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VERIFICATION OF POLYTOPES BY BRIGHTNESS
FUNCTIONS

ROLF SCHNEIDER

Abstract. We show that in the class of origin centered convex bodies in

Euclidean space of dimension at least three, a polytope is uniquely determined

by its brigthness function in a suitably chosen, but very small set of directions.

1. Introduction and result

Aleksandrov’s projection theorem (see, e.g., Gardner [1, Th. 3.3.6]) is one of
the classical and central results of geometric tomography. In its simplest version,
it can be formulated as follows. In d-dimensional Euclidean space Rd (we assume
d ≥ 3), let K be a convex body (a compact convex set with interior points, in
this note). For u ∈ Sd−1 (the unit sphere), we denote the hyperplane through 0
orthogonal to u by u⊥ and the orthogonal projection to u⊥ by ·|u⊥. The function
u 7→ Vd−1(K|u⊥), where Vd−1 denotes the (d − 1)-dimensional volume, is known
as the brightness function of K. The body K is 0-symmetric (or origin centered)
if K = −K. Aleksandrov’s projection theorem says that two 0-symmetric convex
bodies with the same brightness function are identical.

It is well known that in this theorem the assumption of central symmetry cannot
be deleted; in the following, K and L are always 0-symmetric. It is also known
that the equality of the brightness functions in all directions cannot be essentially
relaxed. For a precise formulation, we define a direction set as a 0-symmetric closed
subset of Sd−1. If the direction set A is a proper subset of Sd−1, then for any
sufficiently smooth 0-symmetric convex body K there exists a 0-symmetric convex
body L with

(1.1) Vd−1(K|u⊥) = Vd−1(L|u⊥) for all u ∈ A,

but L 6= K. Examples were constructed in [5]. There have been several attempts
to find additional assumptions on K and L under which smaller sets A in (1.1) still
allow the conclusion that K = L. For example, this holds if K is a polytope and A
is a neighborhood of an equator subsphere (Schneider [3]). As shown by Schneider
and Weil [5], it also holds if the dimension d is odd, A is a neighborhood of an
equator subsphere with pole e, and the supporting hyperplanes of K and L with
normal vector e touch each of K and L at a vertex. Results of a different kind were
obtained by Grinberg and Quinto [2], for example the following. Let K and L be
of class C2

+. Let A be an open connected subset of Sd−1 such that Rd =
⋃

u∈A u⊥.
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Assume that for some e ∈ A, the products of the principal radii of curvature of K
and L agree to infinite order along the equator subsphere e⊥ ∩Sd−1. If (1.1) holds,
then K = L.

Note that in each of the previous results, the direction set A has to be of positive
(spherical Lebesgue) measure. In contrast to this, we show in the present note
that 0-symmetric polytopes can be verified by their brightness function in suitable
direction sets of measure zero. Here, we have adopted the terminology used by
Gardner [1] (in the case of X-rays): we say that the convex body K can be verified
by the brightness function in a direction set A, which may depend on K, if any
0-symmetric convex body L satisfying (1.1) is equal to K. We prove a result on
the verification of general convex bodies. Recall that a vector u 6= 0 is an extreme
normal vector of K if it cannot be written as u = u1 + u2 where u1, u2 are linearly
independent normal vectors of K at the same boundary point. Let E(K) denote
the set of extreme unit normal vectors of K. For e ∈ Sd−1, let Se := e⊥ ∩ Sd−1;
this is the equator subsphere with pole e.

Theorem 1.1. Let d ≥ 3. Let K and L be 0-symmetric convex bodies in Rd. Let
A be a direction set that contains Se for each e ∈ E(K) and, together with any
d-dimensional cone spanned by finitely many vectors of E(K), also a vector in the
interior of the dual cone. If Vd−1(K|u⊥) = Vd−1(L|u⊥) for all u ∈ A, then K = L.

If K is a polytope, then E(K) is the set of unit normal vectors of its facets,
hence the set A in the theorem can be chosen as the union of finitely many great
subspheres and a finite set, and thus is of spherical Lebesgue measure zero.

2. Proof of the theorem

Let the assumptions of the theorem be satisfied. Then Vd−1(K|v⊥) = Vd−1(L|v⊥)
if v ⊥ u and u ∈ E(K). Let E denote the closure of E(K). It follows from the
continuity of the brightness functions that Vd−1(K|v⊥) = Vd−1(L|v⊥) holds also if
v ⊥ u and u ∈ E. We shall make use of the fact that E is the support of the surface
area measure Sd−1(K, ·) of K (see [4, Th. 4.6.3]).

For standard notation from the theory of convex bodies, we refer to [4]. In
particular, h(K, ·) denotes the support function of K, H(K, u) is the supporting
hyperplane and H−(K, u) is the supporting halfspace of K, both with outer normal
vector u. The scalar product of Rd is 〈·, ·〉. By ΠK we denote the projection body
of K. Its support function is given by

h(ΠK, u) = Vd−1(K|u⊥) =
1
2

∫
Sd−1

|〈u, v〉|Sd−1(K, dv)

for u ∈ Sd−1.
Let u ∈ E. Then

(2.1) h(ΠK, v) = h(ΠL, v) for all v ∈ u⊥.

For any convex body M we have h(M |u⊥, v) = h(M,v) if v ∈ u⊥, hence (2.1) gives

h(ΠK|u⊥, v) = h(ΠL|u⊥, v) for all v ∈ u⊥

and, therefore,

(2.2) ΠK|u⊥ = ΠL|u⊥.
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It follows that the cylinder C(u) := ΠL + lin {u} contains ΠK. The set

D :=
⋂

u∈E

C(u)

is a convex body, which satisfies ΠK ⊂ D, ΠL ⊂ D, and

(2.3) h(ΠL, v) = h(D, v) for v ∈ u⊥, if u ∈ E.

Suppose that ΠK 6= D. Then ΠK is a proper subset of D, hence the interior of
D contains non-empty relatively open subset of the boundary of ΠK and hence a
regular boundary point of ΠK. Therefore, there is a vector w ∈ Sd−1 such that the
supporting hyperplane H(ΠK, w) contains a regular boundary point of ΠK and
is not a supporting hyperplane of D, hence h(ΠK, w) < h(D,w). If w ∈ u⊥ for
some u ∈ E, then (2.1) and (2.3) would imply h(ΠK, w) = h(ΠL, w) = h(D,w), a
contradiction. Therefore, w /∈ u⊥ for all u ∈ E and thus w⊥ ∩ E = ∅. Since E is
closed, a whole neighborhood of the equator subsphere Sw does not meet E. Thus,
Sy ∩ E = ∅ for all y in a neighborhood of w.

We use a formula for support sets of zonoids. For a convex body M , let F (M, y)
be the support set of M with outer normal vector y. Then, for the zonoid ΠK we
have (see [4, Lemma 3.5.5])

(2.4) h(F (ΠK, y), x) = 〈x, ey〉+
1
2

∫
Sy

|〈x, v〉|Sd−1(K, dv)

for x ∈ Rd, with

(2.5) ey :=
∫

Sd−1
1{〈v, y〉 > 0}v Sd−1(K, dv).

In our case, the integral in (2.4) vanishes for all y in a neighborhood of w, since
E is the support of the measure Sd−1(K, ·). This means that F (ΠK, y) = {ey} for
these y, and from (2.5) it follows that ey = ew for y in a neighborhood of w. Hence,
H(ΠK, w) ∩ ΠK = {ew}, and ew is a singular point of ΠK; thus, the supporting
hyperplane H(ΠK, w) does not contain a regular boundary point of ΠK. This
contradiction shows that ΠK = D.

From ΠK = D we get ΠL ⊂ ΠK, and by the monotonicity of mixed volumes
this implies

(2.6) V (ΠK, ΠL, . . . , ΠL) ≤ V (ΠK, ΠK, ΠL, . . . , ΠL) ≤ · · · ≤ V (ΠK, . . . , ΠK),

where V (·, . . . , ·) is the mixed volume.
If M is a convex body, then, using a well-known representation of mixed volumes

together with Fubini’s theorem, we get (all integrals are over Sd−1)

V (ΠK, M, . . . ,M) =
1
d

∫
h(ΠK, v) Sd−1(M, dv)

=
1
d

∫
1
2

∫
|〈u, v〉|Sd−1(K, du) Sd−1(M, dv)

=
1
d

∫
1
2

∫
|〈u, v〉|Sd−1(M, dv) Sd−1(K, du)

=
1
d

∫
Vd−1(M |u⊥) Sd−1(K, du).
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If u ∈ E, then Vd−1(ΠK|u⊥) = Vd−1(ΠL|u⊥) by (2.2). Since this holds for all u in
the support of the measure Sd−1(K, ·), we get

V (ΠK, ΠL, . . . , ΠL) = V (ΠK, . . . , ΠK).

By (2.6), this implies, in particular, that

V (ΠK, ΠL, . . . , ΠL) = V (ΠK, ΠK, ΠL, . . . , ΠL).

By [4, Th. 6.6.16], this is only possible if ΠK is a 1-tangential body of ΠL. A
1-tangential body is a cap body (see [4, p. 76]); hence ΠK is the convex hull
of ΠL and a (possibly empty) set X of points not in ΠL such that any segment
joining two of these points meets ΠL. If X = ∅, then ΠK = ΠL. Since K and L
are centrally symmetric with respect to 0, Aleksandrov’s projection theorem yields
K = L. Therefore, it remains to consider the case where X 6= ∅. (Note that a zonoid
may well be a cap body of another zonoid. For example, a rhombic dodecahedron
is a cap body of a cube. Therefore, we do not immediately get a contradiction. It
would be interesting to classify all pairs of zonoids where one is a cap body of the
other.)

Let p ∈ X. Let Cp denote the cone with apex p spanned by ΠK. Since p /∈ ΠL,
there is a hyperplane H that strictly separates p and ΠL. It intersects the cone
Cp in a (d − 1)-dimensional convex body Q. Let x be an exposed point of Q.
The halfline with endpoint p through x is an exposed ray of Cp, hence there is
a supporting hyperplane of ΠK through p that intersects ΠK in a nondegenerate
line segment Sx; thus F (ΠK, w) = Sx for a suitable unit vector w. Let u be a
unit vector parallel to Sx. Since F (ΠK, w) is a segment of direction u, it follows
from (2.4) (together with the uniqueness theorem [4, Th. 3.5.3]) that the measure
Sd−1(K, ·) has point masses at ±u. Therefore, the support sets F (K,±u) of K are
of dimension d − 1, which implies that u ∈ E(K). To each exposed point x of Q
there corresponds such a segment Sx. It is a summand of ΠK (by [4, Cor. 3.5.6],
every support set of a zonoid is a summand of the zonoid). Since all the segments
Sx have different directions and their lengths are bounded from below by a positive
constant, there can only be finitely many such segments, since otherwise their sum
would be unbounded. Thus, the cone Cp − p is the positive hull of finitely many
vectors from E(K). By assumption, the interior of its dual cone contains a vector
v ∈ A, and we have F (ΠK, v) = {p} and, therefore, h(ΠK, v) > h(ΠL, v). On the
other hand, the assumptions of the theorem give Vd−1(K|v⊥) = Vd−1(L|v⊥) and
thus h(ΠK, v) = h(ΠL, v). This contradiction shows that the case X 6= ∅ cannot
occur, which completes the proof.
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