
Simplices

Rolf Schneider

These two lectures are about extremal properties of simplices in the affine geometry
of convex bodies. I begin with the well-known fact that the space of affine equivalence
classes of convex bodies in Rn is compact. As a consequence, every affine-invariant
continuous functional on Kn (the space of convex bodies with interior points in Rn)
attains a maximum and a minimum. For the proof of the compactness, often John’s
theorem is invoked. There is, however, an easier way. Let K ∈ Kn. There exists a
simplex T ⊆ K of maximal volume. Let F be a facet of T , v the opposite vertex, and
H the hyperplane through v parallel to F . Then H supports K, since otherwise one
would obviously obtain a contradiction to the maximality of T . Since F was an arbitrary
facet of T , we see that K is contained in the simplex −n(T − c) + c, where c is the
centroid of T . Let ∆ be a regular simplex with centroid 0, and let ∆′ := −n∆. There
exists α ∈ Aff(n) (the group of regular affine maps from Rn to Rn) with αT = ∆.
Then ∆ ⊆ αK ⊆ ∆′. Hence, every convex body has an affine transform in the set
{M ∈ Kn : ∆ ⊆ M ⊆ ∆′}. The latter set is clearly compact. From this, the assertion
follows.

In the following, we denote by Tn an n-dimensional simplex and by Bn an n-
dimensional ball. Only the affine equivalence classes of Tn and Bn will play a role. By
V we denote volume.

The geometry of convex bodies has produced a wealth of natural (that is, geomet-
rically meaningful) functionals on convex bodies which are continuous and invariant
under affine transformations. Each of these functionals gives rise to the question for
the bodies on which the functional attains its maximum and its minimum. There are
not too many cases where both extrema are known and are non-trivial. There are
several cases where symmetrization has been applied successfully to show that one ex-
tremum is attained by ellipsoids, but the other extremum is often unknown. Generally,
simplices are strong candidates for extremal bodies. It is this role of the simplices
which is the theme of these lectures. I intend to discuss the following points, though
not necessarily in this order:

• The main examples of cases where both extrema are known.

• If an extremum is known, there arises immediately the question for stability
improvements: if a convex body attains the extremum up to ε, is it f(ε)-close to
some simplex, with explicit f(ε)? Recent new results of this type are mentioned,
and one or two new proofs will be given.
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• Some open extremum problems, where simplices have been conjectured to be
extremal, with varying degrees of confidence.

• Two examples from applications, where extremal properties of simplices have
been observed, will be mentioned.

We begin with some affine-invariant functionals of a simple structure, which are
known as so-called measures of symmetry (see Grünbaum [16] for a survey).

The Minkowski measure of symmetry

For a convex body K ∈ Kn, the Minkowski measure of symmetry can be
defined by

q(K) := min{λ > 0 : ∃x ∈ K : −(K − x) ⊆ λ(K − x)}.

It is known that
1 ≤ q(K) ≤ n. (1)

Equality on the left holds trivially if and only if K is centrally symmetric, and on the
right it holds if and only if K is a simplex (references are in [16]).

The extremal property of the simplex can be improved in the form of a stability
version. For this, we need an appropriate notion of distance for affine equivalence classes
of convex bodies. The extended Banach-Mazur distance of not necessarily symmetric
convex bodies K, L ∈ Kn is defined by

dBM (K, L) := min{λ ≥ 1 : ∃α ∈ Aff(n)∃x ∈ Rn : L ⊆ αK ⊆ λL + x}

Recently, two papers independently gave stability estimates for the right-hand side
of (1), Böröczky [8] and Guo [17]. Böröczky’s result is stronger, he shows:

q(K) ≥ n− ε with 0 < ε <
1
4n

⇒ dBM (K, Tn) < 1 + 4nε.

Since the order of ε is optimal, it is of some interest to find good constants. Böröczky’s
result can still be improved:

Theorem 1.

q(K) ≥ n− ε with 0 < ε <
1
n

⇒ dBM (K, Tn) < 1 +
(n + 1)ε
1− nε

.

Proof. I give the proof here, since it has one interesting aspect. If we want to show
that some convex body is close to a simplex, we must construct this simplex, and thus
its vertices. In the present case, the vertices are found by an application of Helly’s
theorem.

For 0 ≤ q ≤ n and x ∈ K, define

K(x, q) :=
q

q + 1
(K − x) + x.
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Lemma.
c ∈

⋂
x∈K

K(x, q) ⇔ −(K − c) ⊆ q(K − c). (2)

Proof. We have

c ∈ K(x, q) ⇔ ∃k ∈ K : c =
q

q + 1
(k − x) + x

⇔ ∃k ∈ K : −(x− c) = q(k − c)

⇔ −(x− c) ∈ q(K − c),

from which the lemma follows.

Now let K ⊂ Rn be a convex body with q(K) > n− ε, where 0 < ε < 1/n, and put
q := n− ε. Since q < q(K), no point c ∈ K satisfies the right-hand side of (2). By the
Lemma and by Helly’s theorem, there must exist n + 1 points e0, e1, . . . , en ∈ K such
that

n⋂
i=0

K(ei, q) = ∅. (3)

Since the set of all (n + 1)-tuples (e0, . . . , en) satisfying (3) is open in Kn+1, we can
assume that e0, . . . , en are affinely independent. Then ∆ := conv {e0, . . . , en} is an
n-simplex contained in K. We set

r :=
q

q + 1
=

n− ε

n + 1− ε

and

z := [1− n(1− r)]e0 + (1− r)
n∑

i=1

ei.

With
α0 :=

1− n(1− r)
r

=
1− ε

n− ε
, α1 := 0, αj :=

1− r

r
=

1
n− ε

for j = 2, . . . , n we have αi ≥ 0 and
∑n

i=0 αi = 1, hence

z =
n∑

i=0

αi[rei + (1− r)e1] ∈ conv {r(ei − e1) + e1 : i = 0, . . . , n}

= r(∆− e1) + e1 = ∆(e1, q).

Similarly, z ∈ ∆(ei, q) for i = 1, . . . , n. Since ∆(ei, q) ⊂ K(ei, q), it follows from (3)
that

z /∈ K(e0, q).

Now we assume, without loss of generality, that

n∑
i=0

ei = 0, (4)
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so that z = [1− (n + 1)(1− r)]e0. From z /∈ r(K − e0) + e0 we get that the point

z0 := −τe0 with τ :=
1 + ε

n− ε

satisfies z0 /∈ K. By (4),
z0 = τ(e1 + · · ·+ en). (5)

Now we set
λ := 1 +

(n + 1)ε
1− nε

and assert that
K ⊆ intλ∆. (6)

Suppose that (6) were false. Then some facet of λ∆, say the one opposite to λe0,
contains a point p ∈ K. There is a unique representation

p =
n∑

i=1

γiλei with γi ≥ 0,
n∑

i=1

γi = 1.

Further, there is a unique affine representation

z0 =
n∑

i=1

βiei + βn+1p with
n+1∑
i=1

βi = 1,

thus

z0 =
n∑

i=1

[βi + βn+1γiλ]ei.

Comparing this with (5), we get

βi + βn+1γiλ = τ for i = 1, . . . , n.

By addition,
n∑

i=1

βi + λβn+1 = nτ,

hence
βn+1 =

nτ − 1
λ− 1

=
1− nε

n− ε
≥ 0.

For i = 1, . . . , n, we get

βi =
1 + ε

n− ε
(1− γi) ≥ 0.

Thus
z0 ∈ conv {e1, . . . , en, p} ⊆ K,

a contradiction. This shows that (6) holds, which implies that dBM (K, T ) < λ.

The survey of Grünbaum [16] mentions several other measures of symmetry where the
extremal property of simplices is either proved or conjectured (and still not proved
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today). We mention only one here, which is quite well known but still offers new
developments and open questions.

The difference body measure of symmetry

The difference body of a convex body K ∈ Kn is the body DK := K − K. The
affine invariant V (DK)/V (K) is estimated by

2n ≤ V (DK)
V (K)

≤
(

2n

n

)
. (7)

Equality on the left holds if and only if K is centrally symmetric, and on the right
if and only if K is a simplex. The right-hand inequality is known as the Rogers-
Shephard inequality (1957). It would be implied by a beautiful inequality conjectured
by Godbersen (1938), namely

V (K[i],−K[n− i])
V (K)

≤
(

n

i

)
. (8)

Here the numerator is a mixed volume, and i ∈ {1, . . . , n − 1}. It is conjectured that
(8) holds and equality characterizes simplices. For i = 1 and i = n− 1, this is true.

An interesting recent development concerning the Rogers-Shephard inequality is the
proof of a stability estimate by Böröczky [8]. He showed that

V (DK)
V (K)

≥ (1− ε)
(

2n

n

)
⇒ dBM (K, Tn) ≤ 1 + n50n2

ε.

The dependence on ε cannot be improved. The proof has to quantify the characteriza-
tion of the simplex as it is used in the equality case of the Rogers-Shephard inequality.
The crucial point is here the following. Let x ∈ DK \ {0}. There is a unique point
y ∈ bd DK and a unique λ ∈ (0, 1] such that y = λx. It is easy to see that

(1− λ)K + λy ⊆ K ∩ (K + x).

The resulting inequality

V ((1− λ)K) ≤ V (K ∩ (K + x))

leads, with integration tricks, to the Rogers-Shephard inequality. If equality holds in
the Rogers-Shephard inequality, then we must have

(1− λ)K + λy = K ∩ (K + x)

for all x ∈ DK. Hence, any nonempty intersection of K with a translate of K is
homothetic to K. This property characterizes simplices. The principal difficulty lies
in a stability version of this simplex characterization. Böröczky’s proof is certainly a
remarkable achievement.

I will now give two examples showing how extremal properties of simplices related
to variants of the difference body inequality appear in applications. The examples are
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taken from stochastic geometry. The first one concerns continuum percolation in the
plane. Let Xλ be a stationary Poisson point process of intensity λ in the plane, and
let K be a convex body of area A(K) = 1. We translate K by the vectors of Xλ and
form the union:

S :=
⋃

x∈Xλ

(K + x).

The fundamental question in continuum percolation (formulated for this special model)
asks whether S has some unbounded connected component. It is known that there
exists a critical threshold λc: if λ < λc, then S a.s. contains no unbounded connected
component, and if λ > λc, then S a.s. contains an unbounded component. This critical
value λc depends on the convex body K (of given area 1), and one may ask for its
extrema. It was proved by Jonasson [19] that the critical value λc becomes minimal
if K is a triangle. This follows from a strengthened version of the difference body
inequality in the plane. The latter says that

A(DK) ≤ A(DT ) if A(K) = A(T )

for any convex body K and triangle T . Jonasson obtained the following remarkable
improvement: To any convex body K in the plane there exists a triangle T such that

DK ⊆ DT and A(K) = A(T ).

By A(DK) ≤ A(DT ) = 6A(T ) = 6A(K), this implies the difference body inequality.

The application to continuum percolation follows from the observation that

(K + x) ∩ (K + y) 6= ∅ ⇔ x− y ∈ DK

⇒ x− y ∈ DT ⇔ (T + x) ∩ (T + y) 6= ∅.

Hence, if
⋃

x∈Xλ
(K + x) contains an unbounded connected component, then so does⋃

x∈Xλ
(T +x). An extension to higher dimensions would be very interesting, but seems

rather hopeless.

The next ‘application’ we want to describe concerns random coverings by translates
of a convex body. Let A,B ⊂ Rn be convex bodies (for simplicity) with A ⊂ intB.
Further, a convex body K is given. Let (xi)i∈N be sequence of independent, identically
distributed random points with uniform distribution in B. Janson [18] studied the
random variable

Nr := min{m ∈ N : A ⊆
m⋃

i=1

(rK + xi)}

for r > 0, the smallest number m so that B is covered by the first m translates of rK
in the sequence (rK + xi)i∈N. He was able to determine the asymptotic distribution of
Nr for r → 0. What interests us here is how the shape of K influences this asymptotic
distribution. Janson found that the expression for the asymptotic distribution involves a
certain functional β(K), and later he observed that this functional attains its maximum
on simplices. I will explain what this has to do with an extension of the difference body
inequality.
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Since x ∈ DK ⇔ K ∩ (K + x) 6= ∅, we can write

V (DK) =
∫

Rn

1{K ∩ (K + x) 6= ∅}dx.

We generalize this, for p ∈ N, to

DpK := {(x1, . . . , xp) ∈ (Rn)p : K ∩ (K + x1) ∩ · · · ∩ (K + xp) 6= ∅}

and

Vpn(DpK) =
∫

Rn

. . .

∫
Rn

1{K ∩ (K + x1) ∩ · · · ∩ (K + xp) 6= ∅}dx1 . . .dxp.

In [29], the difference body inequality was generalized to

Vpn(DpK)
V (K)p

≤
(

pn + n

n

)
,

with equality if and only if K is a simplex. (A side remark: The other extremum is
unknown for n > 2 and p > 1. For p = 2 and n = 3, the functional attains different
values on the class of centrally symmetric bodies.)

The multiple integral defining Vpn(DpK) can be generalized and leads to a polyno-
mial expansion analogous to the expansion leading to mixed volumes. For K1, . . . ,Kk ∈
Kn and λ1, . . . , λk ≥ 0, we have∫

Rn

. . .

∫
Rn

1{λ1K1 ∩ (λ2K2 + x2) ∩ · · · ∩ (λkKk + xk) 6= ∅}dx2 · · ·dxk

=
n∑

m1,...,mk=0

m1+···+mk=(k−1)n

λm1
1 · · ·λmk

k V (0)
m1,...,mk

(K1, . . . ,Kk).

This defines functionals V
(0)
m1,...,mk , with properties similar to those of mixed volumes:

V
(0)
m1,...,mk is continuous, and as a function of its ith argument, it is translation invariant,

homogeneous of degree mi, and a valuation (see [30] for a general approach and more
information). The functional

V
(0)
m1,...,mk(K, . . . ,K)

V (K)k−1

is affine invariant, so it attains a minimum and a maximum, but these are generally
unknown. To indicate the difficulty of the problem, we mention that it includes two
longstanding unsolved problems. We have

V
(0)
i,n−i(K, K) =

(
n

i

)
V (K[i],−K[n− i]),

so that the question for the maximum in this case is the Godbersen problem mentioned
earlier. If K1, . . . ,Kn are centrally symmetric, then

V
(0)
n−1,...,n−1(K1, . . . ,Kn) =

n!
2n

V (ΠK1, . . . ,ΠKn),
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where V is the mixed volume and Π denotes the projection body operator. In particular,
the question for the minimum of

V
(0)
n−1,...,n−1(K, . . . , K)

V (K)n−1
=

n!
2n

V (ΠK)
V (K)n−1

is nothing but Petty’s unsolved problem on the volume of projection bodies.

Coming back to Janson’s functional β(K) appearing in the covering problem, we
can now state that it is given by

β(K) = V
(0)
n−1,...,n−1(K, . . . , K).

From the polynomial expansion above, one can deduce that, for k ∈ N,

V(k−1)n(Dk−1K)
V (K)k−1

=
kn

n!
β(K)

V (K)n−1
+ O(kn−1)

(where O(kn−1) refers to k →∞). The generalized difference body inequality gives

V(k−1)n(Dk−1K)
V (K)k−1

≤
(

kn

n

)
=

(kn)n

n!
+ O(kn−1).

Letting k →∞, we deduce that

β(K)
V (K)n−1

≤ nn.

Here equality holds for simplices. It follows that in Janson’s covering problem, among
convex bodies of the same volume, simplices have the worst covering property. It is
unknown whether simplices are the only extremal bodies.

The preceding two examples were connected to variants of the difference body in-
equality. We mention a third variant, giving another characterization of simplices.
Recall that the volume of the difference body of the convex body K can be defined by∫

Rn

1{K ∩ (K + x) 6= ∅}dx = V (DK).

In analogy to this, we can define a convex body MK by∫
Rn

K ∩ (K + x) dx =: MK.

(The set valued integral can be defined via support functions.) Then, with a suitable
translation vector t, the inclusion

V (DK)K ⊆ (n + 1)MK + t

holds. Here equality holds if and only if K is a simplex. A more general version of this
inequality was proved in [31].
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We continue with our general theme, affine inequalities, with special regard to
simplices as either established or conjectured extremal bodies. References not given
here are found in the excellent Handbook article by Lutwak [22]. Also the book of
Leichtweiß [21] should be consulted.

Already a ‘classic’ is the two-sided inequality

1
nn

(
2n

n

)
≤ V (Π∗K)V (K)n−1 ≤

(
κn

κn−1

)n

(κn = volume of the n-dimensional Euclidean unit ball) for the volume of the polar
projection body Π∗K of a convex body K. Equality on the right side, which is due to
Petty, characterizes ellipsoids, and equality on the left side, due to Zhang, characterizes
simplices.

Gardner and Zhang [14] have introduced a remarkable array of convex bodies con-
necting the difference body with the polar projection body. Let K ∈ Kn and p > −1,
p 6= 0. The radial pth mean body RpK of K is defined by

ρRpK(u) :=
(

1
V (K)

∫
K

ρK(x, u)p dx

)1/p

,

where ρL(x, ·) is the radial function of L with respect to x. With the constant

cn,p :=
(

n

∫ 1

0
(1− t)ptn−1 dt

)−1/p

,

Gardner and Zhang proved that, for −1 < p < q,

DK ⊆ cn,qRqK ⊆ cn,pRpK ⊆ nV (K)Π∗K.

In each inclusion, equality holds if and only if K is a simplex. Consequently,

V (DK)
V (K)

≤ cn
n,q

V (RqK)
V (K)

≤ cn
n,p

V (RpK)
V (K)

≤ nnV (Π∗K)V (K)n−1.

In each inequality, equality holds if and only if K is a simplex. Since

V (RnK)
V (K)

= 1,

these inequalities include the difference body inequality and the Zhang projection in-
equality.

A new development to be reported is that Böröczky [8], in his work on the difference
body inequality, also has stability results for these later inequalities. So he proves that,
with ε > 0,

V (Π∗K)V (K)n−1 ≥ (1 + ε)
1
nn

(
2n

n

)
implies

dBM (K, Tn) ≤ 1 + n88nε1/n,

9



and if −1 ≤ p < q, then

V (cn,pRpK) ≥ (1 + ε)V (cn,qRqK)

implies
dBM (K, Tn) ≤ 1 + cε1/n

with a positive constant c depending on p, q, n.

Maximal ellipsoids

Perhaps the most interesting extremal properties of simplices, found in the last
15 years, are related to inscribed or circumscribed ellipsoids of extremal volume. For
K ∈ Kn, one denotes by EJ(K) the ellipsoid of maximal volume contained in K. By a
result of John, the concentric homothetic ellipsoid n(EJ(K) − c) + c, where c denotes
the centre of EJ(K), contains the body K. If K is a simplex, then the factor n cannot
be decreased, but the simplex is not characterized by this extremal property. This
changes if shifts are allowed. John’s result implies that

dBM (K, Bn) ≤ n (9)

for K ∈ Kn. Here, equality holds if and only if K is a simplex. This was proved by
Leichtweiß [20] and was rediscovered by Palmon [27]. As soon as one has uniqueness, the
question for a stability improvement of the inequality can be raised. For the inequality
(9), such a stability result seems to be unknown.

The number dBM (K, Bn) can be interpreted as the result of a general procedure to
obtain affine invariants. Let r(K), R(K) denote the (Euclidean) inradius and circum-
radius, respectively, of K. Then

dBM (K, Bn) = inf
α∈Aff(n)

R(αK)
r(αK)

.

It often happens that a continuous similarity invariant function of convex bodies attains
one extremum (as here, where R/r ≥ 1 trivially), but not the other, since the function
is unbounded. By taking the infimum or the supremum over all affine transforms (also
called ‘positions’) of a convex body, one obtains an affine invariant functional which
may be bounded and hence attains both extrema. This procedure, which leads to
interesting new extremal problems, was pioneered by Behrend [9]. He already gave
neat proofs for the reverse isoperimetric inequality in two dimensions, with equality
characterizations both in the general and the centrally symmetric case. Generally, the
affine-invariant isoperimetric quotient is defined by

I(K) := inf
α∈Aff(n)

S(αK)n

V (αK)n−1
,

where S denotes the surface area. It was shown by Ball [1] that I(K) attains its
maximum when K is a simplex. He first proved that the volume ratio

vr(K) :=
(

V (K)
V (EJ(K))

)1/n
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attains its maximum for simplices. The reverse isoperimetric inequality is then easily
obtained. The convex body K is said to be in John position if its John ellipsoid EJ(K)
is the unit ball Bn. Every convex body has an affine transform that is in John position.
Let ∆n denote a regular simplex circumscribed to Bn. Now let K be in John position.
Then Ball’s volume ratio result states that

V (K) ≤ V (∆n). (10)

We have S(K) ≤ nV (K), since Bn ⊆ K, and S(∆n) = nV (∆n). Together with (10),
this gives

I(K) ≤ S(K)n

V (K)n−1
≤ nnV (K) ≤ nnV (∆n) =

S(∆n)n

V (∆n)n−1
= I(∆n),

where the last equality is classical. If equality holds in this reverse isoperimetric in-
equality, then it holds in (10), hence K has maximal volume ratio. In that case, K
must be a simplex. A proof of this fact has only become possible when Barthe [3, 4]
found a new proof of the Brascamp–Lieb inequality (and its reverse).

If K is in John position, then (10) also gives

S(K) ≤ S(∆n).

Barthe posed the question whether corresponding results hold also for the other intrinsic
volumes, and he proved that the mean width W indeed satisfies

W (K) ≤ W (∆n),

with equality if and only if K is a rotation image of the simplex ∆n (see [4, 7], and also
the summary [6]).

Similar extremal properties of simplices exist in relation to the Löwner ellipsoid
EL(K), the ellipsoid of smallest volume containing K. The exterior volume ratio

evr(K) =
(

V (K)
V (EL(K))

)1/n

attains its minimum on the simplices (see Barthe [4, 6]). If EL(K) = Bn, then the
mean width of K is not smaller than the mean width of a regular simplex inscribed to
Bn (Schmuckenschläger [28]).

The preceding characterizations are beautiful and deep. Since already the unique-
ness proofs are delicate, there is perhaps little hope for improving them in the form of
stability estimates.

In the following, we will sketch the proof of a stability result for a consequence of
the inequality (9). Let

vq(K) :=
(

V (EL(K))
V (EJ(K))

)1/n

,

(vq stands for ‘volume quotient’). It follows from (9) that

vq(K) ≤ n, (11)
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with equality precisely for simplices. In joint work with Daniel Hug, we obtained the
following stability version.

Theorem 2. There exist constants c(n), ε0(n) > 0 depending only on the dimension n
such that the following holds. If 0 ≤ ε ≤ ε0(n) and

vq(K) ≥ (1− ε)n,

then
dBM (K, Tn) ≤ 1 + c0(n)ε1/4.

A rough estimate for c0(n) shows that that it can be assumed to be of order n13/2.

The sketch of the proof is not reproduced here. The proof will be published else-
where.

Finally, we recall some affine inequalities where the extremal property of simplices
has been established in the two-dimensional case, but seems difficult, or even doubtful,
in higher dimensions.

The Blaschke-Santaló inequality

Let K ∈ Kn, and let K∗ denote the polar body of K with respect to the Santaló
point, which is the point with respect to which the volume of the polar body becomes
minimal. Then

? ≤ V (K)V (K∗) ≤ κ2
n.

On the right-hand side, equality holds if and only if K is an ellipsoid. It has been
conjectured that simplices give the minimal value, that is,

(n + 1)n+1

(n!)2
≤ V (K)V (K∗).

For n = 2, this was proved by Mahler [24]. A new proof was given by Meyer [25], who
also showed that only the triangles are extremal. Recently Meyer and Reisner have
proved that the conjecture holds for n-polytopes with at most n + 3 vertices.

The Lp-Busemann-Petty centroid inequality

For K ∈ Kn and p ≥ 1, the Lp-centroid body of K is the convex body ΓpK with
support function

hΓpK(u) :=
(

1
an,pV (K)

∫
K
|〈u, x〉|pdx

)1/p

, u ∈ Rn,

where
an,p :=

κn+p

κ2κnκp−1
.
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Up to normalizing factors, Γ1K is the ordinary centroid body of K, and Γ2K is the
Legendre ellipsoid of K. The inequality

V (ΓpK)
V (K)

≥ 1,

with equality precisely if K is a centered ellipsoid, was proved by Lutwak, Yang and
Zhang [23], and with a different proof by Campi and Gronchi [11]. The cases p = 1
(Busemann–Petty) and p = 2 (Blaschke, John) are older.

The function V (ΓpK)/V (K) is invariant under linear transformations, but not un-
der translations. The modified functional defined by Cp(K) := V (Γp(K − cK))/V (K),
where cK is the centroid of K, is affine invariant; hence, the question for its maximum
becomes meaningful. Campi and Gronchi [11] have proved that for n = 2 this maximum
is attained precisely by the triangles.

Random polytopes

For K ∈ Kn and m ≥ n + 1, define

M(K, m) :=
1

V (K)m

∫
K

. . .

∫
K

V (conv{x1, . . . , xm}) dx1 · · ·dxm.

Thus, M(K, m) is the expected volume of the convex hull of m independent, uniformly
distributed random points in K. We have

M(Bn,m)
V (Bn)

≤ M(K, m)
V (K)

≤ ?,

with equality on the left if and only if K is an ellipsoid. In special cases, this goes back
to Blaschke; in an even more general version, for higher moments of the volume, it was
proved by Groemer. A major open problem is the maximum on the right-hand side, in
particular for m = n + 1, the expected volume of a random simplex in K. For n = 2
and m = 3, it was proved by Blaschke that the maximum is attained precisely by the
triangles. That in the plane the triangles are also extremal for m > 3, was proved by
Dalla and Larman [13], and that only triangles are extremal was shown by Giannopoulos
[15]. In Rn for n > 2, only the following hints to the conjectured extremal property
of the simplices are known. Dalla and Larman have shown that among polytopes with
at most n + 2 vertices, precisely the simplices yield the maximum. This was extended
to higher moments by Campi, Colesanti and Gronchi [10]. These authors have also
obtained some restrictions for the possible maximizers. Bárány and Buchta [2] define
E(K, m) := V (K)−M(K, m) for bodies K with V (K) = 1 and prove that

lim inf
m→∞

E(K, m)
E(Tn,m)

≥ 1 +
1

n + 1

unless K is a simplex.
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