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Abstract. It is proved that the shape of the typical cell of a stationary and
isotropic Poisson random hyperplane tessellation is, with high probability, close to
the shape of a ball if the kth intrinsic volume (k ≥ 2) of the typical cell is large.
The shape of typical cells of large diameter is close to the shape of a segment.

1 Introduction

The zero cell of a stationary Poisson hyperplane tessellation is a frequently studied type
of random polytope. It is generated in the following way. Let X be a stationary and
isotropic Poisson process in the space of hyperplanes of Rd. It induces, in the obvious
way, a random tessellation of Rd and thus a process Y of d-dimensional polytopes tiling
Rd, called the cells of the tessellation. The almost surely unique cell Z0 containing the
origin o is called the zero cell. (Replacing the origin o by a different fixed point t would
result in a random polytope stochastically equivalent to Z0 + t, by the stationarity of
X.)

Another type of random polytope associated with a stationary Poisson hyperplane
tessellation is the typical cell Z. The idea behind this is roughly as follows. One
considers a large compact region of the tessellation and picks out a cell at random,
where each cell within that region has the same chance of being picked, and then
translates the chosen cell appropriately; this yields a realization of the typical cell
(or, rather, of its translation class). A precise definition will be recalled in Section 3.
The distinction between the two types of random polytopes was made clear, and both
have been studied, in the work of Miles [15, 16] and Matheron [12]. Matheron used to
distinguish between the two random polytopes by calling their distributions respectively
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the ‘volume law’ and the ‘number law’, of a Poisson polyhedron. Other names found
in the literature are ‘Crofton polytope’ and ‘Poisson polytope’, respectively.

It was conjectured by D.G. Kendall for the case of the plane that zero cells of
large area must have a shape that is close to circular shape, with high probability.
More precisely, his conjecture (see [24], foreword to the first edition) claimed that the
conditional law for the shape of Z0, given the volume V2(Z0) of Z0, converges weakly,
as V2(Z0) →∞, to the degenerate law concentrated at the circular shape. A proof was
given by Kovalenko [8, 10]. An extension to higher dimensions and to non-isotropic
Poisson hyperplane processes (where the limit shapes are non-spherical) was obtained in
[3]. Already Miles [18] had discussed, in the planar case, versions of Kendall’s problem
where the size is not measured by the volume, but by other functionals. In [4], zero
cells with large kth intrinsic volume, k ∈ {2, . . . , d}, or of large inradius where studied.
Similar investigations concern typical cells of Voronoi mosaics induced by stationary
Poisson point processes, see Kovalenko [9] for the planar case, [4] for higher dimensions,
and [5], [6] for typical cells of the dual Poisson–Delaunay tessellations. A very general
version of Kendall’s problem, comprising Poisson hyperplane processes which are not
necessarily stationary, and admitting a quite general class of size functionals, is the
subject of [7].

The results on stationary Poisson hyperplane tessellations and general size func-
tionals so far all concerned the zero cell, with the exception of the volume case. In
[3], the results on zero cells of large volume were transferred to typical cells of large
volume, using the known fact that the distribution of the zero cell is, if translations
are neglected, the volume-weighted distribution of the typical cell. For size functionals
other than the volume, there seems to be no similarly direct transference principle.

In this paper, we obtain results on the asymptotic shapes of large typical cells of
stationary, isotropic Poisson hyperplane tessellations in Rd, where ‘large’ either means
large kth intrinsic volume, k ∈ {2, . . . , d}, or large diameter. The asymptotic shapes
are balls in the first case and segments in the second. As in the former papers, we show
that large deviations of the shapes of large cells from the limit shapes have very small
probability. The precise formulation requires a few preparations; the main result is the
Theorem in the next section.

2 Preliminaries and Main Results

The real Euclidean vector space Rd (d ≥ 2) is equipped with the scalar product 〈·, ·〉
and the induced norm ‖ · ‖. The space Kd of convex bodies (non-empty, compact,
convex sets) is endowed with the Hausdorff metric. Bd := {x ∈ Rd : ‖x‖ ≤ 1} is the
unit ball and Sd−1 := {x ∈ Rd : ‖x‖ = 1} is the unit sphere of Rd. We write κd for the
volume and ωd = dκd for the surface area of the unit ball. The normalized spherical
Lebesgue measure on Sd−1 is denoted by σ. By Hd we denote the space (with the usual
topology) of hyperplanes in Rd. We write

H(u, t) := {x ∈ Rd : 〈x,u〉 = t}, H−(u, t) := {x ∈ Rd : 〈x,u〉 ≤ t}

for u ∈ Sd−1 and t ∈ R. Every hyperplane H ∈ Hd has a representation H = H(u, t);
it is unique if t > 0 and is then called the standard representation (the hyperplanes
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containing o can later be neglected). For a hyperplane H and a point x ∈ Rd \H, we
denote by H−(x) the closed halfspace bounded by H that contains x; we write H− for
H−(o).

The underlying probability space is (Ω,A, P), and mathematical expectation is de-
noted by E. Throughout this paper, X is a stationary and isotropic Poisson hyperplane
process in Rd. Thus, X is a Poisson point process in the space Hd, and its distribution
is invariant under translations and rotations (see [23] for an introduction). As usual,
X denotes a (random) simple counting measure as well as its support; thus, X(A) and
card(X ∩ A) have the same meaning. The intensity measure Θ = EX is of the form
Θ = λµ, where λ > 0 is the intensity of X and µ is the motion invariant measure on
Hd given by

µ = 2
∫

Sd−1

∫ ∞

0
1{H(u, t) ∈ ·} dt σ(du). (1)

For K ∈ Kd, let HK := {H ∈ Hd : H ∩ K 6= ∅}, then EX(HK), the expected
number of hyperplanes in the process hitting K, is given by EX(HK) = λΦ(K) with

Φ(K) := 2
∫

Sd−1

h(K, u) σ(du), (2)

where h(K, ·) is the support function of K. The function Φ has been called the param-
eter functional in [7], since Φ(K)λ is the parameter of the Poisson distribution

P(X(HK) = n) =
[Φ(K)λ]n

n!
e−Φ(K)λ, n ∈ N0. (3)

In the isotropic case considered here, Φ is nothing but the mean width, but for easier
comparison we keep the notation of [7].

We use Σ to denote either the kth intrinsic volume Vk (so that Vd is the volume
and 2Vd−1 is the surface area), for k ∈ {2, . . . , d}, or the diameter D. Then Σ is a real
function on Kd with the following properties: it is continuous, translation invariant,
homogeneous of some degree k > 0, and increasing under set inclusion. Moreover, there
exists a constant c1 > 0 such that Vd(K) ≤ c1Σ(K)d/k. (For the intrinsic volumes, this
follows from the Aleksandrov-Fenchel inequalities (see [22]), and for the diameter from
the isodiametric inequality.) The subsequent investigations hold for any ‘size functional’
Σ with the listed properties.

It is clear (or see [7]) that Φ and Σ satisfy an inequality

Φ(K) ≥ τ Σ(K)1/k for K ∈ Kd, (4)

with a constant τ > 0, where equality is attained by some bodies. Every convex body
K ∈ Kd with more than one point for which equality holds is called an extremal body
(for the given functional Σ). For Σ = Vk (k ≥ 2), the extremal bodies are the balls,
and for Σ = D, they are the segments. This is well known, together with the explicit
values of τ .

As in [7], a real function ϑ on {K ∈ Kd : Σ(K) > 0} is called a deviation functional if
ϑ is continuous, nonnegative, homogeneous of degree zero, and satisfies ϑ(K) = 0 if and
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only if K is an extremal body. Such functionals exist, and if ϑ is given, there exists (see
[7]) a stability function for Σ and ϑ, that is, a continuous function f : [0,∞) → [0,∞)
with f(0) = 0 and f(ε) > 0 for ε > 0 such that

ϑ(K) ≥ ε implies Φ(K) ≥ (1 + f(ε))τΣ(K)1/k, (5)

for K ∈ Kd. We will assume f < 1, replacing, if necessary, f by min{f, 1/2}.

We can now state our result on the typical cell Z of the hyperplane tessellation
induced by X. A formal definition of Z is given in the next section. P(· | ·) denotes a
conditional probability.

Theorem. Suppose that a size functional Σ with the listed properties, a deviation
functional ϑ, and a stability function f for Σ and ϑ are given. With a suitable constant
c0 > 0 (depending only on τ), the following holds. If ε > 0 and 0 < a < b ≤ ∞, then

P(ϑ(Z) ≥ ε | Σ(Z) ∈ [a, b)) ≤ c exp
{
−c0f(ε)a1/kλ

}
, (6)

where c is a constant depending only on Σ, f, ε.

Since this result is of the same type as Theorem 1 in [7], it has similar consequences
as to the existence of limit shapes for large typical cells; this need not be carried out
here. We remark, however, that the simplest conclusion from (6) is the relation

lim
a→∞

P(ϑ(Z) ≥ ε | Σ(Z) ≥ a) = 0,

for any ε > 0, showing that large typical cells have small deviation from extremal
bodies.

The Theorem holds for any size functional Σ satisfying the listed assumptions. For
the concrete cases interesting us particularly, the intrinsic volumes and the diameter,
simple deviation functionals and stability functions can be given explicitly. For Σ = Vk,
k ∈ {2, . . . , d}, where the extremal bodies are the balls, the deviation from a ball is
suitably measured by

ϑ(K) = min
{

R− r

R + r
: rBd + z ⊂ K ⊂ RBd + z, r, R > 0, z ∈ Rd

}
.

A stability function is given by f(ε) = γε(d+3)/2, with a constant γ depending only on
the dimension (see [4]). If Σ is the diameter D, we can choose

ϑ(K) := min{α ≥ 0 : S ⊂ D(K)−1K ⊂ S + αBd, S a unit segment}.

Then f(ε) = ε2/2 is a possible choice (see [7]).

For the proof of the Theorem, we first establish a suitable explicit representation
for the distribution of the typical cell Z. The rest of the proof then heavily depends on
[7].
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3 The Typical Cell of a Poisson Hyperplane Tessellation

Recall that Y denotes the process of the d-dimensional cells of the tessellation induced
by the stationary, isotropic Poisson hyperplane process X. Thus, Y is a stationary
particle process, and as such it has an intensity γ(d) and a grain or shape distribution
Q0 (see, e.g., [23], Section 4.2 and Chapter 6). The intensity is given by

γ(d) = κd

(
κd−1λ

ωd

)d

, (7)

by [23, (6.48)]. The grain distribution depends on the choice of a center function,
which serves for picking out a definite element from each translation class of convex
bodies. The center function can be any measurable map c : Pd

0 → Rd satisfying
c(P + x) = c(P ) + x for all P ∈ Pd

0 and x ∈ Rd; here Pd
0 ⊂ Kd is the set of polytopes

with interior points. Let Cd := [−1/2, 1/2]d. The grain distribution of Y with respect
to the center function c is the (Borel) probability measure Q0 on Kd given by

γ(d)Q0(A) = E
∑
P∈Y

1A{P − c(P )}1Cd(c(P ))

for Borel sets A ⊂ Kd. It also has an ergodic interpretation, namely

Q0(A) = lim
r→∞

∑
P∈Y 1A{P − c(P ) ∈ A}1rCd(c(P ))∑

P∈Y 1rCd(c(P ))
almost surely.

We call Q0 the distribution of the typical cell of Y , and the typical cell Z of Y is any
random polytope with distribution Q0. (The choice of the center function does not affect
the shape of the typical cell: if c′ is another center function, then the corresponding
distribution Q′

0 is the image measure of Q0 under the mapping K 7→ K − c′(K).)

A representation of Z, using the center of the inball as a center function, was
discussed by Miles [15, 17] and was extended and made more explicit by Calka [2]. We
have, however, not succeeded in employing this for our intended result. More useful is a
second representation, using the ‘lowest vertex’ as a center function. We give a formula
for the distribution of Z with this center function, extending some related but less
explicit results found in the literature (Miles [17], Ambartzumian [1, Chap. 9], Favis
and Weiß [25], Mecke [14], Maier et al. [11]). As did Calka [2], we use the Slivnyak–
Mecke formula (following the terminology of Møller [21], see also [20]; a general version
appears in Mecke [13]). Specialized to our Poisson hyperplane process, it says that,
for m ∈ N and any nonnegative measurable function f on N × (Hd)m (where N is the
measurable space of locally finite counting measures on Hd),

E
∑

(H1,...,Hm)∈Xm
6=

f(X;H1, . . . ,Hm)

=
∫
Hd

. . .

∫
Hd

Ef(X ∪ {H1, . . . ,Hm};H1, . . . ,Hm) Θ(dH1) · · ·Θ(dHm).

Here, Xm
6= denotes the set of all m-tuples of pairwise different elements from X.
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We fix a unit vector ξ ∈ Sd−1. For a polytope P , the lowest vertex t(P ) is the
vertex of P at which 〈ξ, ·〉 attains its minimum on P , if this vertex is unique. Suppose
that this is the case, and that P is simple. Then t(P ) is contained in d facet hyper-
planes H1, . . . ,Hd of P ; let u1, . . . ,ud be their outer unit normal vectors. We have
ξ ∈ int pos{u1, . . . ,ud}, where pos denotes the positive hull and int is the interior.
Conversely, if v is a vertex of P and the outer unit normal vectors u1, . . . ,ud of the
facets of P containing v satisfy ξ ∈ int pos{u1, . . . ,ud}, then v = t(P ).

Let H1, . . . ,Hd be hyperplanes with independent normal vectors. We denote by
s(H1, . . . ,Hd) their intersection point. Suppose that ξ is not in the linear hull of less
than d of the mentioned normal vectors. Then there is a unique choice of unit normal
vectors u1, . . . ,ud of the hyperplanes H1, . . . ,Hd such that ξ ∈ pos{u1, . . . ,ud}. We
define a simplicial cone with apex s(H1, . . . ,Hd) by

T (H1, . . . ,Hd) :=
d⋂

i=1

H−(ui, 〈s(H1, . . . ,Hd),ui〉).

The stationary, isotropic Poisson hyperplane process X has the property that almost
surely any d of its hyperplanes have linearly independent normal vectors and any d− 1
hyperplanes have normal vectors which together with ξ are linearly independent (this
can be proved by arguments similar to those applied in [23, Th. 4.1.6]). It follows that
almost surely the cells of Y (which are simple polytopes by the stationarity of X) have
a unique lowest vertex. Let P be a cell of Y . Its (almost surely existing) lowest vertex
t(P ) is the intersection of d hyperplanes H1, . . . ,Hd of X, thus t(P ) = s(H1, . . . ,Hd),
and

P =
⋂

H∈X\{H1,...,Hd}

H−(s(H1, . . . ,Hd)) ∩ T (H1, . . . ,Hd). (8)

Conversely, almost surely for every choice of different hyperplanes H1, . . . ,Hd from X,
the right-hand side of (8) is a cell of Y , and s(H1, . . . ,Hd) is its lowest vertex.

Let Q0 be the distribution of the typical cell of Y with respect to the lowest vertex
as center function. In the subsequent formulas, the arguments H1, . . . ,Hd of s and T
are omitted, but have to be kept in mind. For Borel sets A ⊂ Kd, we obtain

γ(d)Q0(A) = E
∑
P∈Y

1A(P − t(P ))1Cd(t(P ))

=
1
d!

E
∑

(H1,...,Hd)∈Xd
6=

1A

 ⋂
H∈X\{H1,...,Hd}

(H−(s) ∩ T )− s

1Cd(s)

=
1
d!

∫
Hd

. . .

∫
Hd

E1A

( ⋂
H∈X

(H−(s) ∩ T )− s

)
1Cd(s) Θ(dH1) · · ·Θ(dHd)

=
1
d!

∫
Hd

. . .

∫
Hd

P(Z0 ∩ (T − s) ∈ A)1Cd(s) Θ(dH1) · · ·Θ(dHd),
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where we have used the Slivnyak–Mecke formula, the stationarity of X, and the fact
that

⋂
H∈X H−(o) is the zero cell Z0 of Y . We insert the representation of the intensity

measure given by Θ = λµ and (1). Then we observe that

T (H(u1, t1), . . . ,H(ud, td))− s(H(u1, t1), . . . ,H(ud, td)) =
d⋂

j=1

H−(εjuj , 0)

if the factors εj ∈ {−1, 1} are chosen such that ξ ∈ pos{ε1u1, . . . , εdud}. Such a choice
is unique if u1, . . . ,ud are linearly independent and ξ is not in the linear hull of less than
d of these vectors. We write the multiple integral as a sum of 2d multiple integrals, each
one extending over the (u1, . . . ,ud) with ξ ∈ pos{ε1u1, . . . , εdud} for a fixed d-tuple
(ε1, . . . , εd) (and over all (t1, . . . , td)). Noting that

s(H(u1, t1), . . . ,H(ud, td)) = s(H(ε1u1, ε1t1), . . . ,H(εdud, εdtd))

and using the invariance of σ and of the one-dimensional Lebesgue measure under
reflections in the origin, we obtain

γ(d)Q0(A) =
(2λ)d

d!

∫
Sd−1

. . .

∫
Sd−1

∫
R

. . .

∫
R

P

Z0 ∩
d⋂

j=1

H−(uj , 0) ∈ A


× 1{ξ ∈ pos{u1, . . . ,ud}}1Cd(s) dt1 · · ·dtd σ(du1) . . . σ(dud).

In the integrand, the symbol s now denotes the intersection point of the hyperplanes
H(u1, t1), . . . ,H(ud, td). For fixed linearly independent unit vectors u1, . . . ,ud, let
F (u1, . . . ,ud) denote this intersection point. This defines a bijective mapping F from
Rd to Rd. Its inverse has Jacobian ∇d(u1, . . . ,ud), the volume of the parallelepiped
spanned by u1, . . . ,ud. Observing (7), we obtain the required result, which we formu-
late as a lemma.

Lemma 3.1. The distribution of the typical cell Z of a stationary, isotropic Poisson
hyperplane tessellation with respect to the lowest vertex in direction ξ as center function
is given by

P(Z ∈ A) =
1

d!κd

(
2dκd

κd−1

)d ∫
Sd−1

. . .

∫
Sd−1

P

Z0 ∩
d⋂

j=1

H−(uj , 0) ∈ A


× 1{ξ ∈ pos{u1, . . . ,ud}}∇d(u1, . . . ,ud) σ(du1) . . . σ(dud),

where Z0 is the zero cell of the tessellation.

We remark that the isotropy assumption is not necessary here. The result extends
to a stationary Poisson hyperplane tessellation, with a spherical direction distribution ϕ
not concentrated on a great subsphere. Since ϕ can be assumed to be an even measure,
the proof holds (with some care, including a suitable choice of ξ), if σ is replaced by ϕ
and the intensity γ(d) is evaluated according to [23, (6.46)].
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4 Proof of the Theorem

We assume that X, Σ, ϑ, f are given as explained in Section 2. The number k is the
degree of homogeneity of Σ. In the following, c1, c2, . . . denote constants depending only
on d and Σ, except if the dependence on additional quantities is explicitly indicated.

The first lemma for the proof of the Theorem can be deduced from the corresponding
lemma in [7].

Lemma 4.1. For each β > 0, there are constants h0 > 0 and c > 0, depending only
on Σ and β, such that for a1/kλ ≥ 1 and 0 < h < h0,

P(Σ(Z) ∈ a(1, 1 + h)) ≥ c h exp{−(1 + β)τa1/kλ}.

Proof. By Lemma 1 of [7] (specialized to stationary, isotropic X), there exist constants
h0 > 0, N ∈ N (N ≥ d, without loss of generality) and c > 0, depending only on Σ and
β, such that, for a > 0 and 0 < h < h0,

P(Σ(Z0) ∈ a(1, 1 + h)) ≥ c h(a1/kλ)N exp{−(1 + β)τa1/kλ}. (9)

The distributions of the typical cell Z and the zero cell Z0 are related in the follow-
ing way (see, e.g., [23, Theorem 6.1.11]). For any translation invariant, nonnegative,
measurable function g on Kd,

E g(Z0) = γ(d)E [g(Z)Vd(Z)],

where γ(d) = 1/EVd(Z) is given by (7). We apply this with

g(K) := 1{Σ(K) ∈ a(1, 1 + h)}Vd(K)−1,

observe that the function Σ has the property that Vd(K) ≤ c1Σ(K)d/k, assume h < h0,
and use (9) together with the assumption that a1/kλ ≥ 1. This gives

P(Σ(Z) ∈ a(1, 1 + h)) = c2λ
−dE [1{Σ(Z0) ∈ a(1, 1 + h)}Vd(Z0)−1]

≥ c2λ
−dE [1{Σ(Z0) ∈ a(1, 1 + h)}c−1

1 (a(1 + h))−d/k]

≥ c3(β)(a1/kλ)−dP(Σ(Z0) ∈ a(1, 1 + h))

≥ c4(β)h exp{−(1 + β)τa1/kλ},

completing the proof of the lemma.
The further proof of the Theorem now connects the distribution of the typical cell

Z with that of the zero cell Z0 by means of Lemma 3.1. In particular, this lemma gives,
for ε ≥ 0,

P(Σ(Z) ∈ a(1, 1 + h), ϑ(Z) ≥ ε)

=
1

d!κd

(
2dκd

κd−1

)d ∫
Sd−1

. . .

∫
Sd−1

P (Σ(Z0 ∩ T ) ∈ a(1, 1 + h), ϑ(Z0 ∩ T ) ≥ ε)

× 1{ξ ∈ pos{u1, . . . ,ud}}∇d(u1, . . . ,ud) σ(du1) . . . σ(dud), (10)
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where now

T = T (u1, . . . ,ud) :=
d⋂

j=1

H−(uj , 0). (11)

For given hyperplanes H1, . . . ,Hn ∈ Hd, we write

PT (H(n)) := H−
1 ∩ · · · ∩H−

n ∩ T.

The idea is now to apply the methods of [7] to Z0 ∩ T instead of Z0. This requires
some adaptations, which we carry out with just the amount of detail as seems necessary
for an understanding. Some definitions need to be repeated.

We assume for a while that linearly independent unit vectors u1, . . . ,ud ∈ Sd−1

with ξ ∈ pos{u1, . . . ,ud} are fixed, the simplicial cone T is defined by (11), and we
put ZT := Z0 ∩ T and Ei := H(ui, 0) for i = 1, . . . , d.

For K ∈ Kd with Σ(K) > 0, the relative diameter is defined by ∆(K) :=
D(K)/c5Σ(K)1/k, where c5 is chosen such that ∆(K) ≥ 1 for all K. For a > 0,
ε ≥ 0, h > 0 and m ∈ N we define

Ka,ε,h(m) := {K ∈ Kd : Σ(K) ∈ a(1, 1 + h), ϑ(K) ≥ ε, ∆(K) ∈ [m, m + 1)}.

The following is Lemma 2 from [7].

Lemma 4.2. Let m ∈ N. Then K ∈ Ka,0,1(m) and o ∈ K implies K ⊂ c6ma1/kBd =:
C. There exists a measurable map that associates with every polytope P ∈ Ka,0,1(m)
with o ∈ P a vertex v(P ) of P with ‖v(P )‖ ≥ c7ma1/k.

Now let
qa,ε,h(m) := P(ZT ∈ Ka,ε,h(m)),

then
∞∑

m=1

qa,ε,h(m) = P(Σ(ZT ) ∈ a(1, 1 + h), ϑ(ZT ) ≥ ε). (12)

For given m ∈ N and a > 0, let C be the ball according to Lemma 4.2. We have

qa,ε,1(m) =
∞∑

N=1

P(X(HC) = N)P(ZT ∈ Ka,ε,1(m) | X(HC) = N). (13)

Here,

pN := P(ZT ∈ Ka,ε,1(m) | X(HC) = N)

= Φ(C)−N

∫
HN

C

1{PT (H(N)) ∈ Ka,ε,1(m)}µN (d(H1, . . . ,HN )), (14)

with
HN

C := HC × · · · × HC and µN := µ⊗ · · · ⊗ µ (N factors).
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Relation (14) holds since X is a Poisson process with intensity measure λµ, and
µ(HC) = Φ(C).

Now we adapt Lemma 3 from [7] to the random polytope ZT instead of Z0.

Lemma 4.3. For a > 0 and m ∈ N,

qa,0,1(m) ≤ c11 exp{−c9ma1/kλ}.

Proof. Let a > 0 and m ∈ N, and let C be the ball defined in Lemma 4.2. Let
H1, . . . ,HN ∈ HC be hyperplanes such that P := PT (H(N)) ∈ Ka,0,1(m). Let v(P ) be
the vertex defined in Lemma 4.2. This vertex is the intersection of d facets of P , and
it is different from o. Hence, there is a number e ∈ {0, . . . , d− 1}, and there are index
sets I ⊂ {1, . . . , d} with e elements and J ⊂ {1, . . . , N} with d− e elements such that

{v(P )} =
⋂
i∈I

Ei ∩
⋂
j∈J

Hj .

We denote the segment [o,v(P )] by S = S(EI ,HJ). It satisfies

Hr ∩ relint S = ∅ for r ∈ {1, . . . , N} \ J,

where relint denotes the relative interior. Since S ⊂ C and Φ(S) is a constant multiple
of the length |S| of S, we have∫

HC

1{H ∩ S = ∅}µ(dH) = Φ(C)− Φ(S) = Φ(C)− c8|S| ≤ Φ(C)− 2c9ma1/k.

Defining

pN (e) := Φ(C)−N

∫
HN

C

1{PT (H(N)) ∈ Ka,0,1(m)}

× 1{card{i : v(PT (H(N))) ∈ Ei} = e}µN (d(H1, . . . ,HN )),

we obtain

pN (e)

≤
(

d

e

)(
N

d− e

)
Φ(C)−N

∫
Hd−e

C

∫
HN−d+e

C

1
{∣∣S(E{1,...,e},H{1,...,d−e})

∣∣ ≥ c7ma1/k
}

× 1
{
S(E{1,...,e},H{1,...,d−e}) ∩Hr = ∅ for r = d− e + 1, . . . , N

}
× µN−d+e(d(Hd−e+1, . . . ,HN ))µd−e(d(H1, . . . ,Hd−e))

≤
(

d

e

)(
N

d− e

)
Φ(C)−N

∫
Hd−e

C

[Φ(C)− 2c9ma1/k]N−d+e µd−e(d(H1, . . . ,Hd−e))

=
(

d

e

)(
N

d− e

)
Φ(C)d−e−N

[
Φ(C)− 2c9ma1/k

]N−d+e
.
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Summing over e and N , we get

qa,0,1(m) ≤
d−1∑
e=0

∞∑
N=d−e

[Φ(C)λ]N

N !
e−Φ(C)λ

×
(

d

e

)(
N

d− e

)
Φ(C)d−e−N

[
Φ(C)− 2c9ma1/k

]N−d+e

=
d−1∑
e=0

1
(d− e)!

(
d

e

)
[Φ(C)λ]d−ee−Φ(C)λ

×
∞∑

N=d−e

1
(N − d + e)!

[
Φ(C)λ− 2c9ma1/kλ

]N−d+e

=
d−1∑
e=0

1
(d− e)!

(
d

e

)
[Φ(C)λ]d−e exp

{
−2c9ma1/kλ

}

≤
d−1∑
e=0

c10(ma1/kλ)d−e exp
{
−2c9ma1/kλ

}

≤ c11 exp
{
−c9ma1/kλ

}
,

as stated.

We quote Lemma 4 from [7]. Here ext P and f0(P ) denote, respectively, the set and
the number of vertices of the polytope P . Then we adapt Lemma 5 from [7].

Lemma 4.4. Let α > 0 be given. There is a number ν ∈ N depending only on d and
α such that the following is true. For P ∈ Pd there exists a polytope Q = Q(P ) ∈ Pd

satisfying ext Q ⊂ ext P , f0(Q) ≤ ν, and Φ(Q) ≥ (1− α)Φ(P ). Moreover, there exists
a measurable selection P 7→ Q(P ).

Lemma 4.5. For a > 0, m ∈ N and ε > 0,

qa,ε,1(m) ≤ c14(f, ε)mdν exp
{
−(1 + f(ε)/3)τa1/kλ

}
,

where ν depends only on d and ε.

Proof. Let B be an extremal body for the functional Σ, and let Ba be the dilate of B
with Σ(Ba) = a. Let m ∈ N be given, and let C be the ball from Lemma 4.2. We use
(13) and (14). Suppose that H1, . . . ,HN ∈ HC are such that PT (H(N)) ∈ Ka,ε,1(m).
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By (5) and since Φ(Ba) = τΣ(Ba)1/k = τa1/k, we get

Φ(PT (H(N))) ≥ (1 + f(ε))τΣ(PT (H(N)))
1/k ≥ (1 + f(ε))τa1/k

= (1 + f(ε))Φ(Ba). (15)

Let α := f(ε)/(2 + f(ε)), then (1− α)(1 + f(ε)) = 1 + α.

By Lemma 4.4, there are ν = ν(d, ε) vertices of PT (H(N)) such that the convex hull
Q(PT (H(N))) =: Q(H(N)) =: Q of these vertices satisfies

Φ(Q) ≥ (1− α)Φ(PT (H(N))).

Together with (15), this implies

Φ(Q) ≥ (1 + α)Φ(Ba).

For each N -tuple (H1, . . . ,HN ) such that PT (H(N)) ∈ Ka,ε,1(m), we can choose Q =
Q(H(N)) in such a way that Q(H(N)) becomes a measurable function of (H1, . . . ,HN ).
We can assume (excluding a set of N -tuples (H1, . . . ,HN ) of measure zero) that each
of the vertices of Q lies in precisely d of the hyperplanes E1, . . . , Ed,H1, . . . ,HN , and
the remaining hyperplanes of H1, . . . ,HN are disjoint from Q. Hence, at most dν of
the hyperplanes H1, . . . ,HN meet Q; let j ∈ {1, . . . , dν} denote their precise number.
Suppose that H1, . . . ,Hj are the hyperplanes meeting Q. Then there is a sequence of
pairs ((I1, J1), . . . , (If0(Q), Jf0(Q))), where Ir is a subset of {1, . . . , d} with er elements
and Jr is a subset of {1, . . . , j} with d− er elements, such that the intersections

⋂
i∈Ir

Ei ∩
⋂

j∈Jr

Hj , r = 1, . . . , f0(Q) ≤ ν,

yield the vertices of Q. Below, the sum
∑

((I1,J1),...,(Iν ,Jν)) extends over all se-
quences ((I1, J1), . . . , (Iν , Jν)) of (not necessarily distinct) pairs, where Ir is a subset of
{1, . . . , d}, Jr is a subset of {1, . . . , j}, and card Ir + card Jr = d. The total number of
such sequences can be estimated by a constant c(d, ν). We recall the fact that for any
convex body K ⊂ C we have

∫
HC

1{H ∩K = ∅}µ(dH) = Φ(C)− Φ(K). We get

P(ZT ∈ Ka,ε,1(m) | X(HC) = N)Φ(C)N

≤
dν∑

j=1

(
N

j

)∫
HN

C

1
{
PT (H(N)) ∈ Ka,ε,1(m)

}
1{Hs ∩Q(H(N)) 6= ∅ for s = 1, . . . , j}

× 1{Hs ∩Q(H(N)) = ∅ for s = j + 1, . . . , N}µN (d(H1, . . . ,HN ))
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≤
dν∑

j=1

(
N

j

) ∑
((I1,J1),...,(Iν ,Jν))

∫
Hj

C

∫
HN−j

C

1

Φ

conv
ν⋃

r=1

⋂
i∈Ir

Ei ∩
⋂

j∈Jr

Hj

 ≥ (1 + α)Φ(Ba)


× 1

Hs ∩ conv
ν⋃

r=1

⋂
i∈Ir

Ei ∩
⋂

j∈Jr

Hj

 = ∅ for s = j + 1, . . . , N


× µN−j(d(Hj+1, . . . ,HN ))µj(d(H1, . . . ,Hj))

≤
dν∑

j=1

(
N

j

)
c(d, ν)[Φ(C)− (1 + α)Φ(Ba)]N−jΦ(C)j .

Summation over N gives

qa,ε,1(m)

≤
∞∑

N=1

[Φ(C)λ]N

N !
e−Φ(C)λ

dν∑
j=1

(
N

j

)
c(d, ν)

[Φ(C)− (1 + α)Φ(Ba)]N−j

Φ(C)N−j

=
dν∑

j=1

c(d, ν)
[Φ(C)λ]j

j!
e−Φ(C)λ

∞∑
N=j

1
(N − j)!

[Φ(C)λ− (1 + α)Φ(Ba)λ]N−j

=
dν∑

j=1

c(d, ν)
[Φ(C)λ]j

j!
exp{−(1 + α)Φ(Ba)λ}.

Here Φ(Ba) = τa1/k, and by Lemma 4.2, Φ(C) = Φ(c6ma1/kBd) = 2c6ma1/k. Thus we
get

qa,ε,1(m) ≤ c12(ε)
[
(a1/kλ)dν + 1

]
mdν exp

{
−(1 + α)τa1/kλ

}
≤ c13(ε)mdν exp

{
−(1 + f(ε)/3)τa1/kλ

}
,

since f(ε) < 1. This completes the proof of Lemma 4.5.

For the following parts of the proof, it suffices to describe the changes that the
proof in [7] has to undergo. Lemma 6 of [7] remains unchanged; Lemma 7 is altered
as follows (we number the counterpart to Lemma x in [7] as Lemma 4.x here). If P is
a polytope which arises by intersecting some polytope with the cone T , we denote by
f ′d−1(P ) the number of facets of P not lying in one of the hyperplanes E1, . . . , Ed.
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Lemma 4.7. For n ∈ N, n ≥ 1 and a Borel set B ⊂ Kd, let

R(B, n) := {(H1, . . . ,Hn) ∈ (Hd)n : PT (H(n)) ∈ B, f ′d−1(PT (H(n))) = n}.

Then

P(ZT ∈ B, f ′d−1(ZT ) = n) =
λn

n!

∫
R(B,n)

exp
{
−Φ(PT (H(n)))λ

}
µn(d(H1, . . . ,Hn)).

The proof from [7] goes through with the indicated changes.

Lemma 4.8. For m ∈ N, h ∈ (0, 1/2), ε ≥ 0 and a1/kλ ≥ 1,

qa,ε,h(m) ≤ c15h a1/kλ mqa,ε,1(m).

The corresponding proof in [7] goes through if the definition of the set Rε(m,n) is
changed to

Rε(m,n) :=
{

(H1, . . . ,Hn) ∈ (Hd)n : ϑ(PT (H(n))) ≥ ε, ∆(PT (H(n))) ∈ [m,m + 1),

f ′d−1(PT (H(n))) = n
}

,

and each of the sets

H−(u1, t1) ∩ · · · ∩H−(un, tn), H−
1 ∩ · · · ∩H−

n−1 ∩H−(u, 1),

whereever it occurs, is replaced by its intersection with T . Since T is a cone, also the
modified set Rε(m,n) is invariant under dilatations applied to H1, . . . ,Hn, which is
crucial for the proof.

The following lemma finally concerns the typical cell Z.

Lemma 4.9. Let ε > 0, h ∈ (0, 1/2) and a1/kλ ≥ 1. Then

P(Σ(Z) ∈ a(1, 1 + h), ϑ(Z) ≥ ε) ≤ c17(f, ε)h exp
{
−(1 + f(ε)/4)τa1/kλ

}
.

Proof. First, we consider the random polytope ZT = Z0 ∩ T , where T is the simplicial
cone appearing above. With the constant c9 from Lemma 4.3, we can choose m0 ∈ N
such that

c9m ≥ 2(1 + f(ε)/3)τ for m > m0 (16)

(recall that f(ε) < 1). By (12) and Lemma 4.8, we have

P(Σ(ZT ) ∈ a(1, 1 + h), ϑ(ZT ) ≥ ε) =
∑
m∈N

qa,ε,h(m)

≤ c15ha1/kλ

(
m0∑

m=1

mqa,ε,1(m) +
∑

m>m0

mqa,ε,1(m)

)
.
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For the estimation of qa,ε,1(m) we use Lemma 4.5 for m ≤ m0 and Lemma 4.3 for
m > m0, observing that qa,ε,1(m) ≤ qa,0,1(m). Then we can continue in the same way
as in the proof of Proposition 7.1 in [3], where [3, (24)] is replaced by (16). In this way,
we obtain an estimate

P(Σ(Z0 ∩ T ) ∈ a(1, 1 + h), ϑ(Z0 ∩ T ) ≥ ε) ≤ c16(f, ε)h exp
{
−(1 + f(ε)/4)τa1/kλ

}
.

This result holds for all cones T appearing in the integral (10), up to a set of d-
tuples (u1, . . . ,ud) of measure zero. Therefore, formula (10) and integration yields the
assertion of the lemma, with an appropriate constant.

The situation is now as in [7]: the proof of the Theorem is completed in the same way
as the proof of Theorem 1 in [3]. The latter used only Lemma 3.2 and Proposition 7.1
of [3], and our present Lemmas 4.1 and 4.9 have the same structure as those results.
Since we have assumed a1/kλ ≥ 1 in Lemmas 4.1 and 4.9, (6) is first obtained under
this assumption. If we choose the constant c appropriately, then (6) holds generally.
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