Universität Basel Departement Mathematik und Informatik Dr. Armin Schikorra Dominik Himmelsbach

Übungen zur Funktionalanalysis Serie 12 vom 13.05.2015

Für eine kontinuierliche Verbesserung der Vorlesung haben Sie hier die Möglichkeit einer Meinungsabgabe

	1	2	3	4	5
Diese Übung ist zu leicht (1), zu schwierig (5)					
Diese Übung ist langweilig (1), interessant (5)					
Die letzte Vorlesung war unverständlich (1), verständlich (5)					
Die letzte Vorlesung war langweilig (1), interessant (5)					
Kommentare zur Verbesserung:					

Aufgabe 42 Zeigen Sie: Sei X ein \mathbb{C} -Banachraum und $A \in L(X)$. Dann sind die Eigenvektoren zu unterschiedli-

chen Eigenwerten linear unabhängig.

Sei also für $(\lambda_i)_{i=1}^n \subset \mathbb{C}$ mit $\lambda_i \neq \lambda_j$ für $i \neq j$ eine Folge von Eigenvektoren gebeben:

$$\{x_1,\ldots,x_n\}\subset X\backslash\{0\}$$

mit

$$Ax_i = \lambda_i x_i$$
 $i = 1, \ldots, n$.

Zeigen Sie dass $\{x_1, \ldots, x_n\}$ ein linear unabhängiges System ist.

Hinweis: Es bietet sich an, eine Induktion über n durchzuführen. Für den Induktionsschritt zeigen Sie: Gilt für gewisse $\alpha_j \in \mathbb{C}$, dass $\sum_{j=1}^{n+1} \alpha_j x_j = 0$, so folgt

$$\sum_{j=1}^{n+1} \lambda_j \alpha_j x_j = 0, \quad \text{und} \quad \sum_{j=1}^{n+1} \lambda_{n+1} \alpha_j x_j = 0,$$

Aufgabe 43 Gegeben sei der Hilbertraum $H = l^2(\mathbb{N})$ mit der üblichen l^2 -Norm. Betrachten Sie den Shiftoperator $A: l^2(\mathbb{N}) \to l^2(\mathbb{N})$

$$A(x_1, x_2, x_3, ...) := (0, x_1, x_2, x_3, ...)$$
 für $(x_1, x_2, x_3, ...) \in l^2(\mathbb{N})$.

Sei ausserdem $I: l^2(\mathbb{N}) \to l^2(\mathbb{N})$ die Identität.

Zeigen Sie

- (i) $A \in L(H)$ und $||A||_{L(H)} = 1$.
- (ii) A I ist injektiv.
- (iii) A I ist nicht surjektiv.
- (iv) A ist nicht kompakt als Operator in L(H).

*Aufgabe 44 Sei H ein \mathbb{C} -Hilbertraum und $A \in L(H)$ kompakt und selbstadjungiert. Wir wissen, dass alle Eigenwerte von A reell sind. Zeigen Sie weiterhin, dass

$$\sup\{|\lambda| : \lambda \text{ ist Eigenwert von } A\} = \max\{|\lambda| : \lambda \text{ ist Eigenwert von } A\}$$

und

$$||A||_{L(H)} = \max\{|\lambda| : \lambda \text{ ist Eigenwert von } A\}.$$
 (1)

Sie können wie folgt vorgehen:

(i) Setzen Sie $\gamma := ||A||_{L(H)}$ und zeigen Sie dass

$$\gamma \ge \sup\{|\lambda| : \lambda \text{ ist Eigenwert von } A\}$$

(ii) Für die andere Richtung konstruieren Sie eine Folge $(x_k)_{k\in\mathbb{N}}\subset H, \|x_k\|_X=1$ mit

$$\gamma = \lim_{k \to \infty} |\langle Ax_k, x_k \rangle|,$$
$$\beta := \lim_{k \to \infty} \langle Ax_k, x_k \rangle$$
$$||Ax_k||_H \le \gamma,$$

und

$$Ax_k \xrightarrow{k \to \infty} y$$
 für ein $y \in H$.

(iii) Zeigen Sie, dass

$$||Ax_k - \beta x_k||_H^2 \le 2\beta^2 - 2\beta \operatorname{Re}\langle Ax_k, x_k \rangle$$

- (iv) Schließen Sie, dass $x_k \xrightarrow{k \to \infty} x$ für ein $x \in H$, und $Ax = \beta x$.
- (v) Folgern Sie, dass

$$\gamma \leq \sup\{|\lambda| : \lambda \text{ ist Eigenwert von } A\}.$$

(vi) Zeigen Sie nun auch noch, dass

 $\gamma = \max\{|\lambda| : \lambda \text{ ist Eigenwert von } A\}.$