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Summary. - This is a survey over recent asymptotic results on random polytopes
in d-dimensional Euclidean space. Three ways of generating a random polytope are
considered: convex hulls of finitely many random points, projections of a fixed high-
dimensional polytope into a random d-dimensional subspace, intersections of random
closed halfspaces. The type of problems for which asymptotic results are described is
different in each case.

1. - Introduction

Randomly generated convex polytopes, briefly random polytopes, have found in-
creasing interest during the last decades. Their study combines convex geometry and
geometric probability. Geometric and analytic methods often go hand in hand in
their investigation. First impressions of the subject can be obtained from the articles
[39, 51, 41], but an up-to-date and comprehensive survey is not available, unfortunately.
Our goal in the following is very restricted: we want to describe recent asymptotic re-
sults for three different models of random polytopes. These are

• convex hulls of random points,

• random projections of high-dimensional polytopes,

• intersections of random halfspaces.

The character of the asymptotic results is distinctly different in each of the cases. In the
first case, they concern volume approximation of convex bodies by random polytopes
if the number of generating points tends to infinity. For this topic, we also recom-
mend the recent introductory article by Bárány [4]. The second case deals with purely
combinatorial properties of random polytopes, namely neighborliness. Here, regular
simplices or crosspolytopes of increasing dimensions are projected into lower dimen-
sional random subspaces. The third case is devoted to asymptotic shapes of random
polytopes, under the condition that their size (interpreted in different ways) is large.
Our motivation for presenting these three topics is different. In the first two parts,
we feel that important breakthroughs in these subjects have been achieved by several
authors in the last few years, and we want to give a description, though very brief, of
their main results. In the third part, we present recent joint work with Daniel Hug
and Matthias Reitzner on extensions and generalizations of David Kendall’s problem
on the shape of large cells in random tessellations.
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All random polytopes to be considered are in d-dimensional Euclidean space Rd

(d ≥ 2). By ‘polytope’ we always mean a compact convex polytope.

Throughout this paper, we denote the underlying probability by P and mathemat-
ical expectation by E.

2. - Convex Hulls of Random Points

Every polytope is the convex hull of its vertices. A natural way to generate a ran-
dom convex polytope is, therefore, to take the convex hull of finitely many random
points. A situation that has been extensively studied is that of a given convex body
K (a compact convex set with nonempty interior) and n stochastically independent
uniform random points in K. Here, a random point in Rd (a Borel measurable map
from some probability space into Rd) is uniform in K if its distribution is obtained
from the Lebesgue measure, restricted to K and normalized to a probability measure.
For a given convex body K, we denote by Kn the convex hull of n independent uniform
random points in K. Then Kn is a random polytope contained in K, and V (Kn), where
V denotes the volume, is a real random variable. Other functions of Kn that have been
studied are intrinsic volumes, numbers of i-dimensional faces, or Hausdorff distance
from K; we restrict ourselves in this section to the case of the volume. Other distribu-
tions of random points that have found interest are distributions concentrated on the
boundary of a convex body, or normal distributions. All this began with Sylvester’s
[46] well-known ‘four point problem’ of 1864 and received particular impetus from the
seminal papers of Rényi and Sulanke [35, 36, 37], which directed the attention towards
the asymptotic behavior, as n → ∞. From the vigorous development afterwards, we
mention only two typical examples.

For n ∈ N, let X1, . . . , Xn be independent uniform random points in a given convex
body K. Then

lim
n→∞

[V (K)− E V (Kn)]n1/(d+1) = c(d)

∫
∂K

κ1/(d+1) dS. (1)

Here κ denotes the Gauss–Kronecker curvature, suitably generalized to arbitrary con-
vex bodies; it exists S-almost everywhere on ∂K, where S denotes the area measure
(the (d− 1)-dimensional Hausdorff measure on ∂K). The constant c(d) depends only
on the dimension. The limit relation (1) is due to Bárány [3] for convex bodies with a
boundary of class C3, and to Schütt [43] for general convex bodies.

A similar relation has been proved for random points on the boundary of a convex
body K. Let X1, . . . , Xn be independent, identically distributed random points on
∂K, and suppose their distribution has a continuous density h with respect to the area
measure. Let Kh

n denote the convex hull of X1, . . . , Xn. Under a mild condition on the
generalized curvatures of ∂K, Schütt and Werner [44] have shown that

lim
n→∞

[V (K)− E V (Kh
n)]n1/(d−1) = b(d)

(∫
∂K

h−1/(d−1)κ1/(d−1) dS

)
, (2)

where the constant b(d) depends only on the dimension. Although ‘only’ expectations,
and not distributions, of geometric random variables are the subject here, the difficul-
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ties are formidable (note the length of the paper [44]); they are mainly on the geometric
side.

Results on variances and asymptotic distributions were for a long time restricted
to the case of the plane or to special convex bodies, like balls. A result of Cabo
and Groeneboom [11] holds for a polygon K ⊂ R2 with r vertices and concerns the
normalized difference Dn := n[V (K)− V (Kn)]/V (K). It states that

Dn − 2
3
r log n√

28
27

r log n

D→ N(0, 1)

for n →∞, where
D→ denotes convergence in distribution and N(0, 1) is the standard

normal distribution. Actually, [11] exhibited a different constant in the denominator
and a different scaling factor, but Buchta [10] pointed out (since 2000, published in
[10]) that this was in conflict with another limit theorem of Groeneboom together
with results that Buchta had obtained on the variance of Dn. For some time, nobody
seemed able to put his/her finger on an erroneous step. The situation was clarified in
Groeneboom [18, Section 2].

In higher dimensions, and for convex bodies more general than balls, the recent
years have seen a breakthrough. It began with a paper by Reitzner [33], in which he
obtained for smooth convex bodies K (that is, with a boundary of class C2 and positive
Gauss–Kronecker curvature), an upper estimate for the variance, namely

Var[V (K)− V (Kn)] ≤ c1(K)n−(d+3)/(d+1). (3)

A probabilistic tool in the proof is the Efron–Stein jackknife inequality for the variance
of symmetric statistics. As a consequence, Reitzner obtained a strong law of large
numbers for the random variable V (K)− V (Kn).

Essential subsequent progress came with another paper by Reitzner [34]. For
smooth convex bodies K he obtained a lower estimate for the variance of V (K)−V (Kn),
of the same order as in (3). Further, instead of Kn, he considered the convex hull of
the points inside K of a stationary Poisson point process Π of intensity n in Rd. Let
KΠ

n denote this convex hull. Reitzner proved that∣∣∣∣∣P
(

V (KΠ
n )− EV (KΠ

n )√
VarV (KΠ

n )
≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ c2(K)n−(d+3)/(d+1)(log n)2d+4.

Here Φ is the distribution function of the standard normal distribution. The crucial
stochastic tool for the proof is a central limit theorem for weakly dependent random
variables with information on their dependency graphs, due to Rinott [38]. Remarkably,
already Avram and Bertsimas [2] had suggested the application of such a result for
obtaining central limit theorems for Kn, but it took almost ten years before this idea
was carried out. Reitzner’s result for V (KΠ

n ) can be transferred to a central limit
theorem for V (Kn), in the form∣∣∣∣∣P

(
V (Kn)− EV (Kn)√

VarV (Kn)
≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ ε(n)
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for all x, with ε(n) → 0 for n → ∞. In full generality, this was proved by Vu [50].
He used Reitzner’s result and the strong tail estimates for geometric random variables
like V (K)− V (Kn) that he had obtained in [49], by a new powerful probabilistic and
combinatorial method.

In these new developments, in particular in Vu’s concentration results, there is now
a balance between equally deep stochastic and geometric techniques. Essential for the
success on the geometric side is the development beginning with the pathbreaking paper
of Bárány and Larman [5], establishing a connection between the random polytope Kn

and certain floating bodies of K. The technique is well described in Bárány’s article [4].
Here we only mention how the floating body enters the formulation of Vu’s deviation
estimate. For a convex body K, a closed halfspace H, and a (small) number ε > 0,
the intersection H ∩ K is called an ε-cap if V (H ∩ K) = ε. The union of all ε-caps
is the ε-wet part of K, and and its complement in K is the ε-floating body of K. Let
ρε denote the volume of the ε-wet part of K, and for a point x in the boundary of
the ε-floating body, let Sx,ε be the union of all ε-caps containing x. Let g(ε) be the
supremum of V (Sx,ε) over all x in the boundary of the ε-floating body. Put A := 3g(ε)
and B := 36ng(ε)2ρε. Vu [49, Th. 2.1] proved that there are positive constants α, c and
ε0 such that the following holds. For any α log n/n < ε ≤ ε0 and 0 < λ ≤ B/4A2 = nρε,
we have

P(|V (K)− EV (Kn)| ≥
√

Bλ) ≤ 2 exp(−λ/4) + exp(−cεn).

Employing similar methods as in [33], [34], [50] (and overcoming new difficulties),
Bárány and Reitzner [6] proved a central limit theorem for V (K)− V (Kn) in the case
where K is a polytope. Bárány and Vu [7] obtained a CLT for the volume of the convex
hull of n independent Gaussian random points.

Corresponding results exist for other functionals instead of the volume, most often
for the number of vertices.

3. - Random Projections of High-dimensional Polytopes

Every convex polytope can be represented as a projection of a simplex of sufficiently
high dimension. This remark suggests a natural way of generating a class of random d-
polytopes: take some polytope, say a regular simplex, in Rn (where n > d) and project
it orthogonally to a random d-dimensional subspace, say with uniform distribution.
This so-called ‘Grassmann approach’ was proposed independently by Vershik and by
Goodman and Pollack; it was studied by Vershik and Sporyshev [47, 48], Affentranger
and Schneider [1], and others. We will briefly describe some basic facts and then explain
why this type of random polytopes has recently found fresh interest.

Let P be a fixed polytope in n-dimensional Euclidean space Rn, where n > d. Let L
be a random d-dimensional subspace of Rn, whose distribution is given by the normal-
ized rotation invariant Haar measure on the Grassmannian G(n, d). The orthogonal
projection from Rn to a subspace S is denoted by ΠS. Thus, ΠLP is a d-dimensional
random polytope. Its combinatorial properties are of interest, in particular the expec-
tation of fk(ΠLP ), the number of k-dimensional faces of ΠLP . Two general formulas
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derived in [1], by means of spherical integral geometry, say that

Efk(ΠLP ) = 2
∑
s≥0

∑
F∈Fk(P )

∑
G∈Fd−1−2s(P )

β(F, G)γ(G, P ). (4)

and
Efk(ΠLP ) = fk(P )− 2

∑
s≥0

∑
F∈Fk(P )

∑
G∈Fd+1+2s(P )

β(F, G)γ(G, P ). (5)

Here, Fj(P ) denotes the set of j-dimensional faces of P , β(F, G) is the internal angle
of the polytope G at its face F (equal to 0 by definition if F is not a face of G), and
γ(G, P ) is the external angle of the polytope P at its face G.

Formulas (4) and (5) express the expectation Efk(ΠLP ) in terms of internal and
external angles of the polytope P . These angles can in general not be computed
explicitly, since they are defined via volumes of polytopes in spherical space. Further
progress is possible if P is one of the regular polytopes in Rn. In particular, let T n be
a regular simplex in Rn. An asymptotic formula, as n tends to infinity, was proved in
[1], namely

Efk(ΠLT n) ∼ 2d

√
d

(
d

k + 1

)
β(T k, T d−1)(π log n)(d−1)/2. (6)

Here β(T k, T d−1) denotes the internal angle of a regular (d − 1)-simplex at one of its
k-faces. An asymptotic formula for β(T k, T d−1), for fixed k and d →∞, was provided
by Böröczky and Henk [9]. A counterpart to (6), for projections to random subspaces
of fixed codimension, was also proved in [1], namely

Efk(ΠL⊥T n) ∼ fk(T
n), (7)

as n tends to infinity.

In the asymptotic relations (6) and (7), either the dimension or the codimension
of the subspaces onto which is projected remains fixed, while the dimension n of the
regular simplex tends to infinity. More interesting is the case of a linearly coordinated
growth of the parameters n, d, k, which was investigated by Vershik and Sporyshev
[48].

Random projections of regular simplices can also be looked at from a different point
of view. Let T n be a regular simplex in Rn, and let S be a fixed d-dimensional subspace
of Rn. Let ϑ be a random rotation of Rn, with distribution given by the normalized Haar
measure on the rotation group SO(n). Then ΠS(ϑ vert T n), where vert denotes the set
of vertices, is a set of n+1 random points in S. If f is any measurable function on sets of
n+1 points in the d-dimensional space S that is invariant under affine transformations
(for example, the number of k-faces of the convex hull), then f(ΠS(ϑ vert T n)) has the
same distribution as f(Xn+1), where Xn+1 is the set of n + 1 independent, identically
distributed random points in S with standard normal distribution. This was proved by
Baryshnikov and Vitale [8], who explained and considerably extended an observation
made in [1]. This allowed to carry over some results on random projections of regular
simplices to convex hulls of Gaussian samples. Only much later were these results on
convex hulls of Gaussian samples attacked directly, and stronger results were obtained,
by Hug, Munsonius and Reitzner [19] and by Hug and Reitzner [20].
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Let Cn denote a regular crosspolytope in Rn. Böröczky and Henk [9] have proved
a counterpart to (6), namely

Efk(ΠLCn) ∼ 2d

√
d

(
d

k + 1

)
β(T k, T d−1)(π log n)(d−1)/2, (8)

as n tends to infinity.

Now we explain why random projections of regular crosspolytopes have recently
become of interest, mainly in the work of David Donoho. Before that, we recall the
definition of centrally neighborly polytopes, which will play a role in this context.

Definition. A centrally symmetric polytope P is called centrally k-neighborly if every
subset of k vertices of P , not containing a pair of opposite vertices, is the set of vertices
of a (k − 1)-face of P (necessarily a (k − 1)-dimensional simplex).

Consider the following reconstruction problem (coming from coding theory). Let
n, d, k ∈ N be given numbers with d, k < n. Let Y be an (n − d)-dimensional linear
subspace of Rn. Suppose we are given a vector y′ ∈ Rn, and we have to find a vector
y ∈ Y that differs from y′ in at most k coordinates, or a good approximation of such a
vector. A practicable way of approximating y, starting from the known y′, consists in
finding a point y in Y nearest to y′. However, it would not be a good idea to interpret
‘nearest’ in the sense of the Euclidean norm, as simple examples show. It is much
better to take the L1-norm, since then one will often, that is, for many subspaces Y ,
get a correct solution. To investigate this phenomenon more closely, we formulate the
following property.

Definition. The subspace Y has property Uk if the following holds. Whenever y ∈ Y
and y′ ∈ Rn are such that they differ in at most k coordinates, then the optimization
problem

minimize ‖x− y′‖1 subject to the condition x ∈ Y

has a unique solution and this is equal to y.

The unit ball of the L1-norm in Rn is the n-dimensional regular crosspolytope Cn.
Let F be a (k − 1)-face of Cn, and choose z ∈ F . Then z lies in the intersection of
Cn with some k-dimensional coordinate subspace. Therefore, any point y ∈ Y and the
point y′ := y + z differ in at most k coordinates. Suppose that the linear subspace Y
has property Uk. Then Y touches the crosspolytope Cn + y′ at the unique point y.
Equivalently, Y + z touches Cn only at z. Thus, to any point z in a (k− 1)-face of Cn,
there exists a translate of the subspace Y that touches Cn only at z. It follows that the
projection ΠY ⊥F is a (k−1)-face of the centrally symmetric polytope ΠY ⊥Cn. Since F
was an arbitrary (k− 1)-face of Cn, we deduce that fk−1(ΠY ⊥Cn) = fk−1(C

n) = 2k
(

n
k

)
.

The centrally symmetric polytope ΠY ⊥Cn has 2v ≤ 2n vertices and, therefore, at most
2k
(

v
k

)
faces of dimension k− 1. Hence, ΠY ⊥Cn has 2n vertices, and any k non-opposite

of these vertices determine a (k − 1)-face of ΠY ⊥Cn. The arguments can be reversed
(replacing Cn by ‖y′ − y‖1C

n), therefore we have the following result.
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Proposition 1. The subspace Y has property Uk if and only if the polytope ΠY ⊥Cn

satisfies fk−1(ΠY ⊥Cn) = fk−1(C
n), equivalently, it has 2n vertices and is centrally

k-neighborly.

Example. n = 3, d = 2, k = 1: the one-dimensional subspace spanned by (1, 1, 1) has
property U1.

A similar result can also be formulated in terms of sparse solutions of underdeter-
mined systems of linear equations. The following formulation is taken from the work
of Donoho [12].

Proposition 2. Let A be a d × n matrix, let d, k < n. The following conditions (a)
and (b) are equivalent.

(a) Whenever, for given y, the system Ax = y has a solution x0 with at most k nonzeros,
then x0 is the unique solution of the optimization problem

minimize ‖x‖1 subject to the condition Ax = y.

(b) The polytope ACn has 2n vertices and is centrally k-neighborly.

This equivalence will be useful if one knows that condition (b) is satisfied for ‘many’
matrices A. In the case of Proposition 1, ‘many’ subspaces Y should have property
Uk. In particular, one hopes that for a random subspace with uniform distribution, the
required condition is satisfied with high probability.

Therefore, one considers a d-dimensional uniform random subspace L of Rn. One is
interested in those realizations L for which the polytope ΠLCn has the same number of
k-faces as Cn, and hence is centrally (k + 1)-neighborly (for convenience, we switched
here from k to k + 1). Donoho [13] succeeded in showing that this holds with high
probability, asymptotically for n →∞, where d and k are allowed to grow linearly with
n, in a prescribed way. Before going into more detail, we note the following connection
with the initially considered question. Since

E[fk(C
n)− fk(ΠLCn)] =

∫
1{fk(C

n) > fk(ΠLCn)}[fk(C
n)− fk(ΠLCn)] dP

≥ P[fk(C
n) > fk(ΠLCn)],

we have

P[fk(ΠLCn) < fk(C
n)] ≤ fk(C

n)− Efk(ΠLCn). (9)

This shows that for obtaining an upper estimate for the probability that the random
subspace L does not have property Uk, we need information on the expected number
Efk(ΠLCn) of k-faces of the random polytope ΠLCn. From (9) and (5), we get

P[fk(ΠLCn) < fk(C
n)] ≤ 2

∑
s≥0

∑
F∈Fk(Cn)

∑
G∈Fd+1+2s(Cn)

β(F, G)γ(G, Cn) (10)

=: ∆(k, d, n). (11)
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It is clear that the right side of (10) depends, in fact, only on the numbers k, d, n.
The aim are good upper estimates for ∆(k, d, n), asymptotically for large n, but in the
interesting cases where d and k are proportional to n.

Here is one of Donoho’s [13] main results. He establishes the existence of a function
P : (0, 1) → (0, 1] with the following properties. This function is defined implicitly, but
can be computed numerically with sufficient accuracy to obtain strong consequences.
The crucial property of P is this. Let δ ∈ (0, 1) be given and put d := bδnc. Let
ρ < P(δ) and put k := bρdc. Then, for sufficiently small ε > 0,

P[fk(ΠLCn) < fk(C
n)] ≤ ∆(k, d, n) ≤ ne−nε

for n > n0(δ, ρ, ε).

As a little ‘test’ example, Donoho’s result (supplemented by numerical calculations)
shows that there exist centrally k-neighborly d-polytopes with 4d vertices for which
k ≥ 0.089 d. Before that, the best result of this kind was due to Linial and Novik [30],
who had achieved k ≥ 0.0025 d.

Donoho in his proof writes

∆(k, d, n) =
∑
s≥0

Ds

with
Ds := 2

∑
F∈Fk(Cn)

∑
G∈Fd+1+2s(Cn)

β(F, G)γ(G, Cn)

and shows the following. If (k, d) = (kn, dn) is a sequence with

kn

dn

→ ρ,
dn

n
→ δ, where ρ < P(δ),

then, for sufficiently small ε > 0 and for n > n0(δ, ρ, ε),

n−1 log Ds ≤ −ε, s = 0, 1, 2, . . .

For this, he first notes that by properties of the crosspolytope Cn one has, setting
d + 1 + 2s =: `,

Ds = 2 · 2`

(
n

k + 1

)(
n− k − 1

`− k

)
β(T k, T `)γ(T `, Cn),

where T ` is any proper face of the regular crosspolytope Cn (which is a regular simplex)
and T k is any k-face of the regular `-simplex T `. He then proceeds with carefully
investigating the asymptotic behavior, as n → ∞, separately for the combinatorial
factor, the internal angle, and the external angle. One essential tool for this is a new
probabilistic interpretation of the internal angle, which then allows the application of
large deviation techniques.

More recently, Donoho and Tanner [14] have applied this approach to random pro-
jections of simplices, with applications to sparse nonnegative solutions of underde-
termined linear equations. In [15] they studied neighborliness properties of random
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projections of regular simplices, and in [16] they give a broad picture of various appli-
cations of (weak) neighborliness of random projections of high-dimensional polytopes.

4. - Intersections of Random Halfspaces

Every convex polytope can be represented as the intersection of finitely many closed
halfspaces. Choosing these halfspaces at random, we get a random polytope. A par-
ticularly manageable model is obtained if sufficiently strong independence properties
are built in. For that reason, we use a Poisson process of hyperplanes to generate the
random halfspaces, in the following way.

For a set X of hyperplanes in Rd not containing 0, let

Z0 :=
⋂

H∈X

H−,

where H− is the closed halfspace bounded by H that contains 0. If X is such that it
generates a tessellation of Rd into polytopes, then Z0 is known as the zero cell of this
tessellation.

We apply this to the realizations of a Poisson process in the space of hyperplanes.
Let Hd denote the space of hyperplanes of Rd, with its usual topology; then Hd is
locally compact and has a countable base. Let X be a Poisson process in Hd, with a
locally finite intensity measure Θ. Thus, Θ is a measure on the Borel σ-algebra B(Hd),
and it is finite on compact sets. The Poisson process X in Hd is a random variable
on some probability space (Ω, A, P) with values in the system N(Hd) of locally finite
subsets of Hd, with a suitable σ-algebra, such that, for Borel sets A ∈ B(Hd) and for
k ∈ N0,

P(#(X ∩ A) = k) = e−Θ(A) Θ(A)k

k!
, (12)

thus
Θ(A) = E #(X ∩ A). (13)

The σ-algebra on N(Hd) is the smallest one for which the counting variables #(X∩A),
A ∈ B(Hd), are measurable. We refer to [42] for more information about hyperplane
processes and the random tessellations that they induce.

We can neglect hyperplanes passing through 0. Every other hyperplane has a unique
representation of the form

Hu,t := {x ∈ Rd : 〈u, x〉 = t} with u ∈ Sd−1, t > 0.

We assume that the intensity measure Θ is of the form

Θ(A) = 2γ

∫
Sd−1

∫ ∞

0

1A(Hu,t) tr−1 dt ϕ(du), A ∈ B(Hd), (14)

with a number γ > 0, called the the intensity, a number r ≥ 1, called the distance
exponent, and a Borel probability measure ϕ on the unit sphere Sd−1, which is not
concentrated on a closed hemisphere; it is called the directional distribution. If r = 1,
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then the Poisson hyperplane process X is stationary (its distribution is invariant under
translations), and if ϕ is rotation invariant, then X is isotropic (its distribution is
invariant under rotations). The form (14) includes two important particular cases, as
described below, but it is far more general, requiring neither stationarity nor isotropy.
Only some homogeneity property with respect to dilatations is built into the definition,
via the term tr−1 in the integrand. The directional distribution ϕ governs, roughly
speaking, the frequency of the occurrence of hyperplanes Hu,t in X in dependence on
their normal vector u.

The intersection Z0 =
⋂

H∈X H− is almost surely a polytope, and this random poly-
tope is the object of our investigation. In particular, we want to study the approximate
shape of Z0 under the condition that is large, in some sense.

First we explain the background of this topic. Its origin is a conjecture of David
Kendall from the 1940s, which was popularized in his forward to the first edition
(1987) of the book by Stoyan, Kendall and Mecke [45]. Kendall was led to consider a
stationary, isotropic Poisson line process in the plane and its zero cell Z0. He wrote
(in equivalent words): “One would have preferred to be able to say something about
. . . my conjecture that the conditional law for the shape of Z0, given the area A(Z0)
of Z0, converges weakly, as A(Z0) → ∞, to the degenerate law concentrated at the
circular shape. Unfortunately nothing substantial is known . . . even today.” After the
appearance of the book [45], Kendall’s problem became widely known. Contributions
by Miles [32] and Goldman [17] supported the conjecture. Finally, a proof was given
by Kovalenko [27], and a simpler one in [29]. Kovalenko [28] also obtained a similar
result for the typical cell of a stationary Poisson–Voronöı tessellation in the plane.
In higher dimensions, Mecke and Osburg [31] treated the special case of large Crofton
parallelotopes, generated by a stationary Poisson hyperplane process with a directional
distribution concentrated on pairwise orthogonal directions and their opposites.

The immediate generalization of Kendall’s original question to higher dimensions
would ask for the asymptotic shape of the zero cell of a stationary and isotropic Pois-
son hyperplane process, under the condition that its volume is large. The properties
‘stationary’, ‘isotropic’ are equivalent (for Poisson processes) to the invariance of the
intensity measure Θ under translations, respectively rotations. The intensity measure
of a stationary, isotropic Poisson hyperplane process X in Rd is given by (14) with
r = 1 and ϕ = σ, the normalized spherical Lebesgue measure on Sd−1; in this case,
γ is the usual intensity of X. A natural extension of Kendall’s problem consists in
dropping the isotropy assumption. For a stationary Poisson hyperplane process X of
intensity γ, the intensity measure has the form (14), with r = 1 and ϕ as described
above (and, without loss of generality, invariant under reflection in the origin).

Also Kovalenko’s variant of Kendall’s problem for the typical cell of a stationary
Poisson–Voronöı tessellation is of interest in higher dimensions. Let S be a locally
finite set in Rd. For x ∈ S, the set

C(x, S) := {y ∈ Rd : ‖y − x‖ ≤ ‖y − s‖ for all s ∈ S}

consists of all points of Rd for which x is the nearest point in S. It is the Voronöı cell
(or Dirichlet cell ) of x with respect to S. Let Y be a stationary Poisson point process
in Rd. Then

X := {C(x, Y ) : x ∈ Y }
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is a stationary random tessellation, called the Poisson–Voronöı tessellation induced by
Y (see [42], also for the following) There exists a natural notion of ‘average cell’, called
the typical cell of the Poisson–Voronöı tessellation X. This is the random polytope
with distribution Q given by

Q(A) =
E #{x ∈ Y ∩Bd : C(x, Y )− x ∈ A}

E #(Y ∩Bd)

for Borel sets A ⊂ Kd (the space of compact convex subsets of Rd, equipped with the
Hausdorff metric). Slivnyak’s theorem for Poisson processes implies that the typical cell
of the Poisson–Voronöı mosaic X is stochastically equivalent to the random polytope

C(0, Y ∪ {0}) =
⋂
x∈Y

H−
x/‖x‖,‖x‖/2.

Thus, the typical cell of the Poisson–Voronöı mosaic X is the zero cell Z0 induced by
the hyperplane process {H−

x/‖x‖,‖x‖/2 : x ∈ Y }, which is formed by the mid-hyperplanes

of the points of Y and the origin 0. This is a (non-stationary) Poisson hyperplane
process with intensity measure given by

Θ(A) = 2γ

∫
Sd−1

∫ ∞

0

1A(Hu,t) td−1 dt σ(du),

where γ is 2d−1 times the intensity of the stationary point process Y .

Thus, we see that the zero cell Z0 induced by our general Poisson hyperplane process
X with intensity measure given by (14) includes two classical random polytopes:

• the zero cell of a stationary Poisson hyperplane tessellation, not necessarily isotropic
(r = 1, ϕ even),

• the typical cell of a stationary Poisson–Voronöı tessellation (r = d, ϕ = normalized
spherical Lebesgue measure).

Kendall’s original problem concerns the first of these cases, for d = 2 and rotation
invariant ϕ.

We can now ask a very general version of Kendall’s problem: What is the asymp-
totic shape of Z0, under the condition that this zero cell is large (in some sense)? At
first sight, none of the following questions seems to have an obvious answer: Does an
asymptotic shape exist? What is a candidate for this shape? How does it depend on
the interpretation of ‘large’? The quintessence of the following considerations is the
insight that the answers depend on the study of a certain inequality of isoperimetric
type for two functionals of convex bodies, in particular its extremal bodies and corre-
sponding stability estimates. In this way, the general version of Kendall’s problem on
certain random polytopes is closely connected with convex geometry. We describe this
connection in the general version that was presented in Hug and Schneider [25].

The first of the two crucial functionals is the one which is used to measure the
size of the random polytope Z0. For this, we can use any real function Σ on Kd that
satisfies the following axioms: it is

• increasing under set inclusion,

11



• homogeneous of some degree k ≥ 0,

• continuous,

• 6≡ 0.

We call any such function Σ a size functional. Familiar examples are: volume,
surface area, mean width, diameter, thickness, inradius, circumradius, volume of the
John ellipsoid, width in a given direction, and many others.

The second functional is determined by the intensity measure of the given Poisson
hyperplane process X. For K ∈ Kd, we define

HK := {H ∈ Hd : H ∩K 6= ∅}

and

Φ(K) :=
1

2γ
E # (X ∩HK). (15)

We call Φ the hitting functional, since Φ(K) is, up to a normalizing factor, the
expected number of hyperplanes of the process that hit the convex body K. Due to
the assumed form (14) of the intensity measure Θ of X, the hitting functional is given
by

Φ(K) =
1

r

∫
Sd−1

h(K, u)r ϕ(du).

where
h(K, u) := max{〈x, u〉 : x ∈ K}, u ∈ Rd,

is the support function.

By continuity and homogeneity, the hitting functional Φ and the size functional Σ
satisfy a sharp isoperimetric inequality,

Φ(K) ≥ τΣ(K)r/k. (16)

‘Sharp’ means that there are extremal bodies, that is, bodies K with more than one
point for which equality holds in (16) (this determines the factor τ). They play a crucial
role: the extremal bodies determine the asymptotic shapes of zero cells with large Σ-size.

To make this precise, the notion of ‘shape’ must be specified. Let G be one of the
groups of: similarities, homotheties, positive dilatations of Rd. We define the G-shape
of K ∈ Kd as the class sG(K) := {gK : g ∈ G}. By SG we denote the space of all G-
shapes, with the quotient topology. Now we can give a precise meaning to conditional
laws of shapes.

Definition. The conditional law of the G-shape of Z0, given the lower bound a > 0
for the size Σ(Z0), is the probability measure µa on SG defined by

µa(A) := P(sG(Z0) ∈ A | Σ(Z0) ≥ a)

for Borel sets A ⊂ SG.

The following theorem, on weak convergence of conditional laws of shapes, provides
a first answer to a considerably generalized version of Kendall’s problem.

12



Theorem 1. Suppose that the extremal bodies of (16) belong to a unique G-shape
sG(B). Then sG(B) is the limit shape of Z0 for increasing Σ, in the sense that

lim
a→∞

µa = δsG(B) weakly,

where δsG(B) denotes the Dirac measure concentrated at sG(B).

This follows from a stronger result, estimating the probability of large deviations
from an asymptotic shape. Its proof requires a stability improvement of the isoperimet-
ric inequality (16). We need a suitable function to measure deviations from extremal
bodies. Again, this can be introduced axiomatically. For given Φ and Σ, let ϑ be a
function on {K ∈ Kd

o : Σ(K) > 0} (where Kd
o := {K ∈ Kd : 0 ∈ K}) with the following

properties:

• ϑ is continuous,

• nonnegative,

• homogeneous of degree zero,

• ϑ(K) = 0 for K ∈ Kd
o ⇐⇒ K is extremal.

We call ϑ a deviation functional. It is easy to see that deviation functionals always
exist. In concrete cases, deviation functionals of intuitive geometric meaning will be
preferable.

It is also not difficult to see that the isoperimetric type inequality (16) admits a
stability improvement: there exists a continuous function f : R+ → R+ with f(ε) > 0
for ε > 0 and f(0) = 0 such that

ϑ(K) ≥ ε ⇒ Φ(K) ≥ (1 + f(ε))τΣ(K)r/k (17)

for K ∈ Kd
o. Any such function f is called a stability function for Φ, Σ, ϑ. In concrete

cases, explicit stability functions of optimal order are of interest.

Theorem 2. Let X, Σ, ϑ, f be given. For ε > 0 and a > 0,

P(ϑ(Z0) ≥ ε | Σ(Z0) ≥ a) ≤ c exp
(
−c0f(ε)ar/kγ

)
(18)

with positive constants c (depending on X, Σ, f, ε) and c0 (depending only on τ).

The reader will have noticed that in our considerations the condition Σ(Z0) ≥ a is
used, whereas Kendall’s original question involved the condition Σ(Z0) = a. Our results
are strong enough to include also such conditional distributions. The random variable
Z0 takes its values in Kd, which is a Polish space. Hence, the regular conditional
probability distribution of Z0 with respect to Σ(Z0) exists.

Theorem 3. Under the same conditions, and with similar constants,

P(ϑ(Z0) ≥ ε | Σ(Z0) = a) ≤ c exp
(
−c0f(ε)ar/kγ

)
.

From this, also a counterpart to Theorem 1 can be deduced, which is closer to
Kendall’s original conjecture.
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Special Cases

We consider some concrete examples.

(1) The zero cell of a stationary Poisson hyperplane tessellation; the size measured by
the volume. Here,

Φ(K) =

∫
Sd−1

h(K, u) ϕ(du).

To find the extremal bodies, one has to apply Minkowski’s existence theorem from
the theory of convex bodies to the directional distribution ϕ. This measure can be
assumed to be even (symmetric under reflection in the origin). By Minkowski’s theorem
(see [40, Th. 7.1.2]), there exists a convex body B with center 0 for which ϕ is the
area measure. With this body, the hitting functional can be expressed as a mixed
volume, Φ(K) = dV (K, B, . . . , B), and the crucial inequality (16) becomes Minkowski’s
inequality

V (K,B, . . . , B) ≥ Vd(B)1−1/dVd(K)1/d.

It is a classical result that here equality holds if and only if K is homothetic to B (see
[40, Th. 6.2.1]). Hence, the homothety class of B is the limit shape of Z0 with respect
to the volume. This case was treated in [21].

(2) The typical cell of a stationary Poisson–Voronöı tessellation; the size measured by
the kth intrinsic volume Vk (see [40] for this notion). Here,

Φ(K) =
1

d

∫
Sd−1

h(K, u)d dσ(u).

Hölder’s inequality and the Aleksandrov–Fenchel inequality give

Φ(K) ≥ τVk(K)d/k

with explicit τ , where equality holds if and only if K is a centered ball (i.e., a ball with
center at the origin). Hence, the class of centered balls is the limit shape of the typical
cell with respect to Vk. This case was treated in [22], where also an explicit stability
estimate was obtained.

(3) The zero cell of a stationary non-isotropic Poisson hyperplane tessellation; the size
measured by the inradius. The limit shape of Z0 with respect to the inradius turns out
to be the homothety class of the convex body

Bϕ :=
⋂

u∈supp ϕ

H−
u,1,

where supp denotes the support of a measure.

(4) The zero cell of a stationary isotropic Poisson hyperplane tessellation; the size
measured by the circumradius. The limit shape is the class of segments.

(5) The zero cell of a stationary isotropic Poisson hyperplane tessellation; the size
measured by the diameter. The limit shape is the class of segments.

(6) The zero cell of a stationary isotropic Poisson hyperplane tessellation; the size
measured by the thickness. There is no limit shape in the sense of Theorem 1, since
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the set of extremal bodies of the crucial isoperimetric inequality is the set of all bodies
of constant width. Theorem 2 estimates the probability of large deviations of the zero
cell Z0 from the class of bodies of constant width; hence, the class of bodies of constant
width can be considered as the asymptotic shape.

(7) The zero cell of a stationary isotropic Poisson hyperplane tessellation; the size
measured by the width in a given direction. The limit shape is the class of segments of
the given direction.

In most cases, the estimation of the probability of large deviations from limit shapes
can be done with intuitive deviation functionals and explicit stability functions.

The Idea of the Proof - a Rough Sketch

We give a rough sketch of the idea of the proof of Theorem 2, to show the role of
the isoperimetric type inequality

Φ(K) ≥ τΣ(K)r/k (19)

and the corresponding stability improvement

ϑ(K) ≥ ε ⇒ Φ(K) ≥ (1 + f(ε))τΣ(K)r/k. (20)

We have to estimate the conditional probability

P(ϑ(Z0) ≥ ε | Σ(Z0) ≥ a) =
P(ϑ(Z0) ≥ ε, Σ(Z0) ≥ a)

P(Σ(Z0) ≥ a)
(21)

from above. Let B be an extremal body of (19) with 0 ∈ B. Since only the shape of
B plays a role, we may replace B by a dilate and assume that Σ(B) = a; then, since
B satisfies (19) with equality,

Φ(B) = τar/k.

The estimation of the denominator of (21) is easy. If no hyperplane of the process
X hits B, then B ⊂ Z0 and thus Σ(Z0) ≥ Σ(B) = a, by the monotonicity of Σ. Hence,
observing (12), (13), (15),

P(Σ(Z0) ≥ a) ≥ P(#(X ∩HB) = 0) = exp (−Φ(B)2γ) = exp
(
−τar/k2γ

)
.

For the estimation of the numerator, we first give a heuristic idea. It consists in
comparing the zero cell Z0 with a fixed convex body with similar properties, that is,
not cut by hyperplanes of the process, with Σ-size at least a and deviation from B at
least ε. Let K be a convex body satisfying

ϑ(K) ≥ ε and Σ(K) ≥ a.

Then, by the stability estimate (21),

P(#(X ∩HK) = 0) = exp (−Φ(K)2γ) ≤ exp
(
−(1 + f(ε))τar/k2γ

)
.
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Heuristically, we replace K satisfying

#(X ∩HK) = 0, ϑ(K) ≥ ε, Σ(K) ≥ a

by the random zero cell Z0 satisfying

#(X ∩HαZ0) = 0 ∀ α ∈ (0, 1), ϑ(Z0) ≥ ε, Σ(Z0) ≥ a,

and hope that this costs only an inessential weakening of the inequality, say

P(ϑ(Z0) ≥ ε, Σ(Z0) ≥ a) ≤ c1 exp
(
−(1 + c2f(ε))τar/k2γ

)
with positive constants c1, c2. Division then gives

P(ϑ(Z0) ≥ ε | Σ(Z0) ≥ a) ≤ c1 exp
(
−c2f(ε)τar/k2γ

)
,

which is of the required form.

This strategy works indeed, though with considerable effort. We give a brief de-
scription of the essential steps.

It is necessary to prove the following stronger version of Theorem 2.

Theorem 2’. Let X, Σ, ϑ, f be given. For ε > 0 and 0 < a < b ≤ ∞,

P(ϑ(Z0) ≥ ε | Σ(Z0) ∈ [a, b)) ≤ c exp
(
−c0f(ε)ar/kγ

)
(22)

with positive constants c (depending on X, Σ, f, ε) and c0 (depending only on τ).

For the proof, we have to estimate probabilities of the type

P(ϑ(Z0) ≥ ε, Σ(Z0) ∈ a(1, 1 + h))

for h > 0. This is first done for h = 1, then extended to small h, then to all h > 0.

The random polytope Z0 can have an arbitrarily large diameter. To deal with this,
we introduce the relative diameter

δ(K) :=
diam(K)

cΣ(K)1/k
,

with c so that δ(K) ≥ 1. We consider separately the cases δ(Z0) ∈ [m, m+1) (m ∈ N).
The restriction δ(Z0) ∈ [m,m + 1) allows us to consider in a first step only zero cells
lying in some fixed bounded set C. In doing so, we then consider separately the cases
where the set C is hit by exactly N hyperplanes of the process, for given N ∈ N. Let

Ka,ε(m) := {K ∈ Kd : ϑ(K) ≥ ε, Σ(K) ∈ (a, 2a), δ(K) ∈ [m, m + 1)}.

We must estimate the conditional probability

pN := P(Z0 ∈ Ka,ε(m) | #(X ∩HC) = N).
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By the Poisson property,

pN =
1

[Φ(C)λ]N

∫
HC

. . .

∫
HC

1{H−
1 ∩ · · · ∩H−

N ∈ Ka,ε(m)}Θ(dH1) · · ·Θ(dHN).

If the integrand is equal to 1, then

P (H(N)) := H−
1 ∩ · · · ∩H−

N ∈ Ka,ε(m),

hence ϑ(P (H(N))) ≥ ε.

Let Ba be an extremal body with Σ(Ba) = a. By the stability estimate (21),

Φ(P (H(N))) ≥ (1 + f(ε))Φ(Ba).

The polytope P (H(N)) can have as many as N facets. For an effective estimation,
we must restrict its number of vertices. Using an approximation theorem from convex
geometry, we can show, for given α > 0, the existence of a number ν independent of
N such that the convex hull Q(H(N)) of ν suitably chosen vertices of P (H(N)) satisfies

Φ(Q(H(N))) ≥ (1− α)Φ(P (H(N))).

With g(ε) := f(ε)/(2 + f(ε)) we obtain

Φ(Q(H(N))) ≥ (1 + g(ε))Φ(Ba).

After some work, this leads to the estimate

pN ≤ 1

[Φ(C)λ]N

dν∑
j=d+1

(
N

j

)
[Φ(C)λ− (1 + g(ε))Φ(Ba)λ]N−j[Φ(C)λ]j.

Summation over N finally yields

P(Z0 ∈ Ka,ε(m)) ≤ c1m
rdν exp

(
−(1 + f(ε)/3)τar/kγ

)
.

This estimate can be applied for small numbers m. For large m, the estimate

P(Z0 ∈ Ka,ε(m)) ≤ c2 exp
(
−c3m

rar/kγ
)

is used, which is obtained in a similar though somewhat easier way.

We have to combine both estimates and extend the considered range of Σ(Z0)
from intervals a(1, 2) to intervals a(1, 1 + h). This extension is achieved by a kind
of transformation. We end up with the following estimate for the numerator of our
conditional probability:

Lemma 1. Let ε ∈ (0, 1) and h ∈ (0, 1/2), then

P(ϑ(Z0) ≥ ε, Σ(Z0) ∈ a(1, 1 + h)) ≤ c4h exp
(
−(1 + f(ε)/6)τar/kγ

)
.
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Since this upper bound for the numerator contains the number h as a factor, it is
necessary to estimate the denominator from below by a suitable bound which is also
linear in h, so that this factor cancels out.

Lemma 2. For each β > 0, there are constants h0 > 0, N ∈ N and c5 > 0 such that,
for a > 0 and 0 < h < h0,

P(Σ(Z0) ∈ a(1, 1 + h)) ≥ c5h(ar/kλ)N exp
(
−(1 + β)τar/kλ

)
.

The proof is essentially constructive, exhibiting sufficiently many situations in which
the event Σ(Z0) ∈ a(1, 1 + h) occurs.

In both lemmas, the number h must be sufficiently small. The final part of the
proof extends the estimates from the intervals a(1, 1 + h), with small h, to general
intervals (a, b), by a covering argument.

Further related results

For a tessellation induced by a stationary Poisson hyperplane process, one can also
define a ‘typical cell’. This is a random polytope, heuristically representing a cell
randomly picked out from a large region of the tessellation, with equal chances for
every cell in the region. For a precise definition, we refer to [42]. Up to translations,
the distribution of the zero cell Z0 is the volume-weighted distribution of the typical
cell (see [42, Satz 6.1.11]). This relation, however, is not very useful if one one wants
to study the asymptotic shape of large typical cells, where ‘large’ refers to some size
functional different from the volume. For some special size functionals, the methods
leading to Theorem 2 can be adapted. In [26] it was proved that the shape of the
typical cell of a stationary and isotropic Poisson hyperplane tessellation is, with high
probability, close to the shape of a ball if the kth intrinsic volume (k ≥ 2) of the typical
cell is large. It was also proved that the shape of typical cells of large diameter is close
to the shape of a segment.

Associated with every Voronöı tessellation is its dual Delaunay tessellation, by a
well-known construction. Starting with a stationary Poisson point process in Rd, we
obtain in this way a stationary Poisson–Delaunay tessellation. Its cells are almost
surely simplices. Again, the notion of a typical cell is well defined (see [42, Satz 6.2.10]
for its distribution). Large typical cells were investigated in [23, 24]. In [23], it was
proved that the shape of the typical cell of a stationary Poisson–Delaunay tessellation
tends to the shape of a regular simplex, given that the volume of the typical cell tends
to infinity. Analogous results for surface area, inradius, and minimal width as size
functionals were obtained in [24]. Typical cells of large diameter tend to belong to a
special class of simplices, distinct from the regular ones. In the plane, these are the
right-angled triangles. The results require the investigation of extremal properties of
simplices contained in a fixed ball. Corresponding stability results lead to estimates
for probabilities of large deviations from asymptotic shapes.
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[4] I. Bárány, Random polytopes, convex bodies, and approximation, in A. J. Badde-
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