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Abstract. It is known that the basic tensor valuations which, by a result of S.
Alesker, span the vector space of tensor valued, continuous, isometry covariant
valuations on convex bodies, are not linearly independent. P. McMullen has dis-
covered linear dependences between these basic valuations and has implicitly raised
the question as to whether these are essentially the only ones. The present paper
provides a positive answer to this question. The dimension of the vector space of
continuous, isometry covariant tensor valuations, of a fixed rank and of a given
degree of homogeneity, is explicitly determined. Our approach is constructive and
permits one to provide a specific basis.
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1 Introduction

A function ϕ from the space Kn of convex bodies in Euclidean space Rn (n ≥ 2) into
some abelian group is a valuation if it satisfies ϕ(K1∪K2)+ϕ(K1∩K2) = ϕ(K1)+ϕ(K2)
whenever K1,K2,K1 ∪K2 ∈ Kn. The vector space of real valuations on Kn which are
continuous (with respect to the Hausdorff metric) and invariant under rigid motions is
spanned by the intrinsic volumes and thus has dimension n + 1. This is the celebrated
characterization theorem of Hadwiger, one of the central results of classical convex
geometry. Surveys on valuations were given in [15] and [13]. More recently, there are
important new developments, beginning with an elegant proof of Hadwiger’s theorem by
Klain [11], and culminating in the work of S. Alesker. Among the results of Alesker is the
proof of a conjecture of McMullen [12] on the classification of the continuous, translation
invariant real valuations, in [5]. The space of these valuations is of infinite dimension.
On the other hand, Alesker [4] has shown the following. If G is a compact subgroup
of the orthogonal group acting transitively on the unit sphere of Rn, then the space of
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G-invariant, translation invariant, continuous real valuations is finite dimensional. For
the cases of the groups U(n) on Cn ' R2n and SU(2) on C2 ' R4, Alesker [6], [7] has
determined these spaces and their dimensions explicitly.

As a natural generalization of the motion invariant real valuations, McMullen [14]
introduced isometry covariant tensor valuations, and he formulated the aim to find a
characterization of such valuations, under continuity assumptions. To explain this, we
denote by Tr the vector space of symmetric tensors of rank r ∈ N0 (the nonnegative
integers) over Rn (we use the scalar product of Rn to identify Rn with its dual space).
The symmetric tensor product of symmetric tensors a, b is denoted by ab. We write
xr for the r-fold symmetric tensor product of x ∈ Rn. The normalization is chosen so
that xr = x ⊗ · · · ⊗ x (with r factors x). A tensor valuation on Kn is a valuation on
Kn with values in T :=

⊕
r∈N0

Tr. The tensor valuation ϕ is called isometry covariant
if it has the following two properties: (a) ϕ(UK) = U(ϕ(K)) for all K ∈ Kn and all
U ∈ O(n) (the orthogonal group of Rn), where U also denotes the canonical extension
to T; (b) there is a number s ∈ N such that ϕ maps into

⊕s
r=0 Tr, and there are

functions ϕj : Kn →
⊕s

r=0 Tr, for j = 0, . . . , s, such that

ϕ(K + t) =
s∑

r=0

ϕs−r(K)
tr

r!
,

for K ∈ Kn and t ∈ Rn. (Thus, ϕ has polynomial behavior. Polynomial valuations were
first studied, on polytopes, by Pukhlikov and Khovanskii [17].) Continuity of such a
tensor valuation refers to the natural induced topology on

⊕s
r=0 Tr. A tensor valuation

taking its values in Tp is said to be of rank p. Examples are obtained as follows. If Bn

denotes the unit ball of Rn and if ε > 0, then, for p ∈ N0 and K ∈ Kn,∫
K+εBn

xp dx

is a polynomial in ε of degree at most n + p. The coefficients of this generalized
Steiner polynomial (which were studied in [21]) are isometry covariant, continuous
tensor valuations of rank p. They span the linear space of all such valuations in the
cases p = 0 (Hadwiger’s theorem) and p = 1. The latter was proved by Hadwiger
and Schneider [10], based on results in [18], [19] (since one of the coefficients of the
Steiner formula for p = 1 vanishes identically, the space again has dimension n +
1). For p ≥ 2, however, the coefficients of the Steiner polynomial are not sufficient
to span the corresponding space. For obtaining sufficiently many isometry covariant
tensor valuations, we need the support measures (or generalized curvature measures)
Λ0(K, ·), . . . ,Λn−1(K, ·) of a convex body K ∈ Kn. We briefly recall their definition.
Let 〈· , ·〉 be the scalar product and ‖ · ‖ the norm in Rn. For x ∈ Rn, let p(K, x) denote
the metric projection of x to K, and put u(K, x) := (x − p(K, x))/‖x − p(K, x)‖ for
x /∈ K. Let Sn−1 denote the unit sphere in Rn. Then, for any ε > 0 and Borel set
η ⊂ Σ := Rn × Sn−1, the n-dimensional Hausdorff measure (volume) Hn of the local
parallel set

Mε(K, η) := {x ∈ (K + εBn) \K : (p(K, x), u(K, x)) ∈ η}

is a polynomial in ε,

Hn(Mε(K, η)) =
n−1∑
i=0

εn−iκn−iΛi(K, η).
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This defines the support measures. For further information, see [20, Section 4.2] (but
observe the different normalization used there) and [22].

For K ∈ Kn and integers r, s ≥ 0, 0 ≤ k ≤ n− 1, define

Φn,r,0(K) :=
1
r!

∫
K

xrHn(dx)

and
Φk,r,s(K) :=

1
r!s!

ωn−k

ωn−k+s

∫
Σ

xrusΛk(K, d(x, u)),

where ωn = 2πn/2/Γ(n/2) is the surface area of Sn−1 (the normalizing factors have a
simplifying effect later). Each function Φk,r,s is a continuous, isometry covariant tensor
valuation on Kn. The same properties are shared by QlΦk,r,s for l ∈ N0, where Q
denotes the (constant) metric tensor defined by Q(x, y) := 〈x, y〉. We call the functions
Φk,r,s, for r, s ∈ N0 and either k ∈ {0, . . . , n − 1} or (k, s) = (n, 0), the Minkowski
tensors (since for r + s = 0 they were introduced by Minkowski), and the functions
QlΦk,r,s, where l ∈ N0 and Φk,r,s is a Minkowski tensor, are called the basic tensor
valuations. To simplify sum notations, we put Φk,r,s := 0 if k /∈ {0, . . . , n} or if r or s
is not in N0 or if k = n and s 6= 0. A function Φk,r,s will be called nontrivial if it is a
Minkowski tensor.

When McMullen [14] introduced these tensor valuations, he also discovered that
they satisfy the relations

2π
∑

s

sΦk−r+s,r−s,s −Q
∑

s

Φk−r+s,r−s,s−2 = 0, (1.1)

for k, r ∈ N0. (An analytical proof, different from McMullen’s polytope approach, is in-
dicated in [22], based on [21].) McMullen found this to suggest that the characterization
problem might not be straightforward, and later in [14] he collected evidence for any
solution to be rather complicated. Surprisingly, it turned out that Alesker’s work [2] on
rotation invariant valuations on convex sets put him in a position to solve McMullen’s
characterization problem, right after it had been formulated. Alesker showed that the
basic tensor valuations QlΦk,r,s, with suitable choices of integers l, k, r, s, indeed span
the vector space of all isometry covariant, continuous tensor valuations of a fixed rank.
Based on [2], he announced in [1] and proved in [3] the following theorem.

Theorem 1.1 (Alesker). Let p ∈ N0, and let ϕ : Kn → Tp be a continuous, isometry
covariant valuation. Then ϕ is a linear combination, with constant real coefficients, of
the basic tensor valuations QlΦk,r,s, where l, k, r, s are such that 2l + r + s = p.

This is a very remarkable extension of the known results for p = 0 and p = 1, but
leaves open the determination of a basis and thus of the dimension of the space of
continuous, isometry covariant tensor valuations of given rank. The spanning system
provided by Alesker’s theorem is not linearly independent, according to (1.1). The
problem of determining all linear dependences between the basic tensor valuations came
up soon after McMullen had found (1.1). The main purpose of the present paper is a
proof of the fact that the relations (1.1) are essentially (that is, up to multiplications
by powers of Q and linear combinations) the only linear dependences between the basic
tensor valuations. A precise result is stated in Theorem 2.1. In Section 3, we investigate
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the problem of determining the dimension and a basis of the vector space of continuous,
isometry covariant tensor valuations of given rank.

As an example, we mention the simplest new case, the vector space of continuous,
isometry covariant tensor valuations of rank two on Kn. It has dimension 3n + 1, and
a basis is given by

• QΦj,0,0, j = 0, . . . , n,

• Φj,2,0, j = 0, . . . , n,

• Φj,0,2, j = 1, . . . , n− 1.

This could still be deduced by a direct argument, but it is also a very special
consequence of a general result in Section 3 (cf. also Section 4). Since (1.1) yields that

Φk,0,2 =
1
4π

QΦk,0,0 −
1
2
Φk−1,1,1,

for k = 1, . . . , n − 1, we can replace Φj,0,2, for j ∈ {1, . . . , n − 1}, by Φj,1,1, for j ∈
{0, . . . , n− 2}, in the displayed basis.

For tensor valuations of higher rank, the situation turns out to be considerably more
complicated.

Finally in this introduction, we mention that the Minkowski tensors have also begun
to play a role (at least, up to rank two) in applied sciences, as tools in the morphometry
of spatial patterns; see [9], [8], for example.

2 Linear Dependences

In this section, we prove that the relations between basic tensor valuations discovered
by McMullen are essentially the only ones, namely, that any linear relation between
basic tensor valuations can be obtained by multiplying relations of the form (1.1) by
powers of Q and by taking linear combinations of relations obtained in this way. A
more formal assertion is stated below. Multiplying (1.1) by a power of Q, we obtain
the relations

2π
∑

s

sQlΦk−r+s,r−s,s −
∑

s

Ql+1Φk−r+s,r−s,s−2 = 0, (2.2)

for l ∈ N0, r ∈ N and k ∈ {0, . . . , n+ r−2}. We want to show that linear combinations
of such relations yield all linear relations between basic tensor valuations. At one point
of the proof, we need the existence of some convex body K for which Φk,0,s(K) with
given s ≥ 2 does not contain Q as a factor. The somewhat intricate verification of this
property is deferred to the Appendix (Lemma 5.3), so that first the main line of the
argument can be presented.

For the proof of the main assertion, it is sufficient to consider tensor valuations of
given rank and degree of homogeneity. For p, k ∈ N0, let Tp,k denote the real vector
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space of tensor valuations of rank p and homogeneity degree k which are continuous
and isometry covariant. If we put

Ip,k := {(l, m, r, s) : l, r, s ∈ N0, m ∈ {0, . . . , n− 1} or (m, s) = (n, 0),

2l + r + s = p, m + r = k},

then
Bp,k := {QlΦm,r,s : (l, m, r, s) ∈ Ip,k}

is the set of basic tensor valuations contained in Tp,k. Alesker’s characterization theorem
can be stated as

Tp,k = linBp,k.

In particular, Tp,k = {0} for k > n + p.

For k ≤ n + p, we define a (p, k)-dependence as a function α : Ip,k → R such that∑
(l,m,r,s)∈Ip,k

α(l,m, r, s)QlΦm,r,s = 0.

The value α(l, m, r, s) will be called the (l, m, r, s)-coordinate of α. With the natural
definitions, the set of (p, k)-dependences is a real vector space, which we denote by
Dp,k. Any equation (2.2) with 2l + r = p defines a (p, k)-dependence α, by taking for
α(l′,m′, r′, s′) the coefficient of Ql′Φm′,r′,s′ if this basic tensor valuation appears in the
relation, and 0 otherwise. A (p, k)-dependence obtained in this way will be called a
basic (p, k)-dependence.

Theorem 2.1. Let p, k ∈ N0 and k ≤ n+p. The vector space Dp,k of (p, k)-dependences
is spanned by the basic (p, k)-dependences.

Proof. First, let p = 0. Then k ∈ {0, . . . , n} and, for any such k, I0,k = {(0, k, 0, 0)},
i.e. B0,k = {Φk,0,0}. The map (0, k, 0, 0) 7→ 0 is a basic (0, k)-dependence which spans
D0,k = {0}, since Φk,0,0 is not the zero valuation.

Next, let p = 1, and hence k ∈ {0, . . . , n + 1}. From (2.2) we get

2πΦm,0,1 = 0 for m = 0, . . . , n− 1. (2.3)

We have
B1,0 = {Φ0,0,1}

and Φ0,0,1 = 0, hence D1,0 is one-dimensional and is spanned by the basic (1, 0)-
dependence given by (2.3) for m = 0.

We note that for m ∈ {0, . . . , n} we have Φm,1,0 6= 0, since Φm,1,0(C) 6= 0 for a cube
C having one of its vertices at the origin.

Let k ∈ {1, . . . , n− 1}. Then

B1,k = {Φk,0,1,Φk−1,1,0},

where Φk,0,1 = 0 by (2.3) and Φk−1,1,0 6= 0. Hence, D1,k is again one-dimensional and
is spanned by the basic (1, k)-dependence.
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Finally, let k ∈ {n, n + 1}. Then

B1,k = {Φk−1,1,0}

and Φk−1,1,0 6= 0, hence D1,k = {0}. Thus, in each case D1,k is spanned by the basic
(1, k)-dependences.

Now let p ≥ 2 and assume that the assertion of the theorem is true for the spaces
Dr,k with r < p and arbitrary k ≤ n + r. We will show that then the assertion of the
theorem is true for Dp,k with k ≤ n + p.

We start with k = 0. We have

Bp,0 = {QlΦ0,0,p−2l : l ∈ N0, 2l ≤ p}.

From (2.2), we obtain (with Φ0,0,−1 := 0)

2πrQ(p−r)/2Φ0,0,r −Q1+(p−r)/2Φ0,0,r−2 = 0 (2.4)

for r = 1, 3, . . . , p if p is odd, and r = 2, 4, . . . , p if p is even.

Relations (2.4) define corresponding basic (p, 0)-dependences. Using (2.4) repeatedly,
we obtain

Tp,0 = {0} for odd p, Tp,0 = lin{Qp/2Φ0,0,0} 6= {0} for even p, (2.5)

This shows in each case that the space spanned by the basic (p, 0)-dependences and
the space Dp,0 of all (p, 0)-dependences have the same dimension.

Now we assume that k ≥ 1. If k ∈ {n + p− 1, n + p}, then Ip,k = {(0, k − p, p, 0)}
and Φk−p,p,0 6= 0. In these two cases, Dp,k−p = {0} is spanned by the basic (p, k − p)-
dependence (0, k − p, p, 0) 7→ 0. Hence, throughout the following, we will assume that
1 ≤ k ≤ n + p− 2.

Let α ∈ Dp,k, thus ∑
(l,m,r,s)∈Ip,k

α(l, m, r, s)QlΦm,r,s = 0.

Since here 2l + r + s = p and m + r = k, we rewrite the relation as∑
l,s∈N0

αl,sQ
lΦk−p+s+2l,p−s−2l,s = 0, (2.6)

with αl,s := α(l, k − p + s + 2l, p− s− 2l, s) (setting αl,s := 0 in the undefined cases).

Assume, first, that α0,sΦk−p+s,p−s,s = 0 for s = 0, . . . , p. Then (2.6) gives

Q
∑

l≥1, s≥0

αl,sQ
l−1Φk−p+s+2l,p−s−2l,s = 0.

Since T has no zero divisors, this implies the linear relation∑
l≥1, s≥0

αl,sQ
l−1Φk−p+s+2l,p−s−2l,s = 0
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between basic tensor valuations of rank p − 2 and homogeneity degree k and hence
defines a (p−2, k)-dependence. By the inductive assumption, Dp−2,k is spanned by the
basic (p − 2, k)-dependences. But then the (p, k)-dependence corresponding to (2.6)
is spanned by basic (p, k)-dependences (using the linear map Dp−2,k → Dp,k that is
induced by multiplying linear relations by Q).

From now on we can assume that either there exists s ∈ {0, . . . , p − 1} with
α0,sΦk−p+s,p−s,s 6= 0, or that α0,sΦk−p+s,p−s,s = 0 for all s ∈ {0, . . . , p − 1} and
α0,pΦk,0,p 6= 0.

To analyze the coefficients in (2.6), we use the translation covariance of the basic
tensor valuations. For K ∈ Kn and t ∈ Rn, we have

Φk′,r′,s′(K + t) =
r′∑

j=0

1
j!

Φk′,r′−j,s′(K)tj . (2.7)

Applying (2.7) to (2.6) and comparing the coefficients of t1, we obtain∑
l,s∈N0

αl,sQ
lΦk−p+s+2l,p−s−2l−1,s = 0. (2.8)

This is a linear relation between basic tensor valuations of rank p− 1 and homogeneity
degree k − 1 and hence defines a (p − 1, k − 1)-dependence ᾱ ∈ Dp−1,k−1. By the
inductive assumption, Dp−1,k−1 is spanned by the basic (p − 1, k − 1)-dependences.
From this, we will derive information about the coefficients αl,s in (2.6).

First we show that α0,0Φk−p,p,0 = 0. To see this, assume that α0,0Φk−p,p,0 6= 0.
Hence 0 ≤ k − p ≤ n and α0,0Φk−p,p−1,0 is a nonvanishing summand in (2.8). The
relations (2.2) do not involve a nonzero multiple of the functional Φk−p,p−1,0, hence any
basic (p− 1, k− 1)-dependence has (0, k− p, p− 1, 0)-coordinate zero. By the inductive
assumption, the same holds for every element of Dp−1,k−1. This is a contradiction.

Hence, we know that α0,s0Φk−p+s0,p−s0,s0 6= 0 for some s0 ∈ {1, . . . , p}. Let us first
assume that s0 ∈ {1, . . . , p − 1}. This implies that 0 ≤ k − p + s0 ≤ n − 1, thus (2.8)
involves the nonvanishing summand α0,s0Φk−p+s0,p−s0−1,s0 . The only relation from
(2.2) which involves Φk−p+s0,p−s0−1,s0 is

2π

p−1∑
s=1

sΦk−p+s,p−s−1,s −Q

p−1∑
s=2

Φk−p+s,p−s−1,s−2 = 0.

This is also the uniquely determined linear relation of the form (2.2) which involves one
of the functionals Φk−p+1,p−2,1, . . . ,Φk−1,0,p−1. It follows that in any basic (p−1, k−1)-
dependence the (p− 1)-tuple of (0, k− p + s, p− s− 1, s)-coordinates, s = 1, . . . , p− 1,
is of the form c · 2π(1, . . . , p − 1) with a constant c. By the inductive assumption,
the same is true for every element of Dp−1,k−1, in particular for ᾱ. We conclude that
α0,s = c · 2πs for s = 1, . . . , p− 1 and hence that

α0,s =
α0,s0

s0
s, s = 1, . . . , p− 1.

Thus, (2.6) is equivalent to the relation

2πα

p−1∑
s=1

sΦk−p+s,p−s,s + α0,pΦk,0,p +
∑

l≥1, s≥0

αl,sQ
lΦk−p+s+2l,p−s−2l,s = 0 (2.9)
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with α = α0,s0/(2πs0) 6= 0. In the still excluded case s0 = p, relation (2.9) also holds,
since then we can assume α0,s = 0 for s = 1, . . . , p − 1. In this case, (2.9) holds with
α = 0 and α0,p 6= 0.

Subtracting a multiple of (2.2) (with l = 0, r = p) from (2.9), we arrive at

(α0,p − 2παp)Φk,0,p −
∑

l≥1, s≥0

α̃l,sQ
lΦk−p+s+2l,p−s−2l,s = 0

with suitable constants α̃l,s ∈ R. This shows that for each K ∈ Kn there is some
v ∈ Tp−2 such that

(α0,p − 2παp)Φk,0,p(K) = Qv.

If 1 ≤ k ≤ n − 1, then there exists a convex body K for which Φk,0,p(K) cannot be
written in the form Qv with v ∈ Tp−2. The construction of such a body ist postponed
to the Appendix (Lemma 5.3). Taking its existence for granted, we deduce that α0,p =
2παp 6= 0, so that (2.6) takes the equivalent form

2πα

p∑
s=1

sΦk−p+s,p−s,s +
∑

l≥1, s≥0

αl,sQ
lΦk−p+s+2l,p−s−2l,s = 0.

Subtracting again a multiple of (2.2) (with l = 0, r = p) from this equation, we obtain

αQ
∑

s

Φk−p+s,p−s,s−2 +
∑

l≥1, s≥0

αl,sQ
lΦk−p+s+2l,p−s−2l,s = 0,

which is equivalent to

Q
∑

l≥1, s≥0

βl,sQ
l−1Φk−p+s+2l,p−s−2l,s = 0, (2.10)

with suitable constants βl,s ∈ R. The latter is equivalent to∑
l≥1, s≥0

βl,sQ
l−1Φk−p+s+2l,p−s−2l,s = 0. (2.11)

Relation (2.11) defines a (p − 2, k)-dependence. By the inductive assumption, it is
spanned by basic (p− 2, k)-dependences. But then (2.10), which is equivalent to (2.6),
shows that the (p, k)-dependence corresponding to (2.6) is spanned by basic (p, k)-
dependences.

If k ≥ n, then Φk,0,p is equal to zero by definition, and we can argue as before.

This shows that in any case the assertion of the theorem is true for functionals of
rank p, which completes the induction.

Remark 2.2. Let p ≥ 2. Theorem 2.1 implies that any linear relation between func-
tionals from Bp,k, involving a nonzero multiple of one of the nontrivial functionals
Φk−p+1,p−1,1, . . . ,Φk,0,p, necessarily is, up to a factor, of the form

2π
∑

s

sΦk−p+s,p−s,s = QΦ
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with some Φ ∈ Tp−2,k. Moreover, there is no such linear relation which involves a
nonzero multiple of Φk−p,p,0 as a summand whenever k ∈ {p, . . . , n + p}. Both facts
follow since

2π
∑

s

sΦk−p+s,p−s,s = Q
∑

s

Φk−p+s,p−s,s−2

is the unique one among the relations (2.2) which involves one of Φk−p+1,p−1,1, . . . ,Φk,0,p

as summand, and none of (2.2) involves Φk−p,p,0 with a non-zero real factor.

As a consequence, we obtain the following corollary. The assumptions p ≥ 2 and
k ≥ 1 in the corollary cannot be avoided.

Corollary 2.3. Let p ≥ 2 and k ≥ 1 with k ≤ n+p. Then the functionals Φk−p+s,p−s,s

with (0, k − p + s, p− s, s) ∈ Ip,k are linearly independent.

Proof. For k = n + p the only functional occurring is Φn,p,0 6= 0, and for k = n + p− 1
the only one is Φn−1,p,0 6= 0. Hence, in the following we can assume that k ≤ n+ p− 2.

For p = 2 and k ≤ n, we have to consider the functionals Φk−2+s,2−s,s for s ∈
{0, 1, 2}, which are nontrivial. Assume there were a linear relation between them. By
Remark 2.2, it must (up to a nonzero constant) be given by

2π
∑

s

sΦk−2+s,2−s,s = 0.

From (2.2) we deduce then that∑
s

Φk−2+s,2−s,s−2 = 0,

which reduces to Φk,0,0 = 0. Since k ≤ n, this yields a contradiction.
For p = 3 and k ≤ n + 1, we argue similarly and arrive at the linear relation

2π
∑

s

sΦk−3+s,3−s,s = 0.

Using again (2.2), we deduce that Φk−1,1,0 = 0. Here we use that always Φk,0,1 = 0.
Since 0 ≤ k − 1 ≤ n, this is a contradiction.

Now let p ≥ 4, k ≥ 1 and k ≤ n + p− 2. Assume that the assertion of the corollary
is proved in Br,k for 2 ≤ r < p and k ≥ 1 with k ≤ n + r. Assume there is a linear
relation between the Minkowski tensors in question. By Remark 2.2, it is (up to a
nonzero constant) given by

2π
∑

s

sΦk−p+s,p−s,s = 0.

By (2.2) we conclude that ∑
s

Φk−p+s,p−s,s−2 = 0. (2.12)

If k−p+2 ≥ 0, then (2.12) involves Φk−p+2,p−2,0 with p−2 ≥ 2 and 0 ≤ k−p+2 ≤ n,
a contradiction to Remark (2.2) (or to the inductive assumption). If k−p+2 ≤ −1, i.e.
p− k− 2 ≥ 1, then (2.12) involves Φ0,k,p−k−2 ∈ Bp−2,k as a nontrivial summand, where
p − 2 ≥ 2 and k ≥ 1. This contradicts the inductive assumption and thus completes
the argument.

Corollary 2.3 and the preceding remark will play a crucial role in the arguments of
the next section.
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3 Dimension and Basis

In this section, we use Theorem 2.1 for determining the dimension of the vector space

Tp,k = lin{QlΦm,r,s : (l,m, r, s) ∈ Ip,k}

of Tp-valued, continuous, isometry covariant valuations on Kn, which are homogeneous
of degree k. In the course of the proof (see Lemma 3.2), we also determine a particular
basis for this vector space. Examples will be given in the subsequent section.

Theorem 3.1. Let p ∈ N0 and 0 ≤ k ≤ n + p. Put

j0 := min
{⌊

n + p− k

2

⌋
,
⌊p

2

⌋}
and j1 := max

{
−1,

⌊
p− k

2

⌋}
.

Then

dim Tp,k = j0(min{1, n− k}+ p− j0) + 1− (j1 + 1)(p− k − j1). (3.13)

Proof. First we consider the case p = 0. For 0 ≤ k ≤ n,

T0,k = lin{Φk,0,0}

and Φk,0,0 6= 0, hence
dim T0,k = 1. (3.14)

This is consistent with (3.13).

For p = 1, we know from Section 2 that T1,0 = {0} and, for k ∈ {1, . . . , n + 1},

T1,k = lin{Φk−1,1,0} 6= {0},

hence

dim T1,k =

{
0, if k = 0,
1, if k ∈ {1, . . . , n + 1}.

(3.15)

This, too, is consistent with (3.13).

Let p ≥ 2. The case k = 0 is easy. By (2.5),

dim Tp,0 =

{
0, if p is odd,
1, if p is even,

which is consistent with (3.13).

From now on we assume that k ≥ 1. We will decompose Tp,k into a sum of linear
subspaces and then into a direct sum. For this purpose, we define, for j ∈ N0 with
0 ≤ j ≤ j0, the linear subspaces

T j
p,k := lin{QjΦk−p+2j+s,p−2j−s,s : 0 ≤ s ≤ p− 2j},

and T j
p,k := {0} for all other integers j. Then we have∑

j

T j
p,k = Tp,k.
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Here the summation effectively extends over j ∈ {0, . . . , j0}.
First we determine the dimension of T j

p,k for 0 ≤ j ≤ j0. Let Aj
p,k denote the number

of basic tensor valuations QjΦk−p+2j+s,p−2j−s,s ∈ T j
p,k with s ∈ {0, . . . , p−2j}. In order

to ensure that QjΦk−p+2j+s,p−2j−s,s is a basic tensor valuation, we must either have

0 ≤ k − p + 2j + s ≤ n− 1 and 0 ≤ s ≤ p− 2j

(observe that by definition of j0 we always have p− 2j ≥ 0) or

k − p + 2j + s = n and s = 0,

and each of these conditions is also sufficient. The first set of conditions is equivalent
to

max{0, p− k − 2j} ≤ s ≤ min{p− 2j, n + p− k − 2j − 1}.

Note that this cannot be satisfied for 2j = n + p − k. The second set of conditions is
equivalent to

2j = n + p− k and s = 0.

Hence we obtain

Aj
p,k = min{p− 2j + 1, n + p− k − 2j} −max{0, p− k − 2j}+ δ2j,n+p−k, (3.16)

where δ denotes the Kronecker symbol. Equation (3.16) holds for 0 ≤ j ≤ j0. In all
other cases we have Aj

p,k = 0.

Let j be fixed. Since T has no zero divisors, a sequence of functionals of the form
QjΦk−p+2j+s,p−2j−s,s ∈ T j

p,k is linearly independent if and only if the corresponding
sequence of functionals Φk−p+2j+s,p−2j−s,s ∈ T 0

p−2j,k is linearly independent. Thus, we
get

dim T j
p,k = dim T 0

p−2j,k.

Since k ≥ 1 and Aj
p,k = A0

p−2j,k, Corollary 2.3 implies that

dim T j
p,k = dim T 0

p−2j,k = A0
p−2j,k = Aj

p,k, (3.17)

for all j ∈ N0 with j ≤ j0 and j ≤ (p/2) − 1; here the second restriction is imposed
in view of the assumption p − 2j ≥ 2 needed in the application of Corollary 2.3. The
remaining cases are easily settled. If p is odd, we may have p − 2j0 = 1. Then (3.15)
yields that

dim T j0
p,k = dim T 0

1,k = dim T1,k = 1, (3.18)

since k ≥ 1. If p is even, we may have p− 2j0 = 0. Then (3.14) shows that

dim T j0
p,k = dim T 0

0,k = dim T0,k = 1. (3.19)

For j0 = 0, we have Tp,k = T 0
p,k. The dimension dim T 0

p,k has already been de-
termined in (3.17), (3.18) and (3.19). Since p ≥ 2, the definition of j0 implies that
n + p− k = 0 or n + p− k = 1. Hence, (3.16) and (3.17) imply

dim T 0
p,k =A0

p,k = min{p + 1, n + p− k} −max{0, p− k}+ δ0,n+p−k

=(n + p− k)− 0 + δ0,n+p−k = 1,
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which is consistent with (3.13).

Now we assume that j0 ≥ 1 and transform the right-hand side of

Tp,k =
∑

j

T j
p,k

into a direct sum. For each of the corresponding summands T
j
p,k, a basis is provided by

the basic tensor valuations in (3.20). A counting argument then completes the proof.

Lemma 3.2. Let p ≥ 2, k ≥ 1 be given. Let j0 ≥ 1. For 0 ≤ j < j0, put sj :=
max{1, p − k − 2j} ∈ {1, . . . , p − 2j − 1}. Then Φk−p+2j+sj ,p−2j−sj ,sj

is nontrivial.
Define

T
j
p,k := lin{QjΦk−p+2j+s,p−2j−s,s : s ∈ {0, . . . , p− 2j} \ {sj}}. (3.20)

Then
dim T

j
p,k = dim T j

p,k − 1 (3.21)

and
Tp,k = T 0

p,k + . . . + T j0
p,k = T

0
p,k ⊕ . . .⊕ T

j0−1
p,k ⊕ T j0

p,k. (3.22)

Proof. Let 0 ≤ j < j0. By the definition of j0 we have n + p − k ≥ 2j0, hence
k − p + 2j ≤ n− 2. Put sj := max{1, p− k − 2j}. Then Φk−p+2j+sj ,p−2j−sj ,sj

is equal
either to Φk−p+2j+1,p−2j−1,1 with 1 ≤ k − p + 2j + 1 ≤ n − 1, or to Φ0,k,p−k−2j with
p − k − 2j > 1. In both cases, this is a nontrivial functional. By Corollary 2.3 the
basic tensor valuations spanning T j

p,k are linearly independent. Hence, if one of these
is deleted, then the dimension of the span is reduced by one. This proves (3.21).

We prove (3.22) by induction. For this we assert that

T 0
p,k + . . . + T j

p,k = T
0
p,k ⊕ . . .⊕ T

j−1
p,k ⊕ T j

p,k (3.23)

holds for 1 ≤ j ≤ j0. This will be proved by induction with respect to j. The assertion
of the lemma then follows by putting j = j0.

First let j = 1 ≤ j0. If Φ ∈ T 0
p,k ∩ T 1

p,k, then

Φ =
∑

s

αsΦk−p+s,p−s,s =
∑

s

βsQΦk−p+s,p−s,s−2

with suitable constants αs, βs ∈ R. By Theorem 2.1, the linear relation∑
s

αsΦk−p+s,p−s,s −
∑

s

βsQΦk−p+s,p−s,s−2 = 0

is obtained from the linear relation

2π
∑

s

sΦk−p+s,p−s,s −
∑

s

QΦk−p+s,p−s,s−2 = 0

by multiplication with a real constant. We conclude that

T 0
p,k ∩ T 1

p,k = lin

{∑
s

sΦk−p+s,p−s,s

}
.
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Since s0Φk−p+s0,p−s0,s0 is nontrivial and since Corollary 2.3 holds, we obtain

dim T 0
p,k ∩ T 1

p,k = 1.

By the definition of T
0
p,k, we have

T
0
p,k ∩ T 1

p,k = {0},

thus
T 0

p,k + T 1
p,k = T

0
p,k ⊕ T 1

p,k.

If j0 = 1, this already completes the proof.

Let 2 ≤ j ≤ j0 and assume that (3.23) has been proved for all integers < j. By the
inductive assumption,

T 0
p,k + . . . + T j

p,k = T
0
p,k ⊕ . . .⊕ T

j−2
p,k ⊕ T j−1

p,k + T j
p,k.

Every functional
Φ ∈

(
T

0
p,k ⊕ . . .⊕ T

j−2
p,k ⊕ T j−1

p,k

)
∩ T j

p,k

satisfies

Φ =
j−2∑
j=0

∑
s 6=sj

α(j)
s QjΦk−p+2j+s,p−2j−s,s +

∑
s

βsQ
j−1Φk−p+2(j−1)+s,p−2(j−1)−s,s

=
∑

s

γsQ
jΦk−p+2j+s,p−2j−s,s

with suitably chosen α
(0)
s , . . . , α

(j−2)
s , βs, γs ∈ R. Since Φk−p+s0,p−s0,s0 is missing in the

first inner sum (corresponding to j = 0), Theorem 2.1 and Remark 2.2 imply that
α

(0)
s = 0 for all s. Then we can conclude similarly that α

(1)
s = 0 for all s, and so on

until α
(j−2)
s = 0 for all s. Hence we get∑

s

βsΦk−p+2(j−1)+s,p−2(j−1)−s,s =
∑

s

γsQΦk−p+2j+s,p−2j−s,s.

As above, we can infer that

(
T

0
p,k ⊕ . . .⊕ T

j−2
p,k ⊕ T j−1

p,k

)
∩ T j

p,k = lin

{
Qj−1

∑
s

sΦk−p+2(j−1)+s,p−2(j−1)−s,s

}
.

It follows as before that the space on the right-hand side has dimension one and that(
T

0
p,k ⊕ . . .⊕ T

j−2
p,k ⊕ T

j−1
p,k

)
∩ T j

p,k = {0}

and thus
T 0

p,k + . . . + T j
p,k = T

0
p,k ⊕ . . .⊕ T

j−1
p,k ⊕ T j

p,k.

This finishes the induction and thus the proof of the lemma.
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We have obtained the decomposition

Tp,k =

j0−1⊕
j=0

T
j
p,k

⊕ T j0
p,k,

and for the corresponding dimensions we get

dim Tp,k =
j0−1∑
j=0

(dim T j
p,k − 1) + dim T j0

p,k. (3.24)

Equation (3.17) shows that dim T j
p,k = Aj

p,k for j = 0, . . . , j0 − 1. From (3.17) and
(3.16) in the case j0 ≤ (p/2)− 1, and from (3.18) or (3.19) in the case j0 > (p/2)− 1,
we deduce that

dim T j0
p,k = 1.

Hence, (3.24) implies that

dim Tp,k =
j0−1∑
j=0

Aj
p,k − j0 + 1.

Using (3.16), we finally get

dim Tp,k

=
j0−1∑
j=0

(min{p− 2j + 1, n + p− k − 2j} −max{0, p− k − 2j})− j0 + 1

=
j0−1∑
j=0

(min{1, n− k}+ p− 2j)−
j0−1∑
j=0

max{0, p− k − 2j} − j0 + 1

= j0(min{1, n− k}+ p)− j0(j0 − 1)− j0 + 1−
j0−1∑
j=0

max{0, p− k − 2j}

= j0(min{1, n− k}+ p− j0) + 1−
j0−1∑
j=0

max{0, p− k − 2j}.

Since p− k− 2j ≥ 0 if and only if 2j ≤ p− k, we can simplify the preceding expression
by putting

j1 := max
{
−1,

⌊
p− k

2

⌋}
and writing

dim Tp,k = j0(min{1, n− k}+ p− j0) + 1−
max{0,j1}∑

j=0

(p− k − 2j)

= j0(min{1, n− k}+ p− j0) + 1− (j1 + 1)(p− k − j1).

Here we have used that either j1 ≤ j0− 1 or j1 = j0 and p− k− 2j0 = 0. This confirms
the asserted expression for the dimension.
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4 Bases for Small Ranks

Theorem 3.1 provides the dimension of Tp,k; the proof shows how a basis of Tp,k can
be found in principle. We now apply the employed method to determine explicit bases
for the spaces Tp,k of ranks p ≤ 3.

Proposition. The following list provides bases for the spaces Tp,k up to rank three.

Rank 0

• T0,k for k = 0, . . . , n: a basis is {Φk,0,0}.

Rank 1

• T1,0 = {0}

• T0,k for k = 1, . . . , n + 1: a basis is {Φk−1,1,0}.

Rank 2

• T2,0: a basis is {QΦ0,0,0}.

• T2,1: a basis is {Φ1,0,2, QΦ1,0,0}.

• T2,k for k = 2, . . . , n− 1: a basis is {Φk,0,2,Φk−2,2,0, QΦk,0,0}.

• T2,n: a basis is {Φn−2,2,0, QΦn,0,0}.

• T2,k for k = n + 1, n + 2: a basis is {Φk−2,2,0}.

Rank 3

• T3,0: a basis is {Φ0,0,3}.

• T3,1: a basis is {Φ1,0,3, QΦ0,1,0}.

• T3,k for k = 2, . . . , n + 1: a basis is {Φk,0,3,Φk−1,1,2,Φk−3,3,0, QΦk−1,1,0},
with trivial functionals deleted.

• T3,k for k = n + 2, n + 3: a basis is {Φk−3,3,0}.

Proof. For tensors of rank p = 0 and p = 1, bases are well known. Here we have

T0,k = lin{Φk,0,0}, 0 ≤ k ≤ n,

and
T1,k = lin{Φk−1,1,0}, 1 ≤ k ≤ n + 1.

In addition, we remark that the tensor valuations Φ0,0,0, . . . ,Φn,0,0 are linearly inde-
pendent, and Φ0,1,0, . . . ,Φn,1,0 are linearly independent.

Next we consider the case p = 2. For arbitrary k ∈ N0, we get

T 0
2,k = lin{Φk,0,2,Φk−1,1,1,Φk−2,2,0}
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and
T 1

2,k = lin{QΦk,0,0}.

The linear relation (2.2) which corresponds to integers k ∈ N0 and p = 2 is

2πΦk−1,1,1 + 4πΦk,0,2 = QΦk,0,0. (4.25)

First, let k = 0. Then j0 = 1, j1 = 1, and hence dim T2,0 = 1 by Theorem 3.1.
Specifically, we have

T 0
2,0 = lin{Φ0,0,2}

and
T 1

2,0 = lin{QΦ0,0,0}.

Equation (4.25) reduces to
4πΦ0,0,2 = QΦ0,0,0,

hence a basis of T2,0 is just {QΦ0,0,0}.
Now we consider the cases 1 ≤ k ≤ n − 1, where j0 = 1. For k = 1, 2 we obtain

j1 = 0, and otherwise we get j1 = −1. Hence, Theorem 3.1 yields dim T2,k = 2 if k = 1
and dim T2,k = 3 otherwise.

The subspaces T 0
2,k and T 1

2,k have the same form as in the general case. In the
present case, the functionals in (4.25) are nontrivial. Thus we get

T
0
2,k = lin{Φk,0,2,Φk−2,2,0}.

Therefore, a basis of T2,k = T
0
2,k ⊕ T 1

2,k is given by

{Φk,0,2,Φk−2,2,0, QΦk,0,0},

where Φk−2,2,0 is deleted if k = 1.

For k = n, we have j0 = 1 and j1 = 0 if n = 1, 2, but j1 = −1 in all other cases.
Hence, Theorem 3.1 implies that dim T2,n = 1 if n = 1, and dim T2,n = 2 if n ≥ 2. We
have

T 0
2,n = lin{Φn−1,1,1,Φn−2,2,0}

and
T 1

2,n = lin{QΦn,0,0}.

The linear relation (4.25) shows that

2πΦn−1,1,1 = QΦn,0,0.

Therefore we get
T

0
2,n = lin{Φn−2,2,0}.

Hence, a basis of T2,n is {Φn−2,2,0, QΦn,0,0}, where the first functional has to be deleted
if n = 1.

It remains to consider the cases n + 1 ≤ k ≤ n + 2, where j0 = 0 and j1 = 0 if
n = 1 and k = 2, and j1 = −1 in all other cases. In any case, Theorem 3.1 implies that
dim T2,k = 1. Moreover, we have

T 0
2,k = lin{Φk−2,2,0}.
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This finally leads to
T2,k = T 0

2,k = lin{Φk−2,2,0}.

We remark that the method used here to select a basis of T2,k is not the only one.
It would be even simpler for p = 2 to consider the set {Φk,0,2,Φk−1,1,1,Φk−2,2,0}. It is
clear from what we have done so far that these functionals provide a basis, with the
understanding that trivial functionals are removed. However, the method described
here has the advantage of being applicable for arbitrary rank p.

Now we consider valuations of rank p = 3. For arbitrary k ∈ N0, we have

T 0
3,k = lin{Φk,0,3,Φk−1,1,2,Φk−2,2,1,Φk−3,3,0}

and
T 1

3,k = lin{QΦk−1,1,0, QΦk,0,1} = lin{QΦk−1,1,0}.

The linear relation from (2.2) which corresponds to integers k ∈ N0 and p = 3 is

2πΦk−2,2,1 + 4πΦk−1,1,2 + 6πΦk,0,3 = QΦk−1,1,0 + QΦk,0,1. (4.26)

Let k = 0 or k = 1. Then j0 = 1 and we have

T 0
3,k = lin{Φk,0,3,Φk−1,1,2}

as well as
T 1

3,k = lin{QΦk−1,1,0}.

Equation (4.26) states that

4πΦk−1,1,2 + 6πΦk,0,3 = QΦk−1,1,0.

Hence {Φ0,0,3} is a basis of T3,0, since T 1
3,0 = {0}. Further, a basis of T3,1 is given by

{Φ1,0,3, QΦ0,1,0}.

Let 2 ≤ k ≤ n + 1. Then again j0 = 1. Since 0 ≤ k − 2 ≤ n − 1, the functional
Φk−2,2,1 on the left-hand side of (4.26) is nontrivial. In these cases, a basis of T3,k is
just the set of nontrivial functionals from the set {Φk,0,3,Φk−1,1,2,Φk−3,3,0, QΦk−1,1,0}.

Finally, let k = n + 2 or k = n + 3. Then j0 = 0 and T3,k = T 0
3,k = lin{Φk−3,3,0},

since the other functionals are trivial. Therefore, {Φk−3,3,0} is a basis in these two
cases.

5 Appendix

In this section, we provide the construction of the special convex bodies whose existence
was needed in the proof of Theorem 2.1. The crucial result, Lemma 5.3, is preceded by
two preparatory lemmas.

Lemma 5.1. The polynomial

P (x, y) := αnxny0 + αn−1x
n−1y1 + . . . + α0x

0yn ∈ R[x, y]
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is a multiple of the polynomial x2 + y2 if and only if

α1 − α3 + α5 ∓ . . . = 0 (5.27)

and
α0 − α2 + α4 ∓ . . . = 0, (5.28)

where αi := 0 for i /∈ {0, . . . , n}.

Proof. Define the auxiliary polynomial

p(x, y) := αnxn−2 + αn−1x
n−3y + (αn−2 − αn)xn−4y2 + (αn−3 − αn−1)xn−5y3

+ (αn−4 − αn−2 + αn)xn−6y4 + (αn−5 − αn−3 + αn−1)xn−7y5 + . . .

. . . + (α3 − α5 + α7 ∓ . . .)x1yn−3 + (α2 − α4 + α6 ∓ . . .)yn−2.

Then we get

p(x, y)(x2 + y2) =αnxn + αn−1x
n−1y1 + . . . + α2x

2yn−2

+ (α3 − α5 ± . . .)xyn−1 + (α2 − α4 ± . . .)yn.

Hence

P (x, y)− p(x, y)(x2 + y2) = (α1 − α3 + α5 ∓ . . .)xyn−1 + (α0 − α2 + α4 ∓ . . .)yn,

which implies the assertion of the lemma.

Next, we introduce a sequence of numbers which will be needed in the proof of
Lemma 5.3. For k ∈ N0 and for odd numbers r ∈ N we define

fk(r) :=

r−1
2∑

j=0

(−1)j Γ( r−2j+1
2 )

22jj!(r − 2j)!
(k + 1)j

and fk(−1) := 0.

Lemma 5.2. Let r ∈ N be odd and k ∈ N0. The numbers fk(r) satisfy the recursion

2rfk(r) + kfk(r − 2) =
(−1)

r−1
2 (k + 1)

r−1
2

2r−2
(

r−1
2

)
!

(5.29)

and can also be represented by

fk(r) = (−1)
r−1
2

r−1
2∑

j=0

(k + 1)
r−2j−1

2 kj

2r−j−1
(

r−2j−1
2

)
!r(r − 2) · · · (r − 2j)

. (5.30)
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Proof. For the proof of the recursion, we write r = 2m + 1 with m ∈ N0 and define

hk(m, j) := (−1)j Γ(m + 1− j)
22jj!(2m + 1− 2j)!

(k + 1)j , for j = 0, . . . ,m

and

hk(m) :=
m∑

j=0

hk(m, j).

Then we have
fk(2m + 1) = hk(m).

Zeilberger’s algorithm (see [16]) produces the function

gk(m, j) :=
2j

−2m− 3 + 2j
hk(m, j),

which satisfies the identity

khk(m, j) + (4m + 6)hk(m + 1, j) = gk(m, j + 1)− gk(m, j) (5.31)

for j = 0, . . . ,m− 1 and m ≥ 1. This can be checked directly as follows. For 0 ≤ j ≤
m− 1,

hk(m + 1, j) =
m + 1− j

(2m + 2− 2j)(2m + 3− 2j)
hk(m, j)

=
1

2(2m + 3− 2j)
hk(m, j) (5.32)

and

hk(m, j + 1) = −(k + 1)(2m− 2j)(2m− 2j + 1)
(m− j)22(j + 1)

hk(m, j)

= −(k + 1)(2m− 2j + 1)
2(j + 1)

hk(m, j). (5.33)

From (5.33) we deduce that

gk(m, j + 1) = (k + 1)hk(m, j),

and by (5.32) we thus obtain

khk(m, j) + (4m + 6)hk(m + 1, j) =
2km + 3k − 2kj + 2m + 3

2m + 3− 2j
hk(m, j)

= gk(m, j + 1)− gk(m, j).

This confirms the required recursion (5.31) for 0 ≤ j ≤ m − 1 and m ≥ 1. Summing
over j = 0, . . . ,m− 1, we get

gk(m,m)− gk(m, 0) = k
m−1∑
j=0

hk(m, j) + (4m + 6)
m−1∑
j=0

hk(m + 1, j)

= khk(m) + (4m + 6)hk(m + 1)− khk(m, m)

−(4m + 6)(hk(m + 1,m) + hk(m + 1,m + 1))
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and from this

khk(m) + (4m + 6)hk(m + 1)

= gk(m,m)− gk(m, 0) + khk(m,m)

+ (4m + 6)(hk(m + 1,m) + hk(m + 1,m + 1))

=
(−1)m+1(k + 1)m+1

22m+1(m + 1)!
, (5.34)

which also holds for m = 0. Here we used the special values

gk(m, 0) = 0, gk(m,m) = −2
3

(k + 1)m

Γ(m)(−4)m
,

hk(m,m) =
(k + 1)m

m!(−4)m
, hk(m + 1,m) =

1
6

(k + 1)m

m!(−4)m

and

hk(m + 1,m + 1) = −1
4

(k + 1)m+1

(m + 1)!(−4)m
,

which are valid for all m ∈ N0. Now the recursion (5.29) follows immediately from
(5.34).

We write (5.29) in the form

fk(r) =
(−1)

r−1
2 (k + 1)

r−1
2

2r−1
(

r−1
2

)
!r

− k

2r
fk(r − 2). (5.35)

Equation (5.30) will be derived from (5.35) by induction. First, suppose that r = 1.
For any k, the definition of fk(r) implies that fk(1) = 1, which is consistent with (5.30).
Assume that (5.30) has been proved for r − 2 with some odd integer r ≥ 3. We will
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establish (5.30) for the given number r. Relation (5.35) and the assumption imply that

fk(r) =
(−1)

r−1
2 (k + 1)

r−1
2

2r−1
(

r−1
2

)
!r

−

− k

2r
(−1)

r−3
2

r−3
2∑

j=0

(k + 1)
r−2j−3

2 kj

2r−j−3
(

r−2j−3
2

)
!(r − 2)(r − 4) · · · (r − 2j − 2)

=
(−1)

r−1
2 (k + 1)

r−1
2

2r−1
(

r−1
2

)
!r

+

+
k

2r
(−1)

r−1
2

r−1
2∑

j=1

(k + 1)
r−2j−1

2 kj−1

2r−j−2
(

r−2j−1
2

)
!(r − 2)(r − 4) · · · (r − 2j)

=
(−1)

r−1
2 (k + 1)

r−1
2

2r−1
(

r−1
2

)
!r

+

+(−1)
r−1
2

r−1
2∑

j=1

(k + 1)
r−2j−1

2 kj

2r−j−1
(

r−2j−1
2

)
!r(r − 2) · · · (r − 2j)

= (−1)
r−1
2

r−1
2∑

j=0

(k + 1)
r−2j−1

2 kj

2r−j−1
(

r−2j−1
2

)
!r(r − 2) · · · (r − 2j)

,

which completes the induction and thus establishes (5.30).

The main lemma yields the existence of a convex body K for which the tensor
Φk,0,s(K), with 1 ≤ k ≤ n−1 and s ≥ 2, does not contain Q as a factor, with respect to
the symmetric tensor product. In the proof, we work with lower dimensional simplices.
In the special case of a polytope P , explicit expressions for the Minkowski tensors
are available; they result from the explicit representation of the support measures for
polytopes. For k < n, we have

Φk,0,s(P ) =
1

s!ωn−k+s

∑
F∈Fk(P )

Hk(F )
∫

N(P,F )∩Sn−1

usHn−k−1(du),

where Fk(P ) denotes the set of k-dimensional faces of P and N(P, F ) is the normal
cone of P at F . Let E be a j-dimensional linear subspace of Rn (j < n), and let P ⊂ E
be a polytope. If NE(P, F ) denotes the normal cone of P at the face F with respect to
E, then

Φ(E)
k,0,s(P ) =

1
s!ωj−k+s

∑
F∈Fk(P )

Hk(F )
∫

NE(P,F )∩Sn−1

usHj−k−1(du)
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with k < j is one of the Minkowski tensors of P , with E as the reference space.
The Minkowski tensors of P , evaluated in Rn on one side and in E on the other, are
connected by relations due to McMullen [14], namely

Φk,r,s(K) =
∑
m≥0

Q(E⊥)m

(4π)mm!
Φ(E)

k,r,s−2m(K) (5.36)

for k ≤ j. This will be used below for the special case of simplices.

Lemma 5.3. For k, s ∈ N with 1 ≤ k ≤ n − 1 and s ≥ 2, there exists a convex body
K ∈ Kn such that

Φk,0,s(K) 6= Qv

for all v ∈ Ts−2.

Proof. Throughout the proof, let {e1, . . . , en} be the standard basis of Rn, and let
s ≥ 2.

We start with n = 2, where only k = 1 has to be considered. For t ∈ (0, 1], we
define triangles

Pt := conv{0, e1, te2} ⊂ R2.

For the value of Φ1,0,s at Pt we get

Φ1,0,s(Pt)

=
∑

F∈F1(P )

1
s!ωs+1

H1(F )
∫

N(P,F )∩S1

usH0(du)

=
1

s!ωs+1

(
t(−e1)s + (−e2)s +

√
1 + t2

(
te1 + e2√

1 + t2

)s)

=
1

s!ωs+1

(−1)stes
1 + (−1)ses

2 +
1

√
1 + t2

s−1

s∑
j=0

(
s

j

)
tjej

1e
s−j
2

 . (5.37)

Now we assume the existence of a tensor vt ∈ Ts−2 such that

Φ1,0,s(Pt) = Qvt

is satisfied for all t ∈ (0, 1]. Applying both sides of this equation to the s-tuple (x, . . . , x)
with x = (x1, x2) ∈ R2 and using (5.37), we find that the polynomial

Φ1,0,s(Pt)(x, . . . , x) =
1

s!ωs+1

(−1)stxs
1 + (−1)sxs

2 +
1

√
1 + t2

s−1

s∑
j=0

(
s

j

)
tjxj

1x
s−j
2


in x1, x2 is a multiple of Q(x, x) = x2

1 + x2
2. Hence, Lemma 5.1 yields that

0 = (−1)s +
1

√
1 + t2

s−1

(
s

0

)
t0 − 1

√
1 + t2

s−1

(
s

2

)
t2

+
1

√
1 + t2

s−1

(
s

4

)
t4 ∓ . . . + α(s)t (5.38)
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for all t ∈ (0, 1] with

α(s) =


0, if s is odd,
1, if s ≡ 0 mod 4,

−1, if s ≡ 2 mod 4.

We multiply (5.38) by
√

1 + t2
s−1

and see that (5.38) cannot hold for all t ∈ (0, 1]:
for odd s, the resulting polynomial has non-zero highest coefficient, while for even s it
would follow that

√
1 + t2, multiplied by a non-zero polynomial, yields a polynomial.

Thus, we have proved the assertion of the lemma in the case n = 2.

We turn to the case of general n ≥ 3 and k ∈ {1, . . . , n − 1}. We define the
(k + 1)-simplex

P (k) := k
√

k! conv{0, e1, . . . , ek+1}.

It is contained in the (k+1)-dimensional linear subspace L(k) := lin{e1, . . . , ek+1} ⊂ Rn.
The k-faces of P (k) are

F
(k)
i := k

√
k! conv{0, e1, . . . , ei−1, ei+1, . . . , ek+1},

i = 1, . . . , k + 1, and
F

(k)
k+2 := k

√
k! conv{e1, . . . , ek+1}.

For the k-dimensional volumes of these k-faces, we obtain

Hk(F (k)
i ) = 1

for 1 ≤ i ≤ k + 1, and
Hk(F (k)

k+2) =
√

k + 1.

Using the comments preceding the statement of the lemma, we get

Φ(L(k))
k,0,s (P (k)) =

1
s!ωs+1

[
k+1∑
i=1

Hk(F (k)
i )(−ei)s +Hk(F (k)

k+2)

(∑k+1
i=1 ei√
k + 1

)s ]

=
1

s!ωs+1

[
k+1∑
i=1

(−1)ses
i +

1
√

k + 1 s−1

(
k+1∑
i=1

ei

)s ]
. (5.39)

We first treat the case k = n− 1. If s is even, we conclude from

Φn−1,0,s(P (n−2)) =
1

s!ωs+1
(es

n + (−en)s)Hn−1(P (n−2))

that the assertion of the lemma is true.

Now let s be odd. Aiming at a contradiction, we assume the existence of some
v ∈ Ts−2 such that

Φn−1,0,s(P (n−1)) = Qv.

We apply both sides of this relation to the s-tuple (x, . . . , x) with x = (x1, 0, . . . , 0, xn) ∈
Rn. Then the polynomial Φn−1,0,s(P (n−1))(x, . . . , x) in the variables x1, xn is a multiple
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of Q(x, x) = x2
1 + x2

n. Observing that Φ(L(n−1))
n−1,0,s = Φn−1,0,s, we deduce from (5.39) that

Φn−1,0,s(P (n−1))(x, . . . , x)

=
1

s!ωs+1

(
(−1)sxs

1 + (−1)sxs
n +

1
√

n
s−1 (x1 + xn)s

)

=
1

s!ωs+1

(
(−1)sxs

1 + (−1)sxs
n +

1
√

n
s−1

s∑
i=0

(
s

i

)
xi

1x
s−i
n

)
. (5.40)

We consider the right-hand side as a polynomial in x1, xn and apply Lemma 5.1. Since
s is odd, we obtain that

0 = (−1)s +
1

√
n

s−1

(
s

0

)
− 1
√

n
s−1

(
s

2

)
+

1
√

n
s−1

(
s

4

)
∓ . . .

This is equivalent to

n
s−1
2 =

(
s

0

)
−
(

s

2

)
+
(

s

4

)
∓ . . . = Re ((i + 1)s) = ±2

s−1
2 ,

which is a contradiction for n > 2 and s ≥ 2. This settles the case k = n − 1 of the
lemma.

Finally, we consider the cases where k < n − 1. Let s ≥ 2 be an arbitrary integer.
A special case of (5.36) gives

Φk,0,s(P (k)) =
∑
j≥0

Q((L(k))⊥)j

(4π)jj!
Φ(L(k))

k,0,s−2j(P
(k)).

We apply both sides to the s-tuple (x, . . . , x) with x = (x1, 0, . . . , 0, xn) ∈ Rn. Using
(5.39), we obtain

Φk,0,s(P (k))(x, . . . , x)

=
∑
j≥0

x2j
n

(4π)jj!(s− 2j)!ωs−2j+1

(
(−1)s−2jxs−2j

1 +
xs−2j

1√
k + 1 s−2j−1

)
.

Here and in the following, the summation with respect to j is restricted by j ≤ s/2. In
order to arrive at a contradition, we again assume that the left-hand side is a multiple
of x2

1 + x2
n. Then Lemma 5.1 implies that

∑
j≥0

(−1)j 1
(4π)jj!(s− 2j)!ωs−2j+1

(
(−1)s−2j +

1
√

k + 1 s−2j−1

)
= 0. (5.41)

Using

ωs−2j+1 =
2π

s−2j+1
2

Γ( s−2j+1
2 )

,
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we find that (5.41) is equivalent to

∑
j≥0

(−1)j Γ( s−2j+1
2 )

22jj!(s− 2j)!

(
(−1)s

√
k + 1

s−1
+
√

k + 1
2j
)

= 0. (5.42)

We first consider the case where s is even. Since

Γ
(

s

2
− j +

1
2

)
=

(s− 2j)!
√

π

( s
2 − j)!2s−2j

,

we get

s
2∑

j=0

(−1)j Γ( s−2j+1
2 )

22jj!(s− 2j)!

(√
k + 1

s−1
+
√

k + 1
2j
)

=

s
2∑

j=0

(−1)j (s− 2j)!
√

π

( s
2 − j)!2s−2j22jj!(s− 2j)!

(√
k + 1

s−1
+
√

k + 1
2j
)

=
√

π

( s
2)!2s

s
2∑

j=0

(−1)j ( s
2)!

( s
2 − j)!j!

(√
k + 1

s−1
+
√

k + 1
2j
)

=
√

π

( s
2)!2s

[
((−1) + 1)

s
2

√
k + 1

s−1
+ (−(k + 1) + 1)

s
2

]

=
√

π

( s
2)!2s

(−k)
s
2 6= 0.

This yields the required contradiction if s is even.

We next address the case of an odd integer s. For l ∈ N0, we put

fl(s) :=

s−1
2∑

j=0

(−1)j Γ( s−2j+1
2 )

22jj!(s− 2j)!
(l + 1)j .

Then (5.42) can be rewritten as

−(k + 1)
s−1
2 f0(s) + fk(s) = 0. (5.43)

By Lemma 5.2, fl satisfies the recursion

2sfl(s) + lfl(s− 2) =
(−1)

s−1
2 (l + 1)

s−1
2

2s−2
(

s−1
2

)
!

,

that is,

fl(s) =
(−1)

s−1
2 (l + 1)

s−1
2

2s−1
(

s−1
2

)
!s

− l

2s
fl(s− 2) (5.44)

25



and especially

f0(s) =
(−1)

s−1
2

2s−1
(

s−1
2

)
!s

. (5.45)

Substituting (5.44) and (5.45) into (5.43), we obtain

fk(s− 2) = 0.

This is a contradiction to Lemma 5.2, which yields for fk(s − 2) an explicit value
different from zero. Thus, for all s ≥ 2 and n − 1 > k ≥ 1, equation (5.42) cannot be
satisfied, which contradicts our assumption. This proves the assertion of the lemma
also for k < n− 1.
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[16] M. Petkovsek, H. Wilf, D. Zeilberger, A = B. A.K. Peters, Wellesley, 1996.

[17] A.V. Pukhlikov, A.G. Khovanski, Finitely additive measures of virtual polytopes
(in Russian). Algebra i Analiz 4 (1992), 161–185; English translation: St. Peters-
burg Math. J. 4 (1993), 337–356.

[18] R. Schneider, On Steiner points of convex bodies. Israel J. Math. 9 (1971), 241–
249.
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