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Abstract. In the random mosaic generated by a stationary Poisson hyperplane process in
Rd, we consider the typical k-face weighted by the j-dimensional volume of the j-skeleton
(0 ≤ j ≤ k ≤ d). We prove sharp lower and upper bounds for its expected number of
vertices.

1 Introduction

Since the early work of Miles [5, 6, 7] and Matheron [2, 3, 4], stationary Poisson processes
of hyperplanes and the tessellations induced by them have been an intensively studied topic
of stochastic geometry. We refer to chapter 10 of the book [9] for a description of later
developments. The purpose of this note is the extension of a result (namely [9, (10.52)])
giving sharp estimates for the expected vertex number of the Poisson zero polytope. For
stationary Poisson hyperplane mosaics, these inequalities are generalized from the zero cell,
which can be viewed as the volume-weighted typical cell, to Lj-weighted typical k-faces
(0 ≤ j ≤ k ≤ d). Here, Lj(P ) for a polytope P is the sum of the j-volumes of its j-faces, thus
the j-dimensional Hausdorff measure of its j-skeleton. The case j = k was treated in [8]. For
the general case, we shall have to extend a result of Favis and Weiss [1] on the distribution
of Lj-weighted typical d-cells to lower-dimensional faces. After that, as in the previous work,
the known inequalities for the volume product from convex geometry can be used, and they
lead to extremal properties of either parallel mosaics or isotropic mosaics.

2 Preliminaries

We denote by Rd the d-dimensional Euclidean space, with scalar product 〈·, ·〉 and norm
‖ · ‖. The set Sd−1 := {u ∈ Rd : ‖u‖ = 1} is its unit sphere. Lebesgue measure on Rd is
denoted by λ, and j-dimensional Hausdorff measure by Hj . In the following, measures and
measurable functions on a topological space T refer to its Borel σ-algebra, denoted by B(T ).
The Grassmannian G(d, d − 1) of (d − 1)-dimensional linear subspaces of Rd and the affine
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Grassmannian A(d, d− 1) of hyperplanes in Rd are equipped with their usual topologies. We
write hyperplanes in the form

H(u, τ) = {x ∈ Rd : 〈x, u〉 = τ} = H(−u,−τ)

with u ∈ Sd−1 and τ ∈ R.

K is the space of convex bodies (nonempty, compact, convex sets) in Rd, endowed with the
topology induced by the Hausdorff metric, and P is the subspace of polytopes. For a polytope
P , we denote by Fj(P ) the set of its j-dimensional faces, and we write skeljP :=

⋃
F∈Fj(P ) F

for the j-skeleton of P (j = 0, . . . ,dimP ).

We assume in the following some familiarity with the geometric processes (particles, flats,
tessellations) considered in stochastic geometry (see [9], in particular chapters 3, 4, 10).
Throughout this note, X̂ is a stationary Poisson process of hyperplanes in Rd, with a pos-
itive, locally finite intensity measure Θ̂. The underlying probability space is (Ω,A,P), and
mathematical expectation is denoted by E. The intensity measure Θ̂ has a decomposition∫

A(d,d−1)
f dΘ̂ = γ̂

∫
Sd−1

∫ ∞
−∞

f(H(u, τ)) dτ ϕ̂(du) (1)

for every nonnegative, measurable function f on A(d, d − 1) (see [9, Th. 4.4.2 and (4.30)]).
Here γ̂ > 0 is the intensity of X̂ and ϕ̂ is an even probability measure on the unit sphere
Sd−1, the spherical directional distribution of X̂. We assume that ϕ̂ is not concentrated
on a great subsphere of Sd−1.

Every realization of X̂ gives rise to a tessellation or mosaic, the cells of which are the
closures of the connected components of the complement of the hyperplanes in X̂. The
particle process X of these cells is the Poisson hyperplane tessellation induced by X̂.
For k ∈ {0, . . . , d}, we denote by X(k) =

⋃
P∈X Fk(P ) the particle process formed by the

k-dimensional faces of all cells of X. The stationary particle process X(k) has a positive,
locally finite intensity measure, denoted by Θ(k). Again there is a decomposition,∫

K
f dΘ(k) = γ(k)

∫
K0

∫
Rd

f(K + x)λ(dx) Q(k)(dK), (2)

for every nonnegative, measurable function f on K (see [9, (4.3)]). Here K0 is the space
of convex bodies K with s(K) = 0, where s denotes the Steiner point (which we use here
as centre function). The positive number γ(k) is the intensity of X(k), and the probability
measure Q(k) on K0 is the grain distribution of X(k).

3 Weighted Faces

Average k-faces of the random tessellation X can be defined in different, but equally natural
ways. The typical k-face of X is, by definition, the random polytope Z(k) with distribution
Q(k). Intuitively (but only heuristically), it is obtained as follows. In a realization of X, we
pick out at random one of the k-faces, with equal chances for every k-face (this, of course,
makes only sense within a bounded region of space), and translate it to bring its Steiner point
to the origin. If, instead, we make this random choice with chances proportional to some
given translation invariant, positive, measurable function w defined on k-polytopes, we obtain
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the w-weighted typical k-face. Formally, one can define this as the random polytope Z(k)
w

with distribution given by

P(Z(k)
w ∈ A) =

1
Ew(Z(k))

E
[
1A(Z(k))w(Z(k))

]
=

1
Ew(Z(k))

∫
K0

1A(K)w(K) Q(k)(dK) (3)

for A ∈ B(P). That this definition comprises the intuitive idea of selecting, with weights,
from large bounded regions, can be seen from the relation

P(Z(k)
w ∈ A) = lim

r→∞

E
∑

F∈X(k), F⊂rW 1A(F − s(F ))w(F )
E
∑

F∈X(k), F⊂rW w(F )
.

It holds for A ∈ B(P) and any compact convex set W ⊂ Rd with λ(W ) > 0 and is a special
case of [9, Th. 4.1.3].

By the standard extension procedure from indicator functions to nonnegative, measurable
functions f , relation (3) yields∫

K0

f(K)w(K) Q(k)(dK) = Ew(Z(k)) E f(Z(k)
w ). (4)

Here we are interested in the weighting function given by

Lj(P ) = Hj(skeljP ) =
∑

F∈Fj(P )

Hj(F ),

the total j-dimensional volume of the j-faces of P , for 0 ≤ j ≤ dimP . In particular, if P is
a d-dimensional polytope, then Ld(P ) is the volume, Ld−1(P ) is the surface area, L1(P ) is
the total edge length, and L0(P ) is the number of vertices of P . We denote the Lj-weighted
typical k-face of X by Zk,j . Note that the weighted typical k-face Z(k)

0 considered in [8] differs
from Zk,k by a random translation.

We need a Slivnyak-type result for Zk,j (Theorem 1). For this, we define a measure φk
on G(d, d− 1)k by

φk(A) :=
γ̂ k

k! γ̂k

∫
(Sd−1)k

1A(u⊥1 , . . . , u
⊥
k )∇k(u1, . . . , uk) ϕ̂k(d(u1, . . . , uk)) (5)

for A ∈ B(G(d, d − 1)k), where u⊥ := {x ∈ Rd : 〈x, u〉 = 0} and ∇k(u1, . . . , uk) denotes the
k-dimensional volume of the parallelepiped spanned by u1, . . . , uk. The constant γ̂k is the
intensity of the intersection process of order k of the hyperplane process X̂. According to [9,
Th. 4.4.8], it is given by

γ̂k =
γ̂ k

k!

∫
(Sd−1)k

∇k(u1, . . . , uk) ϕ̂k(d(u1, . . . , uk)).

Thus, φk is a probability measure.

Let h be a function on the space of k-dimensional polytopes. Let η be a locally finite
system of hyperplanes in Rd which are in general position (also below, η has this meaning).
‘General position’ means that every m-dimensional plane of Rd is contained in at most d−m
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hyperplanes of η, for m = 0, . . . , d. (Note that for η = X̂(ω), ω ∈ Ω, general position
can always be assumed, since for a stationary Poisson hyperplane process this holds almost
surely.) For j ≤ k and x ∈ Rd, we define

hk,j(η, x) := h(K1(x)) + · · ·+ h(Kn(x)),

if x is in the relative interior of a j-face of the tessellation induced by η and K1(x), . . . ,Kn(x)
are the k-faces of X containing that j-face, and we define hk,j(η, x) := 0 if x is not in the
relative interior of a j-face of the tessellation. The number n is obtained as follows. The
affine hull of a j-face is the intersection of precisely d− j hyperplanes of η. Any d−k of these
hyperplanes generate (by intersection) a k-plane containing the j-face. Within this k-plane,
there are 2k−j k-faces of the tessellation containing the j-face. Hence,

n = 2k−j
(
d− j
d− k

)
. (6)

Theorem 1. Let 0 ≤ j ≤ k ≤ d. If h is a translation invariant, nonnegative, measurable
function on k-polytopes, then

Eh(Zk,j) =
2j−k(
d−j
d−k
) ∫

G(d,d−1)k

Ehk,j(X̂ ∪ {H1, . . . ,Hd−j}, 0)φd−j(d(H1, . . . ,Hd−j)).

For k = d, this formula was proved (with different notation and a partially different
argument) by Favis and Weiss [1].

4 Proof of Theorem 1

Let j, k and h be as in Theorem 1. Let B ∈ B(Rd) be a set with λ(B) = 1. With Campbell’s
theorem ([9, Th. 3.1.2]) and the decomposition (2) of the intensity measure Θ(k) of X(k) we
obtain

E
∑

K∈X(k)

h(K)Hj(B ∩ skeljK)

=
∫
K
h(K)Hj(B ∩ skeljK) Θ(k)(dK)

= γ(k)

∫
K0

∫
Rd

h(K + x)Hj(B ∩ skelj(K + x))λ(dx) Q(k)(dK)

= γ(k)

∫
K0

h(K)
∫

Rd

Hj(B ∩ (skeljK) + x))λ(dx) Q(k)(dK).

By Fubini’s theorem (or see [9, Th. 5.2.1]), for a polytope K,∫
Rd

Hj(B ∩ ((skeljK) + x))λ(dx) = Hj(skeljK)λ(B) = Lj(K)

and hence, using (4),

E
∑

K∈X(k)

h(K)Hj(B ∩ skeljK) = γ(k)

∫
K0

h(K)Lj(K) Q(k)(dK)

= γ(k)ELj(Z(k)) Eh(Zk,j).
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In the following computations, we make use of some obvious facts. If F ∈ X(j) and K ∈ X(k),
then for any point x in the relative interior of F the inclusion F ⊂ K holds if and only if
x ∈ K, hence

1{F ⊂ K}Hj(B ∩ F ) =
∫
B∩F

1K(x)Hj(dx).

Every j-face of a k-face of X is a j-face of X and is contained in the intersection of d− j a.s.
uniquely determined hyperplanes of X̂. Every such intersection is the union of j-faces of X
which have pairwise no common relatively interior points. This gives

γ(k)ELj(Z(k)) Eh(Zk,j)

= E
∑

K∈X(k)

h(K)Hj(B ∩ skeljK)

= E
∑

K∈X(k)

h(K)
∑

F∈X(j)

1{F ⊂ K}Hj(B ∩ F )

= E
∑

F∈X(j)

∑
K∈X(k)

h(K)
∫
B∩F

1K(x)Hj(dx)

= E
∑

F∈X(j)

∫
B∩F

hk,j(X̂, x)Hj(dx)

=
1

(d− j)!
E

∑
(H1,...,Hd−j)∈X̂d−j

6=

∫
B∩H1∩···∩Hd−j

hk,j(X̂, x)Hj(dx),

where ηd−j6= := {(H1, . . . ,Hd−j) ∈ ηd−j : Hi pairwise distinct}. We use the abbreviation∫
B∩H1∩···∩Hd−j

hk,j(X̂, x)Hj(dx) =: f(X̂,H1, . . . ,Hd−j)

and apply the Slivnyak–Mecke formula (see [9, Corollary 3.2.3]) with this function f . Em-
ploying the decomposition (1) of the intensity measure Θ̂, we get

E
∑

(H1,...,Hd−j)∈X̂d−j
6=

f(X̂,H1, . . . ,Hd−j)

=
∫
A(d,d−1)d−j

E f(X̂ ∪ {H1, . . . ,Hd−j}, H1, . . . ,Hd−j) Θ̂d−j(d(H1, . . . ,Hd−j))

= γ̂d−j
∫

(Sd−1)d−j

∫ ∞
−∞

. . .

∫ ∞
−∞

E f(X̂ ∪ {H(u1, τ1), . . . ,H(ud−j , τd−j)}, H(u1, τ1), . . . ,H(ud−j , τd−j))

× dτ1 · · · dτd−j ϕ̂d−j(d(u1, . . . , ud−j)).
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Inserting this, we obtain

Eh(Zk,j)

=
γ̂d−j

(d− j)!γ(k)ELj(Z(k))

∫
(Sd−1)d−j

∫ ∞
−∞

. . .

∫ ∞
−∞

E
∫
B∩H(u1,τ1)∩···∩H(ud−j ,τd−j)

hk,j(X̂ ∪ {H1(u1, τ1), . . . ,H(ud−j , τd−j)}, x)Hj(dx)

× dτ1 · · · dτd−j ϕ̂d−j(d(u1, . . . , ud−j)).

For fixed linearly independent unit vectors u1, . . . , ud−j and real numbers τ1, . . . , τd−j , let
z = z(u1, . . . , ud−j , τ1, . . . , τd−j) be the vector in lin{u1, . . . , ud−j} with 〈z, ui〉 = τi for i =
1, . . . , d− j. In the following computations, we write H(ui, τi) = u⊥i +z, substitute x by y+z
and observe that x ∈ u⊥i + z together with x = y+ z implies u⊥i + z = u⊥i + y+ z. Since h is
translation invariant and X̂ is stationary, we get

E
∫
B∩H(u1,τ1)∩···∩H(ud−j ,τd−j)

hk,j(X̂ ∪ {H1(u1, τ1), . . . ,H(ud−j , τd−j)}, x)Hj(dx)

= E
∫
B∩(u⊥1 +z)∩···∩(u⊥d−j+z)

hk,j(X̂ ∪ {u⊥1 + z, . . . , u⊥d−j + z}, x)Hj(dx)

=
∫

(B−z)∩u⊥1 ∩···∩u⊥d−j

Ehk,j((X̂ − y − z) ∪ {u⊥1 , . . . , u⊥d−j}, 0)Hj(dy)

= Ehk,j(X̂ ∪ {u⊥1 , . . . , u⊥d−j}, 0)Hj((B − z) ∩ u⊥1 ∩ · · · ∩ u⊥d−j).

This yields

E h(Zk,j)

=
γ̂d−j

(d− j)!γ(k)ELj(Z(k))

∫
(Sd−1)d−j

∫ ∞
−∞

. . .

∫ ∞
−∞
Hj((B − z) ∩ u⊥1 ∩ · · · ∩ u⊥d−j)

× Ehk,j(X̂ ∪ {u⊥1 , . . . , u⊥d−j}, 0) dτ1 · · · dτd−j ϕ̂d−j(d(u1, . . . , ud−j)).

Recalling how z depends on u1, . . . , ud−j , τ1, . . . , τd−j , we see from the transformation formula
(13) in [8], writing U := lin{u1, . . . , ud−j}, that∫ ∞

−∞
. . .

∫ ∞
−∞
Hj((B − z) ∩ u⊥1 ∩ · · · ∩ u⊥d−j) dτ1 · · · dτd−j

= ∇d−j(u1, . . . , ud−j)
∫
U
Hj(B ∩ (U⊥ + z))Hd−j(dz)

= ∇d−j(u1, . . . , ud−j)λ(B) = ∇d−j(u1, . . . , ud−j).
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Using the definition (5), we conclude that

Eh(Zk,j)

=
γ̂ d−j

(d− j)!γ(k)ELj(Z(k))

∫
(Sd−1)d−j

Ehk,j(X̂ ∪ {u⊥1 , . . . , u⊥d−j}, 0)∇d−j(u1, . . . , ud−j)

× ϕ̂d−j(d(u1, . . . , ud−j))

=
γ̂d−j

γ(k)

1
ELj(Z(k))

∫
G(d,d−1)d−j

Ehk,j(X̂ ∪ {H1, . . . ,Hd−j}, 0)φd−j(d(H1, . . . ,Hd−j)).

With h = 1 and using (6), this gives

1 =
γ̂d−j

γ(k)

1
ELj(Z(k))

· 2k−j
(
d− j
d− k

)
.

This completes the proof of Theorem 1.

5 Inequalities

Theorem 1 is now applied to obtain sharp estimates for the vertex number of the Lj-weighted
typical k-face Zk,j . The set of all (H1, . . . ,Hd−j) ∈ G(d, d − 1)d−j which are not in general
position has φd−j-measure zero, sinc ∇d−j(u1, . . . , ud−j) = 0 if u1, . . . , ud−j are linearly de-
pendent. We use Theorem 1 with h(P ) := f0(P ), hence with

hk,j(X̂ ∪ {H1, . . . ,Hd−j}, 0) =
n∑
i=1

f0(Pi), (7)

where P1, . . . , Pn are the k-faces of the tessellation induced by X̂∪{H1, . . . ,Hd−j} that contain
0. Each of the vertices counted in (7) is generated by r hyperplanes from H1, . . . ,Hd−j and
d − r facets of the zero cell Z0 of X, for some r ∈ {d − k, . . . , d − j}. Every such vertex
belongs to exactly 2k−(d−r)( r

d−k
)

of the k-faces P1, . . . , Pn. This gives

hk,j(X̂ ∪ {H1, . . . ,Hd−j}, 0) = 2k−d
d−j∑

r=d−k
2r
(

r

d− k

) ∑
1≤i1<···<ir≤d−j

f0(Z0 ∩Hi1 ∩ · · · ∩Hir).

We can now argue as in [8] and make use of the associated zonoid and the inequalities for
the volume product of a zonoid (that is, apply [9, (10.52)] to the section process X̂ ∩Hi1 ∩
· · · ∩Hir) and obtain the inequalities

2d−r ≤ Ef0(Z0 ∩Hi1 ∩ · · · ∩Hir) ≤ 2r−d(d− r)!κ2
d−r,

where κm denotes the volume of the m-dimensional unit ball. This gives

2j−k(
d−j
d−k
)Ehk,j(X̂ ∪ {H1, . . . ,Hd−j}, 0)

≤ 2j−k(
d−j
d−k
)2k−d

d−j∑
r=d−k

2r
(

r

d− k

)(
d− j
r

)
· 2r−d(d− r)!κ2

d−r

= 2j−2k
k−j∑
i=0

22i

(
k − j
i

)
(k − i)!κ2

k−i.
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Similarly, the lower bound 2k is obtained, and integration with the probability measure φd−j
gives the final result.

Theorem 2. For 0 ≤ j ≤ k ≤ d,

2k ≤ Ef0(Zk,j) ≤ 2j−2k
k−j∑
i=0

22i

(
k − j
i

)
(k − i)!κ2

k−i.

If X is isotropic, then equality holds on the right side. For k ≥ 2, equality on the left side
holds if and only if X is a parallel mosaic.

The discussion of the equality cases is the same as in [8].

In the isotropic case, we list the values for k = 2:

Ef0(Z2,0) =
π2

8
+ 3 ≈ 4.23

Ef0(Z2,1) =
π2

4
+ 2 ≈ 4.47

Ef0(Z2,2) =
π2

2
≈ 4.93

Thus, weighting by the vertex number gives the smallest value for the expected number of
vertices, which may seem paradoxical at first sight.
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Adv. Appl. Prob. 4 (1972), 508–541.

[3] G. Matheron, Hyperplans Poissoniens et compact de Steiner, Adv. Appl. Prob. 6, (1974)
563–579.

[4] G. Matheron, Random Sets and Integral Geometry, Wiley, New York, 1975.

[5] R.E. Miles, Random polytopes: the generalisation to n dimensions of the intervals of a
Poisson process, Ph.D. Thesis, Cambridge University, 1961.

[6] R.E. Miles, A synopsis of ‘Poisson flats in Euclidean spaces’, Izv. Akad. Nauk Arm. SSR,
Mat. 5 (1970), 263–285; reprinted in: E.F. Harding and D.G. Kendall (eds), Stochastic
Geometry, pp. 202–227. Wiley, New York, 1974.

[7] R.E. Miles, Poisson flats in Euclidean spaces. II: Homogeneous Poisson flats and the
complementary theorem, Adv. Appl. Prob. 3 (1971), 1–43.

[8] R. Schneider, Weighted faces of Poisson hyperplane tessellations, Adv. Appl. Prob.
(SGSA) (to appear).

[9] R. Schneider and W. Weil, Stochastic and Integral Geometry, Springer, Berlin Heidel-
berg, 2008.

8


