
The use of spherical harmonics in convex geometry ∗

ROLF SCHNEIDER

1 Introduction

The following lectures concern only half the title of the summer school, namely ‘Fourier
analytic methods in convexity’. More precisely, they deal with the use of elementary harmonic
analysis in convex geometry, and even more precisely, with applications of spherical harmonics
to questions of uniqueness and stability for convex bodies. I will use some classical uniqueness
results for convex bodies as a starting point for a brief introduction to spherical harmonics.
Then I will present some more recent stability and approximation results, obtained with the
aid of spherical harmonics.

We work in d-dimensional Euclidean space Rd with scalar product 〈·, ·〉 and induced norm
‖ · ‖. The rotation group SOd acts transitively on the unit sphere

Sd−1 := {u ∈ Rd : ‖u‖ = 1},

a fact that is crucial for all what follows. We denote the unit ball {x ∈ Rd : ‖x‖ ≤ 1} by Bd.
All signed measures on Sd−1 or Rd that appear in the following are defined on the σ-algebra
of Borel sets. The spherical Lebesgue measure on Sd−1 is denoted by σ.

Several uniqueness questions for convex bodies lead to a functional equation of the fol-
lowing type. Let f be a real function and µ a finite signed measure on the sphere Sd−1. We
consider the equation ∫

Sd−1

f(ϑv)µ(dv) = 0 for all ϑ ∈ SOd (1)

(assuming that all the integrals exist). Here, either the signed measure µ is given, and one has
to determine all continuous functions f satisfying (1), or the function f is given (continuous,
or nonnegative and measurable), and one has to determine all signed measures µ satisfying
(1). In some cases, the solutions may be required to satisfy additional constraints (e.g., to
be even (invariant under reflection in the origin) or odd.

The following collection of classical results about convex bodies exhibits various special
cases of the equation (1) that have occurred in the literature.

1. Aleksandrov’s projection theorem. Let K,L be d-dimensional centrally symmetric
convex bodies with the property that

Vd−1(K|u⊥) = Vd−1(L|u⊥) for all u ∈ Sd−1, (2)
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where Vd−1 denotes the (d − 1)-dimensional volume and K|u⊥ is the orthogonal projection
of K to the hyperplane u⊥ through 0 orthogonal to u. We have

Vd−1(K|u⊥) =
1
2

∫
Sd−1

|〈u, v〉|Sd−1(K,dv),

where Sd−1(K, ·) is the surface area measure of K, a finite measure on Sd−1. Hence, the
condition leads to (1) with

f(v) := |〈e, v〉|, µ := Sd−1(K, ·)− Sd−1(L, ·),

with some fixed vector e ∈ Sd−1 (note that f(ϑv) = |〈ϑ−1e, v〉|, and every u ∈ Sd−1 can be
written as u = ϑ−1e with a suitable rotation ϑ). Due to the assumption of central symmetry,
the signed measure µ is even. It turns out that the only even signed measure satisfying
(1) for this special function f is the zero measure. Two d-dimensional convex bodies K,L
with Sd−1(K, ·) = Sd−1(L, ·) are translates of each other, by the Aleksandrov–Fenchel–Jessen
theorem. Thus, we have to combine an analytic and a geometric uniqueness theorem to
obtain Aleksandrov’ projection theorem.

2. A theorem of Minkowski. This theorem says that every three-dimensional convex
body of constant girth is of constant width. More generally, let K be a d-dimensional convex
body with the property that

V1(K|u⊥) = const for all u ∈ Sd−1. (3)

Here V1 is (up to a constant factor) the mean width. To reformulate condition (3), we
introduce the support function

h(K,x) := max{〈x, y〉 : y ∈ K}

and the great subsphere Se := {u ∈ Sd−1 : 〈u, e〉 = 0}, for e ∈ Sd−1. We denote by σe the
(d − 2)-dimensional spherical Lebesgue measure on Se. The condition on K can be written
as ∫

Se

[h(K, v) + h(K,−v)− c]σe(dv) = 0 for all e ∈ Sd−1,

with a suitable number c > 0, or equivalently with some fixed e ∈ Sd−1,∫
Se

[h(K,ϑv) + h(K,−ϑv)− c]σe(dv) = 0 for all ϑ ∈ SOd.

This is of type (1) with µ = σe, and it turns out that the only even solution is the zero
function. Hence, h(K, v) + h(K,−v) = c for v ∈ Sd−1, which means that K is of constant
width c.

3. A theorem of Funk. This theorem says that every convex body (or star body) K
with the property that every hyperplane through 0 divides the body into two parts of equal
volume, must be centrally symmetric with respect to 0. Introducing the radial function of
K,

ρ(K, v) := max{λ ≥ 0 : λv ∈ K}, v ∈ Sd−1,

the condition leads to an equation of type (1) with

f(v) := ρ(K, v)d − ρ(K,−v)d, µ := σ e+,
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where e ∈ Sd−1 is fixed, e+ := {u ∈ Sd−1 : 〈u, e〉 ≥ 0}, and denotes restriction of a
measure. In this case, the only odd solution is the zero function, hence we obtain that
ρ(K, v) = ρ(K,−v) for all v ∈ Sd−1.

4. A theorem of Blaschke. As Monge has found, an ellipsoid has the following property:
the vertices of all its circumscribed boxes (rectangular parallelepipeds) lie on a fixed sphere.
Blaschke has proved that this property characterizes ellipsoids among all convex bodies.
Suppose that the vertices of the boxes circumscribed to the convex body K lie on the sphere
with center 0 and radius R. Let (e1, . . . , ed) be an orthonormal basis of Rd. Then

d∑
i=1

h(K,ϑei)2 = R2 for all ϑ ∈ SOd.

This is equivalent to (1) with

f(v) := h(K, v)2 − 1
d
R2, µ :=

d∑
i=1

δei ,

where δ denotes the Dirac measure. For this measure µ, the only continuous solutions of (1)
are restrictions to Sd−1 of harmonic homogeneous polynomials of degree two, and this yields
that K must be an ellipsoid.

5. A theorem of Meissner. Let T be a regular simplex. A convex body K contained
in T is called a rotor of T if it can be completely turned inside T , always gliding along its
facets. More precisely, this condition demands that to every rotation ϑ ∈ SOd there exists a
translation vector t such that ϑK+ t is contained in T and touches all the facets of T . Which
rotors exist besides a ball? This question was answered by Meissner in three-space. We shall
later mention the answer for d-space. The question leads to the following equation of type
(1). Let u1, . . . , ud+1 be the outer unit normal vectors of the facets of T , and let R denote
the inradius of T . Then the condition is equivalent to (1) with

f(v) := h(K, v)−R, µ :=
d+1∑
i=1

δui .

These results are all very old. They serve us here to illuminate the role of the unifying
equation ∫

Sd−1

f(ϑv)µ(dv) = 0 for all ϑ ∈ SOd.

To give a first hint of how to approach it, suppose that the signed measure µ is given and we
want to find all solutions f ∈ C(Sd−1). Clearly, the set of all solutions is a vector subspace V
of C(Sd−1), which is invariant under the action of the rotation group, that is, if f ∈ V , then
for each ϑ ∈ SOd also ϑf ∈ V (where (ϑf)(u) := f(ϑ−1u)). Now the spherical harmonics
enter the scene. They are, in a sense to be made precise, the elements of the simplest invariant
subspaces of C(Sd−1). From the spherical harmonics solving the equation, one can construct
all solutions. We turn now to an introduction to the theory of spherical harmonics.
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2 Spherical Harmonics

First, we define spherical harmonics as restrictions of homogeneous harmonic polynomials to
the unit sphere and use this to establish their basic properties. After that, the connection of
spherical harmonics with representations of the rotation group is explained.

To relate functions on the sphere Sd−1 to functions on Rd, we define

f̌(x) = f∨(x) := f

(
x

‖x‖

)
, x ∈ Rd \ {0},

for f : Sd−1 → R, and for g : Rd → R we denote by ĝ = g∧ := g|Sd−1 the restriction to Sd−1.

A function F : Rd → R is called homogeneous of degree k if

F (tx) = tkF (x)

holds for all x ∈ Rd and all t > 0. If this holds and F is of class C1, then it follows by partial
differentiation that ∂iF is homogeneous of degree k − 1.

The Laplace operator ∆ on Rd is defined by

∆f :=
d∑
i=1

∂iif.

A function f : Rd → R of class C2 with ∆f = 0 is called harmonic.

In the following, f and g are real functions of class C2 on the sphere Sd−1. The spherical
Laplace operator can be defined by

∆Sf := (∆f̌)|Sd−1 = (∆f∨)∧.

Lemma 2.1. ∫
Sd−1

f∆Sg dσ =
∫
Sd−1

g∆Sf dσ.

Proof. The following integrals over balls and spheres are with respect to the standard mea-
sures, and ∂/∂r denotes differentiation in radial direction. Using Green’s formula in Rd, we
obtain ∫

1≤‖x‖≤2
(ǧ∆f − f̌∆g) =

∫
‖x‖=2

(
ǧ
∂f̌

∂r
− f̌ ∂ǧ

∂r

)
−
∫
‖x‖=1

(
ǧ
∂f̌

∂r
− f̌ ∂ǧ

∂r

)
.

Since f̌ , ǧ are homogeneous of degree 0, the right side vanishes; more explicitly,

f̌(tx) = f̌(x)⇒
d∑
i=1

∂f̌

∂xi
(tx) · x = 0⇒ 〈gradf̌(x), x〉 = 0.

For the integration on the left side, we use spherical cordinates, that is, we write x ∈ Rd \{0}
in the form x = rx0 with r = ‖x‖ and x0 ∈ Sd−1 and employ the transformation formula
dV (x) = rd−1 dσ(x0) dr for the volume element at x. Since ∆f̌ is homogeneous of degree −2,
we get

0 =
∫ 2

1

∫
Sd−1

(g∆Sf − f∆Sg)rd−3 dσ dr
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and thus the assertion. �

For homogeneous functions, the Laplace operator can be expressed in terms of the spher-
ical Laplace operator.

Lemma 2.2. If f : Rd \ {0} → R is twice continuously differentiable and homogeneous of
degree k, then

∆f(x) = k(k + d− 2)‖x‖k−2f

(
x

‖x‖

)
+ ‖x‖k−2∆S f̂

(
x

‖x‖

)
.

Proof. We apply the formula

∆(HG) = H∆G+ 2〈gradH, gradG〉+G∆H

to the functions defined by H(X) := ‖x‖k and G := f̂∨ (thus, G(x) = f(x/‖x‖)). This gives

∆f(x) = ∆(HG)(x) = ‖x‖k∆G(x) + 2〈grad ‖x‖k, gradG(x)〉+G(x)∆H(x).

The scalar product of the two gradients vanishes, since gradH is orthogonal to the sphere
‖x‖ = const and grad G is tangential to it. Moreover, ∆G is homogeneous of degree −2,
hence

∆G(x) = ‖x‖−2∆G
(

x

‖x‖

)
= ‖x‖−2∆S f̂

(
x

‖x‖

)
.

Calculation gives
∆H(x) = k(k + d− 2)‖x‖k−2,

which completes the proof. �

We define the following finite-dimensional real vector spaces of polynomials on Rd.

• Pk vector space of real polynomials of degree ≤ k on Rd,

• Pkh subspace of polynomials that are homogeneous of degree k,

• Qkh subspace of harmonic polynomials in Pkh .

Lemma 2.3. If p ∈ Pkh satisfies∫
Sd−1

pq dσ = 0 for all q ∈ Pk−2
h ,

then p is harmonic.

Proof. Suppose that the condition is satisfied, and let q ∈ Pk−2
h . Using, in this order, Lemma

2.2, the assumption, Lemma 2.1, Lemma 2.2, the assumption, we get∫
Sd−1

q∆p dσ =
∫
Sd−1

q[k(k + d− 2)p+ ∆Sp] dσ =
∫
Sd−1

q∆Sp dσ

=
∫
Sd−1

p∆Sq dσ =
∫
Sd−1

p[∆q − (k − 2)(k + d− 4)q] dσ = 0.
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Here we have used that q ∈ Pk−2
h and r2∆q ∈ Pk−2

h , with r(x) := ‖x‖; on the unit sphere,
the two polynomials ∆q and r2∆q are the same. Choosing q = ∆p, we obtain ∆p = 0 on
Sd−1 and hence ∆p = 0 in general, by homogeneity. �

Now we define spherical harmonics.

Definition. The elements of the vector space

Hdk := {p̂ : p ∈ Qkh}

of functions on Sd−1 are called spherical harmonics of order k (k = 0, 1, 2, . . . ).

We denote by C(Sd−1) the real vector space of real continuous functions on Sd−1 and
introduce on it a scalar product (·, ·) by

(f, g) :=
∫
Sd−1

fg dσ.

The following theorem shows, among other results, that the spherical harmonics are
eigenfunctions of the spherical Laplace operator.

Theorem 2.1.

(a) For f ∈ Hdk,
∆Sf = −k(k + d− 2)f.

(b) For f ∈ Hdk and g ∈ Hdj with k 6= j,

(f, g) = 0.

(c) Pk|Sd−1 = Hd0 ⊕ · · · ⊕ Hdk.

Proof. (a) Let p ∈ Qkh. By Lemma 2.2,

0 = ∆p(x) = k(k + d− 2)‖x‖k−2p

(
x

‖x‖

)
+ ‖x‖k−2∆S p̂

(
x

‖x‖

)
.

For ‖x‖ = 1 we obtain the assertion.

(b) By Lemma 2.1,

0 = (∆Sf, g)− (f,∆S , g)

= [−k(k + d− 2) + j(j + d− 2)](f, g).

For k 6= j this gives (f, g) = 0.

(c) Let p ∈ Pk. It suffices to show that p̂ ∈ Hd0 + · · · + Hdk. First let p ∈ Pkh . In the
space Pk|Sd−1 = {p̂ : p ∈ Pk}, the vector p̂ has (with respect to the scalar product (·, ·)) an
orthogonal decomposition

p̂ = p̂k−2 + ĥ with p̂k−2 ∈ Pk−2
h |Sd−1 and (ĥ, q̂) = 0 for all q ∈ Pk−2

h .

We can write
p(x) = h(x) + ‖x‖2pk−2(x),
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then h ∈ Pkh . It follows from Lemma 2.3 that h is harmonic. Repeating the procedure, we
obtain

p(x) = hk(x) + ‖x‖2hk−2(x) + ‖x‖4hk−4(x) + · · ·+

{
‖x‖kh0, k even,

‖x‖k−1h1(x), k odd,

with hj ∈ Qjh for each j. This shows that

p̂ ∈ Hdk +Hdk−2 + · · ·+

{
Hd0, if k is even

Hd1, if k is odd.

Since every polynomial is a sum of homogeneous polynomials, the assertion follows. �

Now we are in a position to determine the dimension of the vector space of spherical
harmonics of a given order.

Theorem 2.2.

dimHdk =: N(d, k) =
(
k + d− 1

k

)
−
(
k + d− 3
k − 2

)

=
2k + d− 2
k + d− 2

(
k + d− 2

k

)
.

Proof. Put dimPkh =: dk,d. In d variables, there are dk,d−1 monomials of degree k that do
not contain xd, and there are dk−1,d monomials that contain xd at least once, thus dk,d =
dk−1,d + dk,d−1. Since dk,1 = 1 and d0,d = 1, we obtain

dk,d =
(
k + d− 1

k

)
.

We assert that
Pk|Sd−1 = Pkh |Sd−1 ⊕ Pk−1

h |Sd−1 (4)

for k ≥ 1. For the proof we note that the intersection of the two spaces on the right is {0},
because if k is even (odd), then Pkh |Sd−1 contains only even (odd) functions and Pk−1

h |Sd−1

contains only odd (even) functions. The polynomial p ∈ Pk is the sum of homogeneous
polynomials. For q ∈ Pjh we have r2q ∈ Pj+2

h with r(x) = ‖x‖. This yields (4).

Let k ≥ 2. Using Theorem 2.1, relation (4) and the equation dimPkh |Sd−1 = dimPkh ,
which holds by homogeneity, we obtain

dimHdk = dim(Hd0 ⊕ · · · ⊕ Hdk)− dim(Hd0 ⊕ · · · ⊕ Hdk−1)

= dimPk|Sd−1 − dimPk−1|Sd−1

= dimPkh + dimPk−1
h − (dimPk−1

h + dimPk−2
h )

= dk,d − dk−2,d.

This yields the assertion. The result holds also for k = 0 and k = 1 (for k = 0 and d = 2, the
fraction has to be read as 1). �
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Remark. For many purposes, the most important consequence of Theorem 2.2 is the estimate

dimHdk = O(kd−2) as k →∞.

For the applications, the following result is fundamental.

Theorem 2.3. Every function f ∈ C(Sd−1) can be uniformly approximated by finite sums
of spherical harmonics.

Proof. Let f : Sd−1 → R be continuous. By the theorem of Stone–Weierstraß, the homo-
geneous extension f̌ can be approximated by polynomials, uniformly on the compact set
1 ≤ ‖x‖ ≤ 2. Therefore, f can be uniformly approximated by elements of

⋃
k∈N Pk|Sd−1, and

by Theorem 2.1(c) each element of Pk|Sd−1 is a finite sum of spherical harmonics. �

From this result, we shall deduce the completeness of the system of spherical harmonics.

In each space Hdk we choose an orthonormal basis

(Yk1, . . . , YkN(d,k));

then {Ykj : k ∈ N0, j = 1, . . . , N(d, k)} is an orthonormal system in C(Sd−1), by Theorem
2.1(b). The Fourier series of a function f ∈ C(Sd−1) with respect to this orthonormal
system is given by

f ∼
∞∑
k=0

N(d,k)∑
j=1

(f, Ykj)Ykj =
∞∑
k=0

πkf.

Here

πkf :=
N(d,k)∑
j=1

(f, Ykj)Ykj (5)

is independent of the choice of the basis, since it is the image of f under orthogonal projec-
tion to the space Hdk. The series

∑∞
k=0 πkf is sometimes called the condensed harmonic

expansion of f .

We write the functions of {Ykj : k ∈ N0, j = 1, . . . , N(d, k)} into a single sequence, which
we denote by (bj)j∈N. This is an orthonormal sequence, which means that

(bi, bj) = δij :=
{

1, i = j,
0, ı 6= j.

The L2-norm of a function f ∈ C(Sd−1) is defined by

‖f‖2 := (f, f)1/2 =
(∫

Sd−1

f2 dσ
)1/2

.

Theorem 2.4. The sequence (bj)j∈N is complete, that is, the Parseval relation

∞∑
j=1

(f, bj)2 = ‖f‖22 (6)
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holds for each f ∈ C(Sd−1). Moreover,

lim
n→∞

∥∥∥∥∥∥f −
n∑
j=1

(f, bj)bj

∥∥∥∥∥∥
2

= 0 (7)

and (also known as Parseval relation)

∞∑
j=1

(f, bj)(g, bj) = (f, g) (8)

for f, g ∈ C(Sd−1).

Proof. Let f, g ∈ C(Sd−1). We write

cj := (f, bj)

for the Fourier coefficients of the function f with respect to the orthonormal sequence
(bj)j∈N. Let n ∈ N and any numbers α1, . . . , αn be given. A simple calculation, using the
properties of the scalar product, gives∥∥∥∥∥∥f −

n∑
j=1

αjbj

∥∥∥∥∥∥
2

2

= ‖f‖22 −
n∑
j=1

|cj |2 +
n∑
j=1

|cj − αj |2. (9)

We deduce (with αj = cj) that

‖f‖22 −
n∑
j=1

|cj |2 =

∥∥∥∥∥∥f −
n∑
j=1

cjbj

∥∥∥∥∥∥
2

2

(10)

and ∥∥∥∥∥∥f −
n∑
j=1

cjbj

∥∥∥∥∥∥
2

2

≤

∥∥∥∥∥∥f −
n∑
j=1

αjbj

∥∥∥∥∥∥
2

2

. (11)

Let ε > 0. It follows from Theorem 2.3 that there exists a function of the form h =∑n
j=1 αjbj with ‖f − h‖2 < ε. By (11),∥∥∥∥∥∥f −

n∑
j=1

cjbj

∥∥∥∥∥∥
2

2

≤ ‖f − h‖22 < ε2.

This proves (7) and, in view of (10), also (6).

Relation (8) now follows from n∑
j=1

(f, bj)bj , g

 =
n∑
j=1

(f, bj)(g, bj)

and the continuity of the scalar product with respect to its induced norm. �
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The Parseval relation has the immediate consequence that

(f, bj) = 0 for all j ∈ N implies f = 0.

We remark that the Parseval relation (8) can also be written in the form

∞∑
k=0

(πkf, πkg) = (f, g) (12)

(for the proof, use (5), the orthogonality relation (Yki, Ykj) = δij , and (8)).

The space Hdk of spherical harmonics of order k has the important property of being
invariant under rotations. For a function f : Sd−1 → R or f : Rd → R and a rotation
ϑ ∈ SOd, the function ϑf is defined by ϑf := f ◦ ϑ−1, thus

(ϑf)(x) := f(ϑ−1x)

for all x in the domain of f . We have (ϑ1ϑ2)f = ϑ1(ϑ2f) and idf = f , thus the mapping
(ϑ, f)→ ϑf is an operation of SOd on C(Sd−1).

Theorem 2.5. The space Hdk of spherical harmonics of order k is invariant under rotations,
that is, if f ∈ Hdk and ϑ ∈ SOd, then ϑf ∈ SOd.

Proof. The Laplace operator ∆ is invariant under rotations, that is, ∆(f ◦ ϑ) = (∆f) ◦ ϑ
holds for every function f of class C2 on Rd and all ϑ ∈ SOd. This follows by a simple
calculation. Hence, if p is a harmonic homogeneous polynomial of degree k on Rd, then ϑp
is also harmonic, for ϑ ∈ SOd, and it is clearly homogeneous of degree k. Now restriction to
the sphere yields the assertion. �

It is important to note that also the scalar product (·, ·) is rotation invariant, that is, it
satisfies

(ϑf, ϑg) = (f, g) for ϑ ∈ SOd.

This follows immediately from the rotation invariance of the spherical Lebesgue measure σ.

By Theorem 2.1, the spherical harmonics are eigenfunctions of an invariant differential
operator on the sphere. Now we show that they are also eigenfunctions of a class of invariant
integral operators. This gives us the opportunity to introduce the particularly important
spherical harmonics with axial symmetry, that is, of the form h(u) = f(〈u, e〉) for fixed
e ∈ Sd−1.

We consider an integral operator A : C(Sd−1)→ C(Sd−1) of the form

(Af)(u) =
∫
Sd−1

K(〈u, v〉)f(v) dσ(v),

with a given continuous function K : [−1, 1] → R. Thus, the kernel K(〈u, v〉) depends only
on the spherical distance of the points u and v. We want to investigate the effect of A on a
spherical harmonic.

For this, we define

fm(u, v) :=
N∑
j=1

Ymj(u)Ymj(v), u, v ∈ Sd−1,
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for m ∈ N0, where N := N(d,m) and (Ym1, . . . , YmN ) is the previously chosen orthonor-
mal basis of the space Hdm. The function fm is independent of the choice of this basis:
if (Y ′m1, . . . , Y

′
mN ) is a second orthonormal basis of Hdm, then Ymj =

∑N
r=1 arjY

′
mr with an

orthogonal matrix (arj), and inserting this we verify the statement (a similar argument is
carried out in the proof of Lemma 2.10). For any rotation ϑ ∈ SOd, also (ϑYm1, . . . , ϑYmN )
is an orthonormal basis. This follows from Theorem 2.5 and the rotation invariance of the
scalar product (·, ·). We deduce that fm(ϑ−1u, ϑ−1v) = fm(u, v) for ϑ ∈ SOd. Thus, fm(u, v)
depends only of the scalar product 〈u, v〉, Therefore, there exists a function Cm : [−1, 1]→ R
with

Cm(〈u, v〉) =
N∑
j=1

Ymj(u)Ymj(v).

We establish some properties of this function.

Proposition 1. For Y ∈ Hdk,∫
Sd−1

Cm(〈u, v〉)Y (u) dσ(u) =
∫
Sd−1

N∑
j=1

Ymj(u)Ymj(v)Y (u) dσ(u)

=
N∑
j=1

(Ymj , Y )Ymj(v) = δkmY (v).

Proposition 2. Cm is a polynomial of degree ≤ m.

Proof. For fixed v ∈ Sd−1, the function

Cm(〈·, v〉) =
N∑
j=1

Ymj(v)Ymj

is a spherical harmonic of order m, hence (choose for v the first basis vector of Rd)

‖x‖mCm
(
x1

‖x‖

)
, x = (x1, . . . , xm),

is a homogeneous harmonic polynomial of degree m. Therefore, we have

‖x‖mCm
(
x1

‖x‖

)
=
∑
|α|=m

aαx
α =: P (x),

with multi index notation, that is,

|α| :=
d∑
j=1

αj , xα := xα1
1 · · ·x

αd
d , aα := aα1...αd

for nonnegative integers α1, . . . , αd. With arbitrary γ, put

x := (cos γ, sin γ, 0, . . . , 0),

y := (cos γ,− sin γ, 0, . . . , 0),
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then Cm(cos γ) = P (x) = P (y), hence

Cm(cos γ) =
1
2

[P (x) + P (y)]

=
1
2

∑
|α|=m

aα(cos γ)α1 [(sin γ)α2 + (− sin γ)α2 ].

The function (sin γ)α2 + (− sin γ)α2 is zero for odd α2, and for even α2 it is a polynomial of
degree α2 in cos γ. Therefore, Cm(cos γ) is a polynomial of degree at most m in cos γ, as
stated.

In the following, we fix a vector e ∈ Sd−1. Any vector u ∈ Sd−1 can be decomposed in
the form

u = te+
√

1− t2 u0 with u0 ⊥ e.

Thus, t = 〈u, e〉 and
u0 ∈ Se := {x ∈ Sd−1 : 〈x, e〉 = 0}.

We denote the (d − 2)-dimensional spherical Lebesgue measure on the great subsphere Se
by σe. With a suitable parametrization of the sphere Sd−1, one proves the transformation
formula

dσ(u) = (1− t2)
d−3
2 dt dσe(u0).

Proposition 3. For k 6= m, ∫ 1

−1
Ck(t)Cm(t)(1− t2)

d−3
2 dt = 0.

Proof. Since Ck(〈·, e〉) and Cm(〈·, e〉) are orthogonal, we obtain

0 =
∫
Sd−1

Ck(〈u, e〉)Cm(〈u, e〉) dσ(u)

=
∫
Se

∫ 1

−1
Ck(t)Cm(t)(1− t2)

d−3
2 dt dσe(u0),

from which the assertion follows.

Proposition 4. The polynomial Cm is of degree m.

Proof. By Proposition 1, no Ck is identically zero, and by the orthogonality property of
Proposition 3, the functions C0, . . . , Cm are linearly independent. Since Ck is of degree ≤ k,
induction with respect to m yields that Cm is precisely of degree m.

Proposition 5. With ωd−1 := σe(Se),

Cm(1) = ωd−1

∫ 1

−1
Cm(t)2(1− t2)

d−3
2 dt.

12



Proof. Since Cm(〈·, e〉) ∈ Hdm for fixed e, Proposition 1 gives

Cm(1) = Cm(〈e, e〉) =
∫
Sd−1

Cm(〈u, e〉)Cm(〈u, e〉) dσ(u)

=
∫
Se

∫ 1

−1
Cm(t)2(1− t2)

d−3
2 dt dσe(u0),

which gives the assertion.

Now we can prove a useful result.

Theorem 2.6 (Funk–Hecke theorem). If F : [−1, 1] → R is a bounded measurable
function and Ym is a spherical harmonic of order m, then∫

Sd−1

F (〈u, v〉)Ym(v) dσ(v) = λmYm(u)

with

λm = ωd−1Cm(1)−1

∫ 1

−1
F (t)Cm(t)(1− t2)

d−3
2 dt.

Proof. First we assume that F is a polynomial. If F is of degree k, it follows from Proposition
4 that there is a representation

F =
k∑
j=0

ajCj

with real coefficients a1, . . . , ak. If we multiply this by Cm and use Propositions 3 and 5, we
obtain

am = ωd−1Cm(1)−1

∫ 1

−1
F (t)Cm(t)(1− t2)

d−3
2 dt.

Now Proposition 1 completes the proof in the case of a polynomial. Since every continuous
function on [−1, 1] can be uniformly approximated by polynomials, the assertion extends to
the case where F is a continuous function. The further extension to bounded measurable
functions uses standard arguments of integration theory (see [16, p. 99]). �

The polynomials Cm appearing in the previous considerations are known as Gegenbauer
polynomials. They are indispensable when one actually works with spherical harmonics.
We use them in a renormalized form, with a notation showing also the dimension.

Definition. The polynomial defined by

P dk (t) :=
ωd

N(d, k)
Ck(t)

with

ωd := σ(Sd−1) =
2π

n
2

Γ
(
n
2

)
is the Legendre polynomial of dimension d and degree (or order) k.

Thus, by the definition of the polynomials Ck, with N := N(d, k),

N∑
j=1

Ykj(u)Ykj(v) =
N

ωd
P dk (〈u, v〉) (13)
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for u, v ∈ Sd−1.

For f ∈ C(Sd−1), we get from (13)

N

ωd

∫
Sd−1

f(v)P dk (〈u, v〉) dσ(v) =
∫
Sd−1

f(v)
N∑
j=1

Ykj(u)Ykj(v) dσ(v)

=
N∑
j=1

(f, Ykj)Ykj(u) = πkf(u),

by (5). Thus, the orthogonal projection to Hdk can be written in the elegant form

πkf =
N

ωd

∫
Sd−1

f(v)P dk (〈u, v〉) dσ(v). (14)

We list some properties of the Legendre polynomials, but we do not give all the proofs.
These proofs can be found, for example, in the book by Groemer [16].

Lemma 2.4.
P dk (1) = 1, (15)

|P dk (t)| ≤ 1 for t ∈ [−1, 1]. (16)

Proof. Putting u = v in (13) and integrating over Sd−1, we obtain (15). For given t ∈ [−1, 1],
we choose u, v ∈ Sd−1 with t = 〈u, v〉. From (13) and the Cauchy–Schwarz inequality, we get

|P dk (t)|2 = |P dk (〈u, v〉)|2 =
ω2
d

N2

 N∑
j=1

Ykj(u)Ykj(v)

2

≤

ωd
N

N∑
j=1

Ykj(u)2

ωd
N

N∑
j=1

Ykj(v)2


= P dk (1)2 = 1

and thus (16). �

Lemma 2.5 (Formula of Rodrigues).

P dk (t) =
(−1)k

2k(ν + 1)(ν + 2) · · · (ν + k)
(1− t2)−ν

dk

dtk
(1− t2)ν+k

with
ν :=

d− 3
2

.

Lemma 2.6. If k is odd, then P dk (0) = 0; if k is even, then

P dk (0) = (−1)
k
2

1 · 3 · · · (k − 1)
(d− 1)(d+ 1) · · · (d+ k − 3)

.
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The next lemmas provide recursion formulas, differential equations, and generating func-
tions.

Lemma 2.7. For k ≥ 0 (with P d−1 := 0),

(k + d− 2)P dk+1(t)− (2k + d− 2)tP dk (t) + kP dk−1(t) = 0.

Lemma 2.8.

(1− t)2 d2P dk (t)
dt2

− (d− 1)t
dP dk (t)

dt
+ k(k + d− 2)P dk (t) = 0.

Lemma 2.9. Let |t| ≤ 1 and |r| ≤ 1. If d ≥ 3, then

1
(1 + r2 − 2rt)(d−2)/2

=
∞∑
k=0

(
k + d− 3
d− 3

)
P dk (t)rk,

and for d ≥ 2,
1− r2

(1 + r2 − 2rt)d/2
=
∞∑
k=0

N(d, k)P dk (t)rk.

For every ε > 0, the series converge absolutely and uniformly in |t| ≤ 1, |r| ≤ 1− ε.

The following theorem uses the Poisson integral to provide a summation method for the
harmonic expansion. Let F ∈ C(Sd−1), and let

F ∼
∞∑
k=0

πkF

be the condensed harmonic expansion. By Theorem 2.4, the series
∑∞

k=0 πkF converges to F
in the ‖ · ‖2 norm, but in general it does not converge in the maximum norm ‖ · ‖∞. However,
the following theorem shows that for every ε > 0 there exist numbers n ∈ N and r ∈ (0, 1)
such that ∥∥∥∥∥F −

n∑
k=0

rkπkF

∥∥∥∥∥
∞

≤ ε.

Theorem 2.7. Let F be a continuous function on Sd−1. For r ∈ (−1, 1), define Fr by

Fr(u) :=
1
ωd

∫
Sd−1

1− r2

(1− 2r〈u, v〉+ r2)d/2
F (v)σ(dv).

Then the following holds.

(a) If

F ∼
∞∑
k=0

πkF,

then

Fr ∼
∞∑
k=0

rkπkF.
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In particular,
Yr(u) = rkY (u)

for Y ∈ Hdk.

For each r ∈ (−1, 1),

Fr(u) =
∞∑
k=0

rkπkF (u)

with uniform convergence for u ∈ Sd−1.

(b) The relation
lim
r→1

Fr(u) = F (u)

holds uniformly in u.

(c) For every continuous function G on Sd−1,

(Fr, G) = (F,Gr).

Proof. The second series expansion of Lemma 2.9 yields

Fr(u) =
1
ωd

∫
Sd−1

1− r2

(1− 2r〈u, v〉+ r2)d/2
F (v)σ(dv)

=
∞∑
k=0

N(d, k)
ωd

rk
∫
Sd−1

F (v)P dk (〈u, v〉)σ(dv).

For fixed r, the convergence is uniform in u. Inserting (13), we obtain

Fr(u) =
∞∑
k=0

rk
N(d,k)∑
j=1

(F, Ykj)Ykj(u) =
∞∑
k=0

rk(πkF )(u).

This proves (a).

In particular, with F ≡ 1 we get

1
ωd

∫
Sd−1

1− r2

(1− 2r〈u, v〉+ r2)d/2
σ(dv) = 1.

For the proof of (b), let ε > 0 be given. By Theorem 2.3 there is a finite sum of spherical
harmonics, say

H = G0 + · · ·+Gm, Gj ∈ Hdj ,

with
|F (v)−H(v)| < ε

3
for v ∈ Sd−1.

It follows that

|Fr(v)−Hr(v)| ≤ 1
ωd

∫
Sd−1

1− r2

(1− 2r〈u, v〉+ r2)d/2
|F (v)−H(v)|σ(dv) ≤ ε

3
.

By (a) we have
Hr = G0 + rG1 · · ·+ rmGm
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and therefore, for r ∈ (0, 1),

|Fr(u)− F (u)| ≤ |Fr(u)−Hr(u)|+ |Hr(u)−H(u)|+ |H(u)− F (u)|

≤ 2
3
ε+ |(1− r)G1(u) + · · ·+ (1− rm)Gm(u)|

≤ 2
3
ε+ (1− rm)mM

≤ 2
3
ε+ (1− r)m2M

with M := max{|Gj(u)| : u ∈ Sd−1, j = 1, . . . ,m}. If F is given, m2M depends only on ε.
Putting δ := ε/3m2M , we get

|Fr(u)− F (u)| ≤ ε for 1− δ < r < 1.

This finishes the proof of (b). Assertion (c) is clear. �

Now we return to general spherical harmonics. Our next aim is to identify the spaces Hdk
of spherical harmonics of order k, k ∈ N0, as the irreducible subspaces of C(Sd−1) for the
operation of the rotation group. Recall that this operation is defined by (ϑf)(u) = f(ϑ−1u).

Definition. Let V be a vector subspace of C(Sd−1). The space V is called invariant if
f ∈ V implies ϑf ∈ V for all ϑ ∈ SOd. The subspace V is called irreducible if it is invariant
and has no invariant subspace except {0} and V .

By Theorem 2.5, each space Hdk is invariant, and we want to show that it is irreducible.

We choose a vector e ∈ Sd−1 and put

Ge := {ϑ ∈ SOd : ϑe = e};

this is a subgroup of SOd, called the stabilizer of e. Further, let

We := {f ∈ C(Sd−1) : ϑf = f for all ϑ ∈ Ge}.

Thus, We is the subspace of functions that are invariant under all rotations fixing e.

Lemma 2.10. If V ⊂ C(Sd−1) is an invariant subspace with 0 < dimV <∞, then

dim(V ∩We) ≥ 1.

Proof. In the finite-dimensional vector space V , say with dimV = n, we can choose an
orthonormal basis (f1, . . . , fn) with respect to the scalar product (·, ·). For each j and ϑ ∈
SOd, also ϑfj ∈ V , hence there is a representation

ϑfj =
n∑
i=1

tij(ϑ)fi

with real coefficients tij(ϑ). Since the scalar product is rotation invariant, also (ϑf1, . . . , ϑfn)
is an orthonormal basis. Therefore, the coefficient matrix (tij(ϑ))ni,j=1 is orthogonal. We
define a function F : Sd−1 × Sd−1 → R by

F (u, v) :=
n∑
i=1

fi(u)fi(v).
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Then, for ϑ ∈ SOd,

F (ϑ−1u, ϑ−1v) =
n∑
i=1

(ϑfi)(u)(ϑfi)(v) =
n∑
i=1

n∑
r=1

tri(ϑ)fr(u)
n∑
s=1

tsi(ϑ)fs(v)

=
n∑

r,s=1

fr(u)fs(v)
n∑
i=1

tri(ϑ)tsi(ϑ) =
n∑
r=1

fr(u)fr(v) = F (u, v).

In particular, the function f defined by

f := F (e, ·) =
n∑
i=1

fi(e)fi

has the property that, for all ϑ ∈ Ge and all x ∈ Sd−1,

f(ϑx) = F (e, ϑx) = F (ϑe, ϑx) = F (e, x) = f(x).

This shows that f ∈We. On the other hand, also f ∈ V . Suppose that f = 0. Then from the
linear independence of f1, . . . , fn it follows that fi(e) = 0 for i = 1, . . . , n. Let g ∈ V . There
is a representation g =

∑n
i=1 aifi, which gives g(e) = 0. To x ∈ Sd−1 there exists a rotation

ϑ ∈ SOd with ϑx = e. It follows that g(x) = g(ϑ−1e) = (ϑg)(e) = 0, since also ϑg ∈ V . We
conclude that g = 0. Since g ∈ V was arbitrary, this gives dimV = 0, a contradiction. Thus
f 6= 0 and, therefore, dim(V ∩We) ≥ 1. �

Lemma 2.11. If V ⊂ C(Sd−1) is a finite-dimensional invariant subspace with

dim(V ∩We) ≤ 1,

then V is irreducible.

Proof. Let dim(V ∩We) ≤ 1, and suppose that V is not irreducible. Then V has an invariant
subspace U different from {0} and V . Let U⊥ be the orthogonal complement of U in V with
respect to the scalar product (·, ·). Let f ∈ U⊥. For g ∈ U and ϑ ∈ SOd we have, using the
rotation invariance of the scalar product and the invariance of U ,

(ϑf, g) = (f, ϑ−1g) = 0,

hence ϑf ∈ U⊥. Thus, also the subspace U⊥ is invariant, and it is different from {0} and V .
By Lemma 2.10,

dim(U ∩We) ≥ 1, dim(U⊥ ∩We) ≥ 1.

Since dim(V ∩We) ≤ 1 by assumption and dim(U ∩ U⊥) = 0, this is a contradiction. �

Theorem 2.8. The space Hdk of spherical harmonics of order k is irreducible.

Proof. We take e = ed, where (e1, . . . , ed) is the standard basis of Rd. Let f ∈ Hdk ∩We. The
function f is the restriction to Sd−1 of a homogeneous harmonic polynomial p of degree k.
We can write it in the form

p(x) =
k∑
j=0

xk−jd pj(x), x = (x1, . . . , xd), x = (x1, . . . , xd−1),

18



where pj : Rd−1 → R is a homogeneous polynomial of degree j. For ϑ ∈ Ge,

k∑
j=0

xk−jd pj(x) = p(x) = p(ϑx) =
k∑
j=0

xk−jd pj(ϑx).

Since this holds for all real xd, it follows that pj(x) = pj(ϑx). This being true for all ϑ ∈ Ge,
the function pj depends only on x2

1 + · · · + x2
d−1. Since pj is homogeneous of degree j, we

obtain
pj(x) = cj(x2

1 + · · ·+ x2
d−1)j/2

with cj ∈ R. Since pj is a polynomial, we have cj = 0 for odd j, thus

p(x) =
∑

0≤i≤k/2

c2ix
k−2i
d (x2

1 + · · ·+ x2
d−1)i.

The polynomial p is harmonic. The condition ∆p = 0 yields recursion formulas for the
coefficients. Up to a factor c0, they have the unique solution

c2i = (−1)
k(k − 1) · · · (k − 2i+ 1)

2i!(d− 1)(d+ 1) · · · (d+ 2i− 3)
c0.

Thus, the polynomial p is uniquely determined up to a constant factor. This shows that
dim(Hdk ∩We) ≤ 1. Now Lemma 2.11 proves the assertion. �

From the irreducibility of the spaces of spherical harmonics we immediately deduce a fact
that is basic for many applications. Let A : V → C(Sd−1) be a linear mapping, where V is
an invariant subspace of C(Sd−1). This mapping is called intertwining if Aϑf = ϑAf for
all f ∈ V and all ϑ ∈ SOd. For example, each projection πk is intertwining. We denote by
Hd the vector space of all finite linear combinations of spherical harmonics.

Theorem 2.9. Let d ≥ 3. Let A : Hd → C(Sd−1) be an intertwining linear map. Then for
each m ∈ N0 there exists a real number cm such that

πmA = cmπm.

Proof. Let m, k ∈ N0, and let Am be the restriction of A toHdm. Then πkAm is an intertwining
linear map from Hdm to Hdk. The kernel of this map is an invariant subspace of Hdm and hence
either equal to {0} or to Hdm. Thus, πkAm is either injective or the zero map. Similarly,
the image of πkAm is an invariant subspace of Hdk and hence equal to either {0} or Hdk. It
follows that πkAm is either 0 or bijective. The latter case is only possible if m = k, since
dimHdm 6= dimHdk for m 6= k and d ≥ 3. From πkAm = 0 for k 6= m and the completeness of
the system of spherical harmonics it follows that Am maps Hdm into itself.

Let e ∈ Sd−1. The function P dm(〈e, ·〉) ∈ Hdm is invariant under the group Ge and is, up
to a constant factor, the only element of Hdm with this property, as shown in the proof of
Theorem 2.8. For ϑ ∈ Ge we have ϑπmAmP dm(〈e, ·〉) = πmAmϑP

d
m(〈e, ·〉) = πmAmP

d
m(〈e, ·〉),

hence πmAmP dm(〈e, ·〉) = cm(e)P dm(〈e, ·〉) with a real constant cm(e). Replacing e be ϑe with
ϑ ∈ SOd, we see that cm does not depend on e. The functions P dm(〈e, ·〉), e ∈ Sd−1, linearly
span Hdm (since their span is an invariant subspace), hence it follows that

πmAY =

{
cmY, if Y ∈ Hdm,

0, if Y ∈ Hdk and k 6= m.
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By linearity, we obtain
πmAf = cmπmf,

if f is a finite sum of spherical harmonics. �

There are versions of Theorem 2.9 for intertwining maps between other suitable vector
spaces of functions (or signed measures) on Sd−1, possibly under continuity assumptions on
A. For obvious reasons, maps with the properties of Theorem 2.9 are known as multiplier
maps.

We add a brief remark about representations of the rotation group. Let V ⊂ C(Sd−1) be
an invariant subspace. Then f ∈ V and ϑ ∈ SOd implies ϑf ∈ V . We now write ϑf =: T (ϑ)f ,
then

T (ϑ) : V → V

is obviously a linear mapping of V into itself. It is bijective and thus an automorphism of V .
In this way, a mapping

T : SOd → AutV

ϑ 7→ T (ϑ)

from the rotation group SOd into the automorphism group AutV of the vector space V is
defined. It satisfies

T (ϑ1)T (ϑ2)f = ϑ1(ϑ2f) = (ϑ1ϑ2)f = T (ϑ1ϑ2)f

for all f ∈ V , hence T (ϑ1ϑ2) = T (ϑ1)T (ϑ2). Thus, T is a homomorphism. Generally, a
homomorphism of a group G into the automorphism group of a vector space is called a
representation of the group. A representation T : G → AutV is called irreducible if V
does not have a subspace U 6= {0}, V with T (ϑ)u ∈ U for all ϑ ∈ G and all u ∈ U . In this
sense, the spherical harmonics are closely tied together with irreducible representations of
the rotation group.

Let k ∈ N and recall that (Yk1, . . . , YkN ) with N = N(d, k) is an orthonormal basis of Hdk.
As in the proof of Lemma 2.10, for ϑ ∈ SOd we have

T (ϑ)Ykj = ϑYkj =
N∑
i=1

tkij(ϑ)Yki, j = 1, . . . , N, (17)

and the matrix M(ϑ) := (tkij(ϑ))Ni,j=1 is orthogonal. The relation T (ϑ1ϑ2) = T (ϑ1)T (ϑ2)
translates into M(ϑ1ϑ2) = M(ϑ1)M(ϑ2) (matrix product). Thus, M is a homomorphism of
the group SOd into the group of orthogonal N ×N matrices, a matrix valued orthogonal
representation of the rotation group.

Each function tkij defined by (17) is a continuous function on the topological group SOd.
These functions satisfy orthogonality relations. On the compact group SOd there is a unique
invariant measure ν with ν(SOd) = 1, its normalized Haar measure.

Lemma 2.12. For all k,m ∈ N0, i, j ∈ {1, . . . , N(d, k)}, r, s ∈ {1, . . . , N(d,m)},

N(d, k)
∫
SOd

tkijt
m
rs dν = δkmδirδjs.

A proof can be found, e.g., in [35].
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Using the functions tkij , we derive, for later application, a relation that is similar in spirit
to the Funk–Hecke formula, but involves integration over the rotation group.

Lemma 2.13. If f ∈ C(Sd−1), k ∈ N0 and i, j = 1, . . . , N(d, k), then∫
SOd

f(ϑ−1u)tkij(ϑ) ν(dϑ) = N(d, k)−1(f, Ykj)Yki(u) (18)

for u ∈ Sd−1.

Proof. First we consider the case where f is a spherical harmonic from a basis, say f = Ymr.
Then ∫

SOd

Ymr(ϑ−1u)tkij(ϑ) ν(dϑ) =
∫
SOd

N(d,m)∑
s=1

tmsr(ϑ)Yms(u)tkij(ϑ) ν(dϑ)

=
N(d,m)∑
s=1

N(d,m)−1δmkδsiδrjYms(u)

= N(d,m)−1δmkδrjYki(u)

= N(d, n)−1(Ymr, Ykj)Yki(u).

Thus, (18) holds for f = Ymr. By linearity, (18) is true if f is a finite sum of spherical
harmonics. By Theorem 2.3, every continuous function on the sphere can be uniformly
approximated by finite sums of spherical harmonics. This proves the assertion. �

Hints to the literature. The book by Groemer [16], aiming at geometric applications,
gives also an introduction to the theory of spherical harmonics. Older introductions, still
recommended, are by Müller [23] and, in a brief, elegant article from which we have much
profited, by Seeley [33]. The connections between group representations and spherical func-
tions are presented, for example, in Vilenkin [35] and Coifman and Weiss [6]. Lemma 2.13 is
taken from [29].

3 Rotation Invariant Equations and Uniqueness Problems

We are now in a position to treat the equation∫
Sd−1

f(ϑv)µ(dv) = 0 for all ϑ ∈ SOd. (19)

Here µ is a finite signed measure and f is a continuous real function on the sphere Sd−1. The
continuity assumption can be relaxed, when necessary. We recall that

(f, g) =
∫
Sd−1

fg dσ

and

πkf =
N(d,k)∑
j=1

(f, Ykj)Ykj .
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Similarly, we put

(µ, f) = (f, µ) :=
∫
Sd−1

f dµ

and

πkµ :=
N(d,k)∑
j=1

(µ, Ykj)Ykj .

Equation (19) can now be written in the form

(ϑf, µ) = 0 for all ϑ ∈ SOd. (20)

Definition. Let k ∈ N0. We say that the space Hdk occurs in f if πkf 6= 0. Similarly, Hdk
occurs in µ if πkµ 6= 0.

Thus, Hdk occurs in f if and only if there exists a spherical harmonic Yk of order k with
(f, Yk) 6= 0, and analogously for µ.

Theorem 3.1. Relation (19) holds if and only if no space Hdk, k ∈ N0, occurs in both f and
µ.

Proof. Using Fubini’s theorem and (18), we obtain

N(d, k)
∫
SOd

(ϑf, µ)tkij(ϑ) ν(dϑ) = N(d, k)
∫
Sd−1

∫
SOd

f(ϑ−1u)tkij(ϑ) ν(dϑ)µ(du)

= (f, Ykj)(µ, Yki).

If now (20) holds, then (f, Ykj)(µ, Yki) = 0 for k ∈ N0 and i, j = 1, . . . , N(d, k). Suppose
that, say, Hdk occurs in µ. Then there exists a number i ∈ {1, . . . , N(d, k)} with (µ, Yki) 6= 0.
It follows that (f, Ykj) = 0 for j = 1, . . . , N(d, k), thus Hdk does not occur in f .

Suppose, conversely, that no space Hdk, k ∈ N0, occurs in both f and µ. The function
f ∈ C(Sd−1) can be uniformly approximated by a sequence (fn)n∈N, where each fn is a finite
sum of spherical harmonics. By Theorem 2.7, we can assume that in each fn only those
spaces Hdk occur that occur also in f .

A given fn is a finite sum of spherical harmonics,

fn =
m∑
k=0

N(d,k)∑
j=1

(fn, Ykj)Ykj .

This gives

(ϑfn, µ) =
m∑
k=0

N(d,k)∑
i,j=1

tkij(ϑ)(fn, Ykj)(µ, Yki). (21)

If Hdk occurs in µ, then it does not occur in f and hence not in fn. Therefore,
(fn, Ykj)(µ, Yki) = 0 for all i, j. If Hdk does not occur in µ, then this also holds. We de-
duce that (ϑfn, µ) = 0. By approximation, we get (ϑf, µ) = 0. �

The general principle expressed in Theorem 3.1 can be applied to various geometric situ-
ations, as we now demonstrate with the classical examples from the introduction and a few
others.
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Aleksandrov’s projection theorem, as mentioned, combines an analytic and a geometric
uniqueness result. The analytic one, which interests us here, is the following.

Theorem 3.2. If the even finite signed measure µ on Sd−1 satisfies∫
Sd−1

|〈u, v〉|µ(dv) = 0 for all u ∈ Sd−1, (22)

then µ = 0.

Before the proof, we consider a more general integral transform, of which some other cases
have found geometric applications. Let Φ : [−1, 1] → R be a bounded measurable function.
For a finite signed measure µ on Sd−1, define the function TΦµ by

(TΦµ)(u) :=
∫
Sd−1

Φ(〈u, v〉)µ(dv) for u ∈ Sd−1.

For a bounded measurable function f on Sd−1, the transform TΦf is defined as TΦ(fσ), where
fσ :=

∫
(·) f dσ. From Fubini’s theorem, we immediately get the symmetry relation

(TΦµ, f) = (µ, TΦf). (23)

If Ym is a spherical harmonic of order m, then the Funk–Hecke formula of Theorem 2.6
gives

TΦYm = ad,m(Φ)Ym

with

ad,m(Φ) = ωd−1

∫ 1

−1
Φ(t)P dm(t)(1− t2)

d−3
2 dt.

Since (TΦµ, f) = (µ, TΦf) = ad,m(Φ)(µ, Ym), from the condensed harmonic expansion

µ ∼
∞∑
k=0

πkµ

of µ we obtain the condensed harmonic expansion of TΦµ as

TΦµ ∼
∞∑
k=0

ad,m(Φ)πkµ.

Therefore, the transformation TΦ is called a multiplier transform, and the numbers ad,m(Φ)
are called the multipliers of TΦ.

For the transformations TΦ we formulate the crucial consequence of Theorem 3.1 in an
alternative version and with a different proof.

Theorem 3.3. Let Φ : [−1, 1]→ R be a bounded measurable function. If µ is a finite signed
measure on Sd−1 with

TΦµ = 0 (24)

and
πmµ = 0 for the m ∈ N0 with ad,m(Φ) = 0, (25)

then
µ = 0.
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Proof. The assumption (24) gives 0 = (TΦµ, Ym) = (µ, TΦYm) = ad,m(Φ)(µ, Ym) for Ym ∈ Hdm.
Hence, if ad,m(Φ) 6= 0, then (µ, Ym) = 0. If ad,m(Φ) = 0, then (µ, Ym) = 0 holds by
assumption. It follows that (µ, f) = 0 if f is a finite sum of spherical harmonics. Since every
function f ∈ C(Sd−1) can be uniformly approximated by finite sums of spherical harmonics,
we conclude that (µ, f) = 0 for all f ∈ C(Sd−1). This implies µ = 0. �

In the special case of Theorem 3.2 we have Φ(t) = |t| and therefore

ad,m(Φ) = ωd−1

∫ 1

−1
|t|P dm(t)(1− t2)

d−3
2 dt.

For odd m, the Legendre polynomial P dm is an odd function, hence ad,m(Φ) = 0. For even
m, the formula of Rodrigues (Lemma 2.5) together with partial integration can be used to
compute the integral, and one obtains

ad,m(Φ) =
(−1)(m−2)/2π(d−1)/2Γ(m− 1)
2m−2Γ(m/2)Γ((m+ d+ 1)/2)

.

Therefore, ad,m(Φ) 6= 0 for even m, and if the signed measure µ is even, then πmµ = 0 for
odd m. Hence, Theorem 3.3 gives µ = 0, which proveds Theorem 2.2.

The transform TΦ with Φ(t) = |t| is known as the cosine transform. For the function
Φ(t) =

√
1− t2, one calls TΦ the sine transform. Also in this case, the multipliers can be

computed, and one finds that ad,m(Φ) 6= 0 for all even m. Therefore, an even finite signed
measure µ on Sd−1 satisfying∫

Sd−1

√
1− 〈u, v〉2 µ(dv) = 0 for all u ∈ Sd−1 (26)

is the zero measure. A geometric application (besides applications in theoretical stereology,
see [30]) reads as follows. For a convex body K, consider the direction-dependent functional

V (d−1)(K,u) :=
∫ ∞
∞

Vd−2(K ∩ (u⊥ + tu)) dt, u ∈ Sd−1,

where the intrinsic volume Vd−2(K ∩H) is (up to a constant factor) the surface area of the
intersection of K with the hyperplane H. Then

V (d−1)(K,u) =
1

2(d+ 1)
TΦSd−1(K, ·),

where Sd−1(K, ·) is the surface area measure of K. Hence, the uniqueness theorem for the
sine transform leads to the following: if K,L are d-dimensional convex bodies with 0 as center
of symmetry and satisfying V (d−1)(K,u) = V (d−1)(L, u) for all u, then K = L.

To formulate a different counterpart to Theorem 3.2, we denote by

u+ := {v ∈ Sd−1 : 〈u, v〉 ≥ 0}

the hemisphere with center u ∈ Sd−1.

Theorem 3.4. If the odd finite signed measure µ on Sd−1 satisfies

µ(u+) = 0 for all u ∈ Sd−1, (27)

24



then µ = 0.

For the proof, we take the function Φ defined by

Φ(t) :=

{
1, 0 ≤ t ≤ 1,

0, −1 ≤ t < 0.

then (TΦµ)(u) = µ(u+). This TΦ is known as the hemispherical transform. One computes
that ad,m(Φ) 6= 0 for odd m. If the signed measure µ is odd, then πmµ = 0 for even m. Hence,
Theorem 3.3. gives µ = 0.

The third example from the introduction can be subsumed here. Let K be a d-dimensional
convex body with the property that every hyperplane through 0 halves the volume of K.
Defining an odd signed measure µ by

µ(B) :=
∫
B

[
ρ(K, v)d − ρ(K,−v)d

]
σ(dv)

for Borel sets B ⊂ Sd−1, we deduce from Theorem 3.4 that µ = 0, and this gives ρ(K, v) =
ρ(K,−v) for all v ∈ Sd−1.

For the mentioned functions Φ, the multipliers of the transform TΦ could be computed
explicitly. This need not always be the case. For example, a question from stereology in [30]
involves the transform TΦ for the function

Φ(t) := 1[0,1](t)
√

1− t2.

In that case, the recursion formulas of Lemma 2.7 were used to establish recursion formulas
and inequalities for the multipliers, from which it could be deduced that ad,m(Φ) 6= 0 for all
m. Thus, the transform TΦ, which can be called the hemispherical sine transform, is
injective.

The second example from the introduction involves the spherical Radon transform,
defined by

(Rf)(u) :=
∫
Su

f dσu, u ∈ Sd−1.

Recall that σu denotes the (d − 2)-dimensional spherical Lebesgue measure on the great
subsphere Su with pole u. For a spherical harmonic Ym of order m it is easy to compute that

RYm = ωd−1
P dm(0)
P dm(1)

Ym.

For even m, we have P dm(0) 6= 0 by Lemma 2.6, hence (for given e ∈ Sd−1) (σe, Ymi) 6= 0 for
suitable i. If Rf = 0 for f ∈ C(Sd−1), it follows that Hdm does not occur in f for even m. If
f is an even function, then Hdm also does not occur in f for odd m, and it follows that f = 0.
We can state this in the following form.

Theorem 3.5. The spherical Radon transform is injective on even functions.

A geometric consequence different from Minkowski’s result mentioned in the introduction
concerns central sections. Let K,L be d-dimensional convex bodies (or star bodies) which
are centrally symmetric with respect to 0 and satisfy

Vd−1(K ∩ u⊥) = Vd−1(L ∩ u⊥) for all u ∈ Sd−1.
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Then Theorem 3.5 with f := ρ(K, ·)d−1 − ρ(L, ·)d−1 shows that K = L.

The preceding results on the unique determination of convex bodies from the volumes
of projections or sections are restricted to centrally symmetric convex bodies. There have
been several attempts to find natural data, involving projections or sections, by which a
general convex body is uniquely determined up to translations. An early example is an
investigation by Anikonov and Stepanov [2], who have shown that a linear combination of
the projection volume Vd−1(K|u⊥) and the surface area of the part of K that is illuminated
under illumination in direction u, determines a convex body uniquely, up to a translation.
Note that the functional that they consider can be written in the form

TΦSd−1(K, ·) with Φ(t) = p|t|+ q1[0,1](t).

As a special case of a more general construction, Goodey and Weil [11] introduced the
second mean section body M2(K) of a convex body K ⊂ Rd by

h(M2(K), ·) =
∫
A(d,2)

h(K ∩ E, ·)µ2(dE).

Here A(d, 2) is the affine Grassmannian of two-dimensional planes in Rd and µ2 is its motion
invariant measure, suitably normalized. Thus, M2(K) comprises information about the two-
dimensional sections of K, in integrated form. Goodey and Weil showed that two convex
bodies with the same second mean section bodies differ only by a translation. This follows
from the injectivity of the integral transform TΦ with

Φ(t) = (arccos t)
√

1− t2,

since, with cd :=
(
d
2

)
κd/κ2κd−2 and a suitable vector zd−1(K),

h(cdM2(K)− zd−1(K), ·) = TΦSd−1(K, ·).

In analogy to adding up sections of convex bodies, one can add up (by integrating sup-
port functions) projections of convex bodies. For various results on the determination of
convex bodies from Minkowski sums of projections, we refer to Schneider [27], Goodey [8],
Spriestersbach [34], Kiderlen [20].

Other data determining a three-dimensional convex body were suggested by Groemer
[17, 18], in the form of semi-girths of projections and intersections with half-planes. This was
widely generalized, to higher dimensions and various directed projection and section data
and mean values derived from them, in deep work of Goodey and Weil [12, 13, 14]. Their
investigation involves various linear operators on function spaces on Sd−1 that intertwine the
action of the rotation group and, therefore, act by multiplication on the spherical harmonics.
To decide which multipliers are non-zero, turned out to be a very formidable task in some
cases.

Two recent uniqueness results for general convex bodies are closer to the classical projec-
tion and section theorems. Let K,L be two d-dimensional convex bodies with the property
that, for each u ∈ Sd−1, the projections K|u⊥ and L|u⊥ have the same mean width and the
same Steiner point. Then K = L. Similarly, suppose that 0 ∈ intK, intL and that, for each
u ∈ Sd−1, the sections K ∩ u⊥ and L ∩ u⊥ have (in dimension d − 1) the same volume and
the same center of gravity. Then K = L. The uniqueness is easily derived from Theorem 3.5,
applying it twice in each case. In the next section, we shall deal with corresponding stability
results, taken from [31] and [3].
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We turn to the fourth example from the introduction, Blaschke’s characterization of
ellipsoids. This leads to the equation

d∑
i=1

f(ϑui) = 0 for all ϑ ∈ Sd−1, (28)

for the function f = h(K, ·)2 − const, where (u1, . . . , ud) is an orthonormal basis of Rd. This
equation is of the form (19), with µ =

∑d
i=1 δui . For the spherical harmonic Ym = P dm(〈u1, ·〉)

we have

(Ym, µ) =
d∑
i=1

Ym(ϑui) = P dm(1) + (d− 1)P dm(0) 6= 0 for m 6= 2.

Hence, the only solutions of (28) are spherical harmonics of order two (and they are solutions).
We deduce that the convex body K must be an ellipsoid.

The fifth example of the introduction asks for the rotors of a regular simplex. More
generally, we consider a polytope P and ask for its rotors. By definition, a convex body K is
a rotor of P if to each rotation ϑ ∈ SOd there is a vector t ∈ Rd such such ϑK+ t is contained
in P and touches all the facets of P . If P has a rotor of positive dimension, then it admits an
inscribed ball (a ball touching all the facets). Suppose that the polytope P has the ball RBd

as inscribed ball. Let u1, . . . , un be the outer unit normal vectors of the facets of P . Then it
can be shown that the convex body K is a rotor of P if and only if for any linear relation

n∑
i=1

αiui = 0

the equations
n∑
i=1

αi[h(K,ϑui)−R] = 0 for all ϑ ∈ SOd

are satisfied. Thus, in order to find non-spherical rotors of P , we have to solve a whole system
of equations of type (19). This task amounts to finding all spherical harmonics that satisfy
the system. Non-trivial solutions exist only for special polytopes P . The following theorem
gives a complete classification. In its formulation, Ym denotes a spherical harmonic of order
m, and support functions are restricted to the sphere Sd−1. We say that a polytope Q is
derived from the polytope P if each facet of Q contains a facet of P .

Theorem 3.6. Let d ≥ 3, let P ⊂ Rd be a polytope, and suppose that K is a non-spherical
rotor of P . Then we have one of the following cases.

(1) P is a parallelepiped with equal heights; K is a body of constant width.

(2) d = 2; P is derived from a regular k-gon; the nth Fourier coefficients of the support
function of K are zero if n 6≡ ±1 mod k, n 6= 0,

(3) d = 3; P is a regular tetrahedron; the support function of K is of the form Y0+Y1+Y2+Y5.

(4) d = 3; P is derived from a regular octahedron, but is not a tetrahedron; the support
function of K is of the form Y0 + Y1 + Y5.

(5) d ≥ 4; P is a regular simplex; the support function of K is of the form Y0 + Y1 + Y2.

The proof in [26], which is reproduced in Groemer’s book [16], uses most of the results
on Legendre polynomials listed in Section 2, and several further properties of spherical har-
monics. It is already clear from the formulation of the theorem that spherical harmonics are

27



an indispensable tool for such a result. We remark that the survey article by Goldberg [7]
contains photographs of models of non-trivial rotors of the regular tetrahedron, octahedron,
and cube.

Hints to the literature. The general reference is Groemer’s book [16]. As mentioned in the
introduction, the presented examples are all very old; they served us for introducing spherical
harmonics and demonstrating typical applications. For some more history about these and
other examples, see [24, 25, 26].

4 Stability Results

The strength of the use of spherical harmonics in the treatment of rotation invariant unique-
ness problems lies in the fact that very often the obtained uniqueness can be improved to
a stability result. By this we mean explicit quantitative estimates, showing that small per-
turbations of the condition enforcing uniqueness result in only small deviations from the
uniqueness situation. We shall present three examples of different approaches.

The first example is a rather simple, but very useful application of the Parseval relation.
In the following, all integrations are over the unit sphere Sd−1. First we state an analytical
lemma, which can be viewed as a variant of the Poincaré inequality.

Lemma 4.1. Let f be a real function of class C2 on the unit sphere Sd−1 satisfying∫
f dσ = 0 and

∫
f(u)uσ(du) = 0.

Then ∫ (
f2 +

1
d− 1

f∆Sf

)
dσ +

d+ 1
d− 1

∫
f2 dσ ≤ 0.

Proof. Let

f ∼
∞∑
m=2

Ym, Ym := πmf,

be the condensed harmonic expansion of f (note that π0f = π1f = 0 by the assumptions).
By Green’s formula on the sphere (Lemma 2.1) and Theorem 2.1(a),

(∆Sf, Ym) = (f,∆SYm) = −m(m+ d− 2)(f, Ym).

Therefore, the condensed harmonic expansion of ∆Sf is given by

∆Sf ∼ −
∞∑
m=2

m(m+ d− 2)Ym.

Now the Parseval relation in the form (8) gives∫
f2 dσ =

∞∑
m=2

∫
Y 2
m dσ,

∫
f∆Sf dσ = −

∞∑
m=2

m(m+ d− 2)
∫
Y 2
m dσ.
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This yields ∫
f

(
f +

1
d− 1

∆Sf

)
dσ +

d+ 1
d− 1

∫
f2 dσ

=
1

d− 1

∞∑
m=2

[2d−m(m+ d− 2)]
∫
Y 2
m dσ ≤ 0,

as stated. �

We apply this to an inequality for mixed volumes. Recall that the mixed volume
V (K1, . . . ,Kd) of convex bodies K1, . . . ,Kd ⊂ Rd is the symmetric function defined by

V (λ1K1 + · · ·+ λdKd) =
d∑

i1,...,id=1

λi1 · · ·λidV (Ki1 , . . . ,Kid),

where λ1, . . . , λd ≥ 0, and that

Wi(K) := V (K, . . . ,K︸ ︷︷ ︸
d−i

, Bd, . . . , Bd︸ ︷︷ ︸
i

)

is the ith quermassintegral. The quermassintegrals satisfy the important inequalities

Wi(K)2 ≥Wi−1(K)Wi+1(K), i = 1, . . . , d− 1, (29)

which are special cases of the Aleksandrov–Fenchel inequality. For one of these inequalities,
we derive an improved version. For this, we assume first that K is a convex body with a
support function hK of class C2. We apply Lemma 4.1 to the function

f = hK − hB(K),

where B(K) is the ball which has the same mean width and the same Steiner point as K.
This function satisfies the assumptions of the lemma. The key to its applicability is the fact
that the quermassintegral Wd−2 has the representation

Wd−2(K) =
1
d

∫ (
h2
K +

1
d− 1

hK∆ShK

)
dσ.

Moreover,

Wd−1(K) =
1
d

∫
hK dσ, Wd(K) = κd.

Using these facts, one obtains from the lemma that

W 2
d−1(K)−Wd−2(K)Wd(K) ≥ (d+ 1)κd

d(d− 1)
δ2(K,B(K))2, (30)

where the L2-distance δ2(K,L) of two convex bodies K,L is defined by

δ2(K,L)2 :=
1
ωd

∫
|hK − hL|2 dσ

(κd denotes the volume and ωd the surface area of Bd). This distance can be compared with
the Hausdorff distance δ, according to

cδ(K,L)(d+1)/2 ≤ δ2(K,L) ≤ δ(K,L),
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where the constant c depends only on the diameters of K and L.
By approximation, the inequality (30) is extended to general convex bodies. This inequal-

ity is a typical stability result. It gives an explicit estimate for the deviation of the convex
body K from a suitable ball if one knows that W 2

d−1(K)−Wd−2(K)Wd(K) ≤ ε.
The inequality (30) can be combined with known inequalities to obtain several results of

geometric interest. As an example, we mention an improvement of the isoperimetric inequality
for convex bodies. Let V denote the volume and S the surface area of a convex body K in
Rd. Then one can deduce from (30) and (29) that(

S

ωd

)d
−
(
V

κd

)d−1

≥ cδ(K,BK)(d+3)/2,

where BK is a suitable ball and the constant c depends on the dimension and bounds for the
inradius and circumradius of K. The exponent on the right side is close to optimal, since
such an inequality cannot hold with an exponent less than (d+ 1)/2.

Also the other two methods that we are going to explain make use of the Parseval relation,
but in a more sophisticated way. We describe the next approach in general terms, for a
transform TΦ as introduced in Section 3. We abbreviate its multipliers by am := ad,m(Φ).
Thus, if f ∈ C(Sd−1) has the condensed harmonic expansion

f ∼
∑

Ym

(summations here and in the following are from 0 to∞), then TΦf has the condensed harmonic
expansion

TΦf ∼
∑

amYm.

Now let
g = TΦf

and suppose that the transform TΦ has an inverse on a space of functions under consideration.
A stability result for the inverse would be an assertion telling us that ‖f‖2 must be small if
‖g‖2 is small. This would be easy if |am| ≥ 1/c for all m with a positive constant c. Namely,
in that case the Parseval relation would give

‖g‖22 =
∑
|am|2‖Ym‖22 ≥

1
c2

∑
‖Ym‖22 =

1
c2
‖f‖22

and thus ‖f‖2 ≤ c‖g‖2. However, in the cases of interest, the sequence a = (am) of multipliers
tends to zero, and the faster it does, the more delicate is the stability problem. We sketch
two different ways out of this dilemma.

Let
f ∼

∑
Ym, g ∼

∑
amYm,

and assume that Ym = 0 whenever am = 0. For any β > 0, an application of Hölder’s
inequality gives

‖f‖22 =
∑
‖Ym‖22 =

∑
am 6=0

‖Ym‖22

=
∑
am 6=0

(
|am|−

2β
β+2 ‖Ym‖

4
β+2

)(
|am|

2β
β+2 ‖Ym‖

2β
β+2

)

≤

∑
am 6=0

|am|−β‖Ym‖2
 2

β+2 (∑
|am|2‖Ym‖2

) β
β+2

,
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hence

‖f‖2 ≤ C(f, a, β)
1

β+2 ‖g‖
β
β+2

2

with
C(f, a, β) :=

∑
am 6=0

|am|−β‖Ym‖2.

The next step consists in estimating |am| in the form

|am|−β ≤ c(d, β)m(m+ d− 2)

and using
∆Sf ∼

∑
m(m+ d− 2)Ym.

The spherical gradient ∇S is defined by

∇Sf := (∇f̌)|Sd−1 = (∇f̌)∧,

where ∇ is the gradient on Rd. Using (f,∆Sf) = −‖∇Sf‖22 and the Parseval relation, we get

‖∇Sf‖22 =
∑

m(m+ d− 2)‖Ym‖22.

If β is chosen suitably in dependence on the sequence a = (am), one obtains an estimate of
the form

‖f‖2 ≤ c1(d, β)‖∇Sf‖
2

β+2

2 ‖g‖
β
β+2

2 .

It will then depend on the particular geometric situation whether one is able to estimate
‖∇Sf‖2 reasonably. For example, if f is the support function hK of a convex body K, the
formula

Wd−2(K) =
1

d(d− 1)
[
(d− 1)‖hK‖22 − ‖∇ShK‖22

]
together with Wd−2(K) ≥ 0 can be used to obtain an estimate

‖∇ShK‖2 ≤
√
d− 1‖hK‖2 ≤ c(d,R),

if K ⊂ RBd.

Carrying out this general program for the special case of the spherical Radon transform
R, Groemer [16, Th. 3.4.14] obtained the following lemma.

Lemma 4.2. Let F1 and F2 be twice continuously differentiable functions on Sd−1 (d ≥ 3),
and let F+

i denote the even part of Fi. Then

‖F+
1 − F

+
2 ‖2 ≤ hd(F1, F2) ‖RF1 −RF2‖2/d2

with

hd(F1, F2) =
1

ωd−1

(
2ω2

d−1β
− 4
d−2

d

(
‖∇SF1‖22 + ‖∇SF2‖22

)
+ ‖RF1 −RF2‖22

) d−2
2d

,

where βd is an explicit constant.

Hence, if the difference of the spherical Radon transforms of two functions is small, then
the difference of the even parts of the functions is small. There can, of course, be no in-
formation on the odd parts of the functions, since the spherical Radon transform of an odd
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function is zero. In concrete cases, the value of the explicit estimate of the lemma depends
on the possibility to bound the quantities ‖∇SFi‖ appearing in the factor hd(F1, F2).

We want to apply this method to prove a stability version (obtained in [3]) of a new
uniqueness result. This result says that a star body is uniquely determined by the volumes
and centroids of its hyperplane sections through a fixed interior point. Let K be a star
body in Rd, that is, a nonempty compact set which is starshaped with respect to 0 and has a
continuous positive radial function, defined by ρK(v) := max{λ ≥ 0 : λv ∈ K}, v ∈ Sd−1. For
u ∈ Sd−1, we denote the (d−1)-dimensional volume of the intersection K ∩u⊥ by vd−1(K,u)
and its center of gravity by cd−1(K,u); thus

vd−1(K,u) =
1

d− 1

∫
Su

ρd−1
K dσu,

cd−1(K,u) =
1
d

∫
Su

ρK(v)dv σu(dv).

Let K,L be star bodies satisfying

vd−1(K,u) = vd−1(L, u) for u ∈ Sd−1 (31)

and
cd−1(K,u) = cd−1(L, u) for u ∈ Sd−1. (32)

Since the spherical Radon transform of a continuous function on Sd−1 uniquely determines
the even part of the function, assumption (31) implies that the even part of ρd−1

K − ρd−1
L

vanishes, thus

ρd−1
K (v)− ρd−1

L (v) = −ρd−1
K (−v) + ρd−1

L (−v) for v ∈ Sd−1. (33)

Similarly, assumption (32) yields (if the result on the spherical Radon transform is applied
coordinate-wise) that the even part of the function v 7→ [ρdK(v)− ρdL(v)]v vanishes, and this
gives

ρdK(v)− ρdL(v) = ρdK(−v)− ρdL(−v) for v ∈ Sd−1. (34)

Suppose now that there exists some v ∈ Sd−1 with ρK(v) 6= ρL(v), say ρK(v) < ρL(v). Then
ρd−1
K (v) < ρd−1

L (v), hence (33) gives ρd−1
L (−v) < ρd−1

K (−v). This yields ρdL(−v) < ρdK(−v),
and now (34) gives ρdK(v) > ρdL(v), a contradiction. We conclude that ρK(v) = ρL(v) for all
v, hence K = L.

While this uniqueness theorem holds for star bodies, our stability result requires convexity
assumptions.

Theorem 4.1. Let d ≥ 3, let r,R, ε0 > 0, let K,L be convex bodies with rBd ⊂ K,L ⊂ RBd,
and let 0 ≤ ε ≤ ε0. If

‖vd−1(K, ·)− vd−1(L, ·)‖2 ≤ ε (35)

and
‖cd−1(K, ·)− cd−1(L, ·)‖2 ≤ ε, (36)

then
δ2(K,L) ≤ c(d, r,R, ε0)ε2/d, (37)

with an explicit constant c(d, r,R, ε0) depending only on d, r,R, ε0.
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For the proof, one applies the lemma twice, first to the functions F1 := ρd−1
K , F2 := ρd−1

L ,
and then to the functions defined by G1(v) := ρdK(v)〈v, e〉 and G2(v) := ρdL(v)〈v, e〉 for
v ∈ Sd−1, with fixed e ∈ Sd−1. From (35) and (36) this leads to the estimates

‖(ρd−1
K )+ − (ρd−1

L )+‖2 ≤ hd(F1, F2)((d− 1)ε)2/d =: A1,

‖(ρdK)− − (ρdL)−‖2 ≤
√
dhd(G1, G2)(dε)2/d =: A2,

where F− denotes the odd part of a function F on Sd−1. Even and odd parts are taken here
of different powers of the radial functions. This causes a complication which, however, can
be dealt with, and one obtains an estimate

‖ρK − ρL‖22 ≤
4A2

1

(d− 1)2r2(d−1)
+

4A2
2

d2r2d
.

It remains to bound the constants hd(F1, F2) and hd(G1, G2) and thus ‖∇SρmK‖2, ‖∇SρmL ‖2
for m = d− 1, d. It is here where the convexity and the further assumptions on K and L are
needed. One obtains, for example,

‖∇SρmK‖2 ≤ m
√

(d− 1)ωd
Rm+1

r
,

and with the help of such estimates, the proof of Theorem 4.1 can be completed.

A result similar to Theorem 4.1, with section, volume, centroid replaced by projection,
mean width, Steiner point, was proved in [31].

In several applications, a transform of type TΦ is applied to the surface area measure
Sd−1(K, ·) of a convex body. We abbreviate this now by SK and recall its meaning. For a
Borel set A ⊂ Sd−1, the value SK(A) is the surface area (the (d− 1)-dimensional Hausdorff
measure) of the set of all boundary points of K with an outer unit normal vector falling in
A. We describe a method to obtain stability results for TΦSK , which goes back to Bourgain
and Lindenstrauss [4] and was slightly extended in [19].

Theorem 4.2. Assume that the multipliers of TΦ satisfy

ad,0(Φ) 6= 0, |ad,n(Φ)−1| ≤ bnβ for n ∈ N (38)

with suitable b, β > 0. Let 0 < r < R, and let K,M ⊂ Rd be convex bodies satisfying
rBd ⊂ K,M ⊂ RBd.

For α ∈ (0, 1/d(1 + β)), there is a constant c = c(d,Φ, α, r, R) such that

δ(K,M + x) ≤ c‖TΦ(SK − SM )‖α

for suitable x ∈ R.

If K and M are centrally symmetric and (38) holds for even n, then the same conclusion
can be drawn.

We sketch the main steps of the proof. Let F be a continuous real function and µ a finite
signed measure on Sd−1. The aim is to find an estimate of the form∣∣∣∣∫ F dµ

∣∣∣∣ ≤ c(d, F, µ)‖TΦµ‖α2
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(all integrations are over Sd−1).

Let ‖µ‖TV be the total variation norm of µ, and let

‖F‖L := max
x 6=y

|F (x)− F (y)|
‖x− y‖

, ‖F‖∞ := max
x
|F (x)|,

‖F‖BL := ‖F‖L + ‖F‖∞.

Recall that (in terms of condensed harmonic expansions)

µ ∼
∑

Yn implies TΦµ ∼
∑

ad,n(Φ)Yn.

The basic idea of Bourgain and Lindenstrauss was to compare TΦµ with the Poisson
transform

µτ (u) =
1
ωd

∫
Sd−1

1− τ2

(1 + τ2 − 2τ〈u, v〉)d/2
µ(dv)

for 0 < τ < 1, which has the condensed harmonic expansion

µτ ∼
∑

τnYn.

One can then exploit that τn tends to zero more rapidly than ad,n(Φ), as n→∞.

In a first step, one can estimate, comparing F with its Poisson transform Fτ and using∫
Fτ dµ =

∫
Fµτ dσ and several intermediate inequalities, that∣∣∣∣∫ F dµ

∣∣∣∣ ≤ c1‖F‖L ‖µ‖TV (1− τ) log
2

1− τ
+ ‖F‖2 ‖µτ‖2

for τ ∈ [1
4 , 1).

The second step uses the assumption (38). Since nβτn(1− τ)β ≤ (β/e)β, it follows from
(38) that

τn ≤ c2(1− τ)−β|ad,n(Φ)|.

With Parseval’s relation, this gives

‖µτ‖2 =
(∑

τ2n‖Yn‖22
) 1

2 ≤ c2(1− τ)−β
(∑

|ad,n(Φ)|2‖Yn‖22
) 1

2

≤ c2(1− τ)−β‖TΦµ‖2.

Together with the previous estimate, this yields

∣∣∣∣∫ F dµ
∣∣∣∣ ≤ c3‖F‖BL

‖µ‖TV (1− τ) log
2

1− τ︸ ︷︷ ︸
A

+ ‖TΦµ‖2(1− τ)−β︸ ︷︷ ︸
B

 .
For suitable τ ∈ [1

4 , 1) and a constant c4 we have c4A = B. For α < 1/(1 + β) this leads to∣∣∣∣∫ F dµ
∣∣∣∣ ≤ c5‖F‖BL ‖µ‖1−αTV ‖TΦµ‖α2 ,

which is of the desired form.
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This is now applied with

F = hK or hM , µ = SK − SM .

Since K,M ⊂ RBd, we can then estimate

‖F‖BL ≤ c(d,R), ‖µ‖TV ≤ c(d,R).

Since
1
d

∫
hK dµ = Vd(K)− V1(M,K),

where V1(M,K) denotes the mixed volume V1(M, . . . ,M,K), we obtain

|Vd(K)− V1(M,K)| ≤ c6‖TΦ(SK − SM )‖α,

|Vd(M)− V1(K,M)| ≤ c6‖TΦ(SK − SM )‖α.

Now geometry has to take over. Knowing that the right side is small, there are methods
from Brunn–Minkowski theory to estimate the Hausdorff distance between K and a suitable
translate of M . In this way, the proof of Theorem 4.2 can be completed.

Theorem 4.2 gives a number of concrete stability results for transformations TΦ that have
been considered in the geometry of convex bodies or in stochastic geometry. They are not
restricted to centrally symmetric convex bodies. We give here a list of the transforms which
have been mentioned in Section 3 and for which we now have corresponding stability results.

1) Φ(t) = 1
2 |t|, the cosine transform. This is the case of Aleksandrov’s projection theorem

and the stability result of Bourgain and Lindenstrauss.

Assumption (38) holds for even n with β = (d+ 2)/2.

2) Φ(t) =
√

1− t2, the sine transform. It appears in work of Berwald, Schneider, and Goodey.

Assumption (38) holds for even n with β = d.

3) Φ(t) = p|t| + q1[0,1], with constants p, q. The corresponding transform was studied by
Anikonov and Stepanov. They obtained a stability result in R3, but a weak one only, as it
requires bounds on derivatives up to the fifth order.

Assumption (38) holds for all n with β = (d+ 2)/2.

4) Φ(t) = (arccos t)
√

1− t2. The corresponding transform appeared in work of Goodey and
Weil on mean section bodies.

Assumption (38) holds for all n with β = d.

5) Φ(t) = 1[0,1]

√
1− t2. This was used in a contribution to stochastic geometry by Schneider.

Assumption (38) holds with β = d.

Recently, the described approaches to stability results on convex bodies involving to-
mographic data have been considerably unified, extended and improved by Kiderlen [21].
Goodey, Kiderlen and Weil [10] present a comprehensive survey of integral transforms in
geometric tomography.
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Hints to the literature. The book by Groemer [16] presents a thorough treatment of
applications of spherical harmonics to stability problems in convex geometry. The following
contributions have appeared after the publication of this book: [3], [8], [9], [10], [12], [13],
[14], [15], [17], [18], [19],[20], [21], [31], [34]. A stability version of the fourth example from
the introduction appears in [5]. Some stability results can also be found in [28].

An interesting application of spherical harmonics to Minkowski symmetrizations was made
by Klartag [22].

5 Universal Convex Bodies

For the treatment of the functional equation (3.1) it was, according to Theorem 3.1, essential
for which numbers k the space Hdk of spherical harmonics of order k occurs in a function f ,
that is, πkf 6= 0. In this section, we will treat a question which leads us to convex bodies K
with the property that their support function satisfies πkhK 6= 0 for all k 6= 1 (the case k = 1
is excluded, since π1hK is not invariant under translations). Such a convex body is called
universal.

We describe the question leading to these bodies. The space Kd of convex bodies in Rd

admits two basic operations: Minkowski addition, defined by

K + L := {x+ y : x ∈ K, y ∈ L}, K, L ∈ Kd,

and dilatation, given by

αK := {αx : x ∈ K}, K ∈ Kd, α ≥ 0.

Combined, they yield Minkowski linear combinations. Thinking of the role that bases of all
kinds play in various part of mathematics, the following question seems natural. Can general
convex bodies be obtained as linear combinations of ‘a few special convex bodies’? We think,
in particular, of only one convex body and its congruent copies (images under rigid motions).

For dealing with this question, the support function is the natural tool. We denote the
support function of the convex body K ∈ Kd by hK , thus

hK(u) := max{〈u, x〉 : x ∈ K}, u ∈ Rd.

It is adapted to linear combinations and rotations, since hK+L = hK + hL, hαK = αhK for
α ≥ 0, and hϑK = ϑhK for every rotation ϑ ∈ SOd. Moreover, for the Hausdorff metric δ,
we have δ(K,L) = max {|hK(u)− hL(u)| : u ∈ Sd−1}.

Let us first see how far we get when we start with the simplest non-trivial convex body,
a segment (closed line segment) S. The support function of the segment S with endpoints
±αv (v ∈ Sd−1, α > 0) is given by

hS(u) = |〈u, v〉|α.

The sum of finitely many segments is called a zonotope. The support function of a zonotope
Z with center 0 is of the form

hZ(u) =
k∑
i=1

|〈u, vi〉|αi
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with vi ∈ Sd−1, αi > 0. A limit of zonotopes is called a zonoid. The support function of a
zonoid Z with center 0 is given by

hZ(u) =
∫
Sd−1

|〈u, v〉| ρ(dv)

with a finite Borel measure ρ. A convex body K with a support function of the form

hK(u) =
∫
Sd−1

|〈u, v〉| ρ(dv),

where ρ is a finite signed Borel measure, is call a generalized zonoid. Thus, K is a
generalized zonoid if and only if there exist zonoids Z1, Z2 with K + Z1 = Z2.

Let Kds denote the set of centrally symmetric convex bodies. The following well-known
facts exhibit the essential difference between zonoids and generalized zonoids.

• The zonoids are nowhere dense in Kds .

• The generalized zonoids are dense in Kds .

The second fact has often been useful in the investigation of centrally symmetric convex
bodies. We mention that the standard proof of this fact is a typical application of spherical
harmonics. For given K ∈ Kds with center 0, one tries to solve the integral equation

hK(u) =
∫
Sd−1

|〈u, v〉| f(v)σ(dv)

by a function f , say continuous. If the equation holds, if further

f ∼
∑
2|k

Yk, hK ∼
∑
2|k

Xk

are the condensed harmonic expansions, and a0, a2, . . . is the sequence of even-order multi-
pliers of the cosine transform, then we know that Xk = akYk for all even k. Conversely, for
given hK one can try to define a function by f =

∑
2|k a

−1
k Xk. If hK is sufficiently often

differentiable (the required differentiability increases with the dimension), one can indeed
show that this series converges absolutely and uniformly. The continuous function f that it
defines is then a solution of the integral equation. This shows that every sufficiently smooth
centrally symmetric convex body is a generalized zonoid.

Now we want to get rid of the central symmetry, and we ask whether the segment S can
be replaced by a non-symmetric convex body, to obtain a dense class in Kd instead of Kds .
In other words: suppose we have only one convex body B at our hands and want to produce
other convex bodies from it by taking Minkowski linear combinations of congruent copies of
B, limits, and differences (of support functions). How big a class of convex bodies can we
obtain? Some definitions are now in order.

Definition. A Minkowski class is a subset of Kd that is closed in the Hausdorff metric,
closed under Minkowski linear combinations, and closed under translations.

Let G be a subgroup of GL(d), for example SOd. The Minkowski classM is G-invariant
if K ∈M implies gK ∈M for all g ∈ G.

If B ∈ Kd and G ⊂ GL(d) are given, then MB,G is defined as the smallest G-invariant
Minkowski class containing B.
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Examples: If S is a segment and B is a ball, then

MS,SOd = MS,GL(d) = {zonoids},

MB,SOd = {balls},

MB,GL(d) = {zonoids}.

Definition. The convex body K is called an M-body if K ∈ M. The body K is called a
generalized M-body if there exist M-bodies M1,M2 with K +M1 = M2.

For d ≥ 3 it follows from known results that for each B ∈ Kd, the MB,GL(d)-bodies are
nowhere dense in Kd. What can be said about generalized MB,GL(d)-bodies? First answers
are given by the following special results.

Theorem 5.1. (Schneider [29]) Let T ⊂ Rd be a triangle with an irrational angle. Then the
set of generalized MT,SOd-bodies is dense in Kd.

(By an irrational angle we mean an angle which is an irrational multiple of π.)

Theorem 5.2. (Alesker [1]) Let K be a non-symmetric convex body. Then the set of gener-
alized MK,GL(d)-bodies is dense in Kd.

Alesker’s proof uses representation theory for the group GL(d). Of course, Alesker’s result
does not hold if the general linear group GL(d) is replaced by the rotation group SOd. For
example, if K is a body of constant width, then all generalizedMK,SOd-bodies are of constant
width.

The following results were obtained jointly with Franz Schuster, in [32].

Theorem 5.3. Let B ∈ Kd be non-symmetric. Then every neighborhood of B contains an
affine image B′ of B such that the set of generalized MB′,SOd-bodies is dense in Kd.

This is a consequence of the following two theorems. Recall that a convex body B ∈ Kd is
called universal if the expansion of its support function hB in spherical harmonics contains
non-zero harmonics of all orders 6= 1.

Theorem 5.4. Let B ∈ Kd. The set of generalized MB,SOd-bodies is dense in Kd if and
only if B is universal.

Theorem 5.5. Let B ∈ Kd be non-symmetric. Then every neighborhood of B contains an
affine image of B that is universal.

Theorem 3 has a counterpart for symmetric bodies.

We sketch the proof of Theorem 5.4. Suppose first that B is not universal. Then there
exists a number m 6= 1 with πmhB = 0. This implies πmhK = 0 for all generalized MB,SOd-
bodies K and their limits. But there exists a body M ∈ Kd with πmhM 6= 0. Hence, the set
of generalized MB,SOd-bodies is not dense in Kd.

Conversely, assume that B is universal.
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Recall that for showing that a sufficiently smooth body K with center 0 is a generalized
zonoid, we have solved the integral equation

hK(u) =
∫
Sd−1

|〈u, v〉| f(v)σ(dv).

We try to solve a corresponding integral equation on the group SOd, with respect to its
Haar measure ν. Suppose we can solve the integral equation

hK(u) =
∫
SOd

hϑB(u) f(ϑ) ν(dϑ),

say, by a continuous function f . Then we decompose f into its positive and negative part,
f = f+ − f−, and get

hK(u) +
∫
SOd

hϑB(u)f−(v) ν(dϑ)︸ ︷︷ ︸
hM1

(u)

=
∫
SOd

hϑB(u)f+(v) ν(dϑ)︸ ︷︷ ︸
hM2

(u)

,

where M1,M2 ∈ MB,SOd (approximate ν by discrete measures). Since K + M1 = M2, the
body K is a generalized MB,SOd-body.

To solve the integral equation, it is sufficient to assume that hK is a sum of finitely many
spherical harmonics, because the set of such bodies is dense in Kd. Thus, for

hK =
k∑

m=0

N(d,m)∑
j=1

amjYmj

we have to find a continuous function f on the group SOd satisfying

hK(u) =
∫
SOd

hϑB(u) f(ϑ) ν(dϑ), u ∈ Sd−1.

Let bmj := (hB, Ymj). Since B is universal, for each m ∈ N0 there is an index jm such
that bmjm 6= 0. With the functions tmij from (17), we put

f := N(d,m)
k∑

m=0

1
bmjm

N(d,m)∑
i=1

amit
m
ijm .

Using formula (18), we obtain

∫
SOd

hϑB(u)f(ϑ) ν(dϑ) =
k∑

m=0

1
bmjm

N(d,m)∑
i=1

amiN(d,m)
∫
SOd

hϑB(u)tmijm(ϑ) ν(dϑ)

=
k∑

m=0

1
bmjm

N(d,m)∑
i=1

ami(hB, Ymjm)Ymi(u)

=
k∑

m=0

N(d,m)∑
i=1

amiYmi(u) = hK(u),

which shows that f is a solution of the integral equation. Thus, Theorem 5.4 is proved.
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We turn to Theorem 5.5, the main result. We explain the idea of its proof by demon-
strating first an easier part of the proof.

Proposition. Let B ∈ Kd be not one-pointed. Then there exists a linear transformation
g ∈ GL(d), arbitrarily close to the identity, such that πmhgB 6= 0 for all even numbers
m ∈ N0.

We reduce the proof to the fact that a segment S satisfies

πmhS 6= 0 for all even m

(which was the reason for the injectivity of the cosine transform on even functions). In
Cartesian coordinates, let Π1 be the projection onto the x1-axis, and suppose, without loss
of generality, that Π1B =: S is a non-degenerate segment. Define g(λ) ∈ GL(d) by

g(λ) : (x1, . . . , xn) 7→ (x1, λx2, . . . , λxn).

For λ→ 0, the map g(λ) converges to Π1. It follows that

lim
λ→0

(hg(λ)B, Ymj) = (hS , Ymj).

If m is even, then (hS , Ymjm) 6= 0 for some jm. Hence, the function

F (λ) := (hg(λ)B, Ymjm), λ ∈ (0, 1],

does not vanish identically. This function is real analytic. Therefore, the set

Zm := {λ ∈ (0, 1] : πmhg(λ)B = 0}

is countable. This holds for each even m. It follows that every neighborhood of 1 contains
some λ with

πmhg(λ)B 6= 0 for all even m.

This completes the proof of the Proposition.

For the remaining part of the proof of Theorem 5.5, that is, the case of non-symmetric B
and arbitrary m, we sketch only the strategy. We recall what we have to prove.

Theorem 5.5. Let B ∈ Kd be non-symmetric. Then there exists g ∈ GL(d), arbitrarily close
to the identity, such πmhgB 6= 0 for all m.

The following are the essential steps:

1.) Prove the two-dimensional case of the Theorem 5.5.

2.) Lemma. If B ⊂ R2 ⊂ Rd and B is universal in R2, then B is universal in Rd.

3.) Similarly as before, use linear maps converging to the projection onto R2.

Step 2 requires only the use of suitable bases of the spaces of spherical harmonics and
some direct calculations. The idea of Step 3 is similar to the argument sketched before.
Therefore, we indicate here only Step 1.
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The two-dimensional case

Let B ⊂ R2 be a non-symmetric convex body. Write

hB((cosϕ, sinϕ)) =: hB(ϕ).

The spaceH2
m is spanned by the functions cosmϕ and sinmϕ. Therefore, in complex notation

πmhgB = 0 ⇔
∫ 2π

0
hgB(ϕ) eimϕ dϕ = 0.

Define a map FB,m : GL(2)+ → C (where GL(2)+ is the connected component of the identity)
by

FB,m(g) :=
∫ 2π

0
hgB(ϕ) eimϕ dϕ for g ∈ GL(2)+.

This map is real analytic.

Proposition. The relation

FB,m(g) =
∫ 2π

0
hgB(ϕ) eimϕ dϕ = 0 for all g ∈ GL(2)+

cannot hold for any odd integer m ≥ 1.
Suppose this were false; then there exists a smallest number m for which there is a

counterexample. Let B be such a counterexample. We use

g(λ) ∼
(

1 0
0 λ

)
and R(α) ∼

(
cosα sinα
− sinα cosα

)
.

Consider the first map. From hg(λ)B(ϕ) =
√

cos2 ϕ+ λ2 sin2 ϕhB(ψ) and a substitution we
get

FB,m(g(λ)) = λ2

∫ 2π

0
hB(ψ)

(λ cosψ + i sinψ)m

(λ2 cos2 ψ + sin2 ψ)
m+3

2

dψ.

Since this vanishes for all λ ∈ (0, 1], the derivative with respect to λ at 1 vanishes. This yields∫ 2π

0
hB(ψ)[(3−m) ei(m−2)ψ + (3 +m) ei(m+2)ψ] dψ = 0.

Now we use the second map. Since FB,m(R(α)) = 0 for α in a neighborhood of 0, the
preceding holds with ψ + α instead of ψ in the exponents. This yields

∫ 2π

0
hB(ψ) ei(m−2)ψ dψ = 0 for m 6= 3,

∫ 2π

0
hB(ψ) ei(m+2)ψ dψ = 0.

This can be used to find a number smaller than m for which a counterexample exists, which
is a contradiction.

These are the main ideas; for the details we refer to [32]
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