 0. Since λ(B) = 1, we have∫ ∞
−∞
· · ·
∫ ∞
−∞

∫
u⊥1 ∩···∩u⊥k

1B (x+ su,τ ) Hd−k(dx) dτ1 · · · dτk = ∇k(u1, . . . , uk),

where ∇k(u1, . . . , uk) denotes the k-dimensional volume of the parallelepiped spanned by the
vectors u1, . . . , uk (cf. [8], p. 135). Thus, we get

Eh(Dk) =
γ̂k

γk!ELd−k(Z)

∫
(Sd−1)k

E
∑

K∈Fd(X̂∪{u⊥1 ,...,u⊥k })

1{0 ∈ K}h(K) (10)

× ∇k(u1, . . . , uk) ϕ̂k(d(u1, . . . , uk)).

From (8) and (10), we obtain

E (hLd−k)(Z) =
γ̂k

γk!

∫
(Sd−1)k

E
∑

K∈Fd(X̂∪{u⊥1 ,...,u⊥k })

1{0 ∈ K}h(K) (11)

× ∇k(u1, . . . , uk) ϕ̂k(d(u1, . . . , uk)),

for k = 1, . . . , d.

6



4 A covariance matrix

In this section we determine E (LrLs)(Z). First we consider the case s = d (and recall that
Ld = Vd is the volume). By [8], Thm. 10.4.1 (where γ(d) is what we here denote by γ), we
have

E (LrLd)(Z) =
1

γ
ELr(Z0).

Here Z0 is the zero cell of X, that is, the almost surely unique cell of X that contains the
origin. Together with [8], (10.50) and (10.51), this yields

E (LrLd)(Z) =
d!

2dγ
Vd−r(ΠX̂

)Vd(Π
◦
X̂

). (12)

Now let s = d − k with k ≥ 1. We apply (11) with h = Lr, where r ∈ {0, . . . , d}. To
transform the sum

∑
h(K) in (11), which extends over the cells induced by X̂∪{u⊥1 , . . . , u⊥k }

and containing 0, we use an idea of Miles [4], Section 11.6.

Let H1, . . . ,Hk be fixed hyperplanes through 0 in general position (hyperplanes in Rd
are said to be in general position if any m ≤ d of them have an intersection of dimension
d−m). Almost surely, X̂ and H1, . . . ,Hk are in general position, and this is assumed for the
realisations of X̂ considered in the following. We define

C0 :=
{
K ∈ Fd(X̂ ∪ {H1, . . . ,Hk}) : 0 ∈ K

}
.

For j ∈ {r, . . . , d} with d− j ≤ k, let

Fr,j :=
{
F ∈ Fr(K) : K ∈ C0, F ⊂ Hi for precisely d− j indices i ∈ {1, . . . , k}

}
.

We have

∑
K∈C0

Lr(K) =
∑
K∈C0

∑
F∈Fr(K)

Hr(F ) =
d∑

j=max{r,d−k}

2d−j
∑

F∈Fr,j

Hr(F ),

since each F ∈ Fr,j belongs to precisely 2d−j polytopes K ∈ C0.
Let

Zj :=
{
Z0 ∩Hi1 ∩ · · · ∩Hid−j

: 1 ≤ i1 < · · · < id−j ≤ k
}

with Zd = {Z0}. Thus, Zj is a set of j-dimensional polytopes, containing the origin. Each
r-face F ∈ Fr,j satisfies F ⊂ G ∈ Fr(M) for a unique M ∈ Zj and a unique G ∈ Fr(M).
Conversely, for M ∈ Zj and G ∈ Fr(M), the r-face G is the union of r-faces from Fr,j , which
pairwise have no relatively interior points in common. It follows that∑

F∈Fr,j

Hr(F ) =
∑
M∈Zj

∑
F∈Fr(M)

Hr(F ).

We conclude that

∑
K∈C0

Lr(K) =
d∑

j=max{r,d−k}

2d−j
∑
M∈Zj

∑
F∈Fr(M)

Hr(F )

=

d∑
j=max{r,d−k}

2d−j
∑
M∈Zj

Lr(M).
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Inserting this in (11) with h = Lr, we obtain

E (LrLd−k)(Z)

=
γ̂k

γk!

d∑
j=max{r,d−k}

2d−j
∫
(Sd−1)k

E
∑

1≤i1<···<id−j≤k
Lr(Z0 ∩ u⊥i1 ∩ · · · ∩ u

⊥
id−j

)

× ∇k(u1, . . . , uk) ϕ̂k(d(u1, . . . , uk))

=
γ̂k

γk!

d∑
j=max{r,d−k}

2d−j
(

k

d− j

)∫
(Sd−1)k

ELr(Z0 ∩ u⊥1 ∩ · · · ∩ u⊥d−j) (13)

× ∇k(u1, . . . , uk) ϕ̂k(d(u1, . . . , uk)).

For given linearly independent vectors u1, . . . , ud−j ∈ Sd−1 in general position, let

L := u⊥1 ∩ · · · ∩ u⊥d−j .

We can now argue as in [6], p. 690: the intersection Z0 ∩L is the zero cell of the intersection
process X̂ ∩ L (see (4.61) in [8]), and it is known (see [8], Thm. 10.4.9) that

ELr(Z0 ∩ L) = 2−jj!Vj−r(ΠX̂
|L)Vj((ΠX̂

|L)◦).

Thus, the expectation in the integrand of (13) can be expressed in terms of the associated
zonoid. This holds also for the intensity γ appearing in front of the sum. Indeed, we have

γ = Vd(ΠX̂
). (14)

This is formula (10.44) in [8] for k = d (note that γ(d) appearing there is the intensity of the
process of d-dimensional cells of X and hence is what we have here denoted by γ).

We have obtained the following result. It includes also the case s = d, given by (12),
where in (15) the projections and integration have to be deleted.

Theorem 2. The face contents of the typical cell of the stationary Poisson random mosaic
X satisfy

E (LrLs)(Z) (15)

= Vd(ΠX̂
)−1

d∑
j=max{r,s}

2d−2jj!

(
d− s
d− j

)

× γ̂d−s

(d− s)!

∫
(Sd−1)d−s

Vj−r(ΠX̂
|u⊥1 ∩ · · · ∩ u⊥d−j)Vj((ΠX̂

|u⊥1 ∩ · · · ∩ u⊥d−j)◦)

× ∇d−s(u1, . . . , ud−s) ϕ̂d−s(d(u1, . . . , ud−s))

for r, s ∈ {0, . . . , d}.

How the associated zonoid Π
X̂

depends on the spherical directional distribution ϕ̂, is seen
from (6).
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Together with the known relations

ELr(Z) =
2d−r

γ
Vd−r(ΠX̂

), r = 0, . . . , d, (16)

Theorem 2 provides an explicit expression for the covariance matrix of the random vector
(L0(Z), . . . , Ld(Z)). Concerning (16), we notice that it follows from [8], Theorem 10.1.2 and
(10.9), that

γELr(Z) = 2d−rd(r)r with d(r)r := γEVr(Z),

and by [8], (10.43), we have d
(r)
r = Vd−r(ΠX̂

).

Assume that X̂ is isotropic. Then the associated zonoid Π
X̂

is a ball of radius

R = γ̂
κd−1
dκd

, (17)

see [8], p. 490. The kth intrinsic volume of the unit ball Bd is given by

Vk(B
d) =

(
d

k

)
κd
κd−k

([8], (14.8)). It follows that

Vj−r(ΠX̂
|u⊥1 ∩ · · · ∩ u⊥d−j) = Rj−r

(
j

r

)
κj
κr
,

Vj((ΠX̂
|u⊥1 ∩ · · · ∩ u⊥d−j)◦) = R−jκj .

The remaining integral is known (also in the non-isotropic case), namely

γ̂ d−s

(d− s)!

∫
(Sd−1)d−s

∇d−s(u1, . . . , ud−s) ϕ̂d−s(d(u1, . . . , ud−s)) = Vd−s(ΠX̂
), (18)

by [8], formula (14.35) with ρ = γ̂ϕ̂/2. Since

Vd−s(ΠX̂
) = Rd−s

(
d

s

)
κd
κs
, Vd(ΠX̂

) = Rdκd,

we obtain

E (LrLs)(Z) =
2dd!

κrκs

(
dκd
κd−1γ̂

)r+s d∑
j=max{r,s}

κ2j
4j(d− j)!

(
j

r

)(
j

s

)
. (19)

Since we can also write

dκd
κd−1

=
2π

1
2 Γ
(
1
2 [d+ 1]

)
Γ
(
1
2d
) , κj =

π
j
2

Γ
(
j
2 + 1

) =
2jπ

j−1
2 Γ

(
1
2 [j + 1]

)
j!

,

(19) is the same as

E (LrLs)(Z) =
2dπ

1
2

Γ
(
1
2 [r + 1]

)
Γ
(
1
2 [s+ 1]

) {Γ
(
1
2 [d+ 1]

)
Γ
(
1
2d
)
γ̂

}r+s

×
d∑

j=max{r,s}

(
d

j

)(π
2

)j Γ
(
1
2 [j + 1]

)
Γ
(
1
2j + 1

) (j)r(j)s
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with (j)r = j!/(j − r)!. This is formula (63) of Miles [5].

Another simple case where (15) can be evaluated explicitly is that of a cuboid process
X̂, where the hyperplanes of the process belong to d pairwise orthogonal translation classes.
Cuboid processes were studied by Favis [2]. We consider only the case of a quasi-isotropic
cuboid process, where the directional distribution ϕ̂ is concentrated in ±e1, . . . ,±en for an
orthonormal basis (e1, . . . , en) of Rd and assigns the same value to each of these points. In this
case, the associated zonoid X̂ is a cube of edge length 2−d γ̂. Moreover, for (u1, . . . , ud−j)
in the support of the measure ϕ̂d−s, the orthogonal projection Π

X̂
|u⊥1 ∩ · · · ∩ u⊥d−j is a j-

dimensional cube of edge length 2−d γ̂. For a d-dimensional cube C of edge length a and for
j ∈ {0, . . . , d} we have

Vj(C) =

(
d

j

)
aj

by formula (4.23) in [7], together with fj(C) = 2d−j
(
d
j

)
. From the well-known relation

Vd(C)Vd(C
◦) = 4d/d!, if C is centred at 0, it follows that

Vd(C
◦) =

4d

d!ad
.

Now we conclude from (15), observing (18), that

E (LrLs)(Z) =
2d(r+s+1)

γ̂ r+s

d∑
j=max{r,s}

(
d

j

)(
j

r

)(
j

s

)
(20)

for r, s ∈ {0, . . . , d}.

5 Proof of Theorem 1

For r = 0, the functional appearing in the integrand of (15) is a volume product. For a
0-symmetric convex body K ⊂ Rd of dimension j ∈ {0, . . . , d}, the volume product is defined
by

vp(K) := Vj(K)Vj(K
◦).

Specializing (15) to r = s = 0, we obtain

E f20 (Z) (21)

=
d∑
j=0

2d−2jd!

(d− j)!
· γ̂

d

γ d!

∫
(Sd−1)d

vp(Π
X̂
|u⊥1 ∩ · · · ∩ u⊥d−j)∇d(u1, . . . , ud) ϕ̂d(d(u1, . . . , ud)).

We notice that for the integral appearing here we have

γ̂d

γ d!

∫
(Sd−1)d

∇d(u1, . . . , ud) ϕ̂d(d(u1, . . . , ud)) = 1.

This follows from (18) for s = 0, together with (14).

For a j-dimensional zonoid K, such as Π
X̂
|u⊥1 ∩ · · · ∩ u⊥d−j , the inequalities

4j

j!
≤ vp(K) ≤ κ2j

10



are valid. The right-hand inequality is known as the Blaschke–Santaló inequality (for refer-
ences, see [8], Chap. 14). We conclude that

22d ≤ E f20 (Z) ≤
d∑
j=0

2d−2jd!

(d− j)!
κ2j .

Since E f0(Z) = 2d, this yields the inequalities (1).

If equality holds in one of the inequalities (1), then it holds in the corresponding one of
the inequalities

4d

d!
≤ vp(Π

X̂
) ≤ κ2d. (22)

Equality on the left implies that Π
X̂

is a parallelepiped, and inequality on the right implies
that Π

X̂
is an ellipsoid. Choosing a suitable scalar product on Rd, we can assume that Π

X̂
is

a ball in the second case. Since the associated zonoid Π
X̂

determines the distribution of X̂

uniquely ([8], Theorem 4.6.4), X̂ is a parallel process in the first case and is isotropic (with
respect to the new scalar product) in the second case. Conversely, if X̂ is a parallel process,
then trivially Var f0(Z) = 0. If X̂ is isotropic, then all orthogonal projections Π

X̂
|L are balls

in L, hence equality holds on the right side of (1). This completes the proof of Theorem 1.

We mention that the just proved characterizations of the processes for which Var f0(Z)
attains its extreme values, can be strengthened in the form of stability assertions, following
the example set out by Böröczky and Hug [1]. For this, we write

Var f0(Z) = 2−dd!
[
vp(Π

X̂
) + Φ(X̂)

]
with

Φ(X̂) =
d−1∑
j=0

22(d−j)

(d− j)!
· γ̂

d

γ d!

∫
(Sd−1)d

× vp(Π
X̂
|u⊥1 ∩ · · · ∩ u⊥d−j)∇d(u1, . . . , ud) ϕ̂d(d(u1, . . . , ud))−

23d

d!
.

Then (22) holds together with

−4d

d!
=: cd ≤ Φ(X̂) ≤ Cd :=

d−1∑
j=0

22(d−j)

(d− j)!
κ2j −

23d

d!
.

Suppose that Var f0(Z) is close to its minimal value 0, say

Var f0(Z) ≤ ε

with some ε > 0. Then

2−dd![vp(Π
X̂

) + cd] ≤ 2−dd![vp(Π
X̂

) + Φ(X̂)] = Var f0(Z) ≤ ε

and hence

vp(Π
X̂

) ≤ (1 + 2−dε)
4d

d!
. (23)
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If (23) holds with sufficiently small ε > 0, then it is shown in [1] how a suitable distance (e.g.,
Wasserstein or Prokhorov) of the directional distribution ϕ̂ of X̂ from the distribution of a
suitable parallel process can be estimated from above in terms of ε.

Now suppose that Var f0(Z) is close to its maximal value, say

Var f0(Z) ≥ (1− ε)2−dd![κ2d + Cd]

with some ε ∈ (0, 1). Then

2−dd![vp(Π
X̂

) + Cd] ≥ 2−dd![vp(Π
X̂

) + Φ(X̂)] = Var f0(Z) ≥ (1− ε)2−dd!(κ2d + Cd)

and hence
vp(Π

X̂
) ≥ (1− adε)κ2d (24)

with
ad = 1 + Cd/κ

2
d > 0.

If (24) holds with sufficiently small ε > 0, then one can see from [1] how a suitable distance
of the directional distribution ϕ̂ of X̂ from the isotropic distribution can be estimated from
above in terms of ε.

Finally we remark that also for the volume Vd = Ld, estimates of VarVd(Z) can be
obtained. But since Vd(Z) is not homogeneous of degree 0, no absolute inequalities are
possible, but only inequalities of isoperimetric type. It follows from (12), (14), (16) that for
each stationary Poisson hyperplane process X̂ we have

VarVd(Z)

(EVd(Z))2
= 2−dd!vp(Π

X̂
)− 1.

Hence, for given expectation EVd(Z), the variance VarVd(Z) is maximal for isotropic processes
and minimal for parallel processes.
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and applications, Adv. Appl. Math. 44 (2010) 309–328.

[2] W. Favis, Inequalities for stationary Poisson cuboid processes, Math. Nachr. 178 (1996)
117–127.

[3] W. Favis, V. Weiss, Mean values of weighted cells of stationary Poisson hyperplane
tessellations, Math. Nachr. 193 (1998) 37–48.

[4] R.E. Miles, Random polytopes: the generalisation to n dimensions of the intervals of a
Poisson process, Ph.D. Thesis, Cambridge University, 1961.

[5] R.E. Miles, A synopsis of ‘Poisson flats in Euclidean spaces’, Izv. Akad. Nauk Arm. SSR,
Mat. 5 (1970) 263–285; reprinted in: E.F. Harding, D.G. Kendall (Eds.), Stochastic
Geometry, Wiley, New York, 1974, pp. 202–227.

[6] R. Schneider, Weighted faces of Poisson hyperplane tessellations, Adv. Appl. Prob.
(SGSA) 41 (2009) 682–694.

12



[7] R. Schneider, R., Convex Bodies – The Brunn–Minkowski Theory, second expanded ed.,
Cambridge University Press, Cambridge, 2014.

[8] R. Schneider, W. Weil, Stochastic and Integral Geometry, Springer, Berlin, 2008.

Author’s address:

Rolf Schneider
Mathematisches Institut, Albert-Ludwigs-Universität
D-79104 Freiburg i. Br., Germany
E-mail: rolf.schneider@math.uni-freiburg.de

13


