
Convexity and geometric probabilities

Rolf Schneider

In the development of the subject of Geometric Probabilities, there was always a close
relationship to Convex Geometry. In these lectures, I want to demonstrate this relati-
onship with a number of examples. These examples are of different types, since I want
to cover various aspects. I start with hitting probabilities for convex bodies, which can
be treated by means of integral geometry. Then I want to explain how several clas-
sical results on convex bodies can be applied to solve some extremal and uniqueness
questions for various parameters connected with random systems of convex sets. The
third topic will be more elementary in view of the questions to be asked, but not so as
far as some of the answers are concerned: I will consider convex hulls of finitely many
random points, under various different aspects.

1 Hitting probabilities for convex bodies

The purpose of this first section is twofold. First, I want to explain how results of
classical integral geometry, in the style of Blaschke and Santaló, have been interpreted
to give results about hitting probabilities for convex bodies. I will sketch how the basic
integral geometric result can be obtained, using more recent developments. Second, I
take this opportunity to introduce, in a natural way, a basic model of contemporary
stochastic geometry, the Poisson process of convex particles.

To do this, I start with a heuristic intuitive question, which was posed and treated
in an old paper by Hadwiger and Giger (1967). Let K and L be two given convex
bodies in Rn. We use K to generate a random field of congruent copies of K. That
means, countably many congruent copies ofK are laid out randomly and independently
in space. The bodies may overlap. It is assumed that the random system has a well
defined number density, that is, an expected mean number of particles per unit volume.
The body L is used as a fixed test body. For a given number j ∈ N0, we ask for the
probability pj of the event that the test body L is hit by exactly j bodies of the random
field.

So far, of course, this is only an imprecise heuristic question. It will require several
steps to make the question precise. In a first step, we choose a large ball Br, of radius
r, that contains L, and we consider only one randomly moving congruent copy of K
under the condition that it hits Br. What is the probability that it hits also L? To
make this a meaningful question, we have to specify the probability distribution of
the randomly moving body. The geometrically most natural assumption is that this

1



distribution is induced from the motion invariant measure µ on the motion group Gn

of the Euclidean space Rn. This means that we represent the congruent copies of K in
the form gK, where g ∈ Gn is a rigid motion. We define a probability distribution on
the space of congruent copies of K by

P(gK ∈ A) =
µ({g ∈ Gn : gK ∩Br 6= ∅ ∧ gK ∈ A})

µ({g ∈ Gn : gK ∩Br 6= ∅})

for Borel sets A of convex bodies.

Now it makes sense to ask for the probability p of the event that gK meets the body
L ⊂ Br, and this probability is given by

p =
µ(K,L)

µ(K,Br)
,

where we have put
µ(K,M) := µ({g ∈ Gn : gK ∩M 6= ∅})

for convex bodies K,M .

How can we compute µ(K,M)? The answer is given by integral geometry. Let us first
suppose that K is a ball of radius ρ. Then the measure of all motions g that bring K
in a hitting position with M is (under suitable normalization) equal to the measure of
all translations which bring the centre of K into the parallel body M +Bρ, and hence
to the volume of this body. The volume of the parallel body is, by Steiner’s formula,
given by

V (M +Bρ) =
n∑

i=0

ρn−iκn−iVi(M)

(κj = volume of j-dimensional unit ball). This polynomial expansion defines important
functionals from the theory of convex bodies, the intrinsic volumes V0, . . . , Vn. With a
different normalization, they are also known as quermassintegrals or Minkowski func-
tionals. Special cases are: Vn, the volume; 2Vn−1, the surface area; V1, a multiple of the
mean width, and V0, the Euler characteristic.

We see already from this special case, K = Bρ, that in the computation of the measure
µ(K,M) the intrinsic volumes must play an essential role. It is a remarkable fact that
no further functionals are needed for the general case. The principal kinematic formula
of integral geometry, in its specialization to convex bodies, says that

µ(K,M) =
n∑

i=0

αniVi(K)Vn−i(M),

with certain explicit constants αni. For the moment, we take this formula for granted.
Later, I will say more about its proof.

Recall that the probability p, of the event that a randomly moving copy of K hitting
Br also hits L, is given by

p =
µ(K,L)

µ(K,Br)
.
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Hence, we have now found that

p =

∑n
i=0 αniVi(K)Vn−i(L)∑n
i=0 αniVi(K)rn−iκn

,

which depends only on the intrinsic volumes of K and L.

In the second step, we consider m randomly chosen congruent copies of K, given in the
form g1K, . . . , gmK with random motions g1, . . . , gm. We assume that these random
motions are stochastically independent and that they all have the same distribution,
as described above. For j ∈ {0, 1, . . . ,m}, let pj denote the probability of the event
that the test body L is hit by exactly j of the random congruent copies of K. It is well
known that the assumed independence leads to a binomial distribution, thus

pj =

(
m

j

)
pj(1− p)m−j

with p as before, i.e.,

p =
µ(K,L)

µ(K,Br)
.

In the third step, we let the ball radius r and the number m of particles tend to infinity,
but in such a way that

lim
m→∞, r→∞

m

V (Br)
= γ

with a positive constant γ. From

mp =
m

V (Br)

V (Br)

µ(K,Br)
µ(K,L)

and

lim
r→∞

µ(K,Br)

V (Br)
= 1

we get mp→ γµ(K,L) =: λ and hence(
m

j

)
pj(1− p)m−j ∼ m!

j!(m− j)!

(
λ

m

)j (
1− λ

m

)m−j

∼ λj

j!
e−λ.

Thus the result is

lim
r→∞

pj =
λj

j!
e−λ

with

λ = γµ(K,L) = γ

n∑
i=0

αniVi(K)Vn−i(L).

We have found, not surprisingly, a Poisson distribution. Its parameter, λ, is expressed
explicitly in terms of the intrinsic volumes of K and L and involves the constant γ,
which can be interpreted as the asymptotic density of our random system of convex
bodies.
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This is the answer given by Hadwiger and Giger to their initial question. The answer
is explicit and elegant, but it is still not the final answer. What the authors have
computed is a limit of probabilities, and this turned out to be a Poisson distribution.
However, this Poisson distribution is not yet interpreted as the distribution of a well-
defined random variable. What we need is a model that allows us to consider from the
beginning countably infinite systems of randomly placed convex bodies, with suitable
independence properties. This requirement leads us, inevitably and in a natural way,
to the notion of a Poisson process of convex particles. Since this is a basic notion of
contemporary stochastic geometry, it seems worthwhile to explain it briefly.

First we consider an arbitrary locally compact space E with a countable base. A subset
F ⊂ E is called locally finite if E ∩ C is finite for every compact subset C of E. Let
Flf be the system of all locally finite subsets of E. One equips Flf with the smallest
σ-algebra for which all counting functions

F 7→ |F ∩ A|, A ⊂ E Borel set,

are measurable. A (simple) point process in E is a random variable X on some proba-
bility space (Ω,A,P) with values in Flf . The expectation

Θ(A) := E|X ∩ A|, A ⊂ E Borel set,

defines the intensity measure of the point processX. The point processX with intensity
measure Θ is called a Poisson process if Θ is finite on compact sets and if, for every
Borel set A ⊂ E with Θ(A) <∞ and all j ∈ N0 one has

P(|X ∩ A| = j) =
Θ(A)j

j!
e−Θ(A).

Such a Poisson process has strong independence properties: For pairwise disjoint Borel
sets A1, A2, . . . ⊂ E, the point processes X ∩ A1, X ∩ A2, . . . are stochastically inde-
pendent. Moreover, the following holds. Under the condition, that in the Borel set A
with 0 < Θ(A) < ∞ there are precisely k points of the process, the process X ∩ A
is stochastically equivalent to the point process defined by k independent, identically
distributed random points with the distribution

Θ A

Θ(A)
.

There are sufficiently many Poisson processes. To any atom free measure Θ on the
Borel sets of E which is finite on compact sets, there is a Poisson process on Θ with
intensity measure Θ. It is unique up to stochastic equivalence.

All this can now be applied to E = Kn, the space of convex bodies in Rn (topologized by
the Hausdorff metric). We consider only point processes in Kn whose intensity measure
Θ satisfies

Θ(KL) <∞ for all L ∈ Kn,

where
KL := {K ∈ Kn : K ∩ L 6= ∅}.
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A point process X in Kn satisfying this assumption will be called a particle process. If
X is, in particular, a Poisson process, we call X a Poisson process of convex particles.
It is called stationary if its intensity measure Θ (which is a Borel measure on Kn) is
translation invariant, and X is called isotropic if Θ is invariant under rotations.

Let us now see how the original question of Hadwiger and Giger can be treated with
this general model. Now we need not restrict ourselves to a field of congruent convex
bodies, but can consider more generally random fields of convex bodies where also the
shapes of the particles are random. We assume that X is a stationary and isotropic
Poisson process of convex particles in Rn. Let L be a fixed convex body; we call it the
test body. For j ∈ N0, we ask for the probability pj that the test body is hit be exactly
j bodies of the particle process. Since our particle process is a Poisson process, this
probability is given by

pj = P(|X ∩ KL| = j) =
Θ(KL)j

j!
e−Θ(KL).

Hence, we have to determine the value Θ(KL) of the intensity measure. Due to the
assumption of stationarity, the intensity measure can be decomposed in the following
way. For K ∈ Kn, let c(K) denote the centre of the circumball of K, and put

K0 := {K ∈ Kn : c(K) = 0}.

Thus K0 represents the translation classes of convex bodies. Then there is a unique
probability measure P0 on K0 and a constant γ > 0 such that∫

Kn

f dΘ = γ

∫
K0

∫
Rn

f(K + x) dλ(x) dP0(K) (1)

holds for every Θ-integrable function f . Here λ is Lebesgue measure on Rn. One calls
P0 the shape distribution and γ the intensity of the particle process X. This intensity
satisfies

γ =
1

λ(B)
E|{K ∈ X : c(K) ∈ B}|

for every Borel set B with 0 < λ(B) < ∞ and can hence be interpreted as the mean
number of particles per unit volume.

Since our particle process is assumed as isotropic, the shape distribution P0 is invariant
under rotations. Hence, when we apply (1) to the indicator function of the set KL, we
may introduce an additional integration over all rotations of K, with the invariant
measure on the rotation group, and this yields

Θ(KL) = γ

∫
K0

∫
Gn

1KL
(gK) dµ(g) dP0(K).

Here ∫
Gn

1KL
(gK) dµ(g) = µ(K,L) =

n∑
i=0

αniVi(K)Vn−i(L)
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by the kinematic formula, hence we end up with

Θ(KL) =
n∑

i=0

αniVn−i(L)V i(X)

with

V i(X) = γ

∫
K0

Vi(K) dP0(K).

This number is called the density of the ith intrinsic volume of our particle process X.
It can be interpreted as

V i(X) =
1

λ(B)
E

∑
K∈X, c(K)∈B

Vi(K),

with B as above, or also as

V i(X) = lim
r→∞

1

Vn(Br)

∑
K∈X,X⊂Br

Vi(K).

We have finally arrived at an explicit expression for the hitting probabilities pj.

The purpose of the foregoing was twofold: to develop a basic model of stochastic geo-
metry, the Poisson particle process, and to demonstrate the role of integral geometry
for the computation of geometric hitting probabilities in the presence of invariance as-
sumptions under the motion group.

2 The employed integral geometry

I will now say more about the proof of the employed principal kinematic formula. It
can be written in the form∫

Gn

χ(gK ∩M) dµ(g) =
n∑

i=0

αniVi(K)Vn−i(M), (2)

where χ denotes the Euler characteristic (χ(∅) = 0, and χ(K) = 1 for a nonempty
compact convex set). There is a very elegant way to prove (5), due to Hadwiger.
It makes use of an axiomatic characterization of the intrinsic volumes, also due to
Hadwiger. Whereas Hadwiger’s original proof was quite long, one has since 1995 a
shorter proof due to Daniel Klain. I will present this proof here, except that a certain
extension theorem for additive functionals and a certain analytical result have to be
taken for granted.

Recall that the intrinsic volumes can be defined via the Steiner formula

Vn(K + ρBn) =
n∑

i=0

ρn−iκn−iVi(K), ρ ≥ 0,
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where now Bn denotes the unit ball. From this definition it is not difficult to deduce
that the intrinsic volume Vi, as a real function on the space of convex bodies, inherits
certain properties from the volume functional. The most important properties are the
following: Vi is additive, continuous, and rigid motion invariant. Generally, a function
ϕ : Kn → R is additive if

ϕ(K ∪ L) + ϕ(K ∩ L) = ϕ(K) + ϕ(L)

for all convex bodies K,L satisfying K ∪ L ∈ Kn. One extends the definition of ϕ by
putting ϕ(∅) = 0. Continuity of a function on Kn refers, of course, to the Hausdorff
metric, and ϕ is rigid motion invariant if ϕ(gK) = ϕ(K) for all K ∈ Kn and every
rigid motion g ∈ Gn. With these definitions, Hadwiger’s celebrated characterization
theorem says that every additive, continuous, rigid motion invariant real function on
Kn is a linear combination of the intrinsic volumes with constant coefficients.

The crucial step for a proof of Hadwiger’s characterization theorem is the following
result.

1.1 Theorem. Suppose that ψ : Kn → R is an additive, continuous, motion invariant
function satisfying ψ(K) = 0 whenever either dimK < n or K is a unit cube. Then
ψ = 0.

Proof. The proof proceeds by induction with respect to the dimension. For n = 0, there
is nothing to prove. If n = 1, ψ vanishes on (closed) segments of unit length, hence
on segments of length 1/k for k ∈ N and therefore on segments of rational length. By
continuity, ψ vanishes on all segments and thus on K1.

Now let n > 1 and suppose that the assertion has been proved in dimensions less than
n. Let H ⊂ Rn be a hyperplane and I a closed segment of length 1, orthogonal to H.
For convex bodies K ⊂ H define ϕ(K) := ψ(K + I). Clearly ϕ has, relative to H, the
properties of ψ in the Theorem, hence the induction hypothesis yields ϕ = 0. For fixed
K ⊂ H, we thus have ψ(K + I) = 0, and a similar argument as used above for n = 1
shows that ψ(K + S) = 0 for any closed segment S orthogonal to H. Thus ψ vanishes
on right convex cylinders.

Let K ⊂ H again be a convex body and let S = conv {0, s} be a segment not parallel to
H. If m ∈ N is sufficiently large, the cylinder Z := K+mS can be cut by a hyperplane
H ′ orthogonal to S so that the two closed halfspaces H−, H+ bounded by H ′ satisfy
K ⊂ H− and K+ms ⊂ H+. Then Z := [(Z∩H−)+ms]∪ (Z∩H+) is a right cylinder,
and we deduce that mµ(K + s) = µ(Z) = µ(Z) = 0. Thus ψ vanishes on arbitrary
convex cylinders.

It can be shown that the continuous additive function ψ on Kn has an additive exten-
sion to the convex ring, which is the system of all finite unions of convex bodies, or
polyconvex sets. The proof is elementary, but will not be given here. We denote this
extension also by ψ. Then

ψ

(
k⋃

i=1

Ki

)
=

k∑
i=1

ψ(Ki)
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whenever K1, . . . , Kk are convex bodies such that dim (Ki ∩ Kj) < n for i 6= j. This
follows from the fact that the additive extension satisfies the inclusion-exclusion prin-
ciple and that ψ has been assumed to vanish on convex bodies of dimension less than
n.

Let P be a polytope and S a segment. The sum P + S has a decomposition

P + S =
k⋃

i=1

Pi,

where P1 = P , the polytope Pi is a convex cylinder for i > 1, and dim (Pi ∩ Pj) < n
for i 6= j. It follows that ψ(P + S) = ψ(P ). By induction, we obtain ψ(P +Z) = ψ(P )
if Z is a finite sum of segments. Such a body Z is called a zonotope, and a convex
body which can be approximated by zonotopes is called a zonoid. Since the function
ψ is continuous, it follows that ψ(K + Z) = ψ(K) for arbitrary convex bodies K and
zonoids Z.

Now we have to use an analytic result for which we do not give a proof. Let K be a
centrally symmetric convex body which is sufficiently smooth (say, its support function
is of class C∞). Then there exist zonoids Z1, Z2 so that K +Z1 = Z2 (this can be seen
from Section 3.5 in my book on Convex Bodies, expecially Theorem 3.5.3). We conclude
that ψ(K) = ψ(K +Z1) = ψ(Z2) = 0. Since every centrally symmetric convex body K
can be approximated by bodies which are centrally symmetric and sufficiently smooth,
it follows from the continuity of ψ that ψ(K) = 0 for all centrally symmetric convex
bodies.

Now let ∆ be a simplex, say ∆ = conv {0, v1, . . . , vn}, without loss of generality. Let
v := v1 + . . .+vn and ∆′ := conv {v, v−v1, . . . , v−vn}, then ∆′ = −∆+v. The vectors
v1, . . . , vn span a parallelotope P . It is the union of ∆,∆′ and the part of P lying
between the hyperplanes spanned by v1, . . . , vn and v−v1, . . . , v−vn, respectively. The
latter, say Q, is a centrally symmetric polytope, and ∆ ∩ Q, ∆′ ∩ Q are of dimension
n − 1. We deduce that 0 = ψ(P ) = ψ(∆) + ψ(Q) + ψ(∆′), thus ψ(−∆) = −ψ(∆).
If the dimension n is even, then −∆ is obtained from ∆ by a proper rigid motion,
and the motion invariance of ψ yields ψ(∆) = 0. If the dimension n > 1 is odd, we
decompose ∆ as follows. Let z be the centre of the inscribed ball of ∆, and let pi be
the point where this ball touches the facet Fi of ∆ (i = 1, . . . , n + 1). For i 6= j, let
Qij be the convex hull of the face Fi ∩ Fj and the points z, pi, pj. The polytope Qij is
invariant under reflection in the hyperplane spanned by Fi ∩ Fj and z. If Q1, . . . , Qm

are the polytopes Qij for 1 ≤ i < j ≤ n + 1 in any order, then P =
⋃m

r=1Qr and
dim (Qr∩Qs) < n for r 6= s. Since −Qr is the image of Qr under a proper rigid motion,
we have ψ(−∆) =

∑
ψ(−Qr) =

∑
ψ(Qr) = ψ(∆). Thus ψ(∆) = 0 for every simplex

∆.

Decomposing a polytope P into simplices, we obtain ψ(P ) = 0. The continuity of ψ
now implies ψ(K) = 0 for all convex bodies K. This finishes the induction and hence
the proof of Theorem 1.1.

Hadwiger’s characterization theorem is now an easy consequence.
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1.2 Theorem. Suppose that ψ : Kn → R is an additive, continuous, motion invariant
function. Then there are constants c0, . . . , cn so that

ψ(K) =
n∑

i=0

ciVi(K)

for all K ∈ Kn.

Proof. We use induction on the dimension. For n = 0, the assertion is trivial. Suppose
that n > 0 and the assertion has been proved in dimensions less than n. Let H ⊂ Rn

be a hyperplane. The restriction of ψ to the convex bodies lying in H is additive,
continuous and invariant under motions of H into itself. By the induction hypothe-
sis, there are constants c0, . . . , cn−1 so that ψ(K) =

∑n−1
i=0 ciVi(K) holds for convex

bodies K ⊂ H (note that the intrinsic volumes do not depend on the dimension of
the surrounding space, as can be deduced, with a little computation, from the Steiner
formula). By the motion invariance of ψ and Vi, this holds for all K ∈ Kn of dimension
less than n. It follows that the function ψ′ defined by

ψ′(K) := ψ(K)−
n∑

i=0

ciVi(K)

for K ∈ Kn, where cn is chosen so that ψ′ vanishes at a fixed unit cube, satisfies the
assumptions of Theorem 1.1. Hence ψ′ = 0, which completes the proof of Theorem 1.2.

We are now in a position to prove the principal kinematic formula, that is, to evaluate
the integral ∫

Gn

χ(K ∩ gM) dµ(g)

for arbitrary convex bodies K and M . For this, we first fix the convex body M and
define a functional ψ by

ψ(K) :=

∫
Gn

χ(K ∩ gM) dµ(g).

It is not difficult to see that the integral is well defined, that is, that the function g 7→
χ(K ∩ gM) is µ-integrable. This follows from the fact that this function is continuous
on the set Gn \Gn(K,M), where

Gn(K,M) := {g ∈ Gn : K and gM touch},

and that Gn(K,M) has µ-measure zero. The latter is a consequence of the fact that
the boundary of a convex body has Lebesgue measure zero.

Thus the function ψ is defined on Kn, and one can show by similar arguments and
using the bounded convergence theorem that it is continuous. From the invariance of the
measure µ it follows easily that ψ is rigid motion invariant. Since the Euler characteristic

9



χ is additive, one sees immediately that ψ is additive. Thus the functional ψ has all
the properties required for Hadwiger’s characterization theorem, and we deduce that∫

Gn

χ(K ∩ gM) dµ(g) =
n∑

i=0

ci(M)Vi(K) (3)

for K ∈ Kn, where the constants ci(M) depend, of course, on the fixed body M . But
we can interchange the roles of K and M and deduce that (3) must also be of the form

n∑
j=0

c′j(K)Vj(M) for all M ∈ Kn.

Both results together give an expression of the form∫
Gn

χ(K ∩ gM) dµ(g) =
n∑

i,j=1

αnijVi(K)Vj(M)

for K,M ∈ Kn, with constants αnij depending only on n, i, j. To determine these
constants, one can choose for K and M balls of different radii. The left-hand side
is then easily computed, and by comparing equal powers of the radii, one finds the
coefficients. In this way, one obtains∫

Gn

χ(K ∩ gM) dµ(g) =
n∑

i=0

αniVi(K)Vn−i(M)

with
αni =

κiκn−i(
n
i

)
κn

.

The late Gian-Carlo Rota was so enthusiastic about Hadwiger’s characterization theo-
rem and the type of applications sketched here that he called it, in a Colloquium
Lecture at the Annual Meeting of the AMS in 1997, the ‘Main Theorem of Geometric
Probability’. This seems a bit exaggerating, since the theory of geometric probabilities
has developed well beyond this type of applications of integral geometry.

3 Particle processes and intrinsic volumes, I

In my first lecture, I have considered elementary hitting probabilities for random sy-
stems of convex bodies. I did this with two goals in mind: first, to introduce a basic
model of stochastic geometry that is built from convex bodies and, second, to show
the role that integral geometry plays in treating probabilities and expectations related
to such systems. In the second lecture, I sketched a quick approach to the required
kinematic formulae of integral geometry. I would now like to present an advanced syn-
thesis of both topics, by proving a basic result about the so-called Boolean model of
stochastic geometry.

10



Let me start with explaining a problem that has its origin in practice. Assume that
we observe a realisation of a random system of convex sets, for example in the plane
a microscopic image of blood cells or, as in material sciences, the polished surface of
some material that contains particles of some other material. Assume further that we
need to know some quantitative aspects. These could be the mean number of particles
per unit area, or the mean perimeter, or the mean area. In general, however, we will
not be able to observe individual particles, but only their union set. We assume that
for the union set we can measure, for a given realisation inside an observation window,
the area, the perimeter, the Euler characteristic. We will show that, under suitable
assumptions, this allows us to obtain estimators for the corresponding parameters of
the underlying particle process. Of course, such a correspondence can only be expected
if the particle process satisfies strong independence assumptions. We shall see that a
Poisson particle process is a perfect model to permit such conclusions.

Let me first recall the definition of a Poisson process of convex particles in En. This is
a measurable map X from some probability space (Ω,A,P) into the set of all locally
finite systems of convex bodies in En with the property that the corresponding counting
variables have Poisson distributions: For every Borel set B ⊂ Kn,

P(|X ∩B| = j) = e−Θ(B) Θ(B)j

j!
,

if Θ(B) := E|X∩B| <∞. Here Θ is a Borel measure on the space Kn of convex bodies,
the intensity measure of the process X. We make two additional assumptions. Writing

KL := {K ∈ Kn : K ∩ L 6= ∅} for L ∈ Kn,

we assume that
Θ(KL) <∞ for all L ∈ Kn.

This means that a given convex test body L is almost surely hit by only finitely many
particles of the process X.

The second assumption is that the measure Θ be invariant under translations. We
express this by saying that the particle process is stationary. As a consequence, the
intensity measure has a decomposition, as already noted. We define

K0 := {K ∈ Kn : c(K) = 0},

where c(K) is the centre of the circumball of K. The space K0 contains exactly one
representative of each translation class of convex bodies. One can show that there is a
probability measure P0 on the space K0 and a constant γ so that∫

Kn

f dΘ = γ

∫
K0

∫
En

f(K + x) dλn(x) dP0(K)

for every nonnegative measurable function f on Kn.

Now we introduce parameters for a quantitative description of the particle process X.
We might, for example, be interested in the mean expected volume of the particles
per unit volume, or the mean expected area, or the mean number of particles per unit

11



volume. All these descriptions are included if we define densities of the intrinsic volumes
V0, . . . , Vn. For this, we choose any Borel set B ⊂ En with 0 < λ(B) <∞ and compute
the expected value

E
∑

K∈X, c(K)∈B

Vi(K).

Here we use Campbell’s theorem about point processes, which says in our case that

E
∑
K∈X

f(K) =

∫
Kn

f(K) dΘ(K).

Using further the decomposition of the intensity measure, we obtain

E
∑

K∈X,c(K)∈B

Vi(K)

= E
∑
K∈X

1{c(K) ∈ B}Vi(K)

=

∫
Kn

1{c(K) ∈ B}Vi(K) dΘ(K)

= γ

∫
K0

∫
En

1{c(K + x) ∈ B}Vi(K + x) dλn(x) dP0(K)

= λn(B)γ

∫
K0

Vi(K) dP0(K).

Hence, the quotient

V i(X) =
1

λn(B)
E

∑
K∈X, c(K)∈B

Vi(K)

does not depend on B, and it has the integral representation

V i(X) = γ

∫
K0

Vi(K) dP0(K).

We call V i(X) the density of the ith intrinsic volume for the particle process X.

Since V0(K) = 1 for every nonempty convex body K, it is clear from the last integral
that

V 0(X) = γ.

So γ is the expected number of particles K in the process X with c(K) in a given set
of unit volume. Therefore, the number γ is called the intensity or particle intensity of
the process X.

As explained initially, we are looking for a possibility to estimate the parameters V i(X)
of the particle process if only the union set of the process can be observed and can be
an object for measurements. Therefore, we now consider the union set

ZX :=
⋃

K∈X

K.

12



This is the most prominent and often used model for a random closed set. Also for ZX ,
we can define densities of the intrinsic volumes. This is obvious for the volume density,
therefore we consider this case first. It can be introduced as

p := P(O ∈ ZX),

the probability that O is covered by the random set ZX . Since X is stationary, the
random sets ZX and ZX + t (for any fixed t ∈ En) have the same distribution. Hence,

p = P(y ∈ ZX) = E1ZX
(y)

holds for every y ∈ En. Let B ⊂ En be a Borel set with 0 < λn(B) < ∞. By Fubini’s
theorem,

pλn(B) =

∫
B

E1ZX
(y) dλn(y)

= E
∫
B

1ZX
(y) dλn(y)

= Eλn(ZX ∩B).

Thus

p =
Eλn(ZX ∩B)

λn(B)
=: ∆n(ZX)

is independent of the set B, and we call this number the volume density of ZX .

We can now find a connection with the volume density V n(X) of the underlying particle
process. In fact, we have

∆n(ZX) = P(O ∈ ZX) = 1− P(O /∈ ZX)

= 1− P(|X ∩ K{0}| = 0)

= 1− e−Θ(K{0})

and

Θ(K{0}) = γ

∫
K0

∫
En

1K{0}(K + x) dλn(x) dP0(K)

= γ

∫
K0

Vn(K) dP0(K)

= V n(X).

Thus we have found
∆n(ZX) = 1− e−V n(X)

This equality should have come as a surprise: it says that the volume density V n(X) of
the particle process X is determined by the volume density ∆n(ZX) of the union set.

13



This is surprising, since in a given realization of ZX one cannot identify the generating
particles, since they overlap, and some particles may even be covered totally by others.
The reason for the existence of the exact relation above lies in the strong independence
properties of Poisson processes.

Densities of the other intrinsic volumes for the union set can also be defined, but this
is less straightforward. We have to use the additive extensions of the intrinsic volumes.
Let us denote by Rn the so-called convex ring, the set of polyconvex sets (finite unions
of convex sets) in En. As I have already mentioned (and used) in my second lecture,
the intrinsic volumes have additive extensions to Rn; these extensions will be denoted
by the same symbols.

If now L is a convex body, then

ZX ∩ L =
⋃

K∈X

(K ∩ L)

is a union of convex bodies, and almost surely of only finitely many of them. Hence, the
intrinsic volume Vi(ZX ∩L) is well defined. Since the additive extension of the intrinsic
volumes are measurable, Vi(ZX ∩ L) is a random variable. Hence, the expectation
EVi(ZX ∩L) is defined. In order to derive from this a density, we need a limit process.
It can be shown that

∆i(ZX) := lim
r→∞

EVi(ZX ∩ rL)

Vn(rL)

always exists and is independent of the choice of the convex body L (with Vn(L) > 0).
The number ∆i(ZX) is the density of the ith intrinsic volume of the random set ZX .
In particular, ∆n(ZX) is the volume density, ∆n−1(ZX) is the density of the surface
area, and ∆0(ZX) is the density of the Euler characteristic. Thus, in dimension two,
all densities ∆i have a simple intuitive geometric meaning.

We recall that it is our aim to establish relations between the densities ∆i(ZX) of the
union set ZX and densities V i(X) of the underlying particle process. One such relation,
for the volume densities, has already been established, namely

∆n(ZX) = 1− e−V n(X). (4)

We will establish a similar relation for the surface area densities, namely

∆n−1(ZX) = V n−1(X)e−V n(X). (5)

To derive (5), the stationarity assumption as for (7) is sufficient. For the other den-
sities, however, we must also assume that the process X is isotropic. Together with
stationarity this means that its distribution is invariant under rigid motions. I will not
derive these further relations, since the pattern of proof will already be clear after (5),
and the other cases tend to become complicated. I mention, however, the result for
n = 2, together with (7) and (5) for this case:

∆2(ZX) = 1− e−V 2(X),

∆1(ZX) = e−V 2(X)V 1(X)

∆0(ZX) = e−V 2(X)

(
γ − 1

4π
V 1(X)2

)
.
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Observe that on the left-hand side we have the density of the area, the boundary length,
and the Euler characteristic of the union sets ZX . These parameters can be measured
(estimated) from observations of the realisation of ZX in an observation window. Then
from the right-hand sides of the equations one gets, successively, estimators for the
area density V 2(X), the perimeter density V 1(X) and, finally, the number density
or intensity γ = V 0(X) of the particle process. Thus one can determine, at least in
principle, the mean particle number γ by measuring, at the union set in a convex
window, areas, boundary lengths and Euler characteristics.

4 Particle processes and intrinsic volumes, II

I want now to explain how the relation (5) is obtained. The first part of the proof is
quite general, so we can consider any Vi. The density of Vi for the union set ZX was
defined by

∆i(ZX) = lim
r→∞

EVi(ZX ∩ rL)

Vn(rL)

for any convex body L with interior points. Therefore, we have to consider the expected
value

EVi(ZX ∩K)

for a convex body K. We use the hitting number

ν := |X ∩ KK |,

the random variable giving the number of particles of the process X that hit K.

For a given realization X(ω) (ω ∈ Ω), let

M1(ω), . . . ,Mν(ω)(ω)

be the particles that hit K. Since the functional Vi is additive on the convex ring, we
can use the inclusion-exclusion principle and obtain

Vi(ZX(ω) ∩K) = Vi

 ⋃
M∈X(ω)

(M ∩K)


=

ν(ω)∑
k=1

(−1)k−1
∑

1≤i1<...<ik≤ν(ω)

Vi(K ∩Mi1(ω) ∩ . . . ∩Mik(ω))

=

ν(ω)∑
k=1

(−1)k−1

k!

∑
(K1,...,Kk)∈Xk

6=(ω)

Vi(K ∩K1 ∩ . . . ∩Kk).

Here Xk
6= := {(K1, . . . , Kk) ∈ (Kn)k : Ki pairwise distinct} is a point process in the

space (Kn)k. Let Λ(k) denote its intensity measure. It is a property of Poisson processes
that

Λ(k) = Θk (= Θ⊗ . . .⊗Θ, k factors).
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To compute the expectation, we have to interchange integration and summation, and for
this we use the bounded convergence theorem. To justify its application, the following
estimate is required. Since the intrinsic volume Vi is monotone on convex bodies, we
have Vi(M) ≤ Vi(K) for all convex bodies M ⊂ K. This gives∣∣∣∣∣∣

ν(ω)∑
k=1

(−1)k−1

k!

∑
(K1,...,Kk)∈Xk

6=(ω)

Vi(K ∩K1 ∩ . . . ∩Kk)

∣∣∣∣∣∣
≤

ν(ω)∑
k=1

(
ν(ω)

k

)
Vi(K) ≤ Vi(K)2ν(ω).

Now ν has a Poisson distribution, hence

E2ν =
∞∑

k=0

2kP(|X ∩ KK | = k)

= e−Θ(KK)

∞∑
k=0

2k Θ(KK)k

k!

= e−Θ(KK)e2Θ(KK) = eΘ(KK) <∞,

since we have assumed that Θ(KK) < ∞ for every convex body K. Thus, we can
apply the bounded convergence theorem and obtain (using Campbell’s theorem for the
process Xk

6=, together with Λ(m) = Θm)

EVi(ZX ∩K)

=
∞∑

k=1

(−1)k−1

k!
E

∑
(K1,...,Kk)∈Xk

6=

Vi(K ∩K1 ∩ . . . ∩Kk)

=
∞∑

k=1

(−1)k−1

k!

∫
Kn

· · ·
∫
Kn

Vi(K ∩K1 ∩ . . . ∩Kk) dΘ(K1) · · · dΘ(Kk)

Now integral geometry enters the scene again. Using the decomposition of the intensity
measure Θ, for the last iterated integral, which we denote by IK , we get

Ik = γk

∫
K0

· · ·
∫
K0

∫
En

· · ·
∫
En

Vi(K ∩ (K1 + x1) ∩ . . . ∩ (Kn + xn))

dλn(x1) · · · dλn(xk) dP0(K1) · · · dP0(Kn).

At this point, we specialize to the case i = n − 1. In this case, we have a translative
integral geometric formula, namely∫

En

Vn−1(K ∩ (K1 + x1)) dλn(x1) = Vn(K)Vn−1(K1) + Vn−1(K)Vn(K1).
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A similar translative formula holds for the volume, namely∫
En

Vn(K ∩ (K1 + x)) dλ(x) = Vn(K)Vn(K1).

However, for the other intrinsic volumes, the kinematic formula requires integration
over the full rotation group, if one wants the result to depend only on intrinsic volumes
of K and K1.

Since both, Vn and Vn−1, satisfy translational formulas, the above formula for Vn−1 can
be iterated, replacing K by K ∩ (K2 + x2), and so on. The result is∫

En

· · ·
∫
En

Vn−1(K0 ∩ (K1 + x1) ∩ . . . ∩ (Kk + xk)) dλn(x1) · · · dλn(xk)

=
k∑

i=0

Vn(K0) · · ·Vn(Ki−1)Vn−1(Ki)Vn(Ki+1) · · ·Vn(Kk).

Using this in the computation of Ik and observing that∫
K0

Vi(M) dP0(M) = V i(X),

we finally get

EVn−1(ZX ∩K)

=
∞∑

k=1

(−1)k−1

k!

[
Vn−1(K)V n(X)k + kVn(K)V n−1(X)V n(X)k−1

]

= Vn−1(K)
(
1− e−V n(X)

)
+ Vn(K)V n−1(X)

∞∑
k=1

(
−V n(X)

)k−1

(k − 1)!

= Vn−1(K)
(
1− e−V n(X)

)
+ Vn(K)V n−1(X)e−V n(X).

Here we replace K by rL (with r > 0), divide by Vn(rL) and let r tend to infinity. We
conclude that

∆n−1(ZX) = lim
r→∞

E(Vn−1(ZX ∩ rL)

Vn(rL)
= e−V n(X)V n−1(X).

We have seen so far how, in principle, the densities V i(X) can be determined from the
densities ∆i(ZX) of the union set. The latter densities were defined by

∆i(ZX) = lim
r→∞

EVi(ZX ∩ rK)

Vn(rK)
.

In practice, one cannot consider arbitrarily large windows, but has to work with a
fixed observation window. The question arises, therefore, whether it is reasonable to
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estimate ∆i(ZX) by Vi(Z ∩K)/Vn(K). The first question would be whether this is an
unbiased estimator, that is, whether its expectation is equal to ∆i(ZX). Here again
integral geometry provides the answer.

We must, however, assume that our underlying Poisson process X is stationary and
isotropic.

By Bn we denote the unit ball. We choose a rotation ϑ ∈ SOn, a vector t ∈ En and a
number r > 0 and consider the random variable

Vi(ZX ∩K ∩ (ϑrBnj + t)).

For its expectation we get, using the motion invariance of Vi and the stationarity and
isotropy of the random set ZX ,

EVi(ZX ∩K ∩ (ϑrBn + t))

= EVi(ϑ
−1(ZX − t) ∩ ϑ−1(K − t) ∩ rBn)

= EVi(ZX ∩ ϑ−1(K − t) ∩ rBn).

One can show that the function

En × SOn × Ω → R

(t, ϑ, ω) 7→ Vi(ZX(ω) ∩K ∩ (ϑBn + t))

is integrable with respect to the product measure λn ⊗ ν ⊗ P (where ν is the invariant
probability measure on the group SOn). Therefore, Fubini’s theorem can be applied,
and we get

E
∫

SOn

∫
En

Vi(ZX ∩K ∩ (ϑrBn + t)) dλn(t) dν(ϑ)

= E
∫

SOn

∫
En

Vi(ZX ∩ (ϑK + t) ∩ rBn) dλn(t) dν(ϑ).

Here the principal kinematic formula can be applied on both sides, and we obtain

n∑
k=i

αnikEVk(ZX ∩K)Vn+i−k(rB
n) =

n∑
k=i

αnikVk(K)EVn+i−k(ZX ∩ rBn).

We divide both sides by Vn(rBn) and let r → ∞. Since Vm(rBn) = rmVm(Bn) and
αnii = 1, we obtain

EVi(ZX ∩K) =
n∑

k=i

αnikVk(K)∆n+i−k(ZX). (6)

This shows that

EVi(ZX ∩K)

Vn(K)
= ∆i(ZX) +

1

Vn(K)

n−1∑
k=i

αnikVk(K)∆n+i−k(ZX).
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If K expands to the whole space, the last term on the right side tends to zero, thus
the estimator

Vi(ZX(ω) ∩K)

Vn(K)

is asymptotically unbiased. But one can also obtain unbiased estimators, by solving
the system (1), which is easy, since it is triangular.

For example, in dimension 2, the following relations are obtained:

EV2(Z ∩K) = V2(K)∆2(Z)

EV1(Z ∩K) = V2(K)∆1(Z) + V1(K)∆2(Z)

EV0(Z ∩K) = V2(K)∆0(Z) +
2

π
V1(K)∆1(Z) + V0(K)∆2(Z)

with the solutions:

∆2(Z) = E
1

V2(K)
V2(Z ∩K)

∆1(Z) = E
[

1

V2(K)
V1(Z ∩K)− V1(K)

V2(K)2
V2(Z ∩K)

]
∆0(Z) = E

[
1

V2(K)
V0(Z ∩K)− 2

π

V1(K)

V2(K)2
V1(Z ∩K)

+

(
2

π

V1(K)2

V2(K)3
− 1

V2(K)2

)
V2(Z ∩K)

]

5 Random planes

In this lecture, I want to give an example for a different type of relation between con-
vexity and geometric probabilities. I will consider an extremal problem for intersection
densities of certain systems of random hyperplanes. The solution of this problem will
be achieved by applying a classical inequality from the geometry of convex bodies, the
Aleksandrov-Fenchel inequality. The convex body to which this inequality is applied is
an auxiliary body which is constructed from the data of the considered random hyper-
plane system. This method of auxiliary bodies has several applications in stochastic
geometry, but I give only one example. The bodies that will be used are of a special
type, namely zonoids, and I will first give a brief introduction to zonoids. I have already
mentioned (and used) zonoids in the sketch of Klain’s proof for Hadwiger’s characteri-
zation theorem. These special convex bodies appear in several different contexts. They
play a role in geometry, measure theory, functional analysis, and some other fields.

If we have a non-atomic Rn-valued measure µ, then Liapounoff’s theorem tells us that
the range of µ is a compact convex set. Not every convex body can appear as such a
range. If Z is obtained in this way and is suitably translated, one can show that its
support function hZ , defined by

hZ(u) := max{〈u, x〉 : x ∈ K}, u ∈ Rn,
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has a representation

hZ(u) =

∫
Sn−1

|〈u, v〉| dϕ(v), u ∈ Rn, (7)

with a finite positive measure ϕ on the unit sphere Sn−1 := {u ∈ Rn : ‖u‖ = 1}. This
measure can be assumed as even (i.e., satisfying ϕ(−A) = ϕ(A) for every Borel set
A ⊂ Sn−1), and then it is uniquely determined.

The representation (7) can be interpreted geometrically. The function u 7→ |〈u, v〉| is
the support function of the line segment conv {−v, v}. If the measure ϕ is concentrated
on finitely many points, then hZ is of the form

hZ(u) =
k∑

i=1

αi|〈u, vi〉|

with α1, . . . , αk > 0. This means that Z is a vector sum of finitely many segments,
a so-called zonotope. This is a polytope with the property that all of its faces are
centrally symmetric. A general zonoid can be approximated, in the Hausdorff metric,
by zonotopes, and conversely every limit of zonotopes is a zonoid. In the space of convex
bodies, the zonoids form a closed, nowhere dense subset.

We will need a formula for the intrinsic volumes of a zonoid. Suppose, first, that Z is
a zonotope, say Z = S1 + . . .+ Sk with line segments S1, . . . , Sk. Then it is easy to see
that

Vn(S1 + . . .+ Sk) =
∑

1≤i1<...<in≤k

Vn(Si1 + . . .+ Sin).

For vectors u1, . . . , uj, we denote by [u1, . . . , uj] the j-dimensional volume of the par-
allelepiped spanned by these vectors. Then the above formula for the volume of a
zonotope extends to a formula for the volume of the zonoid Z represented by (7),
namely

Vn(Z) =
2n

n!

∫
Sn−1

· · ·
∫

Sn−1

[u1, . . . , un] dϕ(u1) · · · dϕ(un).

This formula, in turn, can be generalized to a formula for the intrinsic volumes, namely

Vj(Z) =
2j

j!

∫
Sn−1

· · ·
∫

Sn−1

[u1, . . . , uj] dϕ(u1) · · · dϕ(uj).

After these preliminaries on zonoids, I will now explain the first problem of random
geometry where they have proved useful. In my first lecture, I introduced the notion of
a Poisson point process in a general locally compact (and second countable) space. This
space was then taken to be the space of convex bodies in En. Now we consider the space
of k-dimensional planes in En, which we denote by A(n, k) (the affine Grassmannian).
With its standard topology, it satisfies the assumptions. Hence, we may investigate
Poisson processes in this space.

Let me start with an old example for a possible application of line-processes in the
plane. I quote from a paper by R. Davidson [1974]:
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“One can consider them [i.e., the line processes] as models for the arrangement of fibres
in a sheet of paper. It being clear that the strength of a piece of paper depends largely
on the number of crossings of its fibres, it becomes of interest to find that process which
has the largest number of intersections per unit area relative (. . . ) to its density.”

In order to answer this question, we first need a mathematical model for the system
of fibres. To simplify the situation, we assume that the fibres are modelled by lines,
which are spread out over the plane by some random mechanism. The question for the
intersection point density only makes sense if the lines are sufficiently independent from
each other. The appropriate model, therefore, is that of a Poisson process in the space
of lines. We will, however, immediately study a generalization of the question in higher
dimensions. Instead of lines in the plane, we consider hyperplanes in En, together with
the processes of lower dimensional flats they induce by intersections.

Recall that in the first lecture I have introduced Poisson point processes on an arbitrary
locally compact space E with a countable base. For this space E we choose now the
space A(n, k), the affine Grassmannian of k-flats in Rn, with the usual topology.

We first assume that X is a stationary process of k-flats in En. Stationarity again
means that the distribution of the process is invariant under translations. As usual,
the intensity measure Θ of the process X is defined by

Θ(B) = E|X ∩B|

for Borel set B ⊂ A(n, k). Due to the stationarity assumption, it again has a decom-
position, this time of the form∫

A(n,k)

f dΘ = γ

∫
G(n,k)

∫
L⊥

f(L+ x) dλL⊥(x) dP0(L).

Here G(n, k) denotes the Grassmannian of linear subspaces of En, P0 is a probability
measure on G(n, k), the direction distribution of X, and γ is a constant. This can be
interpreted intuitively in the following ways. Writing

FK := {A ⊂ En : A ∩K 6= ∅},

we have

E|X ∩ FBn| = E
∑
E∈X

1FBn (E)

=

∫
A(n,k)

1FBn (E) dΘ(E)

= γ

∫
G(n,k)

∫
L⊥

1FBn (L+ x) dλL⊥(x) dP0(L) = γκn−k,

thus

γ =
1

κn−k

E|X ∩ FBn|.
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The number γ is called the intensity of the process X. For another interpretation, we
denote by λE, for E ∈ A(n, k), the k-dimensional Lebesgue measure on E, and we
choose a Borel set B ⊂ En. Then

E
∑
E∈X

λE(B) =

∫
A(n,k)

λE(B) dΘ(E)

= γ

∫
G(n,k)

∫
L⊥

λL+x(B) dλL⊥(x) dP0(L)

= γλn(B).

Now let X be a stationary Poisson hyperplane process. If n = 2, this is a line process,
and our initial question asked for the maximal intensity of the process of intersection
points, given the intensity of the line process. For a hyperplane process, there are more
such questions. Let k ∈ {2, . . . , n}. In any realization of X, we take all intersections of
any k hyperplanes of the process which are in general position. This yields a stationary
process Xk of (n − k)-flats. Its intensity γk we call the k-th intersection density of
X. Now the question arises: if the intensity γ (= γ1) of X is given, which processes
yield the maximal k-th intersection density? This question can be answered by using
a classical result from the theory of convex bodies. The application is based on the
following observations.

It is convenient to parametrize hyperplanes in the form

Hu,τ = {x ∈ En : 〈x, u〉 = τ}

with u ∈ Sn−1 and τ ∈ R. Thus u is one of the two unit normal vectors of the
hyperplane, and Hu,τ = H−u,−τ .

The direction distribution P0 of the hyperplane process X is a measure on G(n, n −
1), and it induces in an obvious way an even measure P̃ on the sphere Sn−1. The
decomposition of the intensity measure of X can so be written in the form∫

A(n,n−1)

f dΘ = γ

∫
Sn−1

∫
R

f(Hu,τ ) dτ dP̃(u).

We have now to compute the intensity γk of the k-th intersection process. For this, we
use the representation

γk =
1

κk

E|Xk ∩ FBn|.

For hyperplanes H1, . . . , Hk, let

f(H1, . . . , Hk) :=

{
1, if H1 ∩ . . . ∩Hk ∩Bn 6= ∅, dim(H1 ∩ . . . ∩Hk) = n− k

0 otherwise.
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In the following we use again the fact that for the Poisson process X the intensity
measure of the process Xk

6= is equal to the product measure Θk. We get

E|Xk ∩ FBn| = 1

k!
E

∑
(H1,...,Hk)∈Xk

6=

f(H1, . . . , Hk)

=
1

k!

∫
A(n,n−1)k

f dΛ(k)

=
1

k!

∫
A(n,n−1)

· · ·
∫

A(n,n−1)

f(H1, . . . , Hk) dΘ(H1) · · · dΘ(Hk)

=
γk

k!

∫
Sn−1

· · ·
∫

Sn−1

1{u1, . . . , uk lin. indep.}

∫
R

· · ·
∫
R

1FBn (Hu1,τ1 , . . . , Huk,τk
) dτ1 · · · dτk︸ ︷︷ ︸

Ik

dP̃(u1) · · · dP̃(u2)

Let u1, . . . , uk be linearly independent. Then in order to compute the integral Ik, we
can transform the integral by introducing the intersection point of the hyperplanes
Hu1,τ1 , . . . , Huk,τk

with the subspace spanned by u1, . . . , uk as integration variable. This
gives

Ik = κk[u1, . . . , uk].

The result then is

γk =
1

k!
γk

∫
Sn−1

· · ·
∫

Sn−1

[u1, . . . , uk] dP̃(u1) · · · dP̃(uk).

This should remind us of the formula for the k-th intrinsic volume of a zonoid. We
now use the orientation distribution P̃ as the generating measure of a zonoid Z. The
function

hZ(u) :=
1

2
γ

∫
Sn−1

|〈u, v〉| dP̃(v), u ∈ Sn−1,

is the support function of a zonoid Z. A comparison with the earlier formula reveals the
astonishing fact that the k-th intersection density of our Poisson hyperplane process
X is given by

γk = Vk(Z).

We can now use the fact that the intrinsic volumes of a convex body satisfy various
inequalities. In particular, the Aleksandrov-Fenchel inequality gives the following result.

Theorem. The k-th intersection density γk (k ∈ {2, . . . , n}) of a stationary Poisson
hyperplane process of intensity γ > 0 in En satisfies the inequality

γk ≤ cnkγ
k

(
cnk =

(
n
k

)
κk

n−1

nkκn−kκk−1
n

)
.
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Equality holds if and only if the process is isotropic.

We indicate briefly how the equality condition comes out. The Brunn-Minkowski theory
tells us the in the employed special case of the Aleksandrov-Fenchel inequalities equality
holds only if the convex body Z is a ball. There is an analytical uniqueness theorem
for the integral equation connecting hZ and P̃, and this tells us that in this case P̃
must be rotation invariant. This implies that the intensity measure of the process X
is motion invariant, and since X is a Poisson process, this implies that X itself has a
motion invariant distribution.

The interest of the result lies in the fact that a most symmetric situation is characterized
by an extremal property.

The method of “associated zonoids”, which goes back to G. Matheron, has several more
applications.

For example, the Poisson hyperplane process generates, in the obvious, the zero-cell or
Poisson polytope C0. For the expected number of its vertices one finds

E|vertC0| =
n!

2n
Vn(Z)Vn(Z0).

Hence, known inequalities for the volume product of a zonoid (due, respectively, to
Blaschke-Santaló and Reisner) give the sharp inequalities

2n ≤ E|vertC0| ≤
n!

2n
κ2

n.

Equality on the right holds if and only if a suitable affine image of the hyperplane
process is isotropic. Equality on the left holds if and only if the hyperplanes of X are
almost surely parallel to n fixed hyperplanes.

6 Convex hulls of random points, I

In the remaining part of these lectures, I will consider a more elementary and basic
situation in geometric probability theory, which has often been studied: finitely many
random points, which are independently and identically distributed. One can ask many
simple questions, but the anwers will in general not be easy to obtain. I concentrate
here on questions concerning the convex hull of the random points. First I give a brief
survey over some of the questions that have been treated in the past.

I start with an historical example from the 19th century, Sylvester’s four point problem.
Given four i.i.d. random points in the plane, what is the probability that they form
a convex quadrilateral, that is, are the vertices of their convex hull? Of course, this
question does not make sense as long as we do not specify the distribution of the
random points. Suppose that the distribution is the uniform distribution in a convex
body K in the plane. Let p(K) denote the probability that four random points, chosen
independently according to the uniform distribution in K, form a convex quadrilateral,
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that is, are the vertices of their convex hull. Denoting the area in the plane R2 by A,
it is easy to see that

p(K) = 1− 4

A(K)4

∫
K

∫
K

∫
K

A(conv {x1, x2, x3}) dx1 dx2 dx3

= 1− 4

A(K)
EA(K, 4).

The expectation occurring here is of the following type. Let ϕ be a (measurable) real
function defined on polytopes in Rd. Let K ∈ Kd be a convex body. If X1, . . . , Xn

(where n ∈ N) are independent uniform random points in K, then

ϕ(K,n) := ϕ(conv {X1, . . . , Xn})

is a random variable, and we denote its expectation by Eϕ(K,n). Such expectations
have been the subject of many investigations, for functions ϕ like volume, surface area,
mean width, number of vertices, number of facets, Hausdorff distance from K, and
others. In the following, we will mainly consider the volume in Rd, denoted by V . For
d = 2, we continue to use A for the area.

What can we say about the random variable V (K,n), for a given convex body K? It
is not surprising that explicit computations are only possible for very special convex
bodies, like simplex T d, parallelepiped P d, ball Bd. We suppose these convex bodies to
be of volume 1; the same assumption is made for general convex bodies K appearing
later.

We give a small list of cases where explicit computations have been possible:

d = 2

Reed 1974: moments of A(T 2, 3), A(P 2, 3)
Alagar 1977: distribution fct. of A(T 2, 3)
Henze 1983: distribution fct. of A(P 2, 3)
Buchta 1984: EA(Q,n), Q convex m-gon

d ≥ 2

Pederzoli 1985 – 87: density function of V (Bd, d+ 1)
Affentranger 1988: EV (Bd, n)

Explicit computations may be difficult even in seemingly simple cases. A famous ex-
ample is the problem to compute

EV (T 3, 4),

the expected volume of a tetrahedron whose vertices are chosen at random from a
tetrahedron of unit volume. Victor Klee posed this as a research problem in the Amer.
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Math. Monthly in 1969. Although this seems to be just an elementary exercise in
integration, it is so complicated that it took 30 years until someone succeeded with
the calculation. In the meantime, Monte Carlo experiments have been done at several
places. In this way, Do & Solomon (1986) found the interval [0.01686, 0.01756] as a 95%
confidence interval. Recently Buchta & Reitzner (announced 1993) proved (on more
than 100 pages) that

EV (T 3, 4) =
13

720
− π2

15015
= 0, 0173982 . . .

Making heavy use of computer algebra, Mannion (1994) obtained the same result;
Buchta and reitzner, However, have more general results, also for EV (T 3, n).

For general convex bodies K (remember: V (K) = 1) of course, one will have to be
satisfied with estimates. It is known that

EV (K,n) ≥ EV (Bd, n)

for n ≥ d + 1, with equality if and only if K is an ellipsoid. This result is due to
Blaschke (1917) for d = 2 and n = 3 and to Groemer (1974) in the general case.
The method of proof is the well known Steiner symmetrization. A sharp estimate in
the other direction is harder to obtain. Blaschke (1917) used the so-called process of
“Schüttelung” (shakedown) to prove that

EA(K, 3) ≤ EA(T 2, 3) for d = 2,

with equality only if K is a triangle. This was extended by Dalla & Larman (1991) to
the inequality

EA(K,n) ≤ EA(T 2, n) for n ≥ 3,

and Giannopoulos (1992) showed that equality holds only for triangles. An extension
to higher dimensions is unknown; in particular, it is one of the most intriguing open
questions in this area to decide whether

EV (K, d+ 1) ≤ EV (T d, d+ 1).

In the plane, the known results give

35

48π2
≤ EA(K, 3) ≤ 1

12
.

Henze (1983) has observed that the proofs yield similar estimates for the distribution
function of A(K, 3).

Coming back to Sylvester’s problem, we now see that

2

3
≤ p(K) ≤ 1− 35

12π2
= 0, 7048 . . .

We now turn to asymptotic results for the random variable V (K,n), that is, results
referring to the limit procedure n → ∞. In other words, how does the volume of
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conv {X1, . . . , Xn} behave for large n? In the plane, such questions have first been
treated in three influential papers by Rényi and Sulanke in the Sixties. These papers
have led to many subsequent investigations. I mention only a few of the more recent
results. It turns out that the behaviour of V (K,n) for large n is very sensitive against
the boundary structure of the convex body K. Let us first consider the case of a d-
polytope P . A rather deep result, due to Affentranger and Wieacker (1991) for simple
polytopes and to Bárány & Buchta (1993+) in general, states that

EV (P, n) = 1− T (P )

(d+ 1)d−1(d− 1)!

logd−1n

n
+O

(
logd−2n log log n

n

)
.

Here T (P ) is a combinatorial invariant of P , the number of complete towers F0 ⊂ F1 ⊂
. . . ⊂ Fd−1 of i-dimensional faces of P .

A very different asymptotic behaviour is observed for sufficiently smooth convex bodies.
Let K ∈ Kd be a convex body with a boundary of class C3 and with positive Gauss-
Kronecker curvature κ. Then Bárány (1992) proved that

EV (K,n) = 1− c(d)

∫
∂K

κ
1

d+1 dF
( n
V

)− 2
d+1

+O
(
n−

3
d+1 log2 n

)
,

where c(d) is a constant. Thus the approximations in the case of polytopes and in the
case of smooth bodies are of different orders of magnitude.

These results and the methods involved in their proofs are particularly interesting
from a geometric point of view, but from the stochastic view point they may be a
bit disappointing, since they concern only convergence of expectations. In the plane
one has a few results of a more stochastic nature; exhibiting convergence of random
variables. For example, Cabo & Groeneboom (1991) were able to show that for a k-gon
in R2 one has

1− A(P, n)− 2
3
k log n

n√
100
189
k log n

n

D→ N(0, 1),

where
D→ denotes convergence in distribution and N(0, 1) is the standard normal dis-

tribution.

In all the examples considered so far, the random points were chosen in K. Now we
choose random points on the boundary of K. We assume that X1, X2, . . . is a sequence
of independent, identically distributed random points in ∂K, and we put

Pn := conv {X1, . . . , Xn} for n ∈ N.

Thus we get a sequence of random polytopes inscribed to K. Under suitable assumpti-
ons on the distribution µ of Xi, this sequence will almost surely converge to K (in the
Hausdorff metric), and we may ask, for example, how fast the random variables V (Pn)
converge to 1. First we consider the case d = 2. Let ∂K be of class C2 and of positive
curvature κ. About the distribution µ we assume that it has a positive continuous den-
sity h with respect to the arc length measure. Under these assumptions it was proved
by Schneider (1988) that

lim
n→∞

n2[1− A(Pn)] =
1

2

∫
∂K

h−2κ dS almost surely.
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It follows from Hölder’s inequality that the best approximation (the smallest right-hand

side) is obtained if h is proportional to κ
1
3 .

We can interpret the above as a result on random approximation, measured in terms of
the symmetric-difference metric. A similar result holds for the more familiar Hausdorff
metric δ:

lim
n→∞

(
n

log n

)2

δ(K,Pn) =
1

8
max
s∈∂K

κ(s)

h(s)2
a.s.

In this case, the optimal approximation is obtained if h is proportional to
√
κ.

It would be interesting to have similar results on random approximation in higher
dimensions. For the Hausdorff metric, the following was proved recently (Glasauer &
Schneider). Let K ∈ Kd, d ≥ 3, be of class C3 with positive Gauss-Kronecker curvature.
Let µ be a probability distribution on ∂K which has a positive density h of class C1

with respect to the surface area measure. Now let (Xi)i∈N be a sequence of independent
random points on K with distribution µ. Then

P − lim
n→∞

(
n

log n

) 2
d−1

δ(K,Pn) =
1

2

(
1

bd−1

max
x∈∂K

√
κ(x)

h(x)

) 2
d−1

,

where bd−1 is the volume of the (d − 1)-dimensional unit ball and P − lim denotes a
stochastic limit. Thus for d ≥ 3, we have to make stronger differentiability assumptions,
and we have only stochastic convergence.

Finally, I would like to consider an extremal problem for a geometrical probability
of a different kind. First, let K be a convex body in the plane. Three independently
and uniformly distributed random points in K determine, with probability 1, a unique
circle on which they lie. What is the probability that this circle is contained in K?
Affentranger has shown that this probability is ≤ 2

5
and that equality holds if and only

if K is a circular disk. Next, we ask, not for the circle through the random points, but
for the smallest circular disk containing the points. The probability that this smallest
circular disk is contained in K turns out to be ≤ 3

5
, again with equality if and only if

K is itself a circular disk. I would like to say a few words how the extension of this
question to higher dimensions and arbitrary finite numbers of points can be treated.

For a finite set {x1, . . . , xm} in Rd, let B(x1, . . . , xm) be the circumball (the smallest
closed ball containing the point set), and denote its boundary by ∂B(x1, . . . , xm) and
its radius by r(x1, . . . , xm).

We are interested in the probability

pm(K) := P(B(X1, . . . , Xm) ⊂ K)

for convex bodies K in Rd and m ≥ 2 independent uniform random points X1, . . . , Xm

in K. We first derive a formula for pm(K).

With probability 1, at most d + 1 (and at least two) of the points X1, . . . , Xm lie on
the boundary of B(X1, . . . , Xm), and B(X1, . . . , Xm) is the circumball of these points.
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Writing

fq(x1, . . . , xm) :=


1, if B(x1, . . . , xm) ⊂ K, x1, . . . , xq+1 ∈ ∂B(x1, . . . , xm),

xq+2, . . . , xm ∈ intB(x1, . . . , xm),

0 otherwise,

we therefore get

pm(K) =
1

V (K)m

d∑
q=1

(
m

q + 1

)∫
· · ·
∫
fq(x1, . . . , xm) dx1 · · · dxm

=
1

V (K)m

d∑
q=1

(
m

q + 1

)
κm−q−1

d Aq

with

Aq :=

∫
· · ·
∫
fq(x1, . . . , xq+1)r(x1, . . . , xq+1)

d(m−q−1) dx1 · · · dxq+1.

Using some integral-geometric transformations, the latter integral can be expressed in
the form

Aq =
1

d(m− 1)
cdq(q!)

d−q+1M(q, d− q + 1)

∫
K

dist (z, dx)d(m−1) dz

with
cdq =

ωq−q+1 · · ·ωd

ω1 · · ·ωq

, ωj = jκj,

M(d, k) :=

∫
Sd−1

· · ·
∫

Sd−1

1{u1, . . . , ud+1 not in an open hemisphere}

V (conv {u1, . . . , ud+1})k dσ(u1) · · · dσ(ud+1).

Writing

Ik(K) :=

∫
K

dist (z, ∂K)k dz,

the resulting formula for the probability pm(K) is

pm(K) =
1

d(m− 1)

Id(m−1)(K)

V (K)m

m∑
q=1

(
m

q + 1

)
κm−q−1

d cdq(q!)
d−q+1M(q, d− q + 1).

An inequality of Bol says that

Ik(K) ≤
(
d+m

d

)−1

V (K)
d+m

m κ
−m

d
d ,

with equality if and only if K is a ball. Hence,

pm(K) ≤ pm(Bd),

with equality if and only if K is a ball.

For d = 2, one gets

pm(B2) =
m

2m− 1
.
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7 Convex hulls of random points, II

In the introduction of my last lecture, I have mentioned the historical Sylvester four
point problem: what is the probability that four independent, identically distributed
random points in the plane are the vertices of a convex quadrilateral? As I said, a
common interpretation of this question assumes that the points are uniformly distri-
buted in a given convex body. One may ask whether there are other natural ways of
specifying a probability measure, not depending on an additional choice like that of a
convex body. Now Sylvester’s question is of an affine nature rather than Euclidean. It
would, therefore, be rather more natural to specify a probability distribution on the
set of affine equivalence classes of n-tuples of points. The following approach leads to a
natural distribution. Every configuration of n+ 1 numbered points in general position
in Rd is affinely equivalent to the orthogonal projection of the set of numbered vertices
of a fixed regular simplex T n ⊂ Rn onto a unique d-dimensional linear subspace of
Rn. This establishes a one-to-one correspondence between the (orientation-preserving)
affine equivalence classes of such configurations and an open dense subset of the Grass-
mannian G(n, d) of oriented d-spaces in Rn. The unique rotation invariant probability
measure on G(n, d) thus leads to a probability distribution on the set of affine equi-
valence classes of (n + 1)-tuples of points in general position in Rd. This so-called
“Grassmannian approach” was proposed independently by Vershik and by Goodman
& Pollack.

Later Baryshnikov & Vitale proved that an affine-invariant function on (n+ 1)-tuples
with the described distribution is stochastically equivalent to the same function taken
at an i.i.d. (n + 1)-tuple of standard normal points in Rd. Therefore, the results I am
going to explain can also be considered as results about convex hulls of independent
standard normal points.

What we want to study in the following is the number, fk, of k-dimensional faces of
the convex hull of n+ 1 random points. We use the probability distribution described
above.

Thus, let T n be an n-dimensional regular simplex in Euclidean space Rn. We project T n

orthogonally into a randomly chosen d-dimensional linear subspace. The distribution
of this subspace shall be given by the unique rotation invariant probability measure on
the Grassmannian G(n, d). Let

Efk(ΠdT
n)

denote the expected value of the number of k-faces of the projection. We will derive
an asymptotic formula for this for n→∞.

Firt, we use some integral geometry to obtain an explicit expression involving higher
dimensional angles. This can be done more generally for arbitrary convex polytopes.

The (unique) rotation-invariant probability measure on the Grassmannian G(n, d) is
denoted by νd. For L ∈ G(n, d), let ΠL be the orthogonal projection from Rn onto
L. Let Λ be an isotropic random d-subspace, that is, a random variable with values
in G(n, d) and with distribution νd. We denote the projection ΠΛ by Πd, thus for
a convex polytope P , ΠdP is a random polytope and fk(ΠdP ) is an integer-valued
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random variable, for k ∈ {0, 1, . . . , d− 1}. Its expectation is given by

Efk(ΠdP ) =

∫
G(n,d)

fk(ΠLP ) dνd(L).

The right-hand side can be computed by means of integral geometry. It is clear that a
given k-face Fk of P contributes to the k-faces of the projection ΠLP if and only if the
following is true: For a relatively interior point x of Fk, the affine subspace L⊥+x does
not intersect the interior of P . The situation can now be described by considering a
small sphere with centre x. The polytope P intersects it in a spherical polytope Px. The
subspace L⊥+x intersects the sphere in a great sphere of dimension n−k−1. We have
to determine (essentially) the measure of all rotations which bring this great sphere
into a non-hitting position with the polytope Px. This is a typical task of spherical
integral geometry. The answer can be given in terms of interior and exterior angles.

For a polytope P and a face F of P , let β(F, P ) be the internal and γ(F, P ) the external
angle of P at F . By definition, β(F, F ) = γ(F, F ) = 1 and β(F, P ) = γ(F, P ) = 0 if
F 6⊂ P . Let Fr(P ) denote the set of r-faces of the polytope P .

The result given by spherical integral geometry can then be expressed in the form

Efk(ΠdP ) = 2
∑
S≥0

∑
F∈Fk(P )

∑
G∈Fd−1−2s(P )

β(F,G)γ(G,P ).

Let us specialize this to the case where P ⊂ R3 and d = 2. For k = 0 we get

Ef0(Π2P ) = 2
∑

F0∈F0(P )

∑
G1∈F1(P )

β(F0, G1)︸ ︷︷ ︸
1
2
, if F0⊂G1

γ(G1, P )

= 2
∑

G1∈F1(P )

γ(G1, P ).

For example, for the cube we have γ(G1, P ) = 1
4

and hence Ef0(Π2P ) = 6, which is,
however, not surprising, since in this case f0(Π2P ) = 6 almost surely. For Ef1(Π2P )
we get, of course, the same number.

Now back to the general case. The internal and external angles appearing there are
spherical volumes of spherical polytopes, hence there is little hope for explicit calcula-
tions. Let us now turn to the case of the regular simplex T n in which we are interested.

Let F ∈ Fk(T
n) be a k-dimensional face of T n. The set of exterior unit normal vectors

to T n at some relatively interior point of F is an (n − k − 1)-dimensional regular
spherical simplex lying in an (n − k − 1)-dimensional great sphere Sn−k−1 of the unit
sphere Sn−1. Its spherical edge length is equal to the angle between the exterior normal
vectors of two distinct facets of T n, which is given by

arccos

(
− 1

n

)
.
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Let v(m,α) denote the m-dimensional spherical measure of a regular spherical simplex
in Sm of edge length α, and let ωm be the total measure of Sm. Thus the external angle
of T n at ist k-face Fk is given by

γ(Fk, T
n) =

v
(
n− k − 1, arccos (− 1

n
)
)

ωn−k−1

.

For the internal angle of T n at Fk one finds

β(Fk, T
n) =

v
(
n− k − 1, arccos 1

k+2

)
ωn−k−1

.

Now we consider first the case k = d−1. In this case, the general formula for Efk(ΠdP )
reduces (for P = T n) to

Efd−1(ΠdT
n) = 2

(
n+ 1

d

)
γ(T d−1, T n)

(we consider T k, for k < n, as a face of T n). We need a general integral formula for the
volume of regular spherical simplices. Let m ≥ 2. If

− 1

m− 1
< cosα ≤ 0,

then this formula says that

v(m− 1, α)

ωm−1

=
1√
π

∞∫
−∞

e−t2

 1√
π

Am(α)t∫
−∞

e−s2

ds

m

dt,

where

Am(α) :=

(
− cosα

1 + (m− 1) cosα

) 1
2

.

We use this for m = n− d+ 1 and cosα = − 1
n

and obtain

γ(T d−1, T n) =

√
d

π

∞∫
−∞

e−dt2

 1√
π

t∫
−∞

e−s2

ds

n−d+1

dt.

With

ϕ(t) :=
1√
π

t∫
−∞

e−s2

ds,

our expectation Efd−1(ΠdT
n) can be written in the form

Efd−1(ΠdT
n) = 2

(
n+ 1

d

)√
d

π

∞∫
−∞

e−dt2ϕ(t)n−d+1 dt.

For n→∞, an asymptotic estimation of this integral is possible (Raynaud, Affentran-
ger), and one finds that
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Efd−1(ΠdT
n) ∼ 2d

√
d
(π log n)

d−1
2

as n→∞.

For arbitrary k, we have from the general formula that

Efk(ΠdT
n)02

∑
s≥0

(
n+ 1

d− 2s

)(
d− 2s

k + 1

)
β(T k, T d−2s−1)γ(T d−2s−1, T n).

Now we observe that here the number of nonzero summands does not depend on n and
that the already obtained result, applied to d− 2s instead of s, gives

2

(
n+ 1

d− 2s

)
γ(T d−2s−1, T n) ∼ 2d−2s

√
d− 2s

(π log n)
d−2s−1

2

for n→∞. It follows that the term with s = 0 is dominating, and we obtain

Efk(ΠdT
n) ∼ 2d

√
d

(
d

k + 1

)
β(T k, T d−1)(π log n)

d−1
2

This result has also a counterpart in which the projection is onto subspaces of fixed
codimension:

For any given integers 0 ≤ k < n− d,

Efk(Πn−dT
n) ∼

(
n+ 1

k + 1

)
= fk(T

n)

as n tends to infinity.

I would like to add some remarks on the topic. What I presented here was joint work
with Affentranger, some years ago. We noticed that the obtained value for the expected
number of facets of the orthogonal projection of an n-dimensional regular simplex onto
an isotropic d-dimensional random subspace of Rn, namely

Efd−1(ΠdT
n) = 2

(
n+ 1

d

)√
d

π

∞∫
−∞

e−dt2

 1√
π

t∫
−∞

es2

ds

n−d+1

dt,

coincided with the expected number of facets of the convex hull of n+1 i.i.d. normally
distributed random points in Rn. The explanation came only later, by Baryshnikov
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and Vitale, who established the equivalence that I mendioned earlier. This equivalence
allowed then to transscribe our results on k-faces into results of convex hulls of standard
Gaussian samples.

The regular simplex is one of the three types of regular polytopes that exist in all
dimensions. The other two are the cube and the crosspolytope. For the cube W n the
internal and external angles are easily determined, and one finds that

Efk(ΠdW
n)) = 2

(
n

k

)∑
s≥0

(
n− k

d− 1− 2s− k

)

∼ 2
nd−1

(d− 1− k)!k!

Böröczky and Henk have treated the case of the crosspolytope Cn. They found that

Efk(ΠdC
n) ∼ 2d

√
d

(
d

k + 1

)
β(T k, T d−1)(π log n)

d−1
2 .

This is surprisingly the same result as for the regular simplex. As the authors remark,
they are not aware of any direct argument leading to this coincidence. The authors re-
mark further that the results for simplex and crosspolytope still contain the “unknown”
internal angles β(T k, T d−1). For this, they obtain an asymptotic representation for each
fixed k and for d→∞, namely

β(T k, T d−1) =
(k + 1)

d−k−2
2 e

d−3k−2
2

√
2

d−k√
π

d−k−1
d

d−k−2
2

(
1 +O

(
k2 + 1

d

))
.
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