Universität Basel Departement Mathematik und Informatik Dr. Armin Schikorra Dominik Himmelsbach

Übungen zur Funktionalanalysis Serie 8 vom 15.04.2015

Für eine kontinuierliche Verbesserung der Vorlesung haben Sie hier die Möglichkeit einer Meinungsabgabe

	1	2	3	4	5
Diese Übung ist zu leicht (1), zu schwierig (5)					
Diese Übung ist langweilig (1), interessant (5)					
Die letzte Vorlesung war unverständlich (1), verständlich (5)					
Die letzte Vorlesung war langweilig (1), interessant (5)					
Kommentare zur Verbesserung:					

Aufgabe 28 Sei $X = \ell^2(\mathbb{N})$. Zeigen Sie, dass für die Folge $(e_i)_{i=1}^{\infty} \subset \ell^2(\mathbb{N})$ gegeben durch

$$e_i = (0, \dots, 0, \underbrace{1}_{i\text{-te position}}, 0, \dots)$$

gilt

- (i) $||e_i||_{\ell^2(\mathbb{N})} = 1$ für alle i
- (ii) $e_i \xrightarrow{i \to \infty} 0$ schwach in $\ell^2(\mathbb{N})$.

Hinweis: Benutzen Sie den Darstellungssatz von Riesz.

(iii) Es existiert kein $b \in \ell^2(\mathbb{N})$ so dass $e_i \xrightarrow{i \to \infty} b$ stark in $\ell^2(\mathbb{N})$

Aufgabe 29 Sei X ein normierter Vektorraum, und $X^{**} = (X^*)^*$ der zugehörige Bidualraum. Zeigen Sie Satz 6.3 aus der Vorlesung: Die *kanonische Einbettung* $\mathfrak{I}: X \to X^{**}$ ist gegeben durch

$$\mathfrak{I}: x \mapsto x^{**},$$

wobei

$$x^{**}(l) := l(x) \quad \forall l \in X^*.$$

Zeigen Sie, I ist eine lineare Isometrie, d.h. I ist linear und es gilt

$$||\Im x||_{X^{**}} = ||x||_X.$$

Aufgabe 30 Sei $(X, \|\cdot\|_X)$ ein normierter Vektorraum.

- (i) (Satz 6.7 (i)) Falls X reflexiv ist, so ist auch X^* reflexiv.
- (ii) (Satz 6.9 (ii)) Falls *X* reflexiv und separabel, dann ist *X** separabel (*Hinweis*: Verwenden Sie Satz 6.9 (i): Ist *X** separabel, dann ist auch *X* separabel).
- (iii) Sei $\langle \cdot, \cdot \rangle$ ein Skalarprodukt auf X. Angenommen es gilt für ein C > 0

$$C^{-1}\langle x, x \rangle \le ||x||_X^2 \le C \langle x, x \rangle \quad \forall x \in X,$$

Dann ist *X* reflexiv.

*Aufgabe 31 Sei X ein normierter Vektorraum. Zeigen Sie Satz 5.15 aus der Vorlesung. Gehen Sie wie folgt vor:

(i) Sei $C \subset X$ konvex und offen mit $0 \in C$, und $x_0 \in X \setminus C$. Zeigen Sie: es existiert ein $l \in X^*$ mit

$$l(c) < l(x_0) \quad \forall c \in C.$$

Dazu gehen Sie wie folgt vor: Das Minkowski-Funktional $p: X \to \mathbb{R}$ ist gegeben durch

$$p(x) := \inf\{\lambda > 0 : x \in \lambda C\}.$$

Dabei ist

$$\lambda C := \{ y \in X : y = \lambda c \mid \text{ für ein } c \in C \}$$

- a) p ist sublinear.
- b) Es existiert ein R > 0 so dass $B_R(0) \subset C$, und es gilt dann, dass $p(x) \le 2R^{-1} ||x||$ für alle $x \in X$.
- c) $C = \{x \in X : p(x) < 1\}$, insbesondere gilt $p(x_0) \ge 1$.
- d) Setzen Sie $f : \text{span}\{x_0\} \to \mathbb{R}$ als $f(tx_0) := t$, und zeigen Sie, dass $f(x) \le p(x)$ für alle $x \in \text{span}\{x_0\}$, und f ist linear und stetig auf $\text{span}\{x_0\}$.
- e) Setzen Sie f fort auf X, d.h. finden Sie $l \in X^*$ so dass l(c) < 1 für alle $c \in C$ und $l(x_0) = 1$.
- (ii) Schließen Sie aus (i): Sei $A, B \subset X$ konvex, nichtleer, und disjunkt. Falls A offen ist, dann gibt es ein $l \in X^*$, $\lambda \in \mathbb{R}$ mit

$$l(a) < \lambda \le l(b) \quad \forall a \in A, b \in B.$$

(iii) Malen Sie ein Bild der Situation von (ii) in \mathbb{R}^2 : Für zwei disjunkte, konvexe, nichtleere und offene Mengen A und B in \mathbb{R}^2 zeichnen Sie A und B. Zeichnen Sie für ein geeignetes I und A wie in (ii) die Menge $\{x \in \mathbb{R}^2 : I(x) = A\}$