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Abstract

Let K be a convex body in Euclidean space Rd, and let a translation invariant, locally
finite Borel measure on the space of hyperplanes in Rd be given. For δ ≥ 0, we consider
the set of all points x for which the set of hyperplanes separating K and x has measure
at most δ. This defines the separation body of K, with respect to the given measure and
the parameter δ. Separation bodies are meant as conceptual duals to floating bodies, and
they are expected to play a role in the investigation of random polytopes generated as
intersections of random halfspaces, in a similar way that floating bodies are useful for
studying convex hulls of random points. After discussing some elementary properties of
separation bodies, we carry out first examples to this effect.
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1 Introduction

For a convex body K (a compact, convex set with interior points) in Euclidean space Rd and
for a sufficiently small parameter δ ≥ 0, the floating body Kδ is defined as follows. According
to the approach of Bárány and Larman [4], for x ∈ K let

v(x) := min{V (K ∩H+) : x ∈ H+, H+ a closed halfspace},

where V denotes the volume, and define

K(v ≥ δ) := {x ∈ K : v(x) ≥ δ}.

By the approach of Schütt and Werner [27], for u ∈ Sd−1 (the unit sphere of Rd) and for
sufficiently small δ ≥ 0 there is a unique number t(u, δ) ≥ 0 such that

V (K ∩H+(u, h(K,u)− t(u, δ))) = δ,

where h(K, ·) is the support function of K and

H+(u, τ) := {x ∈ Rd : 〈x, u〉 ≥ τ}, H−(u, τ) := {x ∈ Rd : 〈x, u〉 ≤ τ},

with 〈· , ·〉 denoting the scalar product of Rd. Define the closed convex set

Kδ :=
⋂

u∈Sd−1

H−(u, h(K,u)− t(u, δ)).

It is easy to see that K(v ≥ δ) = Kδ. For some historical remarks, we refer to [22, Section
10.6].
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Bárány and Larman have introduced the floating body (though not under this name) as
a tool in stochastic geometry, mainly for treating certain questions about convex hulls of
independent uniform random points in a given convex body. For this, and for expansions of
this approach, we refer to [1], [2], [3], [4], [5], [13]. The starting point of Schütt and Werner
was a formula of Blaschke for introducing the affine surface area of a three-dimensional
convex body with analytic boundary, which was extended to higher dimensions and weaker
smoothness assumptions by Leichtweiß (references are in [22, Section 10.6]). In [27] this
was further extended to general convex bodies. The introduction of convex floating bodies
by these authors was the beginning of a long series of investigations on relations between
floating bodies and affine surface area, general studies of floating bodies, their relation to
approximations of convex bodies, extended notions of affine surface area, analogues of floating
bodies, for example with volume replaced by surface area; see [6], [7], [8], [9], [12], [17], [21],
[24], [25], [26], [28], [29], [30], [32], [33], [34], [35], [36], [37], [38], [39].

We emphasize one of the analogues of the floating body. For x ∈ Rd, let

Kx := conv(K ∪ {x}).

For δ ≥ 0, Werner [31] defined the illumination body of K with parameter δ by

Kδ := {x ∈ Rd : V (Kx)− V (K) ≤ δ}. (1)

Since this construction is invariant under volume preserving affine transformations, also the
illumination body can be used to yield, by approximation, the affine surface area.

Mordhorst and Werner [19, 20] investigated in how far floating bodies and illumination
bodies can be considered as approximately dual to each other. We quote from [19]: “We
investigate a duality relation between floating and illumination bodies. The definition of these
two bodies suggests that the polar of the floating body should be similar to the illumination
body of the polar.”

The aim of the following is to introduce a modification of the illumination bodies of
K, which we call separation bodies. They are no longer affinely related to K (and hence
cannot be expected to be relevant for the affine surface area), but can with good reasons be
considered as a more proper dual to floating bodies. Here ‘dual’ does not point to an exact
duality, but is meant in a conceptual sense. If the separation body is constructed with a
motion invariant measure, one may conjecture, modifying the citation above, that the polar
of the floating body is ‘more similar’ (expressed by a better order of approximation) to the
separation body of the polar than to the illumination body of the polar. This, however, has
not yet been verified.

The starting point of the present note is the role of the floating body in stochastic geo-
metry. It was introduced there to support the investigation of random polytopes which are
generated as convex hulls of random points in a given convex body. The dual generation of
random polytopes, namely as the intersection of random halfspaces containing a given convex
body, calls for a conceptually dual construction. After introducing separation bodies in the
next section, we discuss first applications of them in Section 3. The explanation of our main
results is postponed to that section, since some preparations are required.

2 Separation bodies: definition and elementary properties

Let K ⊂ Rd be a convex body with o ∈ intK. We recall that its polar body is defined by

K◦ = {x ∈ Rd : 〈x, y〉 ≤ 1 for all y ∈ K}.
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In the definition of floating bodies, the volumes of nonempty caps K ∩H+, where H+ is
a closed halfspace, play a role. What corresponds to such a cap under duality? One possible
effect of duality is that points and hyperplanes interchange their roles. Let H denote the
space of hyperplanes in Rd, with its usual topology. For a set M ∈ Rd, we write

HM := {H ∈ H : H ∩M 6= ∅}.

For a convex body K and for x ∈ Rd, we denote by H(K|x) the set of hyperplanes that
weakly separate K and x. Hyperplanes will often be written in the form

H(u, τ) = {x ∈ Rd : 〈x, u〉 = τ} with u ∈ Sd−1, τ ∈ R.

We define a map η : Rd \ {o} → H \H{o} by

η(ru) = H(u, r−1) for u ∈ Sd−1, r > 0.

Now let K ∩H+ be a full-dimensional cap of K, where H+ is a closed halfspace bounded by
a hyperplane H and not containing o. Let x := η−1(H). Then x /∈ K◦, and η maps the cap
K ∩H+ bijectively onto the set H(K◦|x) of hyperplanes weakly separating K◦ and x. (The
easy proof can be found in [14].)

Instead of the Lebesgue measure on sets of points (which is up to a factor the unique
translation invariant, locally finite Borel measure), we consider now a translation invariant
and locally finite Borel measure on the space H of hyperplanes (and not the image mea-
sure of the Lebesgue measure under the map η, because our goal is a translation invariant
construction). Any such measure is a constant multiple of a measure of the form

ν =

∫
Sd−1

∫
R
1{H(u, τ) ∈ ·}dτ ϕ(du), (2)

with an even probability measure ϕ on the sphere Sd−1 (see [22, (4.33)]).

Assumption. We assume in the following that an even probability measure ϕ on Sd−1 is
given, which is not concentrated on a great subsphere.

With ν given by (2), we define

m(K,x) := ν(H(K|x)). (3)

For any convex body K it follows immediately from (2) that

ν(HK) = 2Φ(K),

where the functional Φ is defined by

Φ(K) =

∫
Sd−1

h(K,u)ϕ(du). (4)

(We recall that h(K, ·) denotes the support function of K.) Therefore,

m(K,x) = 2[Φ(Kx)− Φ(K)].

Definition 1. For δ ≥ 0, we define

K[ϕ, δ] := {x ∈ Rd : m(K,x) ≤ δ}.

We call K[ϕ, δ] the separation body of K with respect to ϕ with parameter δ.
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In the special case where ϕ = σ, the normalized spherical Lebesgue measure on Sd−1, we
get 2Φ(K) = W (K), with W denoting the mean width. Thus, we have

K[δ] := K[σ, δ] = {x ∈ Rd : W (Kx)−W (K) ≤ δ},

which is of the type (1), with the volume replaced by the mean width. The bodies K[δ], which
appear in [10], were extended in a different way by Jenkinson and Werner [15] (compare their
relations (9), (10), (11)). Their extensions, which are not necessarily convex, were used to
establish a new relationship between convex geometric analysis and information theory.

The following interesting observations are due to Olaf Mordhorst (private communica-
tion). For a general convex body K, one has

lim
δ→0

V (K[σ, δ])− V (K)

δ2/(d+1)
= cd

∫
∂K

κ−1/(d+1) dH d−1

with a constant cd, where κ is the (generalized) Gauss curvature of K and H d−1 is the
(d − 1)-dimensional Hausdorff measure. Further, suppose that the convex body K is cen-
trally symmetric and sufficiently smooth, and let ϕ be the surface area measure Sd−1(K, ·),
normalized to a probability measure. Then the separation body K[ϕ, δ] is equal to the illu-
mination body Kcδ for some constant c > 0 depending on K and the dimension d.

Now we state some elementary properties of separation bodies.

Lemma 1. The separation body K[ϕ, δ] is closed and convex. If the support of ϕ is the whole
sphere Sd−1, then K[ϕ, δ] is strictly convex for δ > 0.

Proof. For x, y ∈ Rd we have

|m(K,x)−m(K, y)| = 2|Φ(Kx)− Φ(Ky)|

≤ 2

∫
Sd−1

|h(Kx, u)− h(Ky, u)|ϕ(du)

≤ 2‖x− y‖,

since the Hausdorff distance of Kx and Ky is at most ‖x− y‖. Thus, m(K, ·) is continuous,
and hence K[ϕ, δ] is closed.

We extend (to more general measures) from [10] the proof that the separation body K[ϕ, δ]
is convex. Let x, y ∈ K[ϕ, δ] and α ∈ [0, 1]. Let z ∈ K(1−α)x+αy. Then there exist k ∈ K and
β ∈ [0, 1] with

z = (1− β)[(1− α)x+ αy] + βk.

It follows that

z = (1− α)[(1− β)x+ βk] + α[(1− β)y + βk] ∈ (1− α)Kx + αKy.

Since z ∈ K(1−α)x+αy was arbitrary, this shows that

K(1−α)x+αy ⊆ (1− α)Kx + αKy. (5)

(A similar argument is found in Fáry and Rédei [11].) Since the functional Φ is increasing
under set inclusion and is Minkowski linear, we obtain

Φ(K(1−α)x+αy)− Φ(K) ≤ Φ((1− α)Kx + αKy)− Φ(K)

= (1− α)[Φ(Kx)− Φ(K)] + α[Φ(Ky)− Φ(K)].
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Hence,
m(K, (1− α)x+ αy) ≤ (1− α)m(K,x) + αm(K, y) ≤ δ (6)

and thus (1− α)x+ αy ∈ K[ϕ, δ]. This shows that K[ϕ, δ] is convex.

Now we assume that suppϕ = Sd−1 (where suppϕ denotes the support of the measure
ϕ). Let δ > 0, and let x, y ∈ bdK[ϕ, δ], x 6= y. Since m(K,x) = m(K, y) = δ > 0, we have
x, y /∈ K. Let α ∈ (0, 1). Then there exists a supporting hyperplane H(K,u) of K such that

x ∈ intH−(K,u), (1− α)x+ αy ∈ intH−(K,u), y ∈ intH+(K,u),

hence the support function h(K, ·) of K satisfies h(Kx, u) = h(K(1−α)x+αy, u) = h(K,u) and
h(Ky, u) > h(K,u). This gives

h((1− α)Kx + αKy, u) > h(K,u) = h(K(1−α)x+αy, u).

Therefore (5) holds with strict inclusion. Since suppϕ = Sd−1, the functional Φ is strictly
increasing under set inclusion. Thus, (6) holds with strict inequality. This, together with
m(K,x) = m(K, y), shows that (1−α)x+αy ∈ intK[ϕ, δ] and thus that the body K[ϕ, δ] is
strictly convex.

To give a simple example, we assume that K is a convex polygon in the plane, and that
ϕ is normalized spherical Lebesgue measure on S1. In that case, Φ(K) = L(K)/2π, where L
denotes the perimeter, and hence m(K,x) = 1

π [L(Kx) − L(K)]. Let E be the union of the
affine hulls of all edges of K, and let A be a component of R2 \ E different from intK. For
all points x ∈ A, the two support lines of K through x touch K at the same two vertices.
Therefore, the boundary of K[ϕ, δ] (for suitable δ > 0) inside A is an arc of an ellipse. We
see that the boundary of K[ϕ, δ] is a union of arcs of different ellipses.

We note that m(K,x) = 0 for x ∈ K. In fact, for x ∈ intK we have H(K|x) = ∅.
Further, ν(H(K|x)) = 0 if x ∈ bdK, since the set of hyperplanes passing through a fixed
point has ν-measure zero. However, the separation body K[ϕ, 0] may be strictly larger than
K. To make this precise, we define

Kϕ :=
⋂

u∈suppϕ

H−(K,u),

where H−(K,u) denotes the supporting halfspace of K with outer normal vector u. Then
we have

K[ϕ, 0] = Kϕ. (7)

To prove this, first let x ∈ intKϕ. A unit normal vector of any hyperplane separating x and K
does not belong to suppϕ, hence m(K,x) = 0. Since both sides of (7) are closed, this shows
that Kϕ ⊆ K[ϕ, 0]. Conversely, let x ∈ Rd \Kϕ. Let U ⊂ Sd−1 be the (open) set of all unit
vectors u such that for some number τ the hyperplane H(u, τ) strictly separates x and Kϕ. A
translate of this hyperplane supports Kϕ and also separates x and Kϕ, and u or −u is its outer
unit normal vector. The set of boundary points of Kϕ where such a normal vector exists has
positive (d − 1)-dimensional Hausdorff measure, hence Sd−1(Kϕ, U) > 0, where Sd−1(Kϕ, ·)
denotes the surface area measure of Kϕ. By Lemma 7.5.1 in [22], Sd−1(Kϕ, Sd−1\suppϕ) = 0.
It follows that U ∩ suppϕ 6= ∅ and hence that ϕ(U) > 0. For each u ∈ U the set of all τ for
which H(u, τ) strictly separates x and Kϕ is a non-degenerate interval. Now it follows that
m(K,x) > 0 and hence that x /∈ K[ϕ, 0]. Thus, (7) is proved.
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The previous remark shows that if we want to express the support function of K[ϕ, δ] in
terms of δ, we must restrict ourselves to the support of ϕ.

For H ∈ H we define
ψ(H) := min{m(K,x) : x ∈ H}. (8)

The minimum is attained (a proof is given in Section 3 of [14]).

Lemma 2. For u ∈ suppϕ,

h(K[ϕ, δ], u) = τ ⇔ ψ(H(u, τ)) = δ. (9)

Proof. For H ∈ H \ HintK , we state that

ψ(H) ≤ δ ⇔ H ∩K[ϕ, δ] 6= ∅. (10)

In fact, if H ∩K[ϕ, δ] 6= ∅, then H contains a point x with m(K,x) ≤ δ, hence ψ(H) ≤ δ.
If H ∩K[ϕ, δ] = ∅, then every x ∈ H satisfies m(K,x) > δ, and since ψ(H) is an attained
minimum, also ψ(H) > δ.

Let u ∈ suppϕ. We state that for all τ with K ⊂ intH−(u, τ), the function τ 7→
ψ(H(u, τ)) is strictly increasing. For the proof, let K ⊂ intH−(u, τi), i = 1, 2, and let
τ1 < τ2. Let z ∈ H(u, τ2) be such that m(K, z) = ψ(H(u, τ2)). Choose o ∈ K and let x be
the point in the intersection of [o, z] and H(u, τ1). Every hyperplane that separates K and x
also separates K and z. Every neighborhood of u on Sd−1 has positive ϕ-measure. There is
a neighborhood U of u with the following property. For each v ∈ U , the values τ for which
the hyperplane H(v, τ) separates K and x make up an interval Ix of positive length, and the
interval Iz for which H(v, τ) with τ ∈ Iz separates K and z is strictly longer than Ix. Now
it follows that ψ(H(u, τ2)) = m(K, z) > m(K,x) ≥ ψ(H(u, τ1)).

The value h(K[ϕ, δ], u) of the support function is the maximal value τ for which H(u, τ)∩
K[ϕ, δ] 6= ∅. Therefore, from (10) and the proved strong monotonicity, the assertion of the
lemma follows.

3 Applications to the K-cell of a Poisson hyperplane process

First we recall two appearances of floating bodies in stochastic geometry. Let K(n) denote
the convex hull of n independent uniform random points in K (a convex body with interior
points). Bárány and Larman [4, Thm. 1] showed that the expected volume EV (K(n)) can be
estimated in terms of the floating body Kδ, in the following way. There are constants c1 and
c2(d) (independent of K) such that

c1[V (K)− V (K1/n)] ≤ V (K)− EV (K(n)) ≤ c2(d)[V (K)− V (K1/n)]. (11)

Another result concerns the set-valued expectation of an integrable random convex body X.
By definition, this expectation, also called the selection expectation of X and denoted by EX,
is the closure of the set of all integrable selections of X; see Molchanov [18], Definition 1.12.
We need here only that the support functions satisfy

h(EX,u) = Eh(X,u) for u ∈ Sd−1;

see [18, Thm. 1.22].
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For the convex hull K(n) of n independent uniform random points in a convex body K
and for the floating body Kδ, Bárány and Vitale [5] have shown the existence of constants
0 < a < b <∞ such that for all n ∈ N,

K \Ka/n ⊆ K \ EX(n) ⊆ K \Kb/n,

or equivalently,
h(Kb/n, ·) ≤ h(EX(n), ·) ≤ h(Ka/n, ·). (12)

Dually to convex hulls of random points in a convex body, we now consider intersections of
random halfspaces containing a convex body. These halfspaces are bounded by hyperplanes
of a Poisson hyperplane process, and we first describe this setting.

We assume that a stationary Poisson hyperplane process X̂ in Rd is given. (We refer to
[23], in particular Section 3.2 for Poisson processes and Section 4.4 for processes of flats. As
there, we identify a simple counting measure with its support, if convenient. So we write
H ∈ X̂ for X̂({H}) = 1.) The (locally finite) intensity measure Θ̂ = EX̂ can be written as

Θ̂(A) = γ̂

∫
Sd−1

∫
R
1A(H(u, τ)) dτ ϕ(du)

for Borel sets A ⊂ H. Here ϕ is an even probability measure on the sphere Sd−1, called
the spherical directional distribution of X̂. The number γ̂ > 0 is the intensity of X̂. The
underlying probability space is denoted by (Ω,A,P), and the distribution of X̂ is given by

P
(
X̂(A) = k

)
= e−Θ̂(A) Θ̂(A)k

k!

for k ∈ N0 and Borel sets A ⊂ H with Θ̂(A) <∞.

As above, we assume that the measure ϕ is not concentrated on a great subsphere. With
the measure ν defined by (2), we have

Θ̂ = γ̂ν.

As before, we define m(K,x) by (3) and and Φ(K) by (4).

We assume now that a convex body K with interior points is given. In order to emphasize
the analogy to convex hulls of n random points in K, we assume in the following that the
intensity γ̂ of X̂ is a number n ∈ N.

Aiming at ‘dual’ results, we define the K-cell of the Poisson hyperplane process X̂ by

Z
(n)
K :=

⋂
H∈X̂,H∩K=∅

H−(K),

where H−(K) is the closed halfspace bounded by the hyperplane H that contains K. Thus,

Z
(n)
K is a random polytope containing the convex body K. Replacing K by {o} (where o is

the origin of Rd), we obtain the zero cell of X̂, denoted by Z
(n)
o . If we assume (without loss

of generality) that o ∈ K, then the distribution of the K-cell is the conditional distribution
of the zero cell, under the condition that the latter contains K,

P
(
Z

(n)
K ∈ ·

)
= P

(
Z(n)
o ∈ · | K ⊂ Z(n)

o

)
. (13)

7



This follows from the independence properties of Poisson processes, since the sets HK and
H \HK are disjoint.

First we prove a counterpart to (12). If the support of the spherical directional distribution

is the whole sphere, it shows that the set-valued expectations of the random polytopes Z
(n)
K

can be estimated in terms of the (non-random) separation bodies K[ϕ, δ] of K, for suitable
parameters δ depending on n.

Theorem 1. Suppose that suppϕ = Sd−1. Then

e−1[h(K[ϕ, 1/n], ·)− h(K, ·)] ≤ h(EZ(n)
K , ·)− h(K, ·)

≤ (1 + e−1)[h(K[ϕ, 1/n], ·)− h(K, ·)].

Proof. We recall that h(EZ(n)
K , ·) = Eh(Z

(n)
K , ·). Let u ∈ Sd−1 be given. We choose

o ∈ H(K,u) ∩K,

so that h(K,u) = 0 (clearly, Eh(Z
(n)
K , u)−h(K,u) is independent of the choice of the origin).

For t ≥ 0,

h(Z
(n)
K , u) ≥ t⇔ H(u, t) ∩ Z(n)

K 6= ∅. (14)

We have

Eh(Z
(n)
K , u) =

∫
Ω
h(Z

(n)
K , u) dP =

∫ ∞
0

P
(
h(Z

(n)
K , u) ≥ t

)
dt. (15)

In dealing with the left inequality of Theorem 1, we make use of the definitions (3) and
(8) (keeping in mind that Θ̂ = nν). Let t ≥ 0, and let z ∈ H(u, t) be such that

ψ(H(u, t)) = m(K, z).

If no hyperplane of X̂ separates K and z, then z ∈ Z(n)
K and hence H(u, t) ∩ Z(n)

K 6= ∅. It
follows that

P
(
h(Z

(n)
K , u) ≥ t

)
= P

(
H(u, t) ∩ Z(n)

K 6= ∅
)

≥ P
(
X̂(HKz \ HK) = 0

)
= exp

[
−Θ̂(HKz \ HK)

]
= e−nm(K,z)

= e−nψ(H(u,t)).

Using (15), for any τ > 0 we get

Eh(Z
(n)
K , u) =

∫ ∞
0

P
(
h(Z

(n)
K , u) ≥ t

)
dt

≥
∫ ∞

0
e−nψ(H(u,t)) dt

≥
∫ τ

0
e−nψ(H(u,t)) dt

≥ e−nψ(H(u,τ)) · τ.
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(We have used that t 7→ ψ(H(u, t)) is increasing.) By the choice of the origin, this is equivalent
to

Eh(Z
(n)
K , u)− h(K,u) ≥ e−nψ(H(u,τ))τ. (16)

We finish this later.

To deal with the right inequality of Theorem 1, from (15) and (14) we deduce, for any
τ ≥ 0, that

Eh(Z
(n)
K , u) =

∫ ∞
0

P
(
H(u, t) ∩ Z(n)

K 6= ∅
)

dt

≤ τ +

∫ ∞
τ

P
(
H(u, t) ∩ Z(n)

K 6= ∅
)

dt. (17)

Suppose that t > τ , for a given τ > 0, is such that H(u, t) ∩ Z(n)
K 6= ∅. Then there is a

point x ∈ H(u, t) that belongs to Z
(n)
K , hence no hyperplane of X̂ strictly separates K and x.

Observing that the set of hyperplanes separating K and x, but not strictly, has ν-measure
zero, we obtain

P
(
H(u, t) ∩ Z(n)

K 6= ∅
)
≤ P

(
X̂(H(K|x)) = 0

)
= e−Θ̂(H(K|x)). (18)

Let

y =
1

s
x be such that y ∈ H(u, τ),

then s = t/τ (by the choice of the origin). Let U ⊂ Sd−1 be the set of all unit vectors v for
which some hyperplane H(v, r) separates K and y. For v ∈ U we have 〈x, v〉 > 〈y, v〉 > 0
and h(K, v) ≥ 0, hence

〈x, v〉 − h(K, v)

〈y, v〉 − h(K, v)
≥ 〈x, v〉
〈y, v〉

= s.

If a hyperplane H(v, r) separates K and y, then the hyperplane H(v, sr) separates K and
x. Hence, if all hyperplanes H(v, r) with r in some interval I separate K and y, then all
hyperplanes H(u, r) with r in the interval sI separate K and x. It follows that

Θ̂(H(K|x)) = n

∫
Sd−1

∫ ∞
0

1{H(v, t) ∈ H(K|x)}dt ϕ(dv)

≥ n

∫
Sd−1

s

∫ ∞
0

1{H(v, t) ∈ H(K|y)} dt ϕ(dv)

= sΘ̂(H(K|y))

≥ snψ(H(u, τ)).

Now it follows from (17) and (18) that

Eh(Z
(n)
K , u)− h(K,u) ≤ τ +

∫ ∞
τ

e−n
t
τ
ψ((H(u,τ)) dt

= τ

(
1 +

∫ ∞
1

e−nrψ(H(u,τ))dr

)
. (19)

Finally, we choose τ such that ψ(H(u, τ)) = 1/n. Then

h(K[ϕ, 1/n], u)− h(K,u) = τ

by (9) and the choice of the origin. Therefore, (16) and (19) yield Theorem 1.
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As mentioned, duality interchanges points and hyperplanes, and hence should replace
measures of points by measures of hyperplanes. In this sense, a conceptual dual to the

volume of the random polytope K(n) would not be the volume of the random polytope Z
(n)
K ,

but its mean width. Therefore, the following theorem can be considered as the proper dual
counterpart to (11).

Theorem 2. Suppose that suppϕ = Sd−1. Then

e−1[W (K[ϕ, 1/n])−W (K, )] ≤ EW (Z
(n)
K )−W (K) ≤ (1 + e−1)[W (K[ϕ, 1/n])−W (K)].

Proof. Since

W (K) = 2

∫
Sd−1

h(K,u)σ(du),

the assertion follows from Theorem 1 by integration, using Eh(Z
(n)
K , ·) = h(EZ(n)

K , ·) and
Fubini’s theorem.

For the volume, we can prove an analogue of the left inequality of (11). The proof of
the right inequality in (11) is more involved; it uses the ‘economic cap covering theorem’ of
Bárány and Larman [4]. We do not know of a ‘dual’ result, nor wether it would be helpful.

Theorem 3. We have

e−1[V (K[ϕ, 1/n])− V (K)] ≤ EV (Z
(n)
K )− V (K).

Proof. The proof relies on formula (20), for which we give a short proof. A related formula
was proved by Kaltenbach [16, Section 7]. We assume that o ∈ intK. By (13),

EV (Z
(n)
K ) = E

(
V (Z(n)

o ) | K ⊂ Z(n)
o

)
= E

(
V (Z(n)

o | X̂(HK) = 0
)
.

Recall that [o, x] is the closed segment with endpoints o and x. Since

x ∈ intZ(n)
o ⇔ X̂(H[o,x]) = 0

and
1{X̂(HK) = 0}1{X̂(H[o,x]) = 0} = 1{X̂(HKx) = 0},

we obtain (with λ denoting Lebesgue measure in Rd)

EV (Z
(n)
K )

= P(X̂(HK) = 0)−1E
(
1{X̂(HK) = 0}V (Z(n)

o )
)

= eΘ̂(HK)E
∫
Rd
1{X̂(HK) = 0}1{X̂(H[o,x] = 0}λ(dx)

= eΘ̂(HK)E
∫
Rd
1{X̂(HKx) = 0}λ(dx)

= eΘ̂(HK)

[
E
∫
K
1{X̂(HKx) = 0}λ(dx) + E

∫
Rd\K

1{X̂(HKx) = 0}λ(dx)

]
.
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Here the first expectation in the brackets is equal to

e−Θ̂(HK)V (K),

and the second, by Fubini’s theorem, is equal to∫
Rd\K

e−Θ̂(HKx )λ(dx).

Thus, we obtain

EV (Z
(n)
K )− V (K) =

∫
Rd\K

e−Θ̂(HKx\HK)λ(dx). (20)

This yields, for any τ > 0,

EV (Z
(n)
K )− V (K) =

∫
Rd\K

e−nm(K,x)λ(dx)

≥
∫
K[ϕ,τ ]\K

e−nm(K,x)λ(dx)

≥ e−nτ (V (K[ϕ, τ ] \K).

The choice τ = 1/n gives

EV (Z
(n)
K )− V (K) ≥ e−1V (K[ϕ, 1/n] \K)

and thus the assertion.
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[21] Nagy, S., Schütt, C., Werner, E., Halfspace depth and floating body. Stat. Surv. 13
(2019), 52–118.

[22] Schneider, R., Convex Bodies: The Brunn–Minkowski Theory. 2nd edn., Encyclopedia
of Mathematics and Its Applications, vol. 151, Cambridge University Press, Cambridge,
2014.

[23] Schneider, R., Weil, W., Stochastic and Integral Geometry. Springer, Berlin, 2008.
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