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0.1. OVERVIEW 4
0.1. Overview
Parabolic equations such as

ou— Lu = f

and their nonlinear counterparts: Equations such as, see

Elliptic PDE: Describe steady states of an energy system, for example a steady heat
distribution in an object.

Parabolic PDE: describe the time evolution towards such a steady state.
Flows: Consider the energy functional

E:R" = R.
Crititcal points are also called stationary points

Now let u(0) satisty DE(u(0)) # 0. Set
u(1) = u(0) — DEu(0)),

u(k + 1) = u(k) — DE(u(k)).

Infinitesimally:
u(t +h) = u(t) — hDE(u(t)),
ut+h) = ull) b,
h — 0 gives:
= —DE(u(t)).

This is the flow along &.
EXAMPLE 0.1.1. On H'(Q) consider the energy

Eu) = %/ﬂ V2.
Then
DE(u) = —Au
and the flow
= Au

is called the heat equation.
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Aim of this lecture: We want to understand fully nonlinear parabolic PDE, e.g.

e Bellmann-equation

 — sup Lou + Au = 0.
a€cA

e Mean curvature flow

D
= |Dul|div (ﬁ)

e Kihler-Ricci-Flow
o = log det(D?u).

We study existence, uniqueness and regularity by using viscosity solutions and comparison
principles (cf. [IS13]).



CHAPTER 1

The Heat Equation

1.1. Definitions

(Cf. [Eva98, Section 2]). The Laplace operator A is gives as
Au(zy, ..., xn) = O, 0p,u(x1, ..., Tp).

We will use the so-called Einstein’s summation formula which says that repeated indices
are always summed over, that is

Op,Op,u(xy, ... Ty) = Z Op, Op,u(Ty, . .o Ty).
i=1

Sometimes, we write u,, for d,,u.

We want to study time-dependent problems, where we denote with ¢ € (0,00) the time.
Sometimes we write R for R™ x (0, 00).

More precisely, we want to study the heat equation “0, — A”. For example, we want to

understand existence, uniqueness questions for solutions u = u(t, x1,...,x,) : R’}r“ — R
of
(1.1.1) (0 —A)u=0 inR"” x (0,00)

The right-hand side is zero, and we call this the homogeneous heat equation.

Also we ask us the same questions about the inhomogeneous heat equation, for f(z,t) :
R"™ x (0,00) = R

(O —A)u=f inR" x (0,00).

Let © C R™ be open. Define
QT = x (0, T]

The Laplace operator for u: R™ — R is

n
Au = E Uy = Ui,
i=1

where we use the Einstein summation.
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For a domain X C R""! let f € CF(X) if and only if

oiD" f
are continuous. For general X the derivatives have to be continuously extendable up to
the boundary.

1.2. Fundamental solution

Studying solutions of the heat equation, a first step might be to find simple solutions.
Clearly, any constant function u = const is a solution to (1.1.1). But that is too easy, and
gives us no useful information about (1.1.1). Also, any solution v : R — R of Av =0
becomes a solution of (1.1.1), simply set u(x,t) := v(x). Again, this does not give us too
much information about the structure of (1.1.1). So we need to find a nontrivial, time-
dependent solution of (1.1.1). For this we make the interpretation of (1.1.1) as a ordinary
differential equation in ¢t. We all know

uy — pu =0
has the solution u(t) = eu(0) for any p € R. So in some sense, one might think that
(1.2.1) u(t,z) = e"u(0, )

is a solution (but it is not clear what e*® means, and we don’t want to get into this here; just
note this is actually a thing and this is possible). To make (1.2.1) precise and meaningful
for us, we use the Fourier transform.

(&, t) = /n e STy (1) da.

We have (Exercise 1)

Au(g, ) = —[¢[*a(€, 1),
and thus, after Fouriertransform (1.1.1) becomes
(1.2.2) (&, t) + [ElPa(g, t) =0 V() e R
If we fix £ € R" and set v(t) := a(&, t), then this is nothing but

V(1) +1€fu(t) = 0,

and the (unique is v(0) is chosen) solution to this equation is v(t) = e "€v(0). That is,
(1.2.2) implies

a(g,t) = e "<Pale,
The simplest situation arrises, if we assume that @(£,0) = 1. This is not possible for any
function u(z,0), but u(£,0) = 1 (at least formally) is the Fourier transform of the Dirac

s t
measure u(-,0) := &y defined as [, f(2)do(x) dz = f(0). For this choice of u we have (see
Exercise 1)

0).
,0
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which we shall call the fundamental solution.

DEFINITION 1.2.1 (Fundamental solution). The function

1 |2

e 4t eR"t>0
O(x,t) := a3 " v ’
0 t <0

is called the fundamental solution of the heat equation, or the heat kernel.

One can show, see Exercise 2, that ®(z,t) is the solution to

. — : n+1
(12.3) (0, — AP =0 in R%
O(x,0) = dy in R™.

Here ¢y is the Dirac-measure from above.
Another nice feature is

LEMMA 1.2.2. For any t > 0,

/n O(x,t) de = 1.

PROOF. From Exercise 1 and the above calculations we have
/ O(x,t) de = (0,t) = e = 1.
O

More generally, the above Fouriertransform argument implies that any solution of (1.1.1)
has actually the form

(1.2.4) u(z,t) =dxg= /n O(x—y,t)g(y) dy.

This is true since,

a(§,t) = ©(&, 1) a(,0).
Using the convolution formula, see Exercise 1, this implies (at least formally, under con-
vergence assumptions) (1.2.4).

Actually, this is precise.
THEOREM 1.2.3 (Potential solution). Let g € C°(R")NL>(R"). Define u by (1.2.4). Then

(1) ue Co®RY™),
(2) (8, — A)u =0 in R}
(8) For each xy € R™,

lim  wu(x,t) = g(zg).
(m,t)—)(mO,O)( ) = g(xo)
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PROOF. For ¢t > 0, ®(z,t) is smooth in z and ¢-direction, so by convolution estimates
(derivatives commute with the integral), u is smooth.

Also for t > 0, we have by commutation of derivatives and integrals,

i) — A, 1) = / (@ilz — y.t) — AD(z — y.)) gy) dy.

n

The latter is constantly zero by (1.2.3).

Finally, we need to show the boundary data. Pick ¢ > 0 and zy € R". In view of
Lemma 1.2.2, for any (r,t) € R,

n

(1.2.5) wle,t) — glzo) = / Bz — y,1) (9(y) — glx0)) dy.

The idea is now to show that if z is sufficiently close to xy and ¢ is sufficiently small, then
either |z — y| is small, in which case also g(y) — g(xo) is small; or |y — x| is large, but in
this case ®(x — y, t) is small for small ¢.

Let 4 > 0 so that
lg(y) — g(x0)| <& whenever |y — x| < 26,

and moreover so that

/ 1 122
e 4 dz<e.
RM\B(0,3) (47)2

The latter is possible, since we can estimate

1 2|2
/ ﬂe_% dz 5/ |z|—2n 5 5"
R™\B(0,%) (4m)2 R™\B(0,1)

Now we claim that for a uniform constant C' > 0

(1.2.6) lu(z,t) — g(z0)] < C & whenever |x — zo| < ¢ and |t| < §*.
We split the integral in (1.2.5),

fu(z, B)—g(0)] < /

S(z—y,1t) (9(y) — g(x0)) dy+/ d(z—y,t) (9(y) — g(x0)) dy
B(z,0)

R™\ B(z,0)
For the first integral observe y € B(x,0) and |x — x¢| <  implies |y — x| < 29, and thus

/ Bz —4,0) (gly) — glx0)) < / B(r—y.t) =<,
B(z,9)

n

the last equality in view of Lemma 1.2.2.

As for the second integral,

1 ek
/ Bz — 1) (9ly) — 9(x0)) dy < 2l gllzeqan / e dz
R\ B(z,0) R\ B(0,5) (47t)

|3
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By substitution

1 |21 1 |22 I 2
e i dz = e 4 dz < e+ dz<e.
rm\B(0,9) (47t)2 r\B(0, ) (47)2 rr\B(0.3) (47)

(1.2.6) is proven. O

N

0|3

In the next step we would like to find a potential representation for solutions of the inho-
mogeneous equation (for now starting from u = 0)

(1.27) w(z,t) = Au(z,t) = f(z,t) R
u(+,0) =0 on R".
Taking the Fourier transform, setting v(t) := @(¢,t) and g(t) == f(,1)

(1.2.8) V() + |€PPu(t) = g(t).

How do we solve this kind of ODE? We use a trick from ODE-theory, called Duhamel’s
principle.

For any fixed s > 0 we solve the homogeneous equation (with variable t € (s, 00)).
wi(t) + [Ews(t) =0, t>s

(1.29) wi(s) = g(s).

If we now set

we compute that v(0) = 0 and

(1.2.9)

t t
V() =wt)+ [ wl) ds "2 g(0) ~ € [ wale) ds = o(t) - €Pte),
0 0
that is, v solves (1.2.8). On the other hand, we have a formula for ws:
wy(t) = e g(s).
Consequently, the solution to (1.2.9) has the form

t
v(t) = / e~ =9IEF g (s) ds.
0

Taking the Fourier transform, the solution u to (1.2.7) has (at least formally) the form
t
(1.2.10) u(z,t) = / / O(x—y,t —s) f(y,s) dyds
0 n

Before we show that (1.2.10) indeed defines a solution for (1.2.7), we need a definition of
smoothness.
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DEFINITION 1.2.4 (Space-time spaces). A function f : R7*" — R is said to belong to
CHRIM) if

0;0;0;0y DDDD f

H/_/ \‘/—/

¢ times & times
exists and is continous.

A function f € CF(R™ x [0,00)) if that derivative can be continuously extended to t = 0.

THEOREM 1.2.5. Let f € C?(R" x [0,00)), and assume that f has compact support. Let u
be defined as in (1.2.10). Then

(1) u € CR(RY™),
(2) (0; — Ayu = f(x,t) in R
(3) For each xy € R™,
lim  w(z,t) =0

(z:t)=(20,0)

PROOF. Observe that there is a singularity in the integral when s = t. To see that u
is C% we change variables, and have

u(, t) —/Ot/ncb(z,r)f(x—z,t—r) dz dr

Now we can compute the derivatives,

ut(a:,t):/n@(z,t)f(x—z,()) dz~|—/0t/n<1>(z,r)ft(x—z,t—r) dz dr

2u(z, t) = /Ot/n ®(z,r)D*f(x — 2,t —r) dzdr.

Both right-hand sides are bounded if f € C#(R") and f has compact support.
In order to compute the equation note that for any ¢t > 0,
t
u(z, t) — Au(x, t) :/ O(2,t) f(x—2,0) dz+/ / O(z,7) (0 — Ay) f(x—2z,t—r) dzdr.

For any small ¢ we decompose u;(x,t) — Au(zx,t) into three components I, I, 111,

//n z,r) (O — A,) f(x — 2z, t — 1) dzdr

I1. ::/ /n O(z,r) (0 — Ay) flx — 2z, t —7r) dzdr
111 ::/ O(z,t) f(xr —2,0) dz

For I. we compute, in view of Lemma 1.2.2,

e—0

111 < & (Il ey + 1D ey ) <50,
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For I1. we do an integration by parts, for this we observe that
(O —Ay) flx—2z,t—r)= (=0, — A,) flx — z,t — 1)
Integrating by parts, (here we use that € > 0, so the singularity of ® is cut away),

11, —// O(z,r) f(x — 2z, t —r) dzdr
/ O(z,¢) f(x —z,t —¢) dz—/ O(z,t) f(x — 2,0) dz
and since ® solves the heat equation,
:O+/ O(z,e) flx —z,t —¢e) dz — 111,
We thus have
ur(z,t) — Au(x,t) = llil(l) . O(z,¢) f(x — z,t —¢) dz.

As in the proof of Theorem 1.2.3, we have

lim | ®(z,¢) f(x —2,t —¢) dz = f(z,1).

e—0 R
We thus have shown that (9; — A)u = f in R
For the final claim observe that in view of Lemma 1.2.2
t—0

[ull e <t f]| oo (gmy — 0
U

Combining Theorem 1.2.3 and Theorem 1.2.5 we have a full representation formula: let

(1.2.11) u(z,t) = /n O(x—y,t) g(y) dy+/0 /n O(x—y,t—s) fly,s) dyds.

THEOREM 1.2.6. For f and g as in Theorem 1.2.53 or Theorem 1.2.5, respectively, let u be
giwven by (1.2.11). Then u is a solution of

(0, —Au=f inR}
u=g on R™ x {0}.

EXERCISE 1. Fur eine Funktion f : R"™ — R sei die Fouriertransform f :R™ — R definiert

als .
Fle) — —i(€,x)

Zeigen Sie in formalen Rechnungen (also unter Annahme, dass die Integrale alle kon-
vergieren und kommutieren)
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(1) dass die Inversionsformel gilt

1 , "
F) = ooy [ F©) o
Dabei dirfen Sie benutzen, dass

e L €6 ale) de = g00)

(2) Show that f(0) = [n, f(z) da.
(3) Sei f = O,,g. Zeigen Sie (formale Rechnung) fir alle & = (&1,...,&,) und alle

1=1,...,n,

1(&) = —i&i 9(9).
Zeigen Sie auch die Umkehrung, Ist g(x) := —ix; f(x)

~

9, f(§) = 9(&).
(4) Schliessen Sie aus der vorigen Rechnung, dass falls f = Ag,
F(&) = 1€ (&)
(5) Sei fr(x) := f(Ax) fir ein X\ € R. Zeigen Sie
FA€) = A (E/N).

2

(6) Zeigen sie in einer Dimension, n =1, dass fir f(x) = 5 l)le_% qgilt
) 2
(&) = (9.
Hinweis: Zeigen Sie mit obigen Rechnungen, dass gelten muss
(1.2.12) 0ef(€) = —€£(€)

Verwenden Sie dann

/R ¢ = .

um zu zeigen, dass f(O) = f(0). Damit ist das Anfangswertproblem (1.2.12) ein-
deutig losbar, mit eindeutiger Losung f = f.

. 2
Bemerkung: Tatséichlich gilt in allen Dimensionen fir f(z) := (%ﬁe’%
(&) = (9.
(7) Zeigen Sie nun, dass fir festes t € (0,00), falls f(£) := e 17 so gilt
1 _l=?
e 4t
/() (4rt)= ‘

(8) Zeigen Sie, dass fir f,q: R™ — R gilt

Jo€) = [ F(e=m g0n) dn.
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EXERCISE 2. Let ® be the fundamental solution of the heat equation, that is

1 _le?

e 4t R™ ¢t >0
O(x,t) := FEnEA rER
0 t<0

(1) Show that fort >0
0:®(x,t) — Ad(x,t) = 0.
(2) Moreover, show that for |x| # 0,
lim ®(z,t) =0.

t*>0+

(3) Show that for |z| =0,
lim ®(z,t) = +o0.

t—04

1.3. Mean-value formula

(cf. [Eva98, Chapter 2.3|)

Use the fundamental solution to construct a parabolic ball, or heat ball
E(z,t;r) C R™.

DEFINITION 1.3.1 (Heat ball). Let (z,t) € R™. Set

1
E(z,t;r) = {(y,s) ER"™: s <t, P(x—y,t —s5)> —}
Tn

THEOREM 1.3.2 (mean value). Let X C R"™! be open and u € C3(X) solve (0y — A)u =0
in X. Then there holds

1 |z —yf?
u(zx,t) = —/ u(y, s) ——— dyds
4rn E(x,t;r) (t - 8)2
for all E(x,t;r) C X.
ProoOF. Without limit of generality u is smooth and (z,t) = (0,0). E(r) = E(0,0;7r).
1 2
O(r) := —/ u(y,s)% dyds.
r E(r) S

We show ®'(r) = 0 for r > 0.
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There holds

and hence
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"(r) = ) 2.y, i |yl N
Q'(r) = uyz(ry,r s)y — T 2rug(ry,r°s)—=—— | dyds
E(1) S S

_ ol . iyl s
=T uyl(y; S)y B +2U/S(y7 S)— dyds
E(r) S S

=A+B

Uiy, s) = -2 log(—4ms) +nlogr + w
7 2 4s’
et = "0 (y, —s)
wr<y, 5) =0 on 8E(7‘)

T/in:—

1
B= pntl /E(r) dug(y, 8)yithyi (y, s) dyds

1 .
= - 40, i
T.n+1 /E‘(r) Y (us(ya 8>y )¢(y> S) dey

1
- _rn+1 /E(r) 4nu8(y7 8)¢(y, 3)

1 7
— /E(T) Augyi (Y, s)y'P(y, s) dyds

1
—_ — 4 o , ,
o [, A4,

! n_ |yl
duy; i| =52 — 5 ) dsd
e [ o (555 )

1
= — 4 o , ,
yntl /E(r) nus(y, s)Y(y, s)

1 on .
o /E " ~uy(y, s)y’ dyds — A.
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Hence

1
rntl /E(r) Aug(y, s)dn(y, s) dyds

d'(r)=—

1 .
; " dyd
o /E(T) i (y, 8)y" dyds

1
= — 1/ wyi (y, $)4n0,i(y, s) dyds
e

1 / 2n (v, ) i
Uyt S
prntl By S yi\Y; )Y

= 0.

Thus @ is constant along r and hence

r—0

2
lim r‘”/ (u(y, s) — u(0, 0))|y8—l dyds + 4u(0,0)
E(r)

< li_r% Cr(||Vulloo + |0t oo) = 4u(0,0).

1.4. Maximum principle and Uniqueness

DEFINITION 1.4.1. Let Q C R™ be an open set and denote with Q7 := Q x (0, 7] for some
time 7' > 0. It is important to note that the top 2 x {T'} belongs to 7. The parabolic
boundary 'y of Q7 is the boundary of (27 without the top,

Ly =Qp\Qr =00 x [0,T) UQ x {0}.

THEOREM 1.4.2. Let U be bounded and v € C2(Ur) N C°(Ur) be a solution of u; = Au in
Ur. Then there holds the weak mazimum principle

(i)

max u = maxu
UT FT

and the strong maximum principle:
(ii) If U is connected and if there is (zo,t9) € Ur with

u(zo, to) = maxu,
Ur

then
u(z,t) = u(zo, to) V(x,t) € Uy.
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PRrooOF. (ii)=(i), since if

(14.1) max v > maxy

then by (ii) w is constant at all prior times, which contradicts (1.4.1).

Now we prove (ii). Suppose there is (xg,ty) € Ur with

u(zo,to) = M = max u.
T

Since tg > 0, there exists a small heat ball F(zy,ty,r) C Ur and we have by 1.3.2
1 ly — |
M = u(xg, ty) = —/ u(y, s) dsdy < M.
4rm E(xo,to,r) (t - S>2

Hence u = M in E. Now let (z1,t1) € Uy,. Then there exists a continuous path v: [0,1] — U
connecting xp and z;. In the spacetime set

L(r) = (v(r),rtr + (1 = r)to).

Let
p =max{r € [0,1]: u(T'(r)) = M}.
Show that p = 1. Suppose p < 1. Then we use the proof above to find a heat ball
E=E[T(p),r),

where u = M. Since I' crosses E (time parameter is decreasing along I'), we obtain a
contradiction to the maximality of p. O

REMARK 1.4.3. The same holds for —u and hence we have a minimum principle. Hence,
if in particular
w— Au=0 1in Ur
u=0 on U x [0,T]
u=g¢g inU x {0}
with g(x) > 0 for some x € U then u > 0 in Ur (infinite speed of propagation, non-
relativistic).

REMARK 1.4.4. For general X C R"™! open we have a similar result, see exercises.

THEOREM 1.4.5 (Uniqueness on bounded domains). Let U € R™ bounded and g € C°(I'p),
f € C°(Ur). Then there is at most one solution C3(Ur) N C%(Ur) to

u—Au=f inUr

u=g onl'r.

PROOF. Apply the maximum (and minimum) principle to show that the difference of
two solutions is zero. O
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THEOREM 1.4.6. Let u € CZ(R™ x (0,T]) N COR"™ x [0,T]) be a solution of
(O —A)u=0 mR"x(0,7T)
u=g onR"x {t=0}
with the growth condition
u(z,t) < A’
for some a, A > 0. Then there holds
sup u < supg.

R7x[0,7] R™
PRrROOF. Suppose first
4aT < 1.
Let
I ||
v(x,t) =ulr,t) — ———————FeTF0
(%) (1) (T+e—t)2

for some p > 0. Then v; — Av = 0. 1.4.2 implies

VU € R": maxv < maxv < max(maxv(-,0), max ov(z,t)).

Ur T AU x[0,T)
We have
|z
v(z,0) =g(xr) — ——Fe2 T+ < supg.
(,0) = g(x) T1o? up g

Let U = Bg(0), then

~max v < max (supg, max v(m,t)) .
Br(0)x[0,T] rn . |z|=R.t€[0,T)

For |z = Rand t € (0,T)
Iz i

v(x,t) = u(x,t) — mem

< Aedlel® Lneﬂ%i—t).

B (T+e—1)2
Now there exist € > 0,y > 0, such that

aty = L
AT +¢)
and hence
v(z,t) < Ae a aR*+yR?
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If R >> 0, then v(x,t) < g(0). So for large R and |z| = R we have

v(z,t) <supg
Rn

and so

max  v(z,t) <supg VR >>1
(z,t)eBr(0)r R"

and with R — oo

sup v(x,t) <supg
R”X[0,T] Rn

for any p. Letting p — 0 for fixed = gives the claim.

THEOREM 1.4.7. Let g € CO(R"),
u € CER™ x (0, 7)) NCO°(R™ x [0,T]) of

(O —Au=f nR"x(0,7T)
u=g onR"x {0}

with

lu(z,t)| < Ae®™’  V(z,t) € R” x (0,T).

PROOF. Exercise 4

19

0

f € COR™ x [0,T]). Then there is at most one solution

g

EXERCISE 3. Wir haben in Theorem 1.4.7 das starke Mazximumsprinzip auf parabolischen
Zylindern kennengelernt. Benutzen Sie dies um ein starkes Mazimumsprinzip auf allge-

meinen Mengen X herzuleiten:

Sei X C R eine beliebige beschrinkte, offene Menge. Angenommen es gilt u € C™(X)

und
ou — Au in X.

Angenommen es gilt fir ein (xo,ty) € X, dass

M = u(xg,t9) = sup u(z,t).
(z,t)eX

(1) Beschreiben Sie in Worten die Punkte die notwendigerweise zu der Menge C

gehoren, wobei

C:={(z,t) e X: wu(z,t)=DM}.
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>

(2) Seien die Menge X (grau) und der Punkt (xg,ty) wie im Bild gegeben. Zeichnen
Sie (in orange) die Menge C' ein.

EXERCISE 4. Zeigen Sie Theorem 1.4.7: Seien g € C°(R™), f € C°(R™ x [0,T)) fiir ein
T > 0.

Angenommen es gibt zwei Losungen u' und u?> € C3(R™ x (0,7)) N C°(R™ x [0,T]) des
Anfangswertproblems

(O —A)u=0 in R™ x (0,7),
u(z,0) = g(z) fir x € R™.

Gibt es weiterhin Konstanten aq,as und Ai, Ay > 0 so dass
r,t) < Ae 2, u“(x,t)] < Age ’ x,t) € x 0,71,
ut(x, )] < Ay et Il 2z t)| < Aye®l™ vz, t) e R* x [0, T

so gilt
u' =u® auf R™ x [0,7].

Hinweis: Benutzen Sie Theorem 1.4.6 (Starkes Mazimumsprinzip fir das Cauchy-Problem)
aus der Vorlesung.

EXERCISE 5. (c¢f. [Joh91]) Gegeben Sei die folgende Tychonoff-Funktion:

— 9t
u(z,t) = Z g(2k()') "
k=0
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wobei g¥) die k-te Ableitung ist, und

(=)
e t>0
g(t) = {

0 t <0.

(1) Zeigen Sie, u € CF(RZ) N CO(R x [0,00)).
(2) Zeigen Sie nun, dass
{(at ~Au=0 inR"x(0,T),

(14.2) u(z,0) =0 fir x € R™.

(8) Finden Sie eine andere Losung v Z u von (1.4.2).
(4) Warum (ohne Beweis) ist dies kein Widerspruch zu Aufgabe 4?

1.5. Harnack’s Principle

In the parabolic setting a Harnack in the whole spacetime is not possible. We have to wait
some time. For example for

@, —A)u=0 in B x (0,T))

we have a uniformly positive solution at time ¢ > 0 if only there is one point at ¢ = 0 with
u(z,0) > 0.

THEOREM 1.5.1 (Parabolic Harnack inequality). Assume u € C2(R™ x (0,T]) N L=(R™ x
[0,T]) and solves

u—Au=0 inR"x (0,7)
and
u>0 mR"x(0,T)

Then for any compactum K C R™ and any 0 < t; < ty < T there exists a constant C, so
that

sup u(z,t1) < C inf u(y, t2)
zeK yekK

PROOF. By the representation formula, Theorem 1.2.3 and uniqueness of the Cauchy
problem

1 Jzg—yl?
u(xg,ta) = —e A2y dy.
(22,12) /Rn (4nty)s o(y) dy

Now, for t; < ty whenever |z1], |x2| < A < oo, there exists a constant C' = C([t; — ta|, A)
so that
_’xz—y\Q > _|331 —y? _C
4ty 4ty

See Exercise 6.
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Consequently,
t 2 1 e -y t 2
u(zg,ta) > (—1) 6_0/ ce uo(y) dy = <_1) e “ulxy, ty).
19 n (t1)§ to

EXERCISE 6. Zeigen Sie die folgende Abschdtzung, die wir fir das Harnack-Prinzip, The-
orem 1.5.1, verwenden.

Ist K C R"™ kompakt und 0 < t; < ty < oo, dann gibt es eine Konstante C > 0 abhdngig
von K und (ty — t1), so dass

e~ gl _ Jra P
to - t1
EXERCISE 7 (Counterexample Harnack). (1) Sei ug : R" — [0,00) eine glatte Funk-
tion mit kompaktem support mit up(0) = 1. Setze

u(z, t) = /n O(x —y,t) uo(y) t>0

+C Vr,20€ K, yeR".

Zeigen Ste,

xIEHan u(z,t) =0 fir allet > 0.

Aber

sup u(z,t) >0 fir allet > 0.
TzER™

Warum ist dies kein Widerspruch zum Harnack-Prinzip, Theorem 1.5.17
(2) Zeigen Sie, dass das folgende Sei & € R™ gegeben, und u definiert als

lo+¢]2

ug(x,t) == (t+ 1)_%6_ A+D)

Zeigen Sie dass u eine Lisung von (0y — A)u = 0 auf R™ x (0, 00) ist. Zeigen Sie
aber auch, dass es jedes feste t > 0 keine Konstante C' = C(t) > 0 gibt fir die gilt

sup ug(z,t) <C  inf we(y,t) VEeR"™
ze[-1,1] ye[-1,1]

)

Warum ist dies kein Widerspruch zum Harnack-Prinzip, Theorem 1.5.17
Hinweis: Wihlen Sie x = —% und y = 0. Was passiert, wenn |§| — oco?

1.6. Regularity and Cauchy-estimates

THEOREM 1.6.1 (Smoothness). Let u € C?(Ur) satisfy
uy = Au  in Ur.

Then uw € C*(int(Ur)).
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Proor. This is a standard technique to transfer local questions to global situations,
using a cut-off function. Let

Clz,t;r) ={(y,8): |z —y| <rt—1? <s <t}
and
Cy = C(xg, to;r), Co=C (a:o,to; 27‘) , C3=C <x0,t0; g)
for some r such that C; C Ur. Choose a cut-off function
n € C*(R" x [0, t])
with 0 <7 <1, ¢, =1, n = 0 around R" x [0, £o]\C}. Suppose first that u is smooth. Set
v(z,t) =z, t)u(z,t) VY(z,t) € R" x (0,0,
extended by 0. Then
O — Av = uyn + nu — nAu — ulAn — 2 (Vu, Vn)

= nyu — ulAn — 2 (Vu, Vn)

=: f(x,t)
with bounded v and f € C? by smoothness of u. Let (z,t) € C5. Then

o, 1) = /t /nq)(x—y,t—s)f(y,s) dyds

= [ [ @t )ty oIl ) o))
—2(Vu(y,s), Vi(y,s))) dyds
We note: The singularity y = x and s = t is cut off due to (z,t) € C3. Hence

v(z,t) = /C O(x —y,t — s)((@t — A)n(y, s)u(y, s)) dyds

+/ QD(I)(IL'—y,t—S)Dn(y, S)U(y,S)-
C1
By convolution: If u € C?(Ur), we have a representation

lent) = [ Koy situly. ) dyds
C

with no singularities in the kernel. Thus v is smooth and so is u around (zg, o). O

THEOREM 1.6.2 (Cauchy estimates). For all k,l € N there exists C > 0 such that for all
u € C?*Y(Ur) (u € L, will be sufficient), solving

(@t—A)u:O,

loc
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there holds

max | DFolu| <
C(zo,to;5)

for all C(xg,ty;r) C Ur.

T TR [ull L1 (¢ o toir))

PROOF. Suppose first (zg,%y) = (0,0) and r = 1. Set
C(1) = C(0,0;1).
Then as in the proof of Theorem 1.6.1 we have

1
u(z,t) = o K(x,t,y,s)u(y,s) dyds V(z,t) € C <§> :

Then
kql _ kol
Dxatu(xvt) - (DxatK(x7t7yas>) U(y, S) dde
c)
and hence
1
|D§8£U(l’,t>| < Ck,lHu”Ll(C(l)) V(x,t) eC (5) .

Thus the claim is proven for 7 = 1. For 7 > 0 and (zg,ty) € R"™! set
v(z,t) = u(zo + ra, to + 17°t).

Then
qu\Diaiﬂ < Cralvlleqy:-
3
Hence

max | Diojulr*? < Crr™ ") |Jul| ey
C(zo,r05%)



CHAPTER II

linear parabolic equations

2.1. Definitions

The heat equation is the simplest or most pure parabolic equation. In general we want to
study equations of the form

Oyu — Lu,

where L is a uniformly elliptic differential operator (for each time ¢). More precisely, we
study L which for given coefficient functions a;;(x,t), b;(z,t) and ¢(z,t) has the form

Lu(z,t) = a;j(x,t) Ou(x, t) + bi(x, t) Ou(z, t) + c(z, t) u(x, t).
Recall that we use Einstein’s summation convention,

= ai(z, ) Ogulz,t) + Y bi(w,t) Oz, t) + c(x, t) u(x, t).

ij=1 i=1
We want L to be elliptic (and equivalently 0, — L to be parabolic), which simply means
that the leading order coefficients form a non-degenerate, positive matrix.

DEFINITION 2.1.1 (Parabolic). We say that an operator d; — L is uniformly parabolic, if
there exists a constant A > 0 so that

aij(z, 1) & & > NEP V(x,t) € Qr, € €R™
Equivalently, the matrix A(z,t) = (a;;(2,t))1<i j<n satisfies
(A(z, ), 2 A V(2,1) € Qr, E€R, ¢ = 1.
We also say that L is uniformly elliptic.

The simples example of a parabolic operator is the heat operator. Indeed take

S R

and b =c¢=0. Then L = +A. Indeed, parabolic operators have many features similar to

O — A.
25
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DEFINITION 2.1.2. Let X C R""! be an n+1-dimensional domain. The parabolic boundary
PX of X is defined as follows. For p > 0, (zg,ty) € R"™! define the (backwards-in-time)
cylinder Q,(zo, ty) as

Qu(wo,to) = {(z, 1) e R™™ 1 o — | < p, t € (tg— p°, o), } -
Then the parabolic boundary PX of X is defined as

PX :={(x0,t0) € 0X so that Q,(zo,t0) N X # 0 Vp > 0}
EXERCISE 8. Let  C R"™ be a domain and Qr = Q x (0,T]. Show that PQy = T'r.

2.2. Maximum principles

2.2.1. Weak maximum principle. We will always assume that the operators 9, + L
are uniformly parabolic and the coefficients a;;, b’, ¢ are continuous. Moreover we assume
symmetry,

Ai5 = Aj; 1§Z,j§n
Also X C R™! hounded.

THEOREM 2.2.1 (Weak maximum principle, ¢ = 0). Let X C R""! be open and bounded
and let L be an elliptic operator with

(2.2.1) c=0.
Let u € C}(X)NCX).

(1) If u is a subsolution of Oy — L, i.e.

(2.2.2) (& — L)u <0,
then
SUp u = Sup u.
X opX
(2) If u is a supersolution of 9, — L, i.e.
(815 - L)U Z 07

then

inf u = inf u.
X opX

PRrROOF. We only proof the first claim, the second one follows by replacing u with —u.
Also we will assume that X = Qp

For now assume that we have a strict subsolution. That is,

(2.2.3) (O — L)u<0 in Q.
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Assume that there exists a point (zo, o) € Q7 with u(zo,ty) = maxg_-u. Then zy € Q and
to € (0,71, so the maximality condition tells us

Ou(zo,to) >0, Du(xg,tg) =0, D?u(xg,ty) <0.
In particular, observing (2.2.1),
Ovu(xo, to) — Lu(zo, to) > a;i(xo, to) Oi5u(xo, to).
In view of Exercise 9 this implies
Oyu(xg, to) — Lu(xg, tg) > 0,

a contradiction to (2.2.3). So what do we do if we had only (2.2.2)7 We consider a
subsolution slightly below u. Let u®(x,t) := u(x,t) — et. Then, again with (2.2.1),

ou* —Lu =0u—Lu—e<0 in Q.
The above argument implies that

maxu., = maxu. ve > 0.
QT I'r

In particular we have

maxu < e+ maxu, < el +maxu, < el + maxu.
Q7T m FT FT

Letting ¢ — 0 we have

max v < maxu.
QT FT

The inverse estimate is always true, so the claim is proven. Il
EXERCISE 9. A matrix A € R™™ is nonnegative, A > 0, if
(Av,v) >0 Vv eR"
A matriz A is symmetric, if AT = A.
Show that
(1) A >0 implies PLAP > 0 for any matriz P € R™".

(2) A >0 implies that the diagonal entries A;; > 0 for anyi € {1,...,n}.
(3) A>0 and B >0 and B is symmetric then

1,7=1

If ¢ > 0, then we have to adapt the claim. For a function f let f, := max{f, 0} and
f- := max{—f,0}.

EXERCISE 10. Complete the above proof for general domain X .
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THEOREM 2.2.2 (Weak maximum principle, ¢ < 0). Let u and X as in 2.2.1 and 0; — L
parabolic with ¢ < 0. Then if uy — Lu < 0 then

supu < sup U..
X opX

For uy — Lu > 0, then

infu > —supu_,
X opX

where uy = max(0,u) and u_ = —min(u,0). If uy = Lu, then
sup [u| = sup |ul

X opX

PrRoOOF. We just prove the first claim, the second and third are simple corollaries.

Again, we assume )7, general X is an exercise. we first simplify the equation, and assume
that
((9t — L)U <0 in QT.

The only situation we have to exclude is that there exists (xg,t) € Qr at which there is a
positive maximum value u(z,t9) > 0. With the arguments above,

u(o, to) + Lu(xo, to) > c(zo, to) u(xo, to) > 0,

and we have our contradiction. The full claim is obtained if we consider again u®(z,t) :=
u(z,t) — et. Then

max u. < max(u:)y < max(u).
QT 1—‘T 1—‘T

We let € — 0 to conclude. O
A consequence of the weak maximum principle is uniqueness of solutions and the compar-
ison principle.

COROLLARY 2.2.3 (Uniqueness). Let X C R"*! and L as above with ¢ < 0. Let u,v €
C3H(X)NC%X) satisfy

uy — Lu = vy — L.
Then if u=v on 0pX, we have u =7v in X.

COROLLARY 2.2.4 (Comparison Principle). Let X and L as above and u,v € C7(X) N
C(X) with
uy — Lu < v, — Lov

in X with u <wv on dpX, then we have u < v in X.

We leave the proofs as exercises, Exercise 11.

EXERCISE 11. Prove Corollaries 2.2.3 and 2.2.4. Hint: What equation does v — v satisfy?
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2.2.2. Strong Maximum principle. Let
u— Lu=0 in Qp

We want to understand better the relation between u at different times. We have the
following very important “propagation of positivity” property. See [Lie96, II, Lemma 2.6]

LEMMA 2.2.5. [PROPAGATION OF POSITIVITY] For R > 0 and o > 0 let Bg(0) C R". Let
Q(R) = Br x (0,aR?). Let 0 <u € C?(Q(R)) satisfy

uy — Lu > 0,
where L s elliptic with b =c = 0. If
(2.2.4) u(z,0) > h Vx| <eR
for some h >0 and 0 < e < 1, then

u(z, aR?) > (e, \, R, llagllo)h V]| <

S R=v

for some positive c.

PROOF. Let Q C R"*! be a cone so that at time ¢ = 0, QN (R x {t =0}) is the ball
{|z| < eR} and at time t = aR?, QN (R" x {t = aR?}) is the ball {|z| < R}. See Figure 1.
In formulas, ) can be written

Q={(x,t) eR™: |22 <9(t),0 <t < aR?}

Y(t) == (1-<) t+e’R2.

«
On @ we will construct a comparison (“barrier”) function v with the following properties:

for

[(x,aR®) : |z| < R}

{(z,0): |#] < =R}

FIGURE 1. @ and its parabolic boundary PQ (green)

(2.2.5) {vt—LUSO in@

v<u on PQ

and moreover

(2.2.6) v(z,aR?) > c h whenever |z| < %

If we have such a v, then by Corollary 2.2.4 (the general domain version)

u(z,aR?) > v(x,aR?) > ch  whenever |z| < &
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So how do we construct such a v? We essentially rescale (in time) the map (1 — |z|?)%.
Choose the Ansatz
v(a,t) = pu(t) (v(t) — |=f*)*.

For u, v nonnegative functions. In general, away from ¢ = 0, we only know that v > 0, so
to make v as large as possible, it seems reasonable to set v(z,t) = 0 on the positive part
of the parabolic boundary PQ N {¢t > 0}. That is,

v(t) == (t).
Now we compute the equation. Firstly
Consequently, by ellipticity
—aj(2,1) Oyigiv(w, ) < p(t) (=89 (8) A + 8 () — [2*) A+ 4(y(t) — [x]*) tr(A)) .
Also,
v, t) = /() (Y(t) — [2]*)* + 2u(t) (¥ (1) — [2)¥' (1)

This v, has to be the positive guy, so we would like to be able to compare p/(t) and v/(t).
We thus choose (note that ¥ (t) > 0) for some constant 7 > 0,

p(t) == n(t) ™

Then
) Do) < o) (s s (L) sy (O 2D ).
and (observe that ¢'(t) = 1_;2R,
1) = (=g ) (000) — o+ 2000 (0(0) — ) —R

We see a quadratic structure in
t) — |z|?
(0 (),
¥(t)
namely
v(x,t) — ayi(z,t)0piziv(x, t)
€

<o) (= (4255 R) e+ (2SR w0? 4 8h+ 40 0 - 8.

«

Observe that the leading order term and the zero-order term are negative, hence (see
Exercise 12) there exists a large ¢ > 0 so that

ve(x,t) — aij(z,t) Opigiv(z,t) <0 in Q.
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On the other hand, for t = 0, in view of (2.2.4),

v(w,0) = e R (2R — |2*)* < (eR)** < -y (eR)* 7 u(z, 0).

==

So we choose
n:=h(eR)* %
Then v satisfies (2.2.5). It remains to check (2.2.6). For |z] < &,
9
v(z,aR) = h(eR)*"* R (R* — |2|*)? > he®t™* 16
This finishes the proof of Lemma 2.2.5. It is worth noting that we actually get an estimate
of the form &%, where k is a uniform constant depending on R, A, etc. For this assume

w.lo.g. that € < %, for any ¢ > % the claim follows from the € < % case since the positivity
set is larger than required. U

EXERCISE 12. Assume that a,b,c € R be fixed. To any X € R we associate the polynomial
pa(7) = Xax® +br +c xR,
Show that if a < 0 and ¢ < 0 then there exists a X\ > 0 so that

sup pa(z) < 0.
zeR

Hint: p-q formula

THEOREM 2.2.6 (Strong Maximum Principle). Let b,c = 0, L elliptic, X C R™"" open and
bounded, u € C3(X) N C%X) and assume in X :

Assume there is (zo,t9) € X, such that

U({E()’ tO) = Sup u,
X

then
u(z,t) = u(zo,tg) V(z,t) € S(xg,to),
where
S(xo,to) = {(z,t): 3 g €C° ([0, 1], X\, X) , 9(0) = (z0, %),
g(1) = (z,t), g decreasing in t}.
PROOF. Set

M := maxu.
X

Claim: Assume a maximal point (y,ty) € X, r > 0, such that
QYo, to,3r) C X
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and such that there is (y1,t1) € Q(vo, to,r) with

U(yl,t1)<M.
Then u(yo,to) < M. Set v = M — u and
to—t
R =2y —yo| <2r, a:= 0R2 L

By continuity there exists € > 0 and h > 0 such that
v(x,t1) > h, |yl <e€R.

By 2.2.5 there exists ¢ > 0, such that v(y,ty) > ch > 0 for all |y — y1| < R/2, a contra-
diction. Hence if u(xg,tg) = M, then u(y,t) = M for all (y,t) € Q(xo,to;r), whenenver
Q(zo,to;3r) C X. Hence {u = M} N S(xg,1p) is (parabolically) open and closed and hence
all of S(xg,to). O

2.3. Hopf Lemma

This section follows the presentation in [And11].

DEFINITION 2.3.1. [SPHERICAL CAP CONDITION| Let X C R"™. We say (zo,%y) € 0pX
satisfies the spherical cap condition, if there exist r > 0 and (z1,t;) € R™™ with z; # x,
such that

(zo,t0) € OB (21, 1)

and

0 # B (2, t) N {t <t} C X.
THEOREM 2.3.2 (Hopf Lemma). Let X C R"*! open and bounded, L elliptic, b,c =0 and
ue C3HX)NCX) with

(O, —Lu<0

in X. Assume (xg,t9) € Op(X) satisfying the spherical cap condition with cap A and

u(z,t) < u(zo,to) V(z,t) € A.
Then

i u((zo, to) + he) — u(xo, t)
2.3.1 1
231 g T

<0 VeVh<1: (xg,t)+ heec A

Observe that the inequality (2.3.1) with “<” is trivial. The strict inequality “<” is the
main result.
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PROOF. Set
M = u(zg, o).
We also know that from the strong maximum principle
u(z, to) < M V(x,tg) € 0A.
Obviously (2.3.1) holds with with the weak inequality. Wlog
u(z,t) < M V(x,t) € 0OA\{(xo,t0)}.

Set
w(z, t) = e ellEmP =) _o—ar® o 5
then
w(Iat) € [071] V(Jf,t) < B:LJrl(xlvtl)v
w(z,t) =0 V(r,t) € IB"(z1,t).
Then
W= —2a(t — t;)e o (lemmPHit=tl?)
aiw _ —20[(1]i . xzi)efoz(|x—x1|2+|t7tl|2)7
0;0,w = —2ae (a0 ) (5z‘j —2a(a’ — a7)(2 — mjl)) :
Hence
W — Lw = 2aee(lmPri=nl) (=t —t1) + a"6;; — 200" (2" — 2}) (27 — 27))
< 20 H=0E) () 4 tr(A)]|oo — 20Nz — 21]2) .
Set

Qe =An{|lz — x| <€}
Hence for all (z,t) € Q. we have |x — x1| > 3|21 — x| > 0. Thus choose « large such that
w—Lw<0 V(i) €.
Put
v=u+pw, p>0.
Then v — Lv < 0 in .. We have
0p§2. = S1 U Sy,
with
S; = 0pANOB,(11,t1), So=AN{|z — x| = €}
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On S; we have v < M. On S there exists ¢ > 0, such that u(z,t) < M — o. Hence
v=u+pw < M —oc+ p < M for small u. Thus

v(x,t) <M V(x,t) € OpQe.
Also

0 — Lv < 0= (iu— Lu) (xo, o)
and hence

v(x,t) < M =v(xo, tg) V(x,t) € Q..

We deduce for all e with (zg, ) + he € A for small h, that
v((xo,to) + he) — v((zo, to))

lim sup <0.
h—0 h
But
aeu} = 2ae—a|m0—11|2+|to—t1\2 <67 (xl — Zo, 11 — t0)> > 07
and hence (2.3.1) follows. O

2.4. Harnack’s inequality

Later we prove some weak Harnack estimates. Without proof, now we state:
THEOREM 2.4.1 (Parabolic Harnack inequality). Assume u € C2(Ur) and solves
(O, —L)u=0 1inUr
and
u>0 inUr
Assume moreover that b =0 and ¢ = 0 and a is smooth.
If V 3 U is connected, then for each time 0 < t; <ty <T there is a constant C' such that

supu(x,ty) < Cinf u(z, ts).
zeV zeV

PROOF. See [Eva98, Theorem 10, p.391]. O



CHAPTER III

A short look at Semi-group theory

As references we refer to [Eva98, §7.4] and [CH98].
In Section 1.2 we looked at (0; — A) u = 0 and naively we should have
u = e®u(0).
We made this precise with the help of the Fourier Transform.
Is there a similar relation if we look at L instead of A?
Generally: Let X be a real Banach space and a linear map A,
A:DA) Cc X — X,

where D(A) is the domain of A, a linear (usually dense) subset of X. We are looking for
solutions u € C*((0,7T), X) of

= Au, te(0,7),

(3.0.1)
u(0) = ¢.
A is in general not bounded, but closed. Assume there exists a solution to (3.0.1), then
T(t)p := u(t)

defines an operator. Properties of T':

e I'(t): X — X is linear,

e 7:[0,00) = L(X).

e 7(0) =id,

o T(t+5) = T(t) o T(s),

e t — T(t)y is continuous.

The latter three properties are characteristic for a semigroup.

Assume now that we have a semigroup
T:1]0,00) x X — X.

Then we find some A such that T is the semigroup of A. A will then be called the generator
of T

35
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— T -T
at) = iy u(t +s) —u(t) _ liy (t+s)p =T(t)y
S— s S— s

= lim
s—0 S

= Au(t).
Hence let

T(s)—T
Au = lir% —<8) (0>u,
S— S

whenever the limit exists. Call D(A) the set of u € X where this limit exists.

One might conjecture there is some sort of equivalence between generators A and semi-
groups 1.

Questions: Which generators A allow semigroups? Which generators are implies by semi-
groups?

The main theorem which gives us an answer to this question is the Hille-Yoshida Theorem
at the end of this Section.

3.1. m-dissipative operators

We want to solve

W' (t) = Au, t>0
(3.1.1)
u(0) = ¢
with some operator
D(A) Cc X — X,

where X is a Banach space and D(A) a linear subspace, e.g. X = L? and D(A) = H?. In
general A will not be bounded.

3.1.1. linear bounded operators. (i) Let X = R" or C", A: X — X linear (and
thus bounded), then

u(t) =y
is the unique solution to (3.1.1), where
— 1
tA _ N Lk gk
et = k!t A",
k=0

(ii) Let X be a general Banach space and A € L(X), where L(X) is the space of bounded
linear operators. Here e also makes sense.
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LEMMA 3.1.1. Let A, B € L(X). Then
(i) e converges absolutely,
(ii) & = id,
(iii)) AB= BA = eMB =¢del
(iv) e4 = (eA)fl.

THEOREM 3.1.2. Let A € L(X), ¢ € X, T > 0. Then there exists a unique solution
u € CH(0,T),X) of

u'(t) = Au(t)
u(0) = ¢
PrRoOOF. Put
u(t) = ey
Then

For a second solution v set

then w'(¢) = 0 and hence w(t) = w(0) = . O

3.1.2. unbounded operators. Let X be a real or complex Banach space. An oper-
ator

A: DA CX =X

is called linear, if and only if D(A) is a linear subspace and A ist linear on D(A). We say
A is densely defined, if

D(A) = X.
A is bounded, if and only if
|A] := sup [|Az| < oc.
lzll<1

Otherwise it is called unbounded.

examples

(1) X = L2(R"), A=A, D(A) = H(R") or D(A) = O,
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(2) X = C°([0,1]), D(A) = X, K € ¢°([0,1] x [0, 1])

/Kq:y ) dy

is bounded.

We use the following notation.
G(A) ={(u,Au) C X x X:ue D(A)}
is the graph of A,
R(A) ={Au: ue D(A)}
the range of A. An extension of A is
A: D(A) c X — X,
such that
D(A) c D(A) and Au= Au Vu € D(A),

Ais called closed, if G(A) is closed in X x X. A is called closable, if there exists a closed
extension A.

THEOREM 3.1.3 (Closed Graph Theorem). Let A: X — X be linear. Then A is continuous
(i.e. bounded) if and only if A is closed.

3.1.3. Notion of m-dissipative operators. X Banach space, A: D(A) — X linear.
DEFINITION 3.1.4. A is dissipative, if
|lu — MNAul|| > [Jul]] Yu € D(A),\ > 0.
A is called accretive, if —A is dissipative.
LEMMA 3.1.5. Let X be a Hilbert space,
A:DA) CX =X
linear, then A is dissipative if and only if

Re (u, Au) <0 Yu e D(A).
If for example A = A, X = L*(R"), D(A) = H*(R"), then
(u, Au) = — |Vul*> < 0.

R'!L
For Schroedinger equation:

(u, +ilAu) = Fi [ |Vul?
R

and hence the real part is 0 and both A and —¢A are dissipative.
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PrOOF OF LEMMA 3.1.5. Let A dissipative, then:
[ull + M Aull* — 2ARe (u, Aw) — |Jul* = [lu — AAu]|* — [|ul* > 0.

Dividing by A and letting A — 0 gives
Re (u, Au) <0.

Let
Re (Au,u) <0,

then

lu = AAul* = Jlul* + N[ Aul|* = 2ARe (u, Au) > [[u]]*.
O

DEFINITION 3.1.6 (m-dissipative). A linear operator A: D(A) C X — X is called m-
dissipative, if A is dissipative and I — AA is surjective for all A > 0. (hence I — A\A is
continuously invertible.)

Our aim is to show that for any m-dissipative A we can define (some sort of) e. We also
call A m-accretive, if —A is m-dissipative. Set

Jy= (I —MA)": X = D(A).
Then
||| < v Vv e X.

LEMMA 3.1.7. Let A be dissipative, then A is m-dissipative if and only if there exists Ag > 0
such that I — M\gA is surjective.

PROOF. Let A € (0,00) and v € X. Find u € D(A) such that u — NAu = v.

)\0 >\0
Mo Ay = 22 129
u — AAu )\v—i—( A)u

v (B (1)) =

We show the right hand side is a contraction in u. Then

N

Hence F' is a contraction, if A < A\g/2. Then there is a unique u € D(A) with F(u) = u.
Iteration give the result. U

is equivalent to

Ao
[1F(u) = F(w)]| = < 1= | e =l

PROPOSITION 3.1.8. All m-dissipative operators are closed.

PROOF. J; exists and is continuous, hence I — A is closed and hence A is closed. [
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example:
X =1I1% A=A, D(A) = H? Then A is m-dissipative. We only have to show that
Vo€ L?Jue H?: u— Au=w.

Here we see that the choice of D(A) is important (the above will not work for D(A) = C*.)
We solve this by Fourier-transform.

a(€) + €[ ag) = o(¢)
and hence we conjecture

R
U(f)-—>ii;WZT§U(§)

Hence @ € L? and

e 2
—— _p(&) el
e
implies that u, V2u € L2.

PROPOSITION 3.1.9. Let A be m-dissipative, then

Yue D(A): [T —ul 22% 0.

PRrROOF. There holds
[T = I < A+ < 2.
Hence it suffices to prove the result for u € D(A).
| huw—ul| = ||Jx (w— (I —AA)u) || < A||Au|| -0, A —0.

Set
1
A)\ = AJ)\ = X(J)\ - I)

This Ay € L(X) will serve as an “approximation” for A, so that we can make (certain)
sense of an operator e in terms of limy_,qe*. This is justified by the following

PROPOSITION 3.1.10. Let A be m-dissipative and D(A) = X. Then
Ayu — Au, Yu e D(A).

ProOOF.
I Au — Au,

since D(A) is dense. Furthermore, we have
(I —NA)A = A(I — NA).
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Thus, multiplying both sides with J from the left and also from the right, we have A, =
AJy = JhA. O

3.2. Semigroup Theory

Let X be a Banach space. A semigroup is an operator
T:10,00) = L(X),
such that

(i) T(0) =1,
(ii) T(t + s) = T()T(s).

T is called C°-semigroup (strongly continuous semigroup), if
(iti) limy o |T(H)u —ul| =0 Yu € X.

Note, that T'(s)T'(t) = T(t)T(s).

Examples

(1) Ae L(X), T(t) = ¢
(2) X = L"(R), pell, ]

T(t)u(z) = u(t + z).

If p < oo, then T is a continuous semigroup, since C'° is dense and hence for
u € LP and € > 0 there exists f € C2° with

1f = ullp < €/3.

We have for small ¢,

sup|f(z — 1) = f(@)] <tV oo < €/3

Then
1T(®)u —ull, < [|T@)f = fllp + 1T (w—= F)llp+ llu—fllp
%
-3
and

1
P € .
(/ |T(t)f — f|p) < 3 (diam(supp f) +1).
R
For p = oo let u = Xjo,1], then
lu —T(t)u|loo =sup |u(z) —u(z+1t)|>1 Vt>0.

Thus T is no C%-semigroup for p = co.
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PROPOSITION 3.2.1. Let T(t) be a C°-semigroup. Then AM > 1 and w € R such that

IT(t)|| < Me“".
PROOF. Show that there exists § > 0 such that
sup ||T(t)] < oo.
(3.2.1) S 17()]]

If this was not the case, then there exists a sequence t,, — 0 with ||T'(¢,)|| — oo. Recall
Banach-Steinhaus: If for a sequence A,, € L(X) we have

Vu € X sup ||Ayu| < oo,

then sup,, ||A,|| < oo.

Hence in our case we find u € X such that ||T(t,)u]| — oo, in contradiction to the C°-
property. Hence (3.2.1) must be true. Now let ¢ > 0, then there exists n € N and s € (0,0),
such that

t=mnd+s.
Then
Tt)=T()o---oT(§)oT(s).
Then
T < ITE[IT(s)]| < M™ < MMF = Me' 55
O
PROPOSITION 3.2.2. Let T(t) be a C°-semigroup. Then the map
(t,u) — T(t)u

18 continuous.

PRrOOF. Exercise. U

DEFINITION 3.2.3. Let T'(t) be a C°-semigroup. Then
wo = inf{w € R: IM > 1, ||T(t)|| < Me**}
ist called the growth bound of the semigroup.

DEFINITION 3.2.4. A C°-semigroup is called contraction semigroup, if
Vi >0:||T@)] <1.

Recall that

I <1 A<

> o

We define
TA(t) = GtAA,
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which is a C°-semigroup and we have

IBO] < [l %e™ 3! — e x[|er”|| < e7xer = 1.

THEOREM 3.2.5 (Hille Yoshida (Part I)). Let A: D(A) ¢ X — X m-dissipative and
densely defined. Then for all u € X the limat

T(t)u = lim T)\(t)u
A—=0

exists and the convergence is uniform on intervals of the form [0,T]. Furthermore (T'(t))i>o
is a contraction semigroup and for all uw € D(A),

u(t) :=T(t)u
is the unique solution u € C°([0,00), D(A)) N C*((0,0), X) to
w(t) =Au(t) t>0
(3.2.2) {u(o) _

PROOF. Step (1): On the contraction semigroup property
There holds JyJ, = J,Jx and the same for Ay. Let A, 1 > 0, then
Ta(t)u — T, (t)yu = (e — ) u
_ etAA ([ _ et(AM*AA))u
and hence
ITa () — Ty (t)ul| < |1 — "=
< [t (lle“ 1+ lle"“ 1) [1(Ay — Ax)ull
<20t (A — AN ul| =0, [u—A—0

uniformly on bounded intervals. Hence the proposed limit exists, if u € D(A). Since T'(t)
is a uniformly bounded linear operator and hence extends to all of X, since D(A) is dense.

Now let u € X with approximating sequence u,, € D(A).
ITx(@)u = T@)ull < |Tx()w = Tr(E)unl| + [|T3()un = T(#)un|
+ T () (un —w)l
< 2|y, — || + | Tr(E)un — T(t) |-
Hence T)\(t)u — T'(t)u. Furthermore
[T T (s)u =Tt + s)ull < | TE)T(s)u = T(&)Ta(s)u]
HIT@)Ta(s)u = Ta(t)Ta(s)ull
HIT(E + s)u = T(t + s)uf
— 0.
Step (2): On the equation (3.2.2)
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Let u € D(A) and set
uy(t) = e .

Then

% = etAAA)\U = T)\(t)A/\u

Equivalently, also using Ayu — Au and Ty — T,
t 1
u(t) « up(t) = u +/ Th(s)Ayu ds — u +/ T(s) Au ds.
0 0
Thus v € C* and
u(t) = T(t)Au = Au(t).

Uniqueness proceeds as in Theorem 3.1.2. O

3.2.1. Generators of semigroups. Let T'(t) be a contraction semigroup. Define

T _
D(L) := {u € X: lim % exists} .

h—0

For uw € D(L) set

Lu = lim M
h—0 h

Example: X = C,(R) be the set of uniformly continuous, bounded functions with the
L°°-norm.

T(tu(x) = u(x +1).
Then T'(t) is a contraction semigroup. Then

Lu=4v', D(L)={u,u € Cu(R)}.

PROOF. Tt is clear that u,u’ € Cyuy(R) implies

B) —
Uz + })L uz) _ u'(z)|| — 0.
Now let u € D(L), then v/, € C(R) and hence v/, = u' € Cyy(R). O

THEOREM 3.2.6 (Hille Yoshida Part II). Let T'(t) be a contraction semigroup with generator
L. Then L is m-dissipative and densely defined.
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PRrOOF. (i) L is dissipative, i.e. for all A > 0, ||lu — ALu|| > 0.

Ty —ul_ H (1 N %) [ = | 2y
= (1+7) b = 1T
> (14 3l = lal) = L

h — 0 on the left hand side shows L is dissipative.

o

(ii) L is m-dissipative. It suffices to show that (I — L) is surjective. Thus we want to find
Ju, such that

(I —L)Ju = u.

Ansatz:
Ju = / e 'T(t) dt.
0
Then
| Jul] S/ e~ IT(t)ull dt < |ul

0
and hence ||J|| = 1. We claim that

(I -L)Ju=u
and therefore calculate

(T(h) = T) Ju — /0 e+ hyu dt — /0 T e Tt dt
- /h h e () dt — /0 ) e T (t)u dt
_ /O T (et — et Tt — /0 T dt
= (" =1) /0 h e T (t)u dt — " /0 ' e T (t)u dt

h
= (" —1)Ju — eh/ e 'T(t)u dt.
0

Hence
T(h)—1
h

el —1 el rh ¢
= - — T .
Ju ; Ju h /0 e "T(t)u dt

Thus Ju € D(L) and
LJu = Ju — u,
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which is the claim.
(iii) D(L) is dense. Set
1 [h
up, = —/ T(s)u ds.
h Jo
There holds
1 [t
o=l = |3 [ 06~ ywas
0
1 [t
<7 [ 1@ - nul o
0
Thus we show uy, € D(L) for all h > 0 and u € X. Now let ¢ << h, we calculate
T(t)—1 1 e
%uh—ﬁ t T(s)uds—E/O T(s)u ds
1 t+h 1 h
=7 : T(s)u ds + E/t T(s)u ds
I I
“ ), T(s)u ds — E/t T(s)u ds
S 2 pmyu - Loy e x
h h
and hence the left hand side converges in X. U



CHAPTER IV

Schauder estimates

References: [IS13] and [Kry96]
Our aim is that for some solution of
(at - A)U =f

we want to obtain C?7% estimates in dependence of f € C“.

4.1. Parabolic Holder spaces

X C R™" Also here, the philosophy is that functions have half smoothness in time
compared to space.
For (z;,t;) € R™™! put
p((x1,11), (2, t2)) = V[t — ta] + |1 — .
DEFINITION 4.1.1. Let X C R"™', o € (0,1). Set

[u(ty, 1) — u(ty, v2)|

e 3= iR ex (o ), (o, ()"
and
[ulla.x = [Ulax + [[ulloo-
Also let
[ta1ax = lUa,x + [D*ula x
and
[ullz4a,x = lulloc + [t]24+a,x-

The spaces (C*T(X), || - [l24a), (CX), || - |lo) are Banach spaces.
LEMMA 4.1.2 (Computations). For all « € (0,1) there hold:
(1)

[uv]a,x < [ufloo[v]a,x + [[0]loo[t)a,x;

47
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(2) k €{0,2},

(U + Vkta < [Uktrax + [Vkrax

There is an alternative description for the Holder norms. We define
P, = {polynomials in ¢,z of the form p(t,z) = At + Now; + N2, + M}

and

inf Hu — pHoo Qp((z1,t1))>

(Ul qpner =  SUp  sup jnf

2
(t1,z1)€RP+1 p>0 P to

where () is the parabolic cylinder of radius p.

THEOREM 4.1.3 (Equivalence of Holder norms). There exists C' > 0, such that for all
= C2+a (Rn—i-l)

(4.1.1) [U]/zm,wﬂ < Clufoyapn
and
(4.1.2) [u]z4arntt < Clulyy g gosr-

PROOF. (4.1.1) is an exercise (take p a Taylor polynomial).
As for (4.1.2), let h > 0 and set

on(0p)u(t, z) = u(t,z) —u(t — h*, x)

h2

on(@)ult, ) = % (ult, z + hes + hey) — u(t,z + hes) — u(t, @ + he;) +ult, 7))
Observe that
on(O)(p) = ¢, on(Oy)p=c
and, due to Taylor,
o (O u(t, x) — Owu(t, x)| < Ch[u)atarn+
and similarly in 9;;. Now let (x;,t;) € R™™! and
p=p((x1,11), (22, 12)), h:=ep,
where € will be chosen.
Then
|Oyu(x, t1)—0u(te, x2)| < |on(0p)u(ty, x1) — on(0y)u(ts, x2)]
+ |on (O u(ty, x1) — Opu(zy, t1)|
+ |0 (0 u(ta, x2) — Opu(xa, ta)|
< 2Ch"[u]otq rn+t
L)

+ |on(0:)(u — p)(t1,21) — on(9) (u — p)(t2, 72)|.
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Suppose t; < ty. Then (ty,x1), (t; — 2, 21), (t2, 22), (t2 — h%, x9) € ()3,(t2, x2) and hence
4
03.(0) (u — p)(t1, 21)| + |00 (00) (u — p) (22, t2)| < ﬁl\u — Dllo.@s,
for all p € P,. Taking the infimum gives

1 h®
p—a’atU(tl,.Tl) — 8tU(t27.fE2)| S 2Cp_a[u]2+a’Rn+l +

pahg pi€n7£2 ||U - p||007Q3p

4
< 2Ce” [u]2+a’Rn+l + G_Q[U}/2+Q’Rn+1-

An analogueous estimate holds for spatial derivatives. Absorbing the [u]-part into the right
hand side gives the result. U

PROPOSITION 4.1.4. (Interpolation)
Va € (0,1),7 > 0: [[0ufloo.x < C(y)l[ulloc + y[ul21ax-
The same holds for Du and [u], x.

PROPOSITION 4.1.5 (Arzela-Ascoli). Let X C R™"! be bounded and uy € C**(X) uni-
formly bounded. Then there exists a subsequence converging in C*® for all f < a.

4.2. Schauder estimates with constant coefficients

References: [IS13, Chapter 2.4], [Kry96, Chapter 8.6]

First, we prove the (interior) Schauder estimate for the heat equation. The general case is
a consequence of this theorem.

THEOREM 4.2.1. (Schauder) Let o € (0,1), T € RU {0}, u € C°(R™ x (—o0,T]). Set
fi=(0 — A)u.
Then there ezists C' = C(n,a) > 0 such that

[U]24a,Rrn 5 (—00,7) < C[flarrx(—00,T)-

There are several proofs of this theorem. A popular one is due to Safanov and can be
found in [Kry96]. We use here the blow-up approach due to Simon [Sim97].

PrROOF. We prove the case T' = oo, the case T' < oo is an exercise the reader is urged
to do, Exercise 13.

Assume the claim is false, that is for any k& € N there exists a smooth uy € C=(R"™!) so
that

[Uk]02+a(Rn+l) 2 k [(at - A)Uk]ca(RrH—l).
Our goal is to produce a contradiction from this assumption. For this we first modify the
sequence (ug)ren appropriately, then we pass to the limit as k — co.
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e Firstly, without loss of generality, we can assume

(421) [Uk]02+a(R7z+l) = 1,

1
(4.2.2) (0 = A)urloe@niny < 7,

otherwise we rescale 1y, := ug/[ug|c2+amnt1y and work with @y instead of w.
The condition (4.2.1) implies for some (zy,t) € R™™! and some v}, € R"1\ {0}

< | D?uy,((tg, ) + Ur) — D?uy(ty, xx)| n Oy ((te, k) + Tk) — Opug(te, z)|

N p(U, 0)« p(U, 0)«

Let e; = (0,...,0,1,0,...,0)T the i-th unit vector in R"*'. By decomposing v
into its components we may simplify and for ¢y := we necessarily find some
ir € {1,...,n+ 1} and some hy, > 0 so that

| D?uy ((ty, xr) + hies,) — D?ug((ty, 1))|
p(hkeika 0)a
N |Opug ((tr, x) + hes, ) — Opug((tr, xx))|
p(hkeim O)a .

e Up to taking a subsequence k — oo (again denoted by k), we may assume that
ei, = €, for some fixed ip € {1,...,n+ 1}: there must be a constant subsequence
of i € {1,...,n+1}.

e W.lo.g. (t,zx) = 0, otherwise replace uy by (¢, z) := ug(t + tg, x + xx).

e Wlo.g.

N |

_1
2(n+1)

cop <

otherwise we add a polynomial p € P, i.e. of the form
p(t,x) = c1 + tey + wes + 2l ey,

so that uy := u, — p satisfies these conditions.
e Furthermore we may assume hy = 1. Otherwise we scale

- (t ) hiZiauk(th, hl‘), if €y € {0} X R"
ug(t,x) = —2—a
: VI “u(ht, Vi), if e;, € R x {0}

All these assumptions yield that without loss of generality, uy € C*°(R™*!) satifies (4.2.1)
and (4.2.2) and moreover

(4.2.3) |D2ug(es,)| + |Opur(ei,)| > co Yk € N.

Observe that the latter condition is stable under local C?#-convergence (8 < «), while
(4.2.1) is not, which is the main reason we did these simplifciations. Now we can pass to
the limit:
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For large R > 1 to be chosen later, we set

[(R) = {(t,x) € R""!: |z| < R,|t| < R*}.
For any (¢,x) € I'(R) there holds

|ur(t, )] = |ug(t, 2) — uk(0,0)]

< ug(t, ) — ug(0, )| + |ug(0, 2) — ugk(0,0)]

< R?||0urlso,r(r) + C Rl Dug|so,r(m)nfe=oy

< R*||0yullso,rr) + C Rl Dug — Dug(0)]|o,r(R)nf1=0}

< R*||0yunllso,rr) + C R2|| D*uilloo,r(r)

< C R***[uk)2ta;

For some dimensional constant C' > 0.
In particular, in view of (4.2.1),

(424) sup ||uk||L°"(F(R)) S C R2+a.
keN

In particular
sup ||ug |20y < C(1+ R*T).
keN
With Arzela-Ascoli, Proposition 4.1.5 we find some u € C** and have w.l.o.g. (otherwise
we take a subsequence),
up — u, in C%F
for any £ < a.

In particular, we have pointwise convergence of first and second derivatives and thus by
(4.2.3),

(4.2.5) |D?u(es, )| + [0puleiy)| > co.
Moreover, by locally uniform convergence, (4.2.4) takes over and we have
||U||Loo(F(R)) S C R2+a.

In particular, we have an L!-estimate we can later use for the Cauchy estimates (observe
that the size of T'(R) is |[['(R)| = C' R"?)

||u||L1(p(R)) S C Rn+4+a.
Furthermore by (4.2.2), (0; — A)u is constant in I'(R), and since (0; — A)u(0) = 0, we have
(0 —AN)u=0 inT(R).
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We thus may apply the Cauchy-estimates, Theorem 1.6.2, (they are written for C? but they
can easily be extended to C?*#). Assume that R > 1 is so large that B;(0)"*! C T'(R/4).
For this we estimate

| D*u(eqy)| + rules, )|
§||D2U||oo,3y+1(o) + 10sull o, 10

< [[1D*u = D*u(0) | o, pr+1(0) + 10 — 05(0) | g2 0)

<C <||D3UHOO,B;I+1(0) + HatDzu“oo,B?'H(O) + HatDU”oo,B?H(o) + HatatuHOO,BI‘J"l(O)) )
and with the Cauchy-estimates, Theorem 1.6.2, we then have

| D?ules, )| + [0ules,)| < C (R + R7"7°) [lullprery)-
In view of (4.2) we then finally obtain
|D*u(es,)| + |Owu(es,)| < C (RT"° + R"%) R4 <20 R*

which (since @ < 1) for large enough R > 1 contradicts (4.2.5). O

EXERCISE 13. Zeigen Sie Theorem IV.3.2 (Schauder fiir konstante Koeffizienten) aus der
Vorlesung fur T < oo:

Seia € (0,1), T < 0o, u € C®°(R" x (—00,T]) und
f:=(00 — A)u.
Dann gilt fiir eine Konstante C' = C(a,n),

[u]2+a,R"><(oo,T) < C [f]a,R”X(oo,T)-
Hinweise:

e Zeigen Sie, dass Sie Ohne Einschrinkung annehmen konnen: T = 0
e Die Cauchy-Abschdtzungen, Theorem 1.6.2, gelten rickwdrts in der Zeit!

COROLLARY 4.2.2 (Schauder with constant coefficient)). Let « € (0,1), L = a"d;; elliptic

and a” symmetric and constant. Then there exists C = C(a,n, |a”|,\) > 0 such that for
all w € C®(R" x (—00,T)) we have

[u]2+a,(—oo,T)XR" < C[U/ - Lu]a,(—oo,T)xR"-

PROOF. There exists P € SO(n) and a diagonal matrix D with
A=P'DP=P'VDPP"VDP = B*
Put
v(t,x) = u(t, Bx).
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Then
Awv(t, ) 07 (u(t, Bx))
9; (BY0u(t, Bx))
(32Y33WU(, Bi)
= a"9,u(t, Br).
Hence
00 — Av = Oy — aijaiju
and Theorem 4.2.1 gives the result. U

4.3. Schauder Estimate for variable coefficient

PROPOSITION 4.3.1. Let X = Q x (0,7) C R"™, u € C*(X), u € C%(X UdpX). For
g = Ujppx and

f = 0w — Lu,
where a” is continuous, b= c = 0. Then

[tlloe < T flloe + [lglloc-

PROOF. Set

v (t,z) = ut (|glloe + 1 fllso) -
Then

(O —L)v" = f+|fllc >0

and reversed for v~. Furthermore

on dpX. By the maximum principle
vt >0, <0
throughout X, which implies the claim. U

THEOREM 4.3.2 (Schauder (interior)). Let u € C**((0,T) x R*), a € (0,1), h = ujgo}xrn,
ou — Lu = f for

L= Clijﬁij + bld +c,
with coefficients in C®. Then there exists C = C(a,n, \, ||alloo, [a¥]a; [D]a, [c]a) such that

||U||2+a,(0,T)x1Rn <C ([f]a,(O,T)X]R” + [hlotarr + ||U||oo,Rnx(o,T)) :
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PROOF. First suppose b = ¢ = 0 and h € C**(R"*!) and u = h on (R x {0}). We

freeze the a”. Let 0 < v < 1 be chosen later. Let (x1,t1), (xa,t3) € (0,T) x R™ such that
|6tu(x1, tl) - 8tu($2, t2)|
pl(z1, 1), (22, 12))™

| Ostt| e 0,7y xR < 2

Case 1: p > ~v. Then

[atu]a,(o,T)an < 477a||atuHoo7(0,T)XR"

1
< 4[ ]2+a(OT)><R" +C( )||“||oo,(07T)XR"'
Case 2: p < 7. Let £ € C°(R"™) with

§<<y7t)) =1, p((yat)70) <1

and

£((y,1) =0, p((y,1),0) > 2.

n(t,m:s(t‘“,x‘xl).

2 g

Set

Then by 4.2.2
[Ostt] o, (0,7)xrn < 2p((w1, 1), (w2, 2)) ™ *|0p(um) (21, 1) — Op(un) (w2, t2)|
< 2[un]a4a,0,1) xR
< Cl(0r — L)(21, 1) (un)]a,rn x(—o0,1)
< C[(0 = L) (1, t1) (un)]a, 1) + [|All2+arn
< Cl(0 — L)(un)]e, (0,T) x R"
+ [((0r = L) (21, t1) — (0 — L)) (un)]a,0,7)xme
+ llulloo + [Al2+a,rn
=1+ 11+ ||ulleo + [P]2+are-

(0r — L)(un) = nf +u(d; — L)n — 2a” d;ud;u
and hence
1< C(y,a”) ([fla + [ul2 + [Du]a)
< Y ulara + COVSf]a + llullco0m)xre-
Also with Proposition 4.1.4,
[(a¥ (21, t1) = aij) Bij(un)]a,.m)xen < CY*[u]ara + C (V) [|ulloos

since

||aij(xlvt1) - aij”oo,supp n < Cv%[a)q
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and hence
IT < Cy*u)ora + C(7) ||t -

The same argument holds for D?u and thus

1
[u]2+a,(0,T)><]R” < <07a + 5) [u]2+a,(O,T)><R”

+C0) ([fla + llullse + [Al24a) -

Choose v such that the first term of the right hand side is absorbed in the left hand side,
which gives the result in case b = ¢ = 0. In general:

Ou — a"Oju = f + b'0u + cu
and thus
[Uora < C ([|ullos + [Alota + [f + 05w + ctt]a,0,1)xrn)
< fullss + [Al24a + [fla
+ [blallOulloe + [c]llulloc + [[blloc [Oru]a + llefloo[u]a
< ulloo + [hl24a + [fla + C (b, ¢, )|l + €[ti]24a-



CHAPTER V

Viscosity Solutions

Viscosity solutions were introduced by Crandall and Lions. A standard reference is [CIL92].
See also [Koil2] and [IS13, Chapter 3].

Consider the equation
(5.0.1) O+ F(t,x, Du, D*u) = 0.

Observe that there is no u-term here, and thus corresponds to the linear equation (0, + L)u
with ¢ = 0.

F'is called degenerately elliptic, if
(5.0.2) F(t,z,p,A) > F(t,z,p,B) V(t,r) e R"" peR" A< B,
with symmetric matrices A, B.

It is a simple observation, see also Exercise 9, that for parabolic linear operators L =
a;j0;; + b;0; with ¢ = 0, the operator F' given as

F(t,z,p, A) := —ai;Aij + bjp;
is degenerate elliptic in the above sense.
Also, we observe that if a smooth u is a solution to
O+ F(t,z, Du, D*u) =0 in a point (¢, z¢) € R"*!

then for any test-function ¢ “touching u from above”, i.e. so that ¢ > u and p(xg,ty) =
u(g, to) then dypo(wo, to) = Oyu(zo,to), Dp(x0,t0) = Dpu(w, to) and D?p(xg,te) > D*u(zg, to)
and consequently

Arp(to, 20)+F (to, To, Dp(o, to), D*¢(wo, to) < dyulte, 20)+F (to, xo, Dulto, 2o), D*u(ty, 20)) = 0

In words, if u is a smooth solution of (5.0.1) in (%o, x¢), then any ¢ touching u from above
in (to, o) is a subsolution of (5.0.1) in (¢, zo).

The same way, if u is a smooth solution of (5.0.1) in (to, zo) then any ¢ touching u from
below in (to, zo) is a supersolution of (5.0.1) in (¢, o).

The converse trivially holds true: If any ¢ touching u from above in (ty, x¢) is a subsolution
of (5.0.1) in (to, zo), then taking ¢ := u so is u. The same holds of course for supersolutions.
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Also for merely continuous functions u we can define what it means to be touched above
or below from some test-function ¢, thus for thus functions u will can define the following
weak notion of subsolution (in the Viscosity sense). If any testfunction ¢ touching from u
above in a point (to, o) is a subsolution, then we say that u is a (Viscosity-)subsolution.
Similar definitions hold for supersolution. A Viscosity solution is then simply a function
which is sub- and supersolution.

5.1. Definitions and first properties

A function u is lower semicontinuous (lsc) , if

u(x) < liminf u(y)

y—m:
and upper semicontinuous (usc) if

u(z) > limsup u(y).

Yy—x

For a function u the upper semicontinuous envelope is
u* = limsup{u(y): [y —z| <7}
u* is the smallest upper semicontinuous function with u < u*. The isc envelope is
u, = liminf{u(y): |y — x| < r},
r—0
which is the largest isc function with u, < u. Cf. Exercise 15.

DEFINITION 5.1.1 (Test-function). A test function on an open @ C R"*! is a function
©: @ — R which is C?! in time and C? in space.
A test function ¢ touches a function u: @ — R from above (below) in (o, zo), if
p2u, (p<u)
and
o(zo,to) = u(zo, to).

DEFINITION 5.1.2 (Viscosity solution). Let @ C R™™! open and u: @ — R a function. We
define (super-, sub-)solutions of the equation

(5.1.1) o + F(t,x, Dv, D*v) = 0.

(1) w is a subsolution of (5.1.1), if u is upper semicontinuous and for all (x,t) € @
and for all test functions ¢ touching u from above in (z,¢) we have

Ovp + F(t,x, Dy, ngp) < 0.

(2) w is a supersolution of (5.1.1), if w is lsc and for all (z,f) € @ and for all test
functions ¢ touching u from below in (z,t) we have

Oup + F(t,x, Do, D*p) > 0.
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(3) w is a vixcosity solution of (5.1.1), if u is a sub- and supersolution. Observe, that
in particular u is supposed to be continuous.

DEFINITION 5.1.3 (2" order sub/super differentials).
P)(t,2) = {(0p, X) € R x R x R

(0, p, X) = (Drp(, 1), Dp(, 1), D*p(, 1))
for some test function from above (below) ¢}.

Observe that if (o, p, X) € Pt (u)(t,x) and ¢ is the associated test-function then we have
by u(y, s) < ¢(y, s) and by Taylor

u(y, ) < ule,0) +als — 1) +p- (g 2) + 5y~ DXy — )+ olly — ol + |5 — )

In particular v being viscosity subsolution is equivalent to saying u is usc and for all
(a,p, X) € PT(u) we have

a+ F(z,t,p, X) <0.
A similar characterization holds for supersolutions.

DEFINITION 5.1.4 (Limit of (sub-) superdifferentials).
PE(u)(t,r) = {(a,p, X) € R x R" x R™": 3(t,,, z,, — (t, 7))

sym
El(anapTan) € Pi(u)(tna xn)a
(ampm X'n) — (Oé,p7 X)

u(tn, xn) — u(t,x)}.

We suppose from now on that F' is continuous and degenerately elliptic.

PROPOSITION 5.1.5. (1) Let Q C R™ open and assume that (uy)aca be a family of
subsolutions for

O+ F(t,z,Du, D*u) =0 in Q

Let u be the upper semicontinuous envelope of sup, u (which itself needs not to be
upper semicontinuous), that is

u = <sup ua)
«

and suppose u is pointwise finite, then u is a subsolution.
(2) Let (un)nen a sequence of subsolutions. The upper relaxed limit @ is defined by

a(t,z) = limsup  u,(s,y).
(s,y)—(t,z),n—00

If u 1s pointwise finite, then u is a subsolution in Q).



5.1. DEFINITIONS AND FIRST PROPERTIES 59

PrOOF. We only show (1), the argument for (2) is ananlogous.
Fix (tg, o) € Q and (ag, po, Xo) € P (u)(to, xo) throughout this proof.
We want to show that

ap + F(to, 2o, po, Xo) < 0.

By the definition of u we find a sequence in (u,),eny C A and points (z,,t,) € @ so that

(xny tTU un(xna tn)) — (I07 t07 U(ZE07 tO))
For small r € (0,1) let (2,,%,) be a maximizer of B(r) := Br1(z¢,,) of the function

(5.) = () = P (y = 20) = als o) = 3y = 20)" X[y ~ 20)

The maximum is attained because of upper semicontinuity of w,,.

Then we have

~ ~

. R 1
un(sa y) < un(xmtn> +p- (y - xn) + O‘(S - tn) + i(y - IO>TX(3/ - IO)

and we also have
Un (Ens tn) = POn(En, tn).
That is, , is a (smooth) test function from above for w, in (&,,%,). In particular,
Ospn(Znstn) + F(Znytn, Don(Zn, t0), D*0(2,1,)) < 0.
Computing the derivatives of ¢,,, this becomes
a4 F(xo+ (2, — 20), to + (tn — to), po + Xo(Zn — 20), Xo) < 0.

Up to a subsequence we may assume that &, — z € B(r) and £, — £ € B(r). With the
continuity of F', we then have

a+ F(xo+ (T — xg),to + (t — to), po + Xo(T — x0), Xo) < 0.

This holds for any small » > 0, and (7, 1), (zo,to) € B(r). Letting r — 0, and again with
the continuity of F', we conclude

a + F(xo, to, po, Xo) < 0.

EXERCISE 14. Zeigen Sie:
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us(z) :==sup{a(z) : @ <w, a unterhalbstetig}

15t unterhalbstetig.

o Ist (uy)a eine Familie von oberhalb stetigen Funktionen, so ist u := inf, u, ober-
halb stetig

o Ist (uy)o eine Familie von unterhalb stetigen Funktionen, so ist u := sup, U
unterhalb stetig

o uberlegen Sie sich ein Beispiel einer Familie von oberhalb stetigen Funktionen, so
dass u := sup, u, beschrankt ist, aber nicht oberhalb stetig ist.

EXERCISE 15. Zeigen Sie, dass der upper semicontinuous envelope u*(x) fir eine Funktion
u : R™ — R, defintert als

u'(x) = lim Sup Tu(y),

tatsachlich die kleinste oberhalbstetige Funktion oberhalb u ist. Dazu zeigen Sie:

e Fiir jedes feste x € R™ und jede Funktion u: R™ — R gilt
limsupu(y) = lim sup u(y)
Yy—x =04 ly—z|<r
o u*(x) > u(x)
o u*(x) ist oberhalb stetig
e Fiir jedes oberhalbstetige v mit v > u gilt v > u*.
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Harnack inequality for fully nonlinear parabolic equations

Reference: [IS13, Chapter 4].

6.1. Setup

We look at
Oy + F(D2u, (x,t))=f

and assume F to be uniformly elliptic, see Definition 6.1.2 below. We aim to prove an
equality of the form

supu(-,tl) S Clnfu(atQ) + CHf”7
K K

for to > 1.
DEFINITION 6.1.1 (Pucci-operator). Let M € R™*" be symmetric, 0 < A < A. Then
P*(M)= sup (—tr(AM))

M<A<SAT

and

Pr(M) = ,\I<igf</\1(_ tr(AM))

Observe, if u satisfies
oy — Aij&ju =f
with
MEP? < AT < AJ¢
then
ou(w,t) + PH(D*u(x,t)) > f(x,t) > 0, + P~ (D*u(x,t)).

Compare the following with degenerate ellipticity (5.0.2).
DEFINITION 6.1.2. (Uniformly elliptic) Let
F:RY" x X 5 R
is uniformly elliptic with (A, A), if
P=(X = Y) < F(X, (2,8) — F(Y, (2,8)) < P*(X —Y).
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Observe that then
P~ (X) < F(X,(z,t)) — F(0,(z,t)) < PY(X)
and hence if
O+ F(D*u(z,t), (x,t) = f,
then
O — PT(D*u) > f(x,t) + F(0, (z,t))

and similarly for P~.

6.2. Alexandrov-Bakelman-Pucci maximum principle

Recall the elliptic case. For u we define the contact set {u = T'(u)}, where I'(u) is the
convex envelope of u, i.e. the largest convex function below u. Then there holds: Elliptic
ABP maximum principle: Let Lu < f in 2. Then

1
supu~ <supu_ + Cq (/ |f|") :
Q o0 {u=T(w)}

We state (without proof) the parabolic version.

DEFINITION 6.2.1. (Monotone envelope) Let 2 C R™ be convex, (a,b) an open interval
and assume

u: (a,b) x @ =R
to be L.s.c. Then I'(u) is the monotone envelope, defined as the largest function
v: (a,b) x Q = R,
such that
o v<u

e v(t,-) is convex for all t € (a,b)
e v is nonincreasing in time.

One can show
F(u)(t,z) =sup{€ -2+ h: £ € R", h € R,
E-y+h<u(s,y) YyeQVse(a,t)}.
THEOREM 6.2.2. (Parabolic ABP) Let u be a supersolution of
O+ PH(D?u) = f
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[N _ 3

FiGURE 1. The sets Kl, K'g

in Q, = (—p*,0) x BM0). Ifu>0 on dpQ,, then

1

n ntl
o <o ([ )
Qp u=I"(u)

where I'(u) is the monotone envelope in Qs, of

min(0,u), @,
07 Q2P\QP'

6.3. The [f-estimate

We want to prove:

THEOREM 6.3.1 (L -estimate). There exists € > 0, R € (0,1), C > 0, depending on \, A
and n such that for all nonnegative supersolutions u of

O+ PH(D*u) = f in (0,1) x B%(0),

1
(/ Ue) S C (ll:lfu + ||f||L”+l((0,1)><B" (0))) s
Kq Ko R

1
R

then
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1
S (N ‘e
....................................... l[L’f"
Ky
g
[ N 0
K R iR

FI1GURE 2. The sets Ki, Ky, K3

where (see Figure 1)
K, = (o,R;) x (=R, R)",
Ky, =(1—R*1)x (—R,R)".
Further sets, see Figure 2
Ky = Ki(R) = (0,R*) x (—R,R)",
Ky = (R?, 10R?) x (—=3R,3R)",

K3 = (R? 1) x (=3R,3R)".

LEMMA 6.3.2. (Barrier for L¢) For all R € (O,min (#ﬁ, \/LTO>> there exists a Lipschitz
function
0<®:Q(0,1) >R
such that ® is C? in x where ® > 0 and
0 + PH(D*®) < g
for g: Q1 — R continuous and bounded with
supp g C Ki,
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¢ >2in K3 and ® =0 on 0,Q.

PRrROOF. It suffices to construct ¢, such that
O + PT(D?*p) <0,
=0, F\{(0,0)},
©>0 in K3
and
¢ — oo in (0,0).

Then we set

9 elte) , t,x) ¢ K

O(z,t) = ™rKs® (t,z) ¢ K

Lipschitz ext. with zero on 9,01 in Kj.

For some 7" € (0, 1) we first construct ¢ on (0,7"). Take in (0,7") x By:

wmw:rw(§§.

Opp + P+(D290)

(6.3.1) R (_W (%) - %Dw (%) % + PH(D%) (%))

We want the bracket to be nonpositive. Substitute z = z/v/t. If (x,t) € K5, then

|z| _ 3R+y/n
|| N 3vn
Choose 9 such that ¢ (z) =1 for |z| = 3y/n and ¥(2) = 0 for |z| > 6y/n. For ¢ > 0 let:
(6v/n)?(27 = 1) (|2]7 = (6v/n)77), 3vn <[z] <6v/n
YP(z) = { smooth € [1,2], 1z] < 3y/n
0, 2| > 64/n.

For |z] € (3y/n,6y/n) compute:

1 q(9q 91—
—52Du(2) = (6vn)(27 = 1)5 ||,

(A(n = 1) = Mg+ 1)) 2"

PHD*p)(z) = (6vn)"(2" — 1)"'q
For large g we have

—%sz(z) + PT(D*)) <0
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in the set (3y/n,6y/n). For |z| < 3y/n note that ¢(z) € [1,2] and hence

~p() — 5 DU(=)z + PHDM)(z) < 0.
Hence, in view of (6.3.1),
Opp(x,t) + PT(D*p)(z,t) <0 fort € (0,T).

Recall ¢ = 0 for |z| > 64/n and hence if z € B, and t € (0,T) for T = =, then

36n?
T 1

N

and hence
o(x,t) =0 VreodBy,te(0,T).
Also, we have
limp(t, z) = 0

uniformly in B;(0)\B.(0) for any € > 0, since then 7 — 0.

Then ¢(t, x) is properly defined for ¢ € (0,77,

Now we need to give a definition for ¢(t,x) for ¢ > T, which we do by a continuation
argument. Note that by construction of v,

1
(6.3.2) o(T,x) > TP >0 whenever |z| < 5
Moreover
(6.3.3) o(T,x) >0, P (D) <0 for|z| € (3,1).
Set

PT(D?*p(T
C =max< 0, sup (D°p(T, z))
2€By (0) o(T, x)

For t > T we simply define
o(t,z) == e (T, 2).
Then
Oyp(t,z) + PH(D?*p) = —Ce U D(T, z) + PH(D*p(T, x))e 1)
= ¢ C=T) (—Cgp(T, x) + PT(D*p(T, x)))
<0

for |z| € (1/2,1) by (6.3.3) and for || < 1/2 by (6.3.2). Thus ¢ is a subsolution and since
¢ > 0on K3N{t=T}, we have still that infx, ¢ > 0.

0
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PROPOSITION 6.3.3 (Basic measure estimate). There erists ¢g € (0,1), M > 1, u =
w(R, AN, n) € (0,1), so that for all supersolutions u > 0 of
O+ PH(D*u) = f in Q1(0,1),
then, if infr, u < 1 and || f||r+1(0,0,1)) < €0, then
H{u < M}N K| 2 plkl.

PROOF. Let ¢ be from Lemma 6.3.2 and set
w=1u-— ¢.
Then
Ow + PH(D*w) > Ou+ PT(D*u) — 9,0 — PT(D?*¢)
>[—-9
where g is also from Lemma 6.3.2. Also w =u > 0 on 0,Q:(1,0) and
infw <infu—2<-—1.

K3 K3
Hence

supw~ > 1.
K3

Let I'(w) be the monotone envelope in ¢ of
min(w,0),
{0» @Q2\Q1-
Then I'(w) = w, if w < 0 and hence
{T(w)=w}NK; C {u<¢}nNKj.
With the ABP principle, Theorem 6.2.2,
1 <supw™ <supw™ < Cappl| fllonti(0i.0))

K3 Q1
_1
n+1
{T'(w)=w}NK;

M = maX{rr}(ax ¢, 1}.

Put

Then
1< Ce+ Cllglle@n{u < M} 0 Ky[=1
and thus, if g > 0 is chosen small enough,

{u< M}NK| > —

K| = p|Kq|.
|K1|| 1| lu| 1|
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REMARK 6.3.4. e An equivalent formulation of Lemma 6.3.3 is:
If || f|| Lr+1(01 0,1) < €0, then for nonnegative supersolutions the following holds:

Hu>M}NKy| > (1—p)|Ki|=u>1on K.

One should compare this to the propagation of positivity from Lemma 2.2.5.
There we had that v > M for some time t; implies u > cM for some time ts.
In Lemma 6.3.3 we obtained a finer assumption: u > M just has to hold on a
substantial part of K7 and then v > 1 on all of Kj.

e This estimate also holds on B™(0,1) x (0,7") instead of B"(0,1) x (0,1). Let u > 0,
Owu+ PT(D?*u) > fin (0,T) x By. If
inf
(R2,T)x(—3R,3R)"
and then

{u < M} 0Ky > plKy.

COROLLARY 6.3.5. (Scaled basic measure estimate) Same €, M, as in (6.3.3), xg € R",
to €R, h > 0. Ifu >0 and Oyu + PT(D?*u) > f in (to, o) + pQ1(1,0) and

h
£l o1 ((0,00)+0Qu (1,0)) < €0 Mo
then, if
{{u > R} 0 {(to, m0) + pK 3} < (1= p)[(to, z0) + pE: |,
then
u > o in (to, zo) + pKs.
M
PROOF.
v(t,z) = Mh™'u(ty + p*t, zo + px),
then
Ow + PH(D*) > f in Q1(1,0).
f= %PQf(fo + p*t, o + p).
Apply 6.3.3. U

Now we stack those cubes Ks, see Figure 3: Define
K§Y = (ayR?, aj1 R?) x (—3"R,3*R)",

where

k—1 i

;g —1

ak:Zg = 8 .
i=0
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(2}
K3

FIGURE 3. Stacked K,

Now scale K; and KQ(k).
pK1 = (0,p’R?) x (=pR, pR)",

pKa = (p°R?, 100’ R?) x (=3pR, 3pR)",

PKék) = (P’ R?, a1 p? R?) x (=3"pR, 3", pR).
For p > 0, (tg, o) € R"™! let
Ly = (to, zo + pK1)
and

LY = (to, x0) + pK .

As one can see already from Figure 3, the stacked cubes grow very quickly. It will be im-
portant to understand how the stacked cubes LS eventually leave the set (0,1) x (—3,3)".
The following Lemma essentially states: If the initial scaled cube L; belongs to K; then
the stacked cubes (J,+; Lgk) do not leave the the cube (0, 1) x (—3,3)" sideways, but only
through the top 1 x (—3,3)", see Figure 4. Moreover, any such stacked cube | J, -, Lék) will

eventually completely cover K, from Figure 1.

LEMMA 6.3.6 (Stack of cubes). (1) Let R < min(3—2v/2,/2/5) = 3—2v/2, then for
all (zo,10), p > 0 such that Ly C K,

L n((0,1) x (=3,3)") = [ J L8 n{o <t < 1}.

k>1 k>1
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&\\\\\\\\\%x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

\
N

XTI T ISR XXX

Ky

FIGURE 4. How the stacks | J,, Lgk) leaves the big box (0, 1) x (—3,3)™: What
cannot happen (red): leave the big box sideways or not cover Ks. What has
to happen (green), the stack leaves through the top and covers K,

(2) In particular if R < #ﬁ, then

{te©D}InJLsc(0,1)x B (0).

(3)

f(g C U Lgk)

k>1
(4) Moreover if k* is minimal so that
L n{e =1} #0,
then

(0% '
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PROOF. We define paraboloids inside and outside of the stacked cubes J,~, L5. More
precisely we find S, and S_ so that -

(to, 0) + S < | J L € 84 + (to, o).
k>1

Indeed, define for some s,, s_ in R,

Sy = U pe(s) X (—s,s)",

s>s4
where
p+(z) = axz® + bip’R?,

so that

p+(3"pR) = axp® R?,

p-(3*pR) = ajy1p’ R
and

p+(ss) = p°R%.

Hence

1 1 9 9
a+—§, b:l:__§78+_5_\/ng7 Cl,—g.

These paraboloids are useful, since we can use the following characterization:
(x,8) € (w0, t0) + St & pr(ry) < s—to.
where 7, > 0 is the minimal positive number so that x — z¢ € (—r,7)".

ad (i) We need to show

(634) T € Rn\(_3’3)n VAN (ZL’, 8) S S+ + (to,l’o) = S 2 1.

which should hold for any (¢g, ), p such that Ly C K;. Now L; C K; simply means that
p € (0,1) arbitrary, 0 < tg < (1 — p*)R? and xy + (—pR, pR)" C (—R, R)". Moreover
r=(x',...,2") € R"\(—3,3)" implies that there exists at least one i € {1,...,n} so that

(@ —20)'| 23— (1-p)R

Thus we need to show that for any p € (0,1), to € (0,(1 — p?)R?) and for any r >
3 — (1 —p)R) it holds that

p(r) +to>1
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Clearly, tc = 0, r = 3 — (1 — p)R is the worst case, so we need to show that for any
p€(0,1),

1 1
B =pR) = p’R*>1

1 3
Now we see that the worst case is p = 0, and (6.3.4) holds if and only if
1
~(3—-R)?*>1
8 ( ) — ?
which is equivalent to R < 3 — 2/2. This proves (i)

ad (ii) easy consequence of (i)

ad (iil) Show: starting with L; = (to, o) + pK; C K, then (s,z) € ;. Lgk), for every
(s,z) € K,. The worst case is

r=—-R, s=1-R? xo = R(1 - p), toz(l—pz)RQ.

So we have to show that for all 0 < p < 1:
p-(2=p)R) <1—- R —(1-p")R"
Compute the derivative w.r.t p to deduce that p = 0 is the worst case. Hence provide

p-(2R) <1-2R*= R<3—8.

ad (iv) If L™ N {t =1} # 0, then

to + Oék*R282 < 1 < t() + ozk*HRsz

and thus

Now we want to iterate the basic measure estimate.

PROPOSITION 6.3.7. (Stacked measure estimate) Let €y, M, p as in 6.3.3. Assume u > 0
and

du+ PH(D*u) > f in (0,1) x B1(0).

1
R

Assume that (to, zo) € R™ and p € (0,1) satisfy
(Zfo,l‘o) + pKl C Kl.
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Assume that for some k € N and h > 0 we have
h
€0 .
Mkpm

HfHL"“((O,l)xB%(O)) <

Then, if [{u > h} N Li| > (1 — p)|Ly|, then
inf > i
in u> —.
L;k)m{0<t<1} M*

PrROOF. Induction on k. k = 1 is the rescaled basic measure estimate, because

(o, o) + pQ1(1,0)) € (0,1) x B4 (0).

Assume we know

inf U > —

_ k—1"
L Yn{o<t<1} M

1f LY is not contained in (0,1) x B% (0), then
R
LY n{o<t<1}=0.
Otherwise by induction hypothesis

k—1 k—1 k—1
{u > FOLE D =108V > (1 - LY.

M1
We have LYV = (to, z0) + pKa(k — 1) = (t1, m0) + p1 K1, where t; = to + op_1R%p? and
p1 = 3¥1p. Furthermore

LY = (t1, 20) + pr K.
Then by hypothesis

h
Hu > 3=} Nt @) + pufa| > (1= p)|(t, 20) + pr K|
and

h
inf > —,
L n{o<t<1} M*F

g

COROLLARY 6.3.8. (Straightly stacked estimate) Under the assumption of 6.5.7 let k € N
and
1

Assume Ly C Ky and Li(m) be a straight stack. Then, if |[{u >k} N Li| > (1 — p)|L — 1|,
then
h

47 E
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. k7
in U, Lg g
Proor. LF c L. O

Coverings. A cube is always a set
Q = (t())x()) + (03 82) X (_87 S)n'

Every cube @ can be decomposed in 2”2 subcubes K of sidelength s?/4 in time and s/2
in space and so that the interiors are disjoint, see Figure 5. We say @ is precedessor /father
of K and K is the successor/child of Q).K is a dyadic cube of @, if it can be constructed
in finitely many steps from Q.

Let K be a dyadic cube of Q. Then call K its precedessor and K™ the stack of m copies
over K, see Figure 6.

FIGURE 5. Dyadic decomposition of a (parabolic) cube @Q = (0, s?) x (—s, s)?
LEMMA 6.3.9. (Stacked covering lemma) Let m € N, A, B C @ be measurable. Assume
that |A] < 0|Q| for some 6 € (0,1), that for all dyadic K C Q

|[KNA|l>0Al= K™ CB.

Then
m+1
m

Al <0 | Bl

ProoOF. Pick a family of dyadic cubes (K;)2,, possibly finite. Pick them with the

algorithm: Subdivide @ in 2" successors K. Add a cube to the family if
|Kin A| > §|Ki,
otherwise subdivide K; and repeat. Then, since |A| < 6|Q), for all i € N
|K; N A| > 0Ky|, |K;NA| < §|K;l.
We claim, for some subset N with |N| = 0.

(6.3.5) Ac|JKiuN,
=1
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FI1GURE 6. Stack of dyadic cubes

If this was false, there existed N C A\ J;°, K; with positive measure. We observe: For
a.e. (t,z) € R"™ we have

][ (1 —xa) = 1—xalt,z).
(t,2)+(—r2,r2)x(=2r2r)"
Hence, since |N| > 0, there is (¢,x) € N with
f (1-x4) =0,
(t,x)+(=r2,r2)x (=2r,2r)"
On the other hand (¢,z) ¢ J;2, K; and hence there exists a sequence of dyadic bad cubes

L; = (t;,z;) x (—7“‘2 rz) X (=g, )"

1771

with rg — 0,
(t.x) € ()L
i=1
and

IL; N Al < 6|Li|.
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Hence

(6.3.6) f(y—mgz1_a

Observe (t,x) € L; and hence
Li C (t,x) + (=12,72) x (=21, 2r)" =: L;

and we have |L;| ~ |L;|. Hence
Ly|

(6.3.7) fu—
W
(6.3.6) and (6.3.7) are a contradiction, and the claim (6.3.5) is established.

(1—XA) — 0.

Now let Uj’;l K be the collection of father cubes of K; (doubly appearing cubes removed).
Then the claim implies

A<D IANK; <6 K.
=1 =1

To show

We write

UK =Ja x| + b, ai, + (m + 1)h}).
j=1 =1 k=1
Thus
UKm =210l | U e+ 1)
=1 k=1

< Z e
=1

where the latter estimate is shown in the next lemma.

U ay, + hi, aj, + (m + 1hy)|
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LEMMA 6.3.10. Let (ag)2,, (hi)i2y, m € N. Then

o m+11°
U(akuak+hk) < U ak+hk,ak+(m+1)hk)
k=1 k=1
PRrRooFr. We write
U(ak+hk>ak+ (m+1)h) = Ufz,
k=1

where [; are disjoint intervals. I; has the form
N

I = U(bz + i b + (m + 1))
i=1
= ( inf (b; + p;), sup (b + (m+ 1)/%-))
i=1,...,N; i=1,..,N;

= (bint + Hint, bsup + (M + 1) ftsup)
where we assumed wlog that N; < co. Assume there is (a,a + h) and [ so that
(a+h,a+ (m+1)h) C L.
Hence
a+ (m+1h <bgp + (M + Dpggup, —a— " < —bing — fhint

and by summing we get

1
h < —[L].
m

1
bing + Ming §a+h§a+a|fz|

and hence

1

a > bing + pint — — |11

m

Thus
1
(Cl, a—+ h) C (binf + Hinf — E‘Illa bsup + (m + 1),usup)-

We obtain

1
U (a, a —+ h) C (binf + Minf — E’IZL bsup + (m + 1)MSUP)

a,h: (a+h,a+(m+1)h)CI;

and

U @ﬂ+h)g(y+%>my

a,h: (a+h,a+(m+1)h)CI;
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Since the I; are disjoint we obtain the estimate. O

Proof of Theorem 6.3.1. The idea is to use the stacked covering lemma and the
stacked measure estimate for {u > M*} N K.

First observation: It suffices to show, that if

(6.3.8) infu<1, |fllzr+r01)xB, ©0) < €0,
Ky

B

then

(6.3.9) (/K u) <c

PROOF THAT (6.3.9) IMPLIES THEOREM 6.3.1. Take

u
Vs = 7 - .
1nfk2 U+ € 1||f||Ln+l((071)XB%(O)) +9

which satisfies (6.3.8). (6.3.9) then gives the claim, letting § — 0. O

From now on, assume (6.3.8) to hold. (6.3.9) follows once we show

ko € Nym €N, B > 0,C, > 0Vk > ko:
2
{u>M"}n ((0,% +013k) x (R, R)”)

where M and p are from 6.3.7.

6.3.10
(6.3.10) Ay =

PROOF THAT (6.3.9) FOLLOWS FROM (6.3.10). From (6.3.8) the claim follows via:

For 7 > M*™ let k > ko such that 7 € (M*™, M*+Dm) hence
. [ o
]{u>r}ﬂK1|§\Ak|§C<1—§> <O,

for

1log (1)

‘T mlogM

Since |K;| < oo we have

Hu<7}N K| <Cr7% Yr>0.
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Then
/ (u(t, ) = e/oo > 7} K| dr

K1 0
1 5 0

| K| dT+e/ 2 dr
0 1

<e€
<C.

So we need to show (6.3.10), which we do by induction.
For k = kg, simply take

C> (1 - g)_k K.

Now we proceed with the induction step:

Suppose there holds
k
Al < C (1 - g)

then we need to show that

Al <o (1-8)

Firstly, take kg >> 1 such that

RQ
20,B7F < - Yk > ko,

thus Ak,‘7Ak+1 C K.

79

We want to apply Lemma 6.3.9. The first assumption we need to satisfy is the following:

LEMMA 6.3.11.
[Aps1] < (1= p)| K.
PROOF.
infu<1
K>
and hence
infu <1.
K3

Proposition 6.3.3 implies
{u < MY K| > K.
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Thus
|Ap1] S Hu> M}N K| =K = {u < MPn K| < (1 - p)|K.

The second assumption for Lemma 6.3.9 is the following:

LEMMA 6.3.12. Let K be a dyadic cube of Ki. If |K N Apya| > (1—p)| K|, then K™ C Ay.

PROOF. From 6.3.8 we have
K™ c {u> M"}.
Show
_ R2
K™cC (0, -+ ClB—’f) x (=R, R)".
There holds

(K N (0, R; + ClB’“) x (R, R)”> £ 0

and hence
_ R2 _ _
K™ cC (0, -+ C1B™*! 4 height(K) + height(Km)> x (=R, R)™.

Thus the desired estimate holds iff

Ci(B-1) _ .,
R22 < k=1
P = dm 1)
Let Ly = K. By the stacking of cubes we have
Ky c| LY.
i=1
But we know
infu <1.
K>
Letting k* be the first index with L N {t > 1} # 0, we get
inf <1.
(6.3.11) T

On the other hand for all [ < (k + 1)m the assumptions of 6.3.7 are fulfilled (h = M'). We

obtain
inf u > 1.
(k+1)m [ (1)
=1 2

Thus, in view of (6.3.11)
(k+1)m <k +1



6.4. HARNACK INEQUALITY 81

and there holds

1—t¢ 9
2 9 0
Rep™ < ap = AGFDm
Setting B = 9™ and
36(m + 1)
Ci=——>=
1 9m - 1 )
the desired estimate holds. O

Having Lemma 6.3.11 and Lemma 6.3.12 we can now apply Lemma 6.3.9, and find
m

A <(1—p)——IA
Apa] < (1= )" |4y
For large m we have
i

< (1- —) A

< (1-5) 14
and with the induction hypotesis on Ay

k+1
ce(i-9)”

This concludes the induction, and thus the proof of Theorem 6.3.1.

6.4. Harnack inequality

PROPOSITION 6.4.1 (Local maximum principle). Let u be a subsolution of
O+ F(D*u,t,z) =0 in Q1(0,0).

1
sup u<C ( / |ur) o )
Q%(0,0) Q1

where f = F(0,t,x) and € is coming from the L¢-estimate.

Then

PRrROOF. We may assume u > 0, since u™ is a subsolution. For v > 0 put
B(t, ) = hmax (1= [2))72, (14 8)7)
for h > 0 which is minimal such that v < 1 in ;. There holds

) u(t, x)
h = min
(tw)eQr max ((1 — |z])=27, (1 +¢)77)

and

sup u < Ch.
Q%(O)
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Thus we have to calculate h. Let (o, xo) € Q1 such that

_ U(to,l’o)
max ((1 — |zo])~27, (1 4+ to)™)

Set
6 = min ((1 — |zo|) 7% (1 + t0)) ,
i.e.
h = 0"u(to, zo).
Qs(to, o) = (to — 6°,6%) x B (o) C Q1.
Set
v(t,x) = C — u(t, ),
where

C= sup ¢ S (h572'y’ h ((1 - B)a)—QW)’
Qps(to,wo)

B to be chosen. Then v > 0 in Qgs(to, o) and
o + PT(D*v) + | f] > 0.
The L¢-estimate gives

/ vegcwa)m( inf U+<@5)7£1Hfumﬂ>.
(to—Bd,t0)+BIK1 (

to—ﬁ(s,zo)-‘rﬂdkg
We know

v(te, o) < h((1—B)8)"> — ho~ 2.
So

/ 0 O (B (1= 57 = 1) 67+ (807 fll e ).
(to—B6,t0)+BIK1

Let
L = (ty — B83,t0) + BOK,
and
1 1,

A=< (t,x) e L:u(t,z) < §u(t0,:v0) = §h5 T

Then
1 ‘ he\
/v6 > | A <h527 — —h(529> = |A| (—)
N 2 2

and thus

<ozl ((@-p -1+ (5) 697 1l ).
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Furthermore

/ > / u > (L) — A 2 (h6~7Y,
L I\A

52+nclhe — |L|26 (h572’y)6

g/ue—i—()’ﬁ"”LHﬁl
Q

ht < Cg (/ ut + HfHLn+1> .
Q

THEOREM 6.4.2 (Harnack inequality). Let u > 0 be solution of
o+ F(z,t, D*>u) =0 in (—1,0) x B%(0),
R

SO

f”Ln+1 + CﬁnJrZhe ((1 . 5)72’7 _ 1)57

hence for small 5

then

supu < C'infu + C||f||Ln+1((—1,0)qu 0))5
f{3 Qr R

where

- 3 R?
Ky=|—-1+>-R*-1+—)xB .
3 ( + S +2>>< = (0)

PROOF. By the L¢-estimate:

/(—1,—1+R22>x13

u < C (infu“) + || fll oot
Qr

R
53
Rescale:
t+1- 2 2
U(t,.x) =1 <T,§l‘ .
Then

SC;lp < C ((/ ’U€> + ||f||Ln+1(Q1)) .
% 1
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