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Abstract The purpose of this chapter is to give an elementary introduc-
tion to valuations on convex bodies. The goal is to serve the newcomer to
the field, by presenting basic notions and collecting fundamental facts, which
have proved of importance for the later development, either as technical tools
or as models and incentives for widening and deepening the theory. We also
provide hints to the literature where proofs can be found. It is not our in-
tention to duplicate the existing longer surveys on valuations, nor to update
them. We restrict ourselves to classical basic facts and geometric approaches,
which also means that we do not try to describe the exciting developments
of valuation theory in the last fifteen years, which involve deeper methods
and will be the subject of later chapters. The sections of the present chapter
treat, in varying detail, general valuations, valuations on polytopes, examples
of valuations from convex geometry, continuous valuations on convex bodies,
measure-valued valuations, valuations on lattice polytopes.

1 General Valuations

The natural domain for a valuation, as it is understood here, would be a
lattice (in the sense of Birkhoff [4]; see p. 230, in particular). However, many
important functions turning up naturally in convex geometry have a slightly
weaker property, and they become valuations on a lattice only after an exten-
sion procedure. For that reason, valuations on intersectional families are the
appropriate object to study here. A family S of sets is called intersectional if
A,B ∈ S implies A ∩B ∈ S.
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Definition 1. A function ϕ from an intersectional family S into an abelian
group (with composition + and zero element 0) is additive or a valuation if

ϕ(A ∪B) + ϕ(A ∩B) = ϕ(A) + ϕ(B) (1)

for all A,B ∈ S with A ∪B ∈ S, and if ϕ(∅) = 0 in case ∅ ∈ S.

The abelian group in the definition may be replaced by an abelian semi-
group with cancellation law, because the latter can be embedded in an abelian
group. A trivial example of a valuation on S is given by ϕ(A) := 1A, where
1A is the characteristic function of A, defined on S :=

⋃
A∈S A by

1A(x) :=

{
1, if x ∈ A,
0, if x ∈ S \A.

For the abelian group appearing in Definition 1 one can take in this case, for
example, the additive group of all real functions on S.

It would generally be too restrictive to assume that the intersectional
family S is also closed under finite unions. However, we can always consider
the family U(S) consisting of all finite unions of elements from S. Then
(U(S),∪,∩) is a lattice. If ϕ is a valuation on U(S) (not only on S), then (1)
is easily extended by induction to the formula

ϕ(A1 ∪ · · · ∪Am) =
∑

∅6=J⊂{1,...,m}

(−1)|J|−1ϕ(AJ) (2)

for m ∈ N and A1, . . . , Am ∈ U(S); here AJ :=
⋂
j∈J Aj and |J | := card J.

Relation (2) is known as the inclusion-exclusion formula. This gives rise to
another definition.

Definition 2. A function ϕ from the intersectional family S into an abelian
group is called fully additive if (2) holds for m ∈ N and all A1, . . . , Am ∈ S
with A1 ∪ · · · ∪Am ∈ S.

Thus, a valuation on S that has an additive extension to the lattice U(S),
is fully additive. It is a nontrivial fact that the converse is also true. We
formulate a more general extension theorem. For this, we denote by U•(S)
the Z-module spanned by the characteristic functions of the elements of S.

Theorem 1. (Groemer’s first extension theorem) Let ϕ be a function from
an intersectional family of sets (including ∅) into an abelian group, such that
ϕ(∅) = 0. Then the following conditions (a) – (d) are equivalent.

(a) ϕ is fully additive;

(b) If
n11A1

+ · · ·+ nm1Am
= 0

with Ai ∈ S and ni ∈ Z (i = 1, . . . ,m), then
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n1ϕ(A1) + · · ·+ nmϕ(Am) = 0;

(c) The functional ϕ• defined by ϕ•(1A) := ϕ(A) for A ∈ S has a Z-linear
extension to U•(S);

(d) ϕ has an additive extension to the lattice U(S).

This theorem is due to Groemer [11]. His proof is reproduced in [42], Theo-
rem 6.2.1. Actually, Groemer formulated a slightly different version. In his
version, ϕ maps into a real vector space. The preceding theorem then remains
true with Z replaced by R, U•(S) replaced by the real vector space V (S) that
is spanned by the characteristic functions of the elements of S, and ‘Z-linear’
replaced by ‘R-linear’.

In this case, if ϕ is fully additive, then Groemer defined the ϕ-integral of
a function f ∈ V (S) in the following way. If

f = a11A1
+ · · ·+ am1Am

, a1, . . . , am ∈ R,

then ∫
f dϕ := a1ϕ(A1) + · · ·+ amϕ(Am).

This definition makes sense, since by Theorem 1 the right-hand side does not
depend on the chosen representation of the function f .

Such integrals with respect to a valuation were later rediscovered by Viro
[46], and they were applied by him and other authors in various ways, mainly
in the case where ϕ is the Euler characteristic on suitable sets.

Results on general valuations, as mentioned in this section, were preceded
by concrete geometric applications of valuations. We give two historic exam-
ples in subsequent sections.

2 Valuations on Polytopes

From now on, we work in n-dimensional Euclidean space Rn, with scalar
product denoted by · and induced norm ‖ · ‖. The domain of the considered
valuations will be either the set Kn of convex bodies (nonempty, compact,
convex sets) or the set Pn of convex polytopes in Rn. We consider the latter
case first.

Real valuations on polytopes (by which we always mean convex polytopes)
are closely tied up with dissections of polytopes.

Definition 3. A dissection of the polytope P ∈ Pn is a set {P1, . . . , Pm} of
polytopes such that P =

⋃m
i=1 Pi and dim (Pi ∩ Pj) < n for i 6= j.

Let G be a subgroup of the affine group of Rn. The polytopes P,Q ∈ Pn
are called G-equidissectable if there are a dissection {P1, . . . , Pm} of P , a
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dissection {Q1, . . . , Qm} of Q, and elements g1, . . . , gm ∈ G such that Qi =
giPi for i = 1, . . . ,m.

The most frequently considered cases are those where G is the group Tn
of translations of Rn or the group Gn of rigid motions of Rn. Here a rigid
motion is an isometry of Rn that preserves the orientation, thus, a mapping
g : Rn → Rn of the form gx = ϑx+ t, x ∈ Rn, with ϑ ∈ SO(n) and t ∈ Rn.

The following is a classical result of elementary geometry.

Theorem 2. (Bolyai–Gerwien, 1833/35) In R2, any two polygons of the same
area are G2-equidissectable.

The theorem remains true if the motion group G2 is replaced by the group
consisting of translations and reflections in points (Hadwiger and Glur [22]).

Hilbert’s third problem from 1900 asked essentially whether a result analo-
gous to the Bolyai–Gerwien theorem holds in three dimensions. The negative
answer given by Dehn [8] is apparently the first use of valuations in convexity.
We describe the essence of his answer, though in different terms and using
later modifications. This gives us an opportunity to introduce some further
notions and facts about valuations.

On polytopes, the valuation property follows from a seemingly weaker
assumption.

Definition 4. A function ϕ on Pn with values in an abelian group is called
weakly additive (or a weak valuation) if (setting ϕ(∅) := 0) for each P ∈ Pn
and each hyperplane H, bounding the two closed halfspaces H+, H−, the
relation

ϕ(P ) = ϕ(P ∩H+) + ϕ(P ∩H−)− ϕ(P ∩H) (3)

holds.

Every valuation on Pn is weakly additive, but also the converse is true,
even more.

Theorem 3. Every weakly additive function on Pn with values in an abelian
group is fully additive on Pn.

A proof can be found in [42], Theorem 6.2.3, and Note 1 there gives hints
to the origins of this result.

Together with Groemer’s first extension theorem (Theorem 1), the preced-
ing theorem shows that every weakly additive function on Pn has an additive
extension to the lattice U(Pn). The elements of U(Pn) are the finite unions
of convex polytopes; we call them polyhedra.

We need two other important notions.

Definition 5. A valuation ϕ on a subset of Kn is called simple if ϕ(A) = 0
whenever dimA < n.
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Definition 6. Let G be a subgroup of the affine group of Rn. A valuation ϕ
on a subset of Kn (which together with A contains gA for g ∈ G) is called
G-invariant if ϕ(gA) = ϕ(A) for all A in the domain of ϕ and all g ∈ G.

The following is easy, but important.

Lemma 1. Let G be a subgroup of the affine group of Rn. If ϕ is a G-
invariant simple valuation on Pn and if the polytopes P,Q ∈ Pn are G-
equidissectable, then ϕ(P ) = ϕ(Q).

In fact, by Theorems 3 and 1, the valuation ϕ has an additive extension to
U(Pn), hence the inclusion-exclusion formula (2) can be applied to dissections
{P1, . . . , Pm} of P and {Q1, . . . , Qm} of Q, satisfying giPi = Qi for gi ∈ G.
Since ϕ is simple, the terms in (2) with |J | > 1 vanish, and what remains is

ϕ(P ) = ϕ(P1 ∪ · · · ∪ Pm) = ϕ(P1) + · · ·+ ϕ(Pm)

= ϕ(g1P1) + · · ·+ ϕ(gmPm) = ϕ(g1P1 ∪ · · · ∪ gmPm)

= ϕ(Q1 ∪ · · · ∪Qm) = ϕ(Q).

Dehn’s negative answer to Hilbert’s third problem can now be obtained as
follows. We have to show that there are three-dimensional polytopes of equal
volume that are not G3-equidissectable. For this, we construct a simple, G3-
invariant valuation ϕ on P3 such that ϕ(C) = 0 for all cubes C and ϕ(T ) 6= 0
for all regular tetrahedra T . Denote by F1(P ) the set of edges of P ∈ P3, by
V1(F ) the length of the edge F ∈ F1(P ), and by γ(P, F ) the outer angle of
P at F . Let f : R→ R be a solution of Cauchy’s functional equation

f(x+ y) = f(x) + f(y) for x, y ∈ R (4)

which satisfies
f(π/2) = 0 (5)

and
f(α) 6= 0, (6)

where α denotes the external angle of a regular tetrahedron T at one of its
edges. That such a solution f exists, can be shown by using a Hamel basis of
R and the fact that π/2 and α are rationally independent. Then we define

ϕ(P ) :=
∑

F∈F1(P )

V1(F )f(γ(P, F )) for P ∈ P3.

Because of (4), it can be shown that ϕ is weakly additive and hence a val-
uation, and as a consequence of (5) (which implies f(π) = 0) it is simple.
Clearly, it is G3-invariant. A cube C has outer angle π/2 at its edges, hence
ϕ(C) = 0, whereas ϕ(T ) 6= 0, due to (6). Now it follows from Lemma 1
that C and T cannot be G3-equidissectable (even if they have the same vol-
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ume). For this approach, see Hadwiger [13], and for an elementary exposition,
Boltyanskii [6].

The interrelations between the dissection theory of polytopes and valua-
tions have been developed in great depth. For a general account, we refer to
the book of Sah [37] and to the survey articles [34] (Sec. II) and [32] (Sec. 4).
For a recent contribution, see Kusejko and Parapatits [27].

While Dehn’s result shows that, in dimension n ≥ 3, two polytopes of equal
volume need not be Gn-equidissectable, the following result of Hadwiger [15]
is rather surprising. The proof (following Hadwiger) can also be found in [42],
Lemma 6.4.2. The result plays a role in the further study of valuations.

Theorem 4. Any two parallelotopes of equal volume in Rn are Tn-equidis-
sectable.

The first main goals of a further study of valuations on polytopes will
be general properties of such valuations and representation or classification
results, possibly under additional assumptions, such as invariance properties
or continuity.

A further extension theorem can be helpful. As we have seen, the inclusion-
exclusion formula is easy to use for simple valuations, but it is a bit clumsy
in the general case. We can circumvent this by decomposing a polytope into
a finite disjoint union of relatively open polytopes. A relatively open polytope,
briefly ro-polytope, is the relative interior of a convex polytope. We denote the
set of ro-polytopes in Rn by Pnro and the set of finite unions of ro-polytopes
by U(Pnro). The elements of the latter are called ro-polyhedra. Every convex
polytope P ∈ Pn is the disjoint union of the relative interiors of its faces
(including P ) and hence belongs to U(Pnro).

Theorem 5. Any weakly additive function on Pn with values in an abelian
group has an additive extension to U(Pnro).

This can be deduced from Theorems 3 and 1; see [42], Corollary 6.2.4. The
result facilitates the proof of the following theorem, which is fundamental for
many of the further investigations. Here ϕ is called homogeneous of degree r
if

ϕr(λP ) = λrϕ(P ) for all P ∈ Pn and all real λ ≥ 0,

and rational homogeneous of degree r if this holds for rational λ ≥ 0.

Theorem 6. Let ϕ be a translation invariant valuation on Pn with values in
a rational vector space X. Then

ϕ(λP ) =

n∑
r=0

λrϕr(P ) for P ∈ Pn and rational λ ≥ 0. (7)

Here ϕr : Pn → X is a translation invariant valuation which is rational
homogeneous of degree r (r = 0, . . . , n).
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Setting λ = 1 in (7) gives

ϕ = ϕ0 + · · ·+ ϕn, (8)

which is known as the McMullen decomposition. It has the important con-
sequence that for the investigation of translation invariant valuations on Pn
with values in a rational vector space X one need only consider such valua-
tions which are rational homogeneous of some degree r ∈ {0, . . . , n}.

Another consequence of Theorem 6 is a polynomial expansion with respect
to Minkowski addition. Recall that the Minkowski sum (or vector sum) of
K,L ∈ Kn is defined by

K + L = {x+ y : x ∈ K, y ∈ L},

and that K + L ∈ Kn. A function ϕ from Kn to some abelian group is
Minkowski additive if

ϕ(K + L) = ϕ(K) + ϕ(L) for all K,L ∈ Kn.

By repeatedly applying (7), it is not difficult to deduce the following.

Theorem 7. Let ϕ : Pn → X (with X a rational vector space) be a trans-
lation invariant valuation which is rational homogeneous of degree m ∈
{1, . . . , n}. Then there is a polynomial expansion

ϕ(λ1P1 + · · ·+ λkPk)

=

m∑
r1,...,rk=0

(
m

r1 . . . rk

)
λr11 · · ·λ

rk
k ϕ(P1, . . . , P1︸ ︷︷ ︸

r1

, . . . , Pk, . . . , Pk︸ ︷︷ ︸
rk

),

valid for all P1, . . . , Pk ∈ Pn and all rational λ1, . . . , λk ≥ 0. Here ϕ :
(Pn)m → X is a symmetric mapping, which is translation invariant and
Minkowski additive in each variable.

Historical note. The result of Theorem 6, even in a more general version,
was stated by Hadwiger [12] (his first publication on valuations), as early as
1945, but without proof. His later work gives a proof of the decomposition (8)
for simple valuations only, see [21], p. 54. The question for a result as stated
in Theorem 7 was posed by Peter McMullen, at an Oberwolfach conference
in 1974. He gave a proof the same year, see [28], [29]. Different proofs were
provided by Meier [35] and Spiegel [45]. A variation of Spiegel’s proof, using
Theorem 5 instead of the inclusion-exclusion formula, is found in [42], Section
6.3. Proofs of more general versions of the polynomiality theorem were given
by Pukhlikov and Khovanskii [36] and by Alesker [1].

A consequence of Theorem 7 is the fact that a valuation ϕ : Pn → R that
is translation invariant and rational homogeneous of degree 1 is Minkowski
additive. A variant of this result was first proved by Spiegel [44].
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We turn to representation results for translation invariant, real valuations
on Pn. Without additional assumptions, little is known about these. Setting
λ = 0 in (7), we see that any such valuation which is homogeneou of degree
zero, is constant. Then we mention two classical characterizations of the
volume on polytopes, which are due to Hadwiger. The volume is denoted
by Vn.

Theorem 8. Let ϕ : Pn → R be a translation invariant valuation which is
simple and nonnegative. Then ϕ = cVn with a constant c.

The proof can be found in Hadwiger’s book [21], Sec. 2.1.3. The following
result is also due to Hadwiger (see [21], p. 79; also [42], Theorem 6.4.3). The
proof makes use of Theorem 4.

Theorem 9. Let ϕ : Pn → R be a translation invariant valuation which is
homogeneous of degree n. Then ϕ = cVn with a constant c.

For translation invariant and simple valuations on polytopes, more gen-
eral representations are possible. Under a weak continuity assumption, these
go back to Hadwiger [18], and without that assumption to recent work of
Kusejko and Parapatits [27]. We consider Hadwiger’s result first, but use the
terminology of [27].

For k ∈ {0, . . . , n}, let Uk denote the set of all ordered orthonormal k-
tuples of vectors from the unit sphere Sn−1. U0 contains only the empty
tuple (). For P ∈ Pn and u ∈ Sn−1, let F (P, u) be the face of P with outer
normal vector u. For U = (u1, . . . , uk) ∈ Uk and P ∈ Pn we define recursively
the face PU of P by

P() := P, P(u1,...,ur) := F (P(u1,...,ur−1), uk), r = 1, . . . , k.

The orthonormal frame U = (u1, . . . , uk) ∈ Uk is P -tight if dimP(u1,...,ur) =

n− r for r = 0, . . . , k. Let UkP denote the (evidently finite) set of all P -tight
frames in Uk. Then Vn−k(PU ) > 0 for U ∈ UkP , where Vn−k denotes the
(n− k)-dimensional volume.

A function f : Uk → R is called odd if

f(ε1u1, . . . , εkuk) = ε1 · · · εkf(u1, . . . , uk)

for εi = ±1.
A valuation ϕ : Pn → R is weakly continuous if it is continuous under

parallel displacements of the facets of a polytope. To make this more precise,
we consider the set of polytopes whose system of outer normal vectors of
facets belongs to a given finite set U = {u1, . . . , um}; these vectors positively
span Rn. Now a function ϕ on Pn is called weakly continuous if for any such
U the function

(η1, . . . , ηm) 7→ ϕ({x ∈ Rn : x · ui ≤ ηi, i = 1, . . . ,m})
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is continuous on the set of all (η1, . . . , ηm) for which the argument of ϕ is not
empty.

The following is Hadwiger’s [18] result. For a version of his proof, we refer
to [42], Thm. 6.4.6. The proof given in [27] appears to be simpler. We write

U :=
⋃n−1
k=0 Uk.

Theorem 10. A function ϕ : Pn → R is a weakly continuous, translation
invariant, simple valuation if and only if for each U ∈ U there is a constant
cU ∈ R such that U 7→ cU is odd and

ϕ(P ) =

n−1∑
k=0

∑
U∈Uk

P (P )

cUVn−k(PU ) (9)

for P ∈ Pn.

For non-simple valuations, the following result holds. As usual, Fr(P )
denotes the set of r-dimensional faces of a polytope P , and N(P, F ) is the
cone of normal vectors of P at its face F .

Theorem 11. A function ϕ : Pn → R is a weakly continuous, translation
invariant valuation if and only if there are a constant c and for each r ∈
{1, . . . , n − 1} a simple real valuation θr on the system of convex polyhedral
cones in Rn of dimension at most n− r such that

ϕ(P ) = ϕ({0}) +

n−1∑
r=1

∑
F∈Fr(P )

θr(N(P, F ))Vr(F ) + cVn(P ) (10)

for P ∈ Pn.

McMullen [31] has deduced this from Hadwiger’s result on simple valua-
tions. For a different approach, see in [32] the remark after Thm. 5.19.

Satisfactory as these results are in the realm of polytopes, they seem, at
present, not to lead much further in the investigation of continuous valuations
on general convex bodies. Conditions on the functions θr, which do or do not
allow a continuous extension of a valuation ϕ represented by (10) to general
convex bodies, were investigated in [23].

Without the assumption of weak continuity, Kusejko and Parapatits [27]
have obtained the following result.

Theorem 12. A function ϕ : Pn → R is a translation invariant, simple
valuation if and only if for each U ∈ U there exists an additive function
fU : R→ R such that U 7→ fU is odd and

ϕ(P ) =

n−1∑
k=0

∑
U∈Uk

P (P )

fU (Vn−k(PU )) (11)

for P ∈ Pn.
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The implications of this result for translative equidecomposability are ex-
plained in [27].

3 Examples of Valuations from Convex Geometry

The theory of convex bodies provides many examples of valuations that come
up naturally. We explain the most important of these, before turning to
classification and characterization results.

A first example is given by the identity mapping Kn → Kn. This makes
sense, since Kn, as usual equipped with Minkowski addition, is an abelian
semigroup with cancellation law. The identity mapping is a valuation, since
the relation

(K ∪ L) + (K ∩ L) = K + L (12)

holds for convex bodies K,L ∈ Kn with K ∪ L ∈ Kn (as first pointed out by
Sallee [38]; the easy proof can be found in [42], Lemma 3.1.1). Consequently,
also the support function defines a valuation. The support function h(K, ·) =
hK of the convex body K ∈ Kn is defined by

h(K,u) := max{〈u, x〉 : x ∈ K} for u ∈ Rn.

The function h is Minkowski additive in the first argument. The Minkowski
additivity of the support function together with (12) yields

h(K ∪ L, ·) + h(K ∩ L, ·) = h(K, ·) + h(L, ·) if K ∪ L is convex,

hence the map K 7→ h(K, ·), from Kn into (say) the vector space of real
continuous functions on Rn, is a valuation. Using the support function, the
following can be shown (see, e.g., [42], Theorem 6.1.2, and, for the history,
Note 2 on p. 332).

Theorem 13. Every Minkowski additive function on Kn with values in an
abelian group is fully additive.

Minkowski addition plays a role in valuation theory of convex bodies in
more than one way. As one example, we mention a way to construct new
valuations from a given one. Let ϕ be a valuation on Kn. If C ∈ Kn is a fixed
convex body, then

ϕC(K) := ϕ(K + C) for K ∈ Kn

defines a new valuation ϕC on Kn. If ϕ is translation invariant, then the same
holds for ϕC .

A basic example of a valuation on Kn is, of course, the volume Vn. Be-
ing the restriction of a measure, the function Vn : Kn → R is a valuation,
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and since lower-dimensional convex bodies have volume zero, it is simple.
Moreover, the valuation Vn is invariant under rigid motions and continuous
(continuity of functions on Kn always refers to the Hausdorff metric). Via
the construction (13) below, it gives rise to many other (non-simple) valu-
ations. The following fact, which goes back to Minkowski at the beginning
of the 20th century, was, in fact, the template for Theorem 2.5. There is a
nonnegative, symmetric function V : (Kn)n → R, called the mixed volume,
such that

Vn(λ1K1 + · · ·+ λmKm) =

m∑
i1,...,in=1

λi1 · · ·λinV (Ki1 , . . . ,Kin)

for all m ∈ N, K1, . . . ,Km ∈ Kn and λ1, . . . , λm ≥ 0. (For proofs and more
information, we refer to [42], Sec. 5.1.) We write

V (K1, . . . ,K1︸ ︷︷ ︸
r1

, . . . ,Km, . . . ,Km︸ ︷︷ ︸
rm

) =: V (K1[r1], . . . ,Km[rm]).

For arbitrary p ∈ {1, . . . , n} and fixed convex bodies Mp+1, . . . ,Mn ∈ Kn,
the function ϕ defined by

ϕ(K) := V (K[p],Mp+1, . . . ,Mn), K ∈ Kn, (13)

is a valuation on Kn. It is translation invariant, continuous, and homogeneous
of degree p. Often in the literature, these functionals ϕ are also called ‘mixed
volumes’, but we find that slightly misleading (since the mixed volume is a
function of n variables) and prefer to call them mixed volume valuations.

Of particular importance are the special cases of the mixed volume valu-
ations where the fixed bodies are equal to the unit ball Bn. First we recall
two frequently used constants: κn is the volume of the unit ball in Rn and
ωn is its surface area; explicitly,

κn =
π

n
2

Γ
(
1 + n

2

) , ωn = nκn =
2π

n
2

Γ
(
n
2

) . (14)

We define

Vj(K) :=

(
n
j

)
κn−j

V (K[j], Bn[n− j]) (15)

for K ∈ Kn. The functional Vj is called the jth intrinsic volume. In addition
to the properties that all mixed volume valuations share, it is invariant under
rotations and thus under rigid motions. The normalizing factor has the effect
that the intrinsic volume is independent of the dimension of the ambient space
in which it is computed. In particular, if the convex body K has dimension
dimK ≤ m, then Vm(K) is the m-dimensional volume of K.



12 Rolf Schneider

As a special case of the above approach to mixed volumes, we see that the
intrinsic volumes are uniquely defined by the coefficients in the expansion

Vn(K + ρBn) =

n∑
j=0

ρn−jκn−jVj(K), ρ ≥ 0. (16)

Here, K + ρBn is the outer parallel body of K at distance ρ ≥ 0, that is, the
set of all points of Rn that have distance at most ρ from K. Equation (16) is
known as the Steiner formula.

The concept of the parallel body can be localized. There is a local Steiner
formula, which leads to measure-valued valuations. For this, we need a few
more definitions. For K ∈ Kn and x ∈ Rn, there is a unique point p(K,x) ∈ K
with

‖x− p(K,x)‖ ≤ ‖x− y‖ for all y ∈ K.

The map p(K, ·) : Rn → K is known as the metric projection of K. The map
K 7→ p(K,x), for fixed x, is another example of a valuation, from Kn to Rn.
By d(K,x) := ‖x − p(K,x)‖ the distance of x from K is defined, and, for
x ∈ Rn \K, by

u(K,x) :=
x− p(K,x)

d(K,x)

the unit vector pointing from p(K,x) to x. The pair (p(K,x), u(K,x)) is a
support element of K. Generally, a support element of K is a pair (x, u),
where x ∈ bdK and u is an outer unit normal vector of K at x. The set
nc(K) of all support elements of K is called the (generalized) normal bundle
or the normal cycle of K. It is a subset of the product space

Σn := Rn × Sn−1 (17)

(which is equipped with the product topology). Now for η ∈ B(Σn), the σ-
algebra of Borel sets of Σn, for K ∈ Kn and ρ > 0, we define the local parallel
set

Mρ(K, η) := {x ∈ Rn : 0 < d(K,x) ≤ ρ and (p(K,x), u(K,x)) ∈ η}.

This is a Borel set. By Hn we denote n-dimensional Hausdorff measure.
Again, one has a polynomial expansion, namely

Hn(Mρ(K, η)) =

n−1∑
j=0

ρn−jκn−jΛj(K, η) for ρ ≥ 0.

This defines finite Borel measures Λ0(K, ·), . . . , Λn−1(K, ·) on Σn. One calls
Λj(K, ·) the jth support measure of K. From the valuation property of the
nearest point map, one can deduce that
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Λj(K ∪ L, ·) + Λj(K ∩ L, ·) = Λj(K, ·) + Λj(L, ·)

for all K,L ∈ Kn with K ∪ L ∈ Kn. Thus, the mapping K 7→ Λj(K, ·)
is a valuation on Kn, with values in the vector space of finite signed Borel
measures on Σn.

From the support measures we get two series of marginal measures. They
appear in the literature with two different normalizations. For Borel sets
β ⊂ Rn, we define(

n
j

)
nκn−j

Cj(K,β) = Φj(K,β) := Λj(K,β × Sn−1).

The measures C0(K, ·), . . . , Cn−1(K, ·) are the curvature measures of K. They
are measures on Rn, concentrated on the boundary of K. The definition is
supplemented by

1

n
Cn(K,β) = Φn(K,β) := Hn(K ∩ β).

For Borel sets ω ⊂ Sn−1, we define(
n
j

)
nκn−j

Sj(K,ω) = Ψj(K,ω) := Λj(K,Rn × ω).

The measures S0(K, ·), . . . , Sn−1(K, ·) are the area measures of K. They are
measures on the unit sphere Sn−1.

4 Continuous Valuations on Convex Bodies

Among the valuations on the space Kn of general convex bodies in Rn, those
are of particular interest which have their values in a (here always real)
topological vector space (such as R, Rn, tensor spaces, spaces of functions
or measures) and are continuous with respect to the topology on Kn that is
induced by the Hausdorff metric.

Before describing consequences of continuity, we wish to point out that
general valuations on Kn can show rather irregular behaviour. For example,
if we choose a non-continuous solution f of Cauchy’s functional equation,
f(x + y) = f(x) + f(y) for x, y ∈ R, then ϕ := f ◦ Vj with j ∈ {1, . . . , n} is
a valuation on Kn which is not continuous, in fact not even locally bounded,
since f is unbounded on every nondegenerate interval. For j = 1, the function
ϕ is Minkowski additive and hence, by Theorem 13, even fully additive.

As a first consequence of continuity, we mention another extension theorem
of Groemer [11]. It needs only a weaker version of continuity. A function ϕ
from Kn into some topological (Hausdorff) vector space is called σ-continuous
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if for every decreasing sequence (Ki)i∈N in Kn one has

lim
i→∞

ϕ(Ki) = ϕ

(⋂
i∈N

Ki

)
.

If ϕ is continuous with respect to the Hausdorff metric, then it is σ-contin-
uous. This follows from Lemma 1.8.2 in [42].

Theorem 14. (Groemer’s second extension theorem) Let ϕ be a function on
Kn with values in a topological vector space. If ϕ is weakly additive on Pn
and is σ-continuous on Kn, then ϕ has an additive extension to the lattice
U(Kn).

Groemer’s proof is reproduced in [43], Theorem 14.4.2. The formulation
of the theorem here is slightly more general, and we give a slightly shorter
proof, based on the following lemma.

Lemma 2. Let K1, . . . ,Km ∈ Kn be convex bodies such that K1 ∪ · · · ∪Km

is convex. Let ε > 0. Then there are polytopes P1, . . . , Pm ∈ Pn with Ki ⊂
Pi ⊂ Ki + εBn for i = 1, . . . ,m such that P1 ∪ · · · ∪ Pm is convex.

For the proof and the subsequent argument, we refer to Weil [47], Lemma
8.1. With this lemma, Theorem 14 can be proved as follows (following a
suggestion of Daniel Hug). Let ϕ satisfy the assumptions of Theorem 14.
Let K1, . . . ,Km ∈ Kn be convex bodies such that K1 ∪ · · · ∪Km is convex.
We apply Lemma 2 with Ki replaced by Ki + 2−kBn, k ∈ N, and ε = 2−k

(note that
⋃m
i=1(Ki + 2−kBn) = (

⋃m
i=1Ki) + 2−kBn is convex). This yields

polytopes P
(k)
1 , . . . , P

(k)
m with convex union and such that Ki + 2−kBn ⊂

P
(k)
i ⊂ Ki + 21−kBn. Each sequence (P

(k)
i )k∈N is decreasing. By Theorem 3,

the function ϕ is fully additive on Pn, hence

ϕ(P
(k)
1 ∪ · · · ∪ P (k)

m ) =
∑

∅6=J⊂{1,...,m}

(−1)|J|−1ϕ(P
(k)
J ).

Since ⋂
k∈N

(
P

(k)
1 ∪ · · · ∪ P (k)

m

)
= K1 ∪ · · · ∪Km

and ⋂
k∈N

P
(k)
J = KJ if KJ 6= ∅,

the σ-continuity of ϕ yields

ϕ(K1 ∪ · · · ∪Km) =
∑

∅6=J⊂{1,...,m}

(−1)|J|−1ϕ(KJ).

Thus, ϕ is fully additive on Kn. By Theorem 1, it has an additive extension
to U(Kn). This proves Theorem 14.
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The elements of the lattice U(Kn), which has been termed the convex ring,
are finite unions of convex bodies and are known as polyconvex sets.

It seems to be unknown whether every valuation on Kn (without a conti-
nuity assumption) has an additive extension to U(Kn).

One consequence of Theorem 14 is the fact that the trivial valuation on Kn,
which is constantly equal to 1, has an additive extension to polyconvex sets.
This extension is called the Euler characteristic and is denoted by χ, since it
coincides, on this class of sets, with the equally named topological invariant.
It should be mentioned that for the existence of the Euler characteristic on
polyconvex sets, there is a very short and elegant proof due to Hadwiger [19];
it is reproduced in [42], Theorem 4.3.1.

Next, we point out that the polynomiality results from Section 2 can imme-
diately be extended by continuity. Let ϕ be a translation invariant, continuous
valuation on Kn with values in a topological vector space X. Then it follows
from Theorem 6 that there are continuous, translation invariant valuations
ϕ0, . . . , ϕn on Kn, with values in X, such that ϕi is homogeneous of degree i
(i = 0, . . . , n) and

ϕ(λK) =

n∑
i=0

λiϕi(K) for K ∈ Kn and λ ≥ 0.

In particular, the McMullen decomposition ϕ = ϕ0 + · · · + ϕn holds, where
each ϕi has the same properties as ϕ and is, moreover, homogeneous (not
only rationally homogeneous) of degree i.

If ϕ is, in addition, homogeneous of degree m, then it follows from Theorem
7 that there is a continuous symmetric mapping ϕ : (Kn)m → X which is
translation invariant and Minkowski additive in each variable, such that

ϕ(λ1K1 + · · ·+ λkKk)

=

m∑
r1,...,rk=0

(
m

r1 . . . rk

)
λr11 · · ·λ

rk
k ϕ(K1, . . . ,K1︸ ︷︷ ︸

r1

, . . . ,Kk, . . . ,Kk︸ ︷︷ ︸
rk

)

holds for all K1, . . . ,Kk ∈ Kn and all real λ1, . . . , λk ≥ 0. Further, one can
deduce that for r ∈ {1, . . . ,m} the mapping

K 7→ ϕ(K, . . . ,K︸ ︷︷ ︸
r

,Mr+1, . . . ,Mm), (18)

with fixed convex bodies Mr+1, . . . ,Mm, is a continuous, translation invariant
valuation, which is homogeneous of degree r.

Now that we have the classical examples of valuations on convex bodies
at our disposal, we can have a look at the second historical incentive for the
development of the theory of valuations. This came from the early history
of integral geometry. In his booklet on integral geometry, Blaschke [5], Sec.
43, asked a question, which we explain here in a modified form. For convex
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bodies K,M ∈ Kn, consider the ‘kinematic integral’

ψ(K,M) :=

∫
Gn

χ(K ∩ gM)µ(dg).

Here µ denotes the (suitably normalized) Haar measure on the motion group
Gn, and χ is the Euler characteristic, that is, χ(K) = 1 for K ∈ Kn and
χ(∅) = 0. In other words, ψ(K,M) is the rigid motion invariant measure of
the set of all rigid motions g for which gM intersects K. There are different
approaches to the computation of ψ(K,M), and the result is that

ψ(K,M) =

n∑
i,j=0

cijVi(K)Vj(M) (19)

with explicit constants cij . This throws new light on the importance of the
intrinsic volumes. Blaschke investigated this formula in a slightly different
context (three-dimensional polytopal complexes). Important was his obser-
vation that some formal properties of the involved functionals were essential
for his proof of such formulas, namely the valuation property, rigid motion
invariance and, in his case, the local boundedness. He claimed that these
properties characterize, ‘to a certain extent’, the linear combinations of in-
trinsic volumes. He proved a result in this direction, where, however, he had
to introduce an additional assumption in the course of the proof, namely the
invariance under volume preserving affine transformations for the ‘volume
part’ of his considered functional. Whether a characterization theorem for
valuations on polyhedra satisfying Blaschke’s original conditions is possible,
seems to be unknown. Later, Hadwiger considered valuations on general con-
vex bodies and introduced the assumption of continuity. The following is his
celebrated characterization theorem.

Theorem 15. (Hadwiger’s characterization theorem) If ϕ : Kn → R is a
continuous and rigid motion invariant valuation, then there are constants
c0, . . . , cn such that

ϕ(K) =

n∑
j=0

cjVj(K)

for all K ∈ Kn.

For the three-dimensional case, Hadwiger gave a proof in [16], and for
general dimensions in [17]; his proof is also found in his book [21], Sec. 6.1.10.
Hadwiger expressed repeatedly ([14], p. 346, and [16], footnote 3 on p. 69)
that a characterization theorem for the intrinsic volumes with the assumption
of local boundedness instead of continuity would be desirable. However, the
following counterexample, given in [34], p. 239, shows that this is not possible.
For K ∈ Kn, let

ϕ(K) :=
∑

u∈Sn−1

Hn−1(F (K,u)),
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where F (K,u) is the support set of K with outer normal vector u. This has
non-zero Hn−1 measure for at most countably many vectors u, hence the sum
is well-defined, and its value is bounded by the surface area of K. Thus, ϕ
is a rigid motion invariant valuation which is locally bounded, but it is not
continuous and hence not a linear combination of intrinsic volumes.

Hadwiger showed in [14], [20] how his theorem immediately leads to
integral-geometric results. For instance, to prove (19), one notes that for
fixed K the function ψ(K, ·) satifies the assumptions of Theorem 15 and
hence is a linear combination of the intrinsic volumes of the variable con-
vex body, with real constants that are independent of this body, thus
ψ(K,M) =

∑n
j=0 cj(K)Vj(M). Then one repeats the argument with variable

K and obtains that ψ must be of the form ψ(K,M) =
∑n
i,j=0 cijVi(K)Vj(M).

The constants cij can then be determined by applying the obtained formula
to balls of different radii. There are also different approaches to integral geo-
metric formulas. For one result, however, called ‘Hadwiger’s general integral-
geometric theorem’ (it is reproduced in [43], Theorem 5.1.2), the proof via
the characterization theorem is the only one known.

Hadwiger’s proof of his characterization theorem used a fair amount of
dissection theory of polytopes. A slightly simplified version of his proof was
published by Chen [7]. A considerably shorter, elegant proof of Hadwiger’s
theorem is due to Klain [24]. This proof is reproduced in the book by Klain
and Rota [26], which presents a neat introduction to integral geometry, with
some emphasis on discrete aspects. Klain’s proof is also reproduced in [42],
Theorem 6.4.14.

An essential aspect of Hadwiger’s characterization theorem is the fact that
the real vector space spanned by the continuous, motion invariant real val-
uations on Kn has finite dimension. This is no longer true if the considered
valuations are only translation invariant. We turn to these valuations, whose
investigation is a central part of the theory. By Val we denote the real vector
space of translation invariant, continuous real valuations on Kn, and by Valm
the subspace of valuations that are homogeneous of degree m. The McMullen
decomposition tells us that

Val =

n⊕
m=0

Valm .

Further, a valuation ϕ (on Kn or Pn) is called even (odd ) if ϕ(−K) = ϕ(K)
(respectively, ϕ(−K) = −ϕ(K)) holds for all K in the domain of ϕ. We
denote by Val+ and Val− the subspace of even, respectively odd, valuations in
Val, and Val+m and Val−m are the corresponding subspaces of m-homogeneous
valuations. Since we can always write

ϕ(K) =
1

2
(ϕ(K) + ϕ(−K)) +

1

2
(ϕ(K)− ϕ(−K)),

we have
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Valm = Val+m⊕Val−m .

It would be nice to have a simple explicit description of the valuations in
each space Valm. Only special cases are known. So it follows from the results
on polytopes (Theorem 9, in particular), together with continuity, that the
spaces Valm are one-dimensional for m = 0 and m = n.

Corollary 1. The space Val0 is spanned by the Euler characteristic, and the
space Valn by the volume functional.

An explicit description is also known for the elements of Valn−1. The
following result is due to McMullen [30].

Theorem 16. Each ϕ ∈ Valn−1 has a representation

ϕ(K) =

∫
Sn−1

f(u)Sn−1(K,du) for K ∈ Kn,

with a continuous function f : Sn−1 → R. This function is uniquely deter-
mined up to adding the restriction of a linear function.

More complete results are known for simple valuations. The following re-
sult of Klain [24] was an essential step in his proof of Hadwiger’s characteri-
zation theorem.

Theorem 17. (Klain’s volume characterization) If ϕ ∈ Val+ is simple, then
ϕ(K) = cVn(K) for K ∈ Kn, with some constant c.

A counterpart for odd simple valuations was proved in [41] (the proof can
also be found in [42], Theorem 6.4.13):

Theorem 18. If ϕ ∈ Val− is simple, then

ϕ(K) =

∫
Sn−1

g(u)Sn−1(K,du) for K ∈ Kn,

with an odd continuous function g : Sn−1 → R.

A different approach to Theorems 16 and 18 was provided by Kusejko and
Parapatits [27].

Klain’s volume characterization (Theorem 17) has a consequence for even
valuations, which has turned out to be quite useful. By G(n,m) we denote
the Grassmannian of m-dimensional linear subspaces of Rn. Now let m ∈
{1, . . . , n− 1}, and let ϕ ∈ Valm. Let L ∈ G(n,m). It follows from Corollary
1 that the restriction of ϕ to the convex bodies in L is a constant multiple of
the m-dimensional volume. Thus, ϕ(K) = cϕ(L)Vm(K) for the convex bodies
K ⊂ L, where cϕ(L) is a real constant. Since ϕ is continuous, this defines
a continuous function cϕ on G(n,m). It is called the Klain function of the
valuation ϕ. This function determines even valuations uniquely, as Klain [25]
has deduced from his volume characterization.
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Theorem 19. A valuation in Val+m (m ∈ {1, . . . , n − 1}) is uniquely deter-
mined by its Klain function.

Klain’s proofs of Theorems 17 and 19 are reproduced in [42], Theorems
6.4.10 and 6.4.11.

5 Measure-valued Valuations

We leave the translation invariant, real valuations and turn to some natural
extensions of the intrinsic volumes. We have already seen the measure-valued
localizations of the intrinsic volumes, the support, curvature, and area mea-
sures. Another natural extension (in the next chapter) will be that from
real-valued to vector- and tensor-valued functions. In both cases, invariance
(or rather, equivariance) properties with respect to the group of rigid motions
play an important role.

First we recall that with each convex body K ∈ Kn we have associated its
support measures

Λ0(K, ·), . . . , Λn−1(K, ·)

and, by marginalization and renormalization, the curvature measures Cj(K, ·)
and the area measures Sj(K, ·), j = 0, . . . , n−1. Each mapping K 7→ Λj(K, ·)
is a valuation, with values in the vector space of finite signed Borel measures
on Σn = Rn × Sn−1, and it is weakly continuous. The latter means that
Ki → K in the Hausdorff metric implies Λj(Ki, ·)

w−→ Λj(K, ·), where the

weak convergence
w−→ is equivalent to

lim
i→∞

∫
Σn

f dΛj(Ki, ·) =

∫
Σn

f dΛj(K, ·)

for every continuous function f : Σn → R. The measure Λj(K, ·) is con-
centrated on the normal bundle nc(K) of K. Valuation property and weak
continuity carry over to the mappings Cj and Sj . The measure Cj(K, ·) is a
Borel measure on Rn, concentrated on bdK for j ≤ n− 1. The area measure
Sj(K, ·) is a Borel measure on the unit sphere Sn−1.

The behaviour of these measures under the motion group is as follows.
First, if g ∈ Gn, we denote the rotation part of g by g0 (that is, gx = g0x+ t
for all x ∈ Rn, with a fixed translation vector t). Then we define

gη := {(gx, g0u) : (x, u) ∈ η} for η ⊂ Σn,

gβ := {gx : x ∈ β} for β ⊂ Rn,
gω := {g0u : u ∈ ω} for ω ⊂ Sn−1.

For K ∈ Kn, g ∈ Gn and Borel sets η ⊂ Σn, β ⊂ Rn and ω ⊂ Sn−1 we
then have
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Λj(gK, gη) = Λj(K, η), Cj(gK, gβ) = Cj(K,β), Sj(gK, gω) = Sj(K,ω).

In each case, we talk of this behaviour as rigid motion equivariance.
One may ask whether, for these measure-valued extensions of the intrinsic

volumes, there are classification results similar to Hadwiger’s characteriza-
tion theorem. It turns out that in addition to the valuation, equivariance,
and continuity properties we need, because we are dealing with measures,
some assumption of local determination, saying roughly that the value of the
considered measure of K at a Borel set α depends only on a local part of K
determined by α. With an appropriate assumption of this kind, the following
characterization theorems have been obtained. If ϕ(K) is a measure, we write
here ϕ(K)(α) =: ϕ(K,α).

Theorem 20. Let ϕ be a map from Kn into the set of finite Borel measures
on Rn, satisfying the following conditions.

(a) ϕ is a valuation;

(b) ϕ is rigid motion equivariant;

(c) ϕ is weakly continuous;

(d) ϕ is locally determined, in the following sense: if β ⊂ Rn is open and
K ∩ β = L ∩ β, then ϕ(K,β′) = ϕ(L, β′) for every Borel set β′ ⊂ β.

Then there are real constants c0, . . . , cn ≥ 0 such that

ϕ(K,β) =

n∑
i=0

ciCi(K,β)

for K ∈ Kn and β ∈ B(Rn).

In the following theorem, τ(K,ω) denotes the inverse spherical image of
K at ω, that is, the set of all boundary points of the convex body K at which
there is an outer normal vector belonging to the given set ω ⊂ Sn−1.

Theorem 21. Let ϕ be a map from Kn into the set of finite signed Borel
measures on Sn−1, satisfying the following conditions.

(a) ϕ is a valuation;

(b) ϕ is rigid motion equivariant;

(c) ϕ is weakly continuous;

(d) ϕ is locally determined, in the following sense: if ω ⊂ Sn−1 is a Borel set
and if τ(K,ω) = τ(L, ω), then ϕ(K,ω) = ϕ(L, ω).

Then there are real constants c0, . . . , cn−1 such that

ϕ(K,ω) =

n−1∑
i=0

ciSi(K,ω)

for K ∈ Kn and ω ∈ B(Sn−1).
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Theorem 20 was proved in [40] and Theorem 21 in [39]. The following
result is due to Glasauer [10].

Theorem 22. Let ϕ be a map from Pn into the set of finite signed Borel
measures on Σn, satisfying the following conditions.

(a) ϕ is rigid motion equivariant;

(b) ϕ is locally determined, in the following sense: if η ∈ B(Σn) and K,L ∈
Kn satisfy η ∩ nc(K) = η ∩ nc(L), then ϕ(K, η) = ϕ(L, η).

Then there are real constants c0, . . . , cn−1 such that

ϕ(K, η) =

n−1∑
j=0

cjΛj(K, η)

for K ∈ Kn and η ∈ B(Σn).

Here the valuation property has not been forgotten! Indeed, the last theo-
rem has a character different from the two previous ones: the assumption that
ϕ(K, ·) is a locally determined measure on Σn, is strong enough to allow a
simpler proof, without assuming the valuation property. The latter point will
be important in the treatment of local tensor valuations (in Chap. 2).

6 Valuations on Lattice Polytopes

We denote by P(Zn) the set of all polytopes with vertices in Zn. In contrast
to Pn and Kn considered so far, P(Zn) is not an intersectional family. For
that reason, we modify the definition of a valuation in this case and say that
a mapping ϕ from P(Zn) into some abelian group is a valuation if

ϕ(P ∪Q) + ϕ(P ∩Q) = ϕ(P ) + ϕ(Q) (20)

holds whenever P,Q, P ∪ Q,P ∩ Q ∈ P(Zn); moreover, we define that ∅ ∈
P(Zn) and assume that ϕ(∅) = 0. In a similar vein, we say that ϕ satisfies
the inclusion-exclusion principle if

ϕ(A1 ∪ · · · ∪Am) =
∑

∅6=J⊂{1,...,m}

(−1)|J|−1ϕ(AJ)

holds whenever m ∈ N, A1 ∪ · · · ∪ Am ∈ P(Zn) and AJ ∈ P(Zn) for all
nonempty J ⊂ {1, . . . ,m}. Further, a valuation ϕ on P(Zn) is said to have
the extension property if there is a function ϕ̃ on the family of finite unions
of polytopes in P(Zn) such that

ϕ̃(A1 ∪ · · · ∪Am) =
∑

∅6=J⊂{1,...,m}

(−1)J|−1ϕ(AJ)
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whenever AJ ∈ P(Zn) for all nonempty J ⊂ {1, . . . ,m}. The following theo-
rem was proved by McMullen [33].

Theorem 23. A valuation on P(Zn) satisfies the inclusion-exclusion princi-
ple and has the extension property.

For polytopes in P(Zn), the natural counterpart to the volume functional
is the lattice point enumerator G. It is defined by

G(P ) := card(P ∩ Zn) forP ∈ P(Zn).

It was first proved by Ehrhart [9] that there is a polynomial expansion

G(kP ) =

n∑
i=0

kiGi(P ), P ∈ P(Zn), k ∈ N. (21)

We refer to the surveys [34], [32] for information about how this fact embeds
into the general polynomiality theorems proved later.

The expansion (21) defines valuations G0, . . . , Gn(= G) on P(Zn), which
are invariant under unimodular transformations, that is, volume preserving
affine maps of Rn into itself that leave Zn invariant. A result of Betke [2] (see
also Betke and Kneser [3]), together with Theorem 23, gives the following
characterization theorem.

Theorem 24. If ϕ is a real valuation on P(Zn) which is invariant under
unimodular transformations, then

ϕ(P ) =

n∑
i=0

ciGi(P ) for P ∈ P(Zn),

with real constants c0, . . . , cn.

References

1. Alesker, S., Integrals of smooth and analytic functions over Minkowski’s sums of convex

sets. In Convex Geometric Analysis (Berkeley, CA, 1996; K.M. Ball, V. Milman, eds.),

pp. 1–15, Math. Sci. Res. Inst. Publ. 34, Cambridge Univ. Press, Cambridge, 1999.
2. Betke, U., Gitterpunkte und Gitterpunktfunktionale. Habilitationsschrift, Siegen,

1979.

3. Betke, U., Kneser, M., Zerlegungen und Bewertungen von Gitterpolytopen. J. reine
Angew. Math. 358 (1985), 202–208.

4. Birkhoff, G., Lattice Theory. Third edition. American Mathematical Society Collo-

quium Publications, Vol. XXV, American Mathematical Society, Providence, R.I.,
1967.

5. Blaschke, W., Vorlesungen über Integralgeometrie. 3rd edn, VEB Deutsch. Verl. d.

Wiss., Berlin, 1955 (1st edn: Part I, 1935; Part II, 1937).



Valuations on Convex Bodies– the Classical Basic Facts 23

6. Boltyanskii, V.G., Equivalent and Equidecomposable Figures. D.C. Heath Co., Boston,

1963.
7. Chen, B., A simplified elementary proof of Hadwiger’s volume theorem. Geom. Dedi-

cata 105 (2004), 107–120.
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