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0.1. Overview

Parabolic equations such as

∂tu− Lu = f

and their nonlinear counterparts: Equations such as, see

Elliptic PDE: Describe steady states of an energy system, for example a steady heat
distribution in an object.

Parabolic PDE: describe the time evolution towards such a steady state.

Flows: Consider the energy functional

E : Rn → R.

Crititcal points are also called stationary points

Now let u(0) satisfy DE(u(0)) 6= 0. Set

u(1) = u(0)−DE(u(0)),

u(k + 1) = u(k)−DE(u(k)).

Infinitesimally:

u(t+ h) = u(t)− hDE(u(t)),

i.e.

u(t+ h)− u(t)

h
= −DE(u(t)).

h→ 0 gives:

u̇ = −DE(u(t)).

This is the flow along E .

Example 0.1.1. On H1(Ω) consider the energy

E(u) =
1

2

ˆ
Ω

|∇u|2.

Then

DE(u) = −∆u

and the flow

u̇ = ∆u

is called the heat equation.
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Aim of this lecture: We want to understand fully nonlinear parabolic PDE, e.g.

• Bellmann-equation

u̇− sup
α∈A

Lαu+ λu = 0.

• Mean curvature flow

u̇ = |Du| div

(
Du

|Du|

)
• Kähler-Ricci-Flow

u̇ = log det(D2u).

We study existence, uniqueness and regularity by using viscosity solutions and comparison
principles (cf. [IS13]).



CHAPTER I

The Heat Equation

1.1. Definitions

(Cf. [Eva98, Section 2]). The Laplace operator ∆ is gives as

∆u(x1, . . . , xn) = ∂xi∂xiu(x1, . . . , xn).

We will use the so-called Einstein’s summation formula which says that repeated indices
are always summed over, that is

∂xi∂xiu(x1, . . . , xn) ≡
n∑
i=1

∂xi∂xiu(x1, . . . , xn).

Sometimes, we write uxi for ∂xiu.

We want to study time-dependent problems, where we denote with t ∈ (0,∞) the time.
Sometimes we write Rn+1

+ for Rn × (0,∞).

More precisely, we want to study the heat equation “∂t − ∆”. For example, we want to
understand existence, uniqueness questions for solutions u = u(t, x1, . . . , xn) : Rn+1

+ → R
of

(1.1.1) (∂t −∆)u = 0 in Rn × (0,∞)

The right-hand side is zero, and we call this the homogeneous heat equation.

Also we ask us the same questions about the inhomogeneous heat equation, for f(x, t) :
Rn × (0,∞)→ R

(∂t −∆)u = f in Rn × (0,∞).

Let Ω ⊂ Rn be open. Define

ΩT = Ω× (0, T ].

The Laplace operator for u : Rn → R is

∆u =
n∑
i=1

uii = uii,

where we use the Einstein summation.

6
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For a domain X ⊂ Rn+1 let f ∈ Ck
l (X) if and only if

∂ltD
kf

are continuous. For general X the derivatives have to be continuously extendable up to
the boundary.

1.2. Fundamental solution

Studying solutions of the heat equation, a first step might be to find simple solutions.
Clearly, any constant function u ≡ const is a solution to (1.1.1). But that is too easy, and
gives us no useful information about (1.1.1). Also, any solution v : Rn → R of ∆v = 0
becomes a solution of (1.1.1), simply set u(x, t) := v(x). Again, this does not give us too
much information about the structure of (1.1.1). So we need to find a nontrivial, time-
dependent solution of (1.1.1). For this we make the interpretation of (1.1.1) as a ordinary
differential equation in t. We all know

ut − µu = 0

has the solution u(t) = etµu(0) for any µ ∈ R. So in some sense, one might think that

(1.2.1) u(t, x) = et∆u(0, x)

is a solution (but it is not clear what et∆ means, and we don’t want to get into this here; just
note this is actually a thing and this is possible). To make (1.2.1) precise and meaningful
for us, we use the Fourier transform.

û(ξ, t) :=

ˆ
Rn
e−i〈ξ,x〉u(x, t) dx.

We have (Exercise 1)

∆̂u(ξ, t) = −|ξ|2û(ξ, t),

and thus, after Fouriertransform (1.1.1) becomes

(1.2.2) ∂tû(ξ, t) + |ξ|2û(ξ, t) = 0 ∀(ξ, t) ∈ Rn+1
+ .

If we fix ξ ∈ Rn and set v(t) := û(ξ, t), then this is nothing but

v′(t) + |ξ|2v(t) = 0,

and the (unique is v(0) is chosen) solution to this equation is v(t) = e−t|ξ|
2
v(0). That is,

(1.2.2) implies

û(ξ, t) = e−t|ξ|
2

û(ξ, 0).

The simplest situation arrises, if we assume that û(ξ, 0) = 1. This is not possible for any
function u(x, 0), but û(ξ, 0) = 1 (at least formally) is the Fourier transform of the Dirac
measure u(·, 0) := δ0 defined as

´
Rn f(x)δ0(x) dx = f(0). For this choice of u we have (see

Exercise 1)

u(x, t) =
1

(4πt)
n
2

e−
|x|2
4t ,
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which we shall call the fundamental solution.

Definition 1.2.1 (Fundamental solution). The function

Φ(x, t) :=

 1

(4πt)
n
2
e−
|x|2
4t x ∈ Rn, t > 0

0 t < 0

is called the fundamental solution of the heat equation, or the heat kernel .

One can show, see Exercise 2, that Φ(x, t) is the solution to

(1.2.3)

{
(∂t −∆)Φ = 0 in Rn+1

+

Φ(x, 0) = δ0 in Rn.

Here δ0 is the Dirac-measure from above.

Another nice feature is

Lemma 1.2.2. For any t > 0, ˆ
Rn

Φ(x, t) dx = 1.

Proof. From Exercise 1 and the above calculations we haveˆ
Rn

Φ(x, t) dx = Φ̂(0, t) = e−t0 = 1.

�

More generally, the above Fouriertransform argument implies that any solution of (1.1.1)
has actually the form

(1.2.4) u(x, t) = Φ ∗ g ≡
ˆ
Rn

Φ(x− y, t) g(y) dy.

This is true since,

û(ξ, t) = Φ̂(ξ, t) û(ξ, 0).

Using the convolution formula, see Exercise 1, this implies (at least formally, under con-
vergence assumptions) (1.2.4).

Actually, this is precise.

Theorem 1.2.3 (Potential solution). Let g ∈ C0(Rn)∩L∞(Rn). Define u by (1.2.4). Then

(1) u ∈ C∞(Rn+1
+ ),

(2) (∂t −∆)u = 0 in Rn+1
+

(3) For each x0 ∈ Rn,
lim

(x,t)→(x0,0)
u(x, t) = g(x0).
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Proof. For t > 0, Φ(z, t) is smooth in z and t-direction, so by convolution estimates
(derivatives commute with the integral), u is smooth.

Also for t > 0, we have by commutation of derivatives and integrals,

ut(x)−∆u(x, t) =

ˆ
Rn

(Φt(x− y, t)−∆Φ(x− y, t)) g(y) dy.

The latter is constantly zero by (1.2.3).

Finally, we need to show the boundary data. Pick ε > 0 and x0 ∈ Rn. In view of
Lemma 1.2.2, for any (x, t) ∈ Rn+1

+ ,

(1.2.5) u(x, t)− g(x0) =

ˆ
Rn

Φ(x− y, t) (g(y)− g(x0)) dy.

The idea is now to show that if x is sufficiently close to x0 and t is sufficiently small, then
either |x− y| is small, in which case also g(y)− g(x0) is small; or |y − x0| is large, but in
this case Φ(x− y, t) is small for small t.

Let δ > 0 so that

|g(y)− g(x0)| < ε whenever |y − x0| < 2δ,

and moreover so that ˆ
Rn\B(0, 1

δ
)

1

(4π)
n
2

e−
|z|2
4 dz < ε.

The latter is possible, since we can estimateˆ
Rn\B(0, 1

δ
)

1

(4π)
n
2

e−
|z|2
4 dz .

ˆ
Rn\B(0, 1

δ
)

|z|−2n . δn.

Now we claim that for a uniform constant C > 0

(1.2.6) |u(x, t)− g(x0)| ≤ C ε whenever |x− x0| < δ and |t| < δ4.

We split the integral in (1.2.5),

|u(x, t)−g(x0)| ≤
ˆ
B(x,δ)

Φ(x−y, t) (g(y)− g(x0)) dy+

ˆ
Rn\B(x,δ)

Φ(x−y, t) (g(y)− g(x0)) dy

For the first integral observe y ∈ B(x, δ) and |x− x0| < δ implies |y − x0| < 2δ, and thusˆ
B(x,δ)

Φ(x− y, t) (g(y)− g(x0)) < ε

ˆ
Rn

Φ(x− y, t) = ε,

the last equality in view of Lemma 1.2.2.

As for the second integral,ˆ
Rn\B(x,δ)

Φ(x− y, t) (g(y)− g(x0)) dy ≤ 2‖g‖L∞(Rn)

ˆ
Rn\B(0,δ)

1

(4πt)
n
2

e−
|z|2
4t dz
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By substitutionˆ
Rn\B(0,δ)

1

(4πt)
n
2

e−
|z|2
4t dz =

ˆ
Rn\B(0, δ√

t
)

1

(4π)
n
2

e−
|z|2
4 dz ≤

ˆ
Rn\B(0, 1

δ
)

1

(4π)
n
2

e−
|z|2
4 dz < ε.

(1.2.6) is proven. �

In the next step we would like to find a potential representation for solutions of the inho-
mogeneous equation (for now starting from u = 0)

(1.2.7)

{
ut(x, t)−∆u(x, t) = f(x, t) in Rn+1

+

u(·, 0) ≡ 0 on Rn.

Taking the Fourier transform, setting v(t) := û(ξ, t) and g(t) := f̂(ξ, t)

(1.2.8) v′(t) + |ξ|2v(t) = g(t).

How do we solve this kind of ODE? We use a trick from ODE-theory, called Duhamel’s
principle.

For any fixed s > 0 we solve the homogeneous equation (with variable t ∈ (s,∞)).

w′s(t) + |ξ|2ws(t) = 0, t > s

ws(s) = g(s).
(1.2.9)

If we now set

v(t) :=

ˆ t

0

ws(t) ds,

we compute that v(0) = 0 and

v′(t) = ws(t) +

ˆ t

0

w′s(t) ds
(1.2.9)

= g(t)− |ξ|2
ˆ t

0

ws(t) ds = g(t)− |ξ|2v(t),

that is, v solves (1.2.8). On the other hand, we have a formula for ws:

ws(t) = e−(t−s)|ξ|2g(s).

Consequently, the solution to (1.2.9) has the form

v(t) =

ˆ t

0

e−(t−s)|ξ|2 g(s) ds.

Taking the Fourier transform, the solution u to (1.2.7) has (at least formally) the form

(1.2.10) u(x, t) :=

ˆ t

0

ˆ
Rn

Φ(x− y, t− s) f(y, s) dy ds

Before we show that (1.2.10) indeed defines a solution for (1.2.7), we need a definition of
smoothness.
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Definition 1.2.4 (Space-time spaces). A function f : Rn+1
+ → R is said to belong to

Ck
` (Rn+1

+ ) if
∂t∂t∂t∂t︸ ︷︷ ︸
` times

DDDD︸ ︷︷ ︸
k times

f

exists and is continous.

A function f ∈ Ck
` (Rn × [0,∞)) if that derivative can be continuously extended to t = 0.

Theorem 1.2.5. Let f ∈ C2
1(Rn × [0,∞)), and assume that f has compact support. Let u

be defined as in (1.2.10). Then

(1) u ∈ C2
1(Rn+1

+ ),
(2) (∂t −∆)u = f(x, t) in Rn+1

+

(3) For each x0 ∈ Rn,
lim

(x,t)→(x0,0)
u(x, t) = 0

Proof. Observe that there is a singularity in the integral when s = t. To see that u
is C2

1 we change variables, and have

u(x, t) =

ˆ t

0

ˆ
Rn

Φ(z, r) f(x− z, t− r) dz dr

Now we can compute the derivatives,

ut(x, t) =

ˆ
Rn

Φ(z, t) f(x− z, 0) dz +

ˆ t

0

ˆ
Rn

Φ(z, r) ft(x− z, t− r) dz dr

D2u(x, t) =

ˆ t

0

ˆ
Rn

Φ(z, r)D2f(x− z, t− r) dz dr.

Both right-hand sides are bounded if f ∈ C2
1(Rn) and f has compact support.

In order to compute the equation note that for any t > 0,

ut(x, t)−∆u(x, t) =

ˆ
Rn

Φ(z, t) f(x−z, 0) dz+

ˆ t

0

ˆ
Rn

Φ(z, r) (∂t −∆x) f(x−z, t−r) dz dr.

For any small ε we decompose ut(x, t)−∆u(x, t) into three components Iε, IIε, III,

Iε :=

ˆ ε

0

ˆ
Rn

Φ(z, r) (∂t −∆x) f(x− z, t− r) dz dr

IIε :=

ˆ t

ε

ˆ
Rn

Φ(z, r) (∂t −∆x) f(x− z, t− r) dz dr

III :=

ˆ
Rn

Φ(z, t) f(x− z, 0) dz

For Iε we compute, in view of Lemma 1.2.2,

|Iε| ≤ ε
(
‖ft‖L∞(Rn+1

+ ) + ‖D2f‖L∞(Rn+1
+ )

)
ε→0−−→ 0.
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For IIε we do an integration by parts, for this we observe that

(∂t −∆x) f(x− z, t− r) = (−∂r −∆z) f(x− z, t− r)
Integrating by parts, (here we use that ε > 0, so the singularity of Φ is cut away),

IIε =

ˆ t

ε

ˆ
Rn

(∂r −∆z) Φ(z, r) f(x− z, t− r) dz dr

+

ˆ
Rn

Φ(z, ε) f(x− z, t− ε) dz −
ˆ
Rn

Φ(z, t) f(x− z, 0) dz

and since Φ solves the heat equation,

= 0 +

ˆ
Rn

Φ(z, ε) f(x− z, t− ε) dz − III,

We thus have

ut(x, t)−∆u(x, t) = lim
ε→0

ˆ
Rn

Φ(z, ε) f(x− z, t− ε) dz.

As in the proof of Theorem 1.2.3, we have

lim
ε→0

ˆ
Rn

Φ(z, ε) f(x− z, t− ε) dz = f(x, t).

We thus have shown that (∂t −∆)u = f in Rn+1
+ .

For the final claim observe that in view of Lemma 1.2.2

‖u‖L∞ ≤ t‖f‖L∞(Rn)
t→0−−→ 0.

�

Combining Theorem 1.2.3 and Theorem 1.2.5 we have a full representation formula: let

(1.2.11) u(x, t) :=

ˆ
Rn

Φ(x− y, t) g(y) dy +

ˆ t

0

ˆ
Rn

Φ(x− y, t− s) f(y, s) dy ds.

Theorem 1.2.6. For f and g as in Theorem 1.2.3 or Theorem 1.2.5, respectively, let u be
given by (1.2.11). Then u is a solution of{

(∂t −∆)u = f in Rn+1
+

u = g on Rn × {0}.

Exercise 1. Für eine Funktion f : Rn → R sei die Fouriertransform f̂ : Rn → R definiert
als

f̂(ξ) :=
1

(2π)
n
2

ˆ
Rn
e−i〈ξ,x〉 f(x) dx.

Zeigen Sie in formalen Rechnungen (also unter Annahme, dass die Integrale alle kon-
vergieren und kommutieren)
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(1) dass die Inversionsformel gilt

f(y) =
1

(2π)
n
2

ˆ
Rn
e+i〈ξ,y〉 f̂(ξ) dx

Dabei dürfen Sie benutzen, dass

1

(2π)n

ˆ
Rn
ei〈ξ,z〉 g(z) dξ = g(0).

(2) Show that f̂(0) =
´
Rn f(x) dx.

(3) Sei f = ∂xig. Zeigen Sie (formale Rechnung) für alle ξ = (ξ1, . . . , ξn) und alle
i = 1, . . . , n,

f̂(ξ) = −iξi ĝ(ξ).

Zeigen Sie auch die Umkehrung, Ist g(x) := −ixif(x)

∂ξi f̂(ξ) = ĝ(ξ).

(4) Schliessen Sie aus der vorigen Rechnung, dass falls f = ∆g,

f̂(ξ) = −|ξ|2 ĝ(ξ).

(5) Sei fλ(x) := f(λx) für ein λ ∈ R. Zeigen Sie

f̂λ(ξ) = λ−nf̂(ξ/λ).

(6) Zeigen sie in einer Dimension, n = 1, dass für f(x) := 1

(2π)
1
2
e−

x2

2 gilt

f̂(ξ) = f(ξ).

Hinweis: Zeigen Sie mit obigen Rechnungen, dass gelten muss

(1.2.12) ∂ξf̂(ξ) = −ξf̂(ξ)

Verwenden Sie dann ˆ
R
e−ξ

2

=
√
π.

um zu zeigen, dass f̂(0) = f(0). Damit ist das Anfangswertproblem (1.2.12) ein-

deutig lösbar, mit eindeutiger Lösung f̂ = f .

Bemerkung: Tatsächlich gilt in allen Dimensionen für f(x) := 1

(2π)
n
2
e−
|x|2
2

f̂(ξ) = f(ξ).

(7) Zeigen Sie nun, dass für festes t ∈ (0,∞), falls f̂(ξ) := e−t|ξ|
2
, so gilt

f(x) =
1

(4πt)
n
2

e−
|x|2
4t .

(8) Zeigen Sie, dass für f, g : Rn → R gilt

f̂ g(ξ) =

ˆ
Rn
f̂(ξ − η) ĝ(η) dη.
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Exercise 2. Let Φ be the fundamental solution of the heat equation, that is

Φ(x, t) :=

 1

(4πt)
n
2
e−
|x|2
4t x ∈ Rn, t > 0

0 t < 0

(1) Show that for t > 0

∂tΦ(x, t)−∆Φ(x, t) = 0.

(2) Moreover, show that for |x| 6= 0,

lim
t→0+

Φ(x, t) = 0.

(3) Show that for |x| = 0,

lim
t→0+

Φ(x, t) = +∞.

1.3. Mean-value formula

(cf. [Eva98, Chapter 2.3])

Use the fundamental solution to construct a parabolic ball, or heat ball

E(x, t; r) ⊂ Rn+1.

Definition 1.3.1 (Heat ball). Let (x, t) ∈ Rn+1. Set

E(x, t; r) =

{
(y, s) ∈ Rn+1 : s ≤ t,Φ(x− y, t− s) ≥ 1

rn

}
.

Theorem 1.3.2 (mean value). Let X ⊂ Rn+1 be open and u ∈ C2
1(X) solve (∂t−∆)u = 0

in X. Then there holds

u(x, t) =
1

4rn

ˆ
E(x,t;r)

u(y, s)
|x− y|2

(t− s)2
dyds

for all E(x, t; r) ⊂ X.

Proof. Without limit of generality u is smooth and (x, t) = (0, 0). E(r) = E(0, 0; r).

Φ(r) :=
1

rn

ˆ
E(r)

u(y, s)
|y|2

s2
dyds.

We show Φ′(r) = 0 for r > 0.

Φ(r) =

ˆ
E(1)

u(ry, r2s)
|y|2

s2
dyds.
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We calculate

Φ′(r) =

ˆ
E(1)

(
uyi(ry, r

2s)yi
|y|2

s2
+ 2rus(ry, r

2s)
|y|2

s

)
dyds

= r−n−1

ˆ
E(r)

(
uyi(y, s)y

i |y|2

s2
+ 2us(y, s)

|y|2

s

)
dyds

≡ A+B

Set

ψr(y, s) = −n
2

log(−4πs) + n log r +
|y|2

4s
,

then

eψr(y,s) = rnΦ(y,−s)

and

ψr(y, s) = 0 on ∂E(r).

There holds

ψyi =
yi
2s

and hence

B =
1

rn+1

ˆ
E(r)

4us(y, s)yiψyi(y, s) dyds

= − 1

rn+1

ˆ
E(r)

4∂yi(us(y, s)y
i)ψ(y, s) dsdy

= − 1

rn+1

ˆ
E(r)

4nus(y, s)ψ(y, s)

− 1

rn+1

ˆ
E(r)

4usyi(y, s)y
iψ(y, s) dyds

= − 1

rn+1

ˆ
E(r)

4nus(y, s)ψ(y, s)

+
1

rn+1

ˆ
E(r)

4uyi(y, s)yi

(
− n

2s
− |y|

2

4s2

)
dsdy

= − 1

rn+1

ˆ
E(r)

4nus(y, s)ψ(y, s)

− 1

rn+1

ˆ
E(r)

2n

s
uyi(y, s)y

i dyds− A.
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Hence

Φ′(r) = − 1

rn+1

ˆ
E(r)

∆us(y, s)4nψ(y, s) dyds

− 1

rn+1

ˆ
E(r)

uyi(y, s)y
i dyds

=
1

rn+1

ˆ
E(r)

uyi(y, s)4n∂yiψ(y, s) dyds

− 1

rn+1

ˆ
E(r)

2n

s
uyi(y, s)y

i

= 0.

Thus Φ is constant along r and hence

lim
r→0

r−n
ˆ
E(r)

(u(y, s)− u(0, 0))
|y|2

s2
dyds+ 4u(0, 0)

≤ lim
r→0

Cr(‖∇u‖∞ + ‖∂tu‖∞) = 4u(0, 0).

�

1.4. Maximum principle and Uniqueness

Definition 1.4.1. Let Ω ⊂ Rn be an open set and denote with ΩT := Ω× (0, T ] for some
time T > 0. It is important to note that the top Ω × {T} belongs to ΩT . The parabolic
boundary ΓT of ΩT is the boundary of ΩT without the top,

ΓT = ΩT\ΩT = ∂Ω× [0, T ) ∪ Ω× {0}.

Theorem 1.4.2. Let U be bounded and u ∈ C2
1(UT ) ∩ C0(ŪT ) be a solution of ut = ∆u in

UT . Then there holds the weak maximum principle

(i)

max
ŪT

u = max
ΓT

u

and the strong maximum principle:

(ii) If U is connected and if there is (x0, t0) ∈ UT with

u(x0, t0) = max
ŪT

u,

then

u(x, t) = u(x0, t0) ∀(x, t) ∈ Ut0 .
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Proof. (ii)⇒(i), since if

(1.4.1) max
ŪT

u > max
ΓT

u

then by (ii) u is constant at all prior times, which contradicts (1.4.1).

Now we prove (ii). Suppose there is (x0, t0) ∈ UT with

u(x0, t0) = M = max
ŪT

u.

Since t0 > 0, there exists a small heat ball E(x0, t0, r) ⊂ UT and we have by 1.3.2

M = u(x0, t0) =
1

4rn

ˆ
E(x0,t0,r)

u(y, s)
|y − x|2

(t− s)2
dsdy ≤M.

Hence u = M in E. Now let (x1, t1) ∈ Ut0 . Then there exists a continuous path γ : [0, 1]→ U
connecting x0 and x1. In the spacetime set

Γ(r) = (γ(r), rt1 + (1− r)t0).

Let

ρ = max{r ∈ [0, 1] : u(Γ(r)) = M}.

Show that ρ = 1. Suppose ρ < 1. Then we use the proof above to find a heat ball

E = E(Γ(ρ), r′),

where u = M. Since Γ crosses E (time parameter is decreasing along Γ), we obtain a
contradiction to the maximality of ρ. �

Remark 1.4.3. The same holds for −u and hence we have a minimum principle. Hence,
if in particular

ut −∆u = 0 in UT

u = 0 on ∂U × [0, T ]

u = g in U × {0}

with g(x) > 0 for some x ∈ U then u > 0 in UT (infinite speed of propagation, non-
relativistic).

Remark 1.4.4. For general X ⊂ Rn+1 open we have a similar result, see exercises.

Theorem 1.4.5 (Uniqueness on bounded domains). Let U b Rn bounded and g ∈ C0(ΓT ),
f ∈ C0(UT ). Then there is at most one solution C2

1(UT ) ∩ C0(ŪT ) to

ut −∆u = f in UT

u = g on ΓT .

Proof. Apply the maximum (and minimum) principle to show that the difference of
two solutions is zero. �
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Theorem 1.4.6. Let u ∈ C2
1(Rn × (0, T ]) ∩ C0(Rn × [0, T ]) be a solution of

(∂t −∆)u = 0 in Rn × (0, T )

u = g on Rn × {t = 0}

with the growth condition

u(x, t) ≤ Aea|x|
2

for some a,A > 0. Then there holds

sup
Rn×[0,T ]

u ≤ sup
Rn

g.

Proof. Suppose first

4aT < 1.

Let

v(x, t) = u(x, t)− µ

(T + ε− t)n2
e

|x|2
4(T+ε−t)

for some µ > 0. Then vt −∆v = 0. 1.4.2 implies

∀U b Rn : max
ŪT

v ≤ max
ΓT

v ≤ max(max v(·, 0), max
∂U×[0,T ]

v(x, t)).

We have

v(x, 0) = g(x)− µ

(T + ε)
n
2

e
|x|2

4(T+ε) ≤ sup
Rn

g.

Let U = BR(0), then

max
B̄R(0)×[0,T ]

v ≤ max

(
sup
Rn

g, max
|x|=R,t∈[0,T ]

v(x, t)

)
.

For |x| = R and t ∈ (0, T )

v(x, t) = u(x, t)− µ

(T + ε− t)n2
e

R2

4(T+ε−t)

≤ Aea|x|
2 − µ

(T + ε− t)n2
e

R2

4(T+ε−t) .

Now there exist ε > 0, γ > 0, such that

atγ =
1

4(T + ε)

and hence

v(x, t) ≤ AeaR
2 − µ

(T + ε)
n
2

eaR
2+γR2

.
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If R >> 0, then v(x, t) ≤ g(0). So for large R and |x| = R we have

v(x, t) ≤ sup
Rn

g

and so

max
(x,t)∈BR(0)T

v(x, t) ≤ sup
Rn

g ∀R >> 1

and with R→∞

sup
Rn×[0,T ]

v(x, t) ≤ sup
Rn

g

for any µ. Letting µ→ 0 for fixed x gives the claim. �

Theorem 1.4.7. Let g ∈ C0(Rn), f ∈ C0(Rn × [0, T ]). Then there is at most one solution
u ∈ C2

1(Rn × (0, T ]) ∩ C0(Rn × [0, T ]) of

(∂t −∆)u = f in Rn × (0, T )

u = g on Rn × {0}

with

|u(x, t)| ≤ Aea|x|
2 ∀(x, t) ∈ Rn × (0, T ).

Proof. Exercise 4 �

Exercise 3. Wir haben in Theorem 1.4.7 das starke Maximumsprinzip auf parabolischen
Zylindern kennengelernt. Benutzen Sie dies um ein starkes Maximumsprinzip auf allge-
meinen Mengen X herzuleiten:

Sei X ⊂ Rn+1 eine beliebige beschränkte, offene Menge. Angenommen es gilt u ∈ C∞(X)
und

∂tu−∆u in X.

Angenommen es gilt für ein (x0, t0) ∈ X, dass

M := u(x0, t0) = sup
(x,t)∈X

u(x, t).

(1) Beschreiben Sie in Worten die Punkte die notwendigerweise zu der Menge C
gehören, wobei

C := {(x, t) ∈ X : u(x, t) = M} .
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(2) Seien die Menge X (grau) und der Punkt (x0, t0) wie im Bild gegeben. Zeichnen
Sie (in orange) die Menge C ein.

Exercise 4. Zeigen Sie Theorem 1.4.7: Seien g ∈ C0(Rn), f ∈ C0(Rn × [0, T ]) für ein
T > 0.

Angenommen es gibt zwei Lösungen u1 und u2 ∈ C2
1(Rn × (0, T )) ∩ C0(Rn × [0, T ]) des

Anfangswertproblems {
(∂t −∆)u = 0 in Rn × (0, T ),

u(x, 0) = g(x) für x ∈ Rn.

Gibt es weiterhin Konstanten a1, a2 und A1, A2 > 0 so dass

|u1(x, t)| ≤ A1 e
a1 |x|2 , |u2(x, t)| ≤ A2 e

a2 |x|2 ∀(x, t) ∈ Rn × [0, T ],

so gilt

u1 ≡ u2 auf Rn × [0, T ].

Hinweis: Benutzen Sie Theorem 1.4.6 (Starkes Maximumsprinzip für das Cauchy-Problem)
aus der Vorlesung.

Exercise 5. (cf. [Joh91]) Gegeben Sei die folgende Tychonoff-Funktion:

u(x, t) :=
∞∑
k=0

g(k)(t)

(2k)!
x2k,
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wobei g(k) die k-te Ableitung ist, und

g(t) :=

{
e(−t−α) t > 0

0 t ≤ 0.

(1) Zeigen Sie, u ∈ C2
1(R2

+) ∩ C0(R× [0,∞)).
(2) Zeigen Sie nun, dass

(1.4.2)

{
(∂t −∆)u = 0 in Rn × (0, T ),

u(x, 0) = 0 für x ∈ Rn.

(3) Finden Sie eine andere Lösung v 6≡ u von (1.4.2).
(4) Warum (ohne Beweis) ist dies kein Widerspruch zu Aufgabe 4?

1.5. Harnack’s Principle

In the parabolic setting a Harnack in the whole spacetime is not possible. We have to wait
some time. For example for

(∂t −∆)u = 0 in B1 × (0, T ))

we have a uniformly positive solution at time t > 0 if only there is one point at t = 0 with
u(x, 0) > 0.

Theorem 1.5.1 (Parabolic Harnack inequality). Assume u ∈ C2
1(Rn × (0, T ]) ∩ L∞(Rn ×

[0, T ]) and solves

ut −∆u = 0 in Rn × (0, T )

and

u ≥ 0 in Rn × (0, T )

Then for any compactum K ⊂ Rn and any 0 < t1 < t2 < T there exists a constant C, so
that

sup
x∈K

u(x, t1) ≤ C inf
y∈K

u(y, t2)

Proof. By the representation formula, Theorem 1.2.3 and uniqueness of the Cauchy
problem

u(x2, t2) =

ˆ
Rn

1

(4πt2)
n
2

e
− |x2−y|

2

4t2 u0(y) dy.

Now, for t1 < t2 whenever |x1|, |x2| ≤ Λ < ∞, there exists a constant C = C(|t1 − t2|,Λ)
so that

−|x2 − y|2

4t2
≥ −|x1 − y|2

4t1
− C.

See Exercise 6.
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Consequently,

u(x2, t2) ≥
(
t1
t2

)n
2

e−C
ˆ
Rn

1

(t1)
n
2

e
− |x1−y|

2

4t1 u0(y) dy =

(
t1
t2

)n
2

e−Cu(x1, t1).

�

Exercise 6. Zeigen Sie die folgende Abschätzung, die wir für das Harnack-Prinzip, The-
orem 1.5.1, verwenden.

Ist K ⊂ Rn kompakt und 0 < t1 < t2 < ∞, dann gibt es eine Konstante C > 0 abhängig
von K und (t2 − t1), so dass

|x1 − y|2

t2
≤ |x2 − y|2

t1
+ C ∀x1, x2 ∈ K, y ∈ Rn.

Exercise 7 (Counterexample Harnack). (1) Sei u0 : Rn → [0,∞) eine glatte Funk-
tion mit kompaktem support mit u0(0) = 1. Setze

u(x, t) :=

ˆ
Rn

Φ(x− y, t) u0(y) t > 0

Zeigen Sie,

inf
x∈Rn

u(x, t) = 0 für alle t > 0.

Aber

sup
x∈Rn

u(x, t) > 0 für alle t > 0.

Warum ist dies kein Widerspruch zum Harnack-Prinzip, Theorem 1.5.1?
(2) Zeigen Sie, dass das folgende Sei ξ ∈ Rn gegeben, und u definiert als

uξ(x, t) := (t+ 1)−
1
2 e−

|x+ξ|2
4(t+1) .

Zeigen Sie dass u eine Lösung von (∂t −∆)u = 0 auf Rn × (0,∞) ist. Zeigen Sie
aber auch, dass es jedes feste t > 0 keine Konstante C = C(t) > 0 gibt für die gilt

sup
x∈[−1,1]

uξ(x, t) ≤ C inf
y∈[−1,1]

uξ(y, t) ∀ξ ∈ Rn.

Warum ist dies kein Widerspruch zum Harnack-Prinzip, Theorem 1.5.1?
Hinweis: Wählen Sie x = − ξ

|ξ| und y = 0. Was passiert, wenn |ξ| → ∞?

1.6. Regularity and Cauchy-estimates

Theorem 1.6.1 (Smoothness). Let u ∈ C2
1(UT ) satisfy

ut = ∆u in UT .

Then u ∈ C∞(int(UT )).
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Proof. This is a standard technique to transfer local questions to global situations,
using a cut-off function. Let

C(x, t; r) = {(y, s) : |x− y| ≤ r, t− r2 ≤ s ≤ t}

and

C1 = C(x0, t0; r), C2 = C

(
x0, t0;

3

4
r

)
, C3 = C

(
x0, t0;

r

2

)
for some r such that C1 ⊂ UT . Choose a cut-off function

η ∈ C∞(Rn × [0, t0])

with 0 ≤ η ≤ 1, η|C2 ≡ 1, η ≡ 0 around Rn× [0, t0]\C1. Suppose first that u is smooth. Set

v(x, t) = η(x, t)u(x, t) ∀(x, t) ∈ Rn × (0, t0],

extended by 0. Then

∂tv −∆v = utη + ηtu− η∆u− u∆η − 2 〈∇u,∇η〉
= ηtu− u∆η − 2 〈∇u,∇η〉
=: f(x, t)

with bounded v and f ∈ C2
1 by smoothness of u. Let (x, t) ∈ C3. Then

v(x, t) =

ˆ t

0

ˆ
Rn

Φ(x− y, t− s)f(y, s) dyds

=

ˆ t

0

ˆ
Rn

Φ(x− y, t− s)
(
u(y, s)ηt(y, s)− u(y, s)∆η(y, s)

− 2 〈∇u(y, s),∇η(y, s)〉
)
dyds

We note: The singularity y = x and s = t is cut off due to (x, t) ∈ C3. Hence

v(x, t) =

ˆ
C1

Φ(x− y, t− s)
(
(∂t −∆)η(y, s)u(y, s)

)
dyds

+

ˆ
C1

2DΦ(x− y, t− s)Dη(y, s)u(y, s).

By convolution: If u ∈ C2
1(UT ), we have a representation

v(x, t) =

ˆ
C

K(x, y, s, t)u(y, s) dyds

with no singularities in the kernel. Thus v is smooth and so is u around (x0, t0). �

Theorem 1.6.2 (Cauchy estimates). For all k, l ∈ N there exists C > 0 such that for all
u ∈ C2,1(UT ) (u ∈ L1

loc will be sufficient), solving

(∂t −∆)u = 0,
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there holds

max
C(x0,t0; r

2
)
|Dk

x∂
l
tu| ≤

C

rk+2l+n+2
‖u‖L1(C(x0,t0;r))

for all C(x0, t0; r) ⊂ UT .

Proof. Suppose first (x0, t0) = (0, 0) and r = 1. Set

C(1) = C(0, 0; 1).

Then as in the proof of Theorem 1.6.1 we have

u(x, t) =

ˆ
C(1)

K(x, t, y, s)u(y, s) dyds ∀(x, t) ∈ C
(

1

2

)
.

Then

Dk
x∂

l
tu(x, t) =

ˆ
C(1)

(
Dk
x∂

l
tK(x, t, y, s)

)
u(y, s) dyds

and hence

|Dk
x∂

l
tu(x, t)| ≤ Ck,l‖u‖L1(C(1)) ∀(x, t) ∈ C

(
1

2

)
.

Thus the claim is proven for r = 1. For r > 0 and (x0, t0) ∈ Rn+1 set

v(x, t) = u(x0 + rx, t0 + r2t).

Then

max
C( 1

2)
|Dk

x∂
l
tv| ≤ Ck,l‖v‖L1(C(1)).

Hence

max
C(x0,r0; r

2
)
|Dk

x∂
l
tu|rk+2l ≤ Ck,lr

−(n+2)‖u‖L1(C(1)).

�



CHAPTER II

linear parabolic equations

2.1. Definitions

The heat equation is the simplest or most pure parabolic equation. In general we want to
study equations of the form

∂tu− Lu,
where L is a uniformly elliptic differential operator (for each time t). More precisely, we
study L which for given coefficient functions aij(x, t), bi(x, t) and c(x, t) has the form

Lu(x, t) = aij(x, t) ∂iju(x, t) + bi(x, t) ∂iu(x, t) + c(x, t)u(x, t).

Recall that we use Einstein’s summation convention,

=
n∑

i,j=1

aij(x, t) ∂iju(x, t) +
n∑
i=1

bi(x, t) ∂iu(x, t) + c(x, t)u(x, t).

We want L to be elliptic (and equivalently ∂t − L to be parabolic), which simply means
that the leading order coefficients form a non-degenerate, positive matrix.

Definition 2.1.1 (Parabolic). We say that an operator ∂t − L is uniformly parabolic, if
there exists a constant λ > 0 so that

aij(x, t) ξi ξj ≥ λ|ξ|2 ∀(x, t) ∈ ΩT , ξ ∈ Rn.

Equivalently, the matrix A(x, t) = (aij(x, t))1≤i,j≤n satisfies

〈A(x, t)ξ, ξ〉Rn ≥ λ ∀(x, t) ∈ ΩT , ξ ∈ Rn, |ξ| = 1.

We also say that L is uniformly elliptic.

The simples example of a parabolic operator is the heat operator. Indeed take

aij := δij =

{
1 i = j

0 i 6= j

and b ≡ c ≡ 0. Then L = +∆. Indeed, parabolic operators have many features similar to
∂t −∆.

25
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Definition 2.1.2. Let X ⊂ Rn+1 be an n+1-dimensional domain. The parabolic boundary
PX of X is defined as follows. For ρ > 0, (x0, t0) ∈ Rn+1 define the (backwards-in-time)
cylinder Qρ(x0, t0) as

Qρ(x0, t0) =
{

(x, t) ∈ Rn+1 : |x− x0| < ρ, t ∈ (t0 − ρ2, t0),
}
.

Then the parabolic boundary PX of X is defined as

PX := {(x0, t0) ∈ ∂X so that Qρ(x0, t0) ∩Xc 6= ∅ ∀ρ > 0}

Exercise 8. Let Ω ⊂ Rn be a domain and ΩT = Ω× (0, T ]. Show that PΩT = ΓT .

2.2. Maximum principles

2.2.1. Weak maximum principle. We will always assume that the operators ∂t+L
are uniformly parabolic and the coefficients aij, b

i, c are continuous. Moreover we assume
symmetry,

aij = aji 1 ≤ i, j ≤ n.

Also X ⊂ Rn+1 bounded.

Theorem 2.2.1 (Weak maximum principle, c ≡ 0). Let X ⊂ Rn+1 be open and bounded
and let L be an elliptic operator with

(2.2.1) c = 0.

Let u ∈ C2
1(X) ∩ C0(X̄).

(1) If u is a subsolution of ∂t − L, i.e.

(2.2.2) (∂t − L)u ≤ 0,

then

sup
X̄

u = sup
∂PX

u.

(2) If u is a supersolution of ∂t − L, i.e.

(∂t − L)u ≥ 0,

then

inf
X̄
u = inf

∂PX
u.

Proof. We only proof the first claim, the second one follows by replacing u with −u.
Also we will assume that X = ΩT

For now assume that we have a strict subsolution. That is,

(2.2.3) (∂t − L)u < 0 in ΩT .
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Assume that there exists a point (x0, t0) ∈ ΩT with u(x0, t0) = maxΩT
u. Then x0 ∈ Ω and

t0 ∈ (0, T ], so the maximality condition tells us

∂tu(x0, t0) ≥ 0, Du(x0, t0) = 0, D2u(x0, t0) ≤ 0.

In particular, observing (2.2.1),

∂tu(x0, t0)− Lu(x0, t0) ≥ aij(x0, t0) ∂iju(x0, t0).

In view of Exercise 9 this implies

∂tu(x0, t0)− Lu(x0, t0) ≥ 0,

a contradiction to (2.2.3). So what do we do if we had only (2.2.2)? We consider a
subsolution slightly below u. Let uε(x, t) := u(x, t)− εt. Then, again with (2.2.1),

∂tu
ε − Luε = ∂tu− Lu− ε < 0 in ΩT .

The above argument implies that

max
ΩT

uε = max
ΓT

uε ∀ε > 0.

In particular we have

max
ΩT

u ≤ εT + max
ΩT

uε ≤ εT + max
ΓT

uε ≤ εT + max
ΓT

u.

Letting ε→ 0 we have

max
ΩT

u ≤ max
ΓT

u.

The inverse estimate is always true, so the claim is proven. �

Exercise 9. A matrix A ∈ Rn×n is nonnegative, A ≥ 0, if

〈Av, v〉 ≥ 0 ∀v ∈ Rn.

A matrix A is symmetric, if AT = A.

Show that

(1) A ≥ 0 implies P TAP ≥ 0 for any matrix P ∈ Rn×n.
(2) A ≥ 0 implies that the diagonal entries Aii ≥ 0 for any i ∈ {1, . . . , n}.
(3) A ≥ 0 and B ≥ 0 and B is symmetric then

A : B :=
n∑

i,j=1

AijBij ≥ 0.

If c ≥ 0, then we have to adapt the claim. For a function f let f+ := max{f, 0} and
f− := max{−f, 0}.

Exercise 10. Complete the above proof for general domain X.
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Theorem 2.2.2 (Weak maximum principle, c ≤ 0). Let u and X as in 2.2.1 and ∂t − L
parabolic with c ≤ 0. Then if ut − Lu ≤ 0 then

sup
X̄

u ≤ sup
∂PX

u+.

For ut − Lu ≥ 0, then

inf
X̄
u ≥ − sup

∂PX
u−,

where u+ = max(0, u) and u− = −min(u, 0). If ut = Lu, then

sup
X̄

|u| = sup
∂PX
|u|

Proof. We just prove the first claim, the second and third are simple corollaries.

Again, we assume ΩT , general X is an exercise. we first simplify the equation, and assume
that

(∂t − L)u < 0 in ΩT .

The only situation we have to exclude is that there exists (x0, t0) ∈ ΩT at which there is a
positive maximum value u(x0, t0) > 0. With the arguments above,

ut(x0, t0) + Lu(x0, t0) ≥ c(x0, t0)u(x0, t0) ≥ 0,

and we have our contradiction. The full claim is obtained if we consider again uε(x, t) :=
u(x, t)− εt. Then

max
ΩT

uε ≤ max
ΓT

(uε)+ ≤ max
ΓT

(u)+.

We let ε→ 0 to conclude. �

A consequence of the weak maximum principle is uniqueness of solutions and the compar-
ison principle.

Corollary 2.2.3 (Uniqueness). Let X ⊂ Rn+1 and L as above with c ≤ 0. Let u, v ∈
C2

1(X) ∩ C0(X̄) satisfy

ut − Lu = vt − Lv.

Then if u = v on ∂PX, we have u = v in X.

Corollary 2.2.4 (Comparison Principle). Let X and L as above and u, v ∈ C2
1(X) ∩

C0(X̄) with

ut − Lu ≤ vt − Lv

in X with u ≤ v on ∂PX, then we have u ≤ v in X.

We leave the proofs as exercises, Exercise 11.

Exercise 11. Prove Corollaries 2.2.3 and 2.2.4. Hint: What equation does u− v satisfy?
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2.2.2. Strong Maximum principle. Let

ut − Lu = 0 in ΩT

We want to understand better the relation between u at different times. We have the
following very important “propagation of positivity” property. See [Lie96, II, Lemma 2.6]

Lemma 2.2.5. [Propagation of positivity] For R > 0 and α > 0 let BR(0) ⊂ Rn. Let
Q(R) = BR × (0, αR2). Let 0 ≤ u ∈ C2

1(Q(R)) satisfy

ut − Lu ≥ 0,

where L is elliptic with b = c = 0. If

(2.2.4) u(x, 0) ≥ h ∀|x| < εR

for some h > 0 and 0 < ε < 1, then

u(x, αR2) ≥ c(ε, λ,R, ‖aij‖∞)h ∀|x| ≤ R

2
for some positive c.

Proof. Let Q̃ ⊂ Rn+1 be a cone so that at time t = 0, Q̃ ∩ (Rn × {t = 0}) is the ball
{|x| < εR} and at time t = αR2, Q̃∩ (Rn×{t = αR2}) is the ball {|x| < R}. See Figure 1.
In formulas, Q̃ can be written

Q̃ =
{

(x, t) ∈ Rn+1 : |x|2 < ψ(t), 0 < t < αR2
}

for

ψ(t) :=
(1− ε2)

α
t+ ε2R2.

On Q̃ we will construct a comparison (“barrier”) function v with the following properties:

Figure 1. Q̃ and its parabolic boundary PQ̃ (green)

(2.2.5)

{
vt − Lv ≤ 0 in Q̃

v ≤ u on PQ̃
and moreover

(2.2.6) v(x, αR2) ≥ c h whenever |x| ≤ R
2

If we have such a v, then by Corollary 2.2.4 (the general domain version)

u(x, αR2) ≥ v(x, αR2) ≥ ch whenever |x| ≤ R
2
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So how do we construct such a v? We essentially rescale (in time) the map (1 − |x|2)2.
Choose the Ansatz

v(x, t) := µ(t) (ν(t)− |x|2)2.

For µ, ν nonnegative functions. In general, away from t = 0, we only know that u ≥ 0, so
to make v as large as possible, it seems reasonable to set v(x, t) ≡ 0 on the positive part
of the parabolic boundary PQ̃ ∩ {t > 0}. That is,

ν(t) := ψ(t).

Now we compute the equation. Firstly

∂xixjv(x, t) = 8µ(t)xj xi − 4µ(t) (ψ(t)− |x|2)δij

Consequently, by ellipticity

−aij(x, t) ∂xixjv(x, t) ≤ µ(t)
(
−8ψ(t)λ+ 8 (ψ(t)− |x|2)λ+ 4(ψ(t)− |x|2) tr(A)

)
.

Also,
vt(x, t) = µ′(t) (ψ(t)− |x|2)2 + 2µ(t) (ψ(t)− |x|2)ψ′(t).

This vt has to be the positive guy, so we would like to be able to compare µ′(t) and ν ′(t).
We thus choose (note that ψ(t) > 0) for some constant η > 0,

µ(t) := ηψ(t)−q.

Then

−aij(x, t) ∂xixjv(x, t) ≤ ηψ1−q(t)

(
−8λ+ 8

(
(ψ(t)− |x|2)

ψ(t)

)
λ+ 4

(
(ψ(t)− |x|2)

ψ(t)

)
tr(A)

)
.

and (observe that ψ′(t) = 1−ε2
α
R,

vt(x, t) =η
(
−qψ−q−1(t) (ψ(t)− |x|2)2 + 2ψ(t)−q (ψ(t)− |x|2)

) 1− ε2

α
R

=ηψ(t)1−q

(
−q
(

(ψ(t)− |x|2)

ψ(t)

)2

+ 2ψ(t)

(
(ψ(t)− |x|2)

ψ(t)

))
1− ε2

α
R.

We see a quadratic structure in

ξ(t) :=

(
(ψ(t)− |x|2)

ψ(t)

)
,

namely

vt(x, t)− aij(x, t)∂xixjv(x, t)

≤ηψ1−q(t)

(
−
(
q

1− ε2

α
R

)
ξ(t)2 +

(
2

1− ε2

α
R ψ(t)2 + 8λ+ 4 tr(A)

)
ξ(t)− 8λ

)
.

Observe that the leading order term and the zero-order term are negative, hence (see
Exercise 12) there exists a large q > 0 so that

vt(x, t)− aij(x, t) ∂xixjv(x, t) ≤ 0 in Q̃.
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On the other hand, for t = 0, in view of (2.2.4),

v(x, 0) = ηε−2qR−2q (ε2R2 − |x|2)2 ≤ η (εR)4−2q ≤ 1

h
η (εR)4−2q u(x, 0).

So we choose

η := h (εR)2q−4.

Then v satisfies (2.2.5). It remains to check (2.2.6). For |x| ≤ R
2

,

v(x, αR) = h (εR)2q−4 R−2q (R2 − |x|2)2 ≥ hε2q−4 9

16
.

This finishes the proof of Lemma 2.2.5. It is worth noting that we actually get an estimate
of the form εκ, where κ is a uniform constant depending on R, λ, etc. For this assume
w.l.o.g. that ε < 1

2
, for any ε > 1

2
the claim follows from the ε < 1

2
case since the positivity

set is larger than required. �

Exercise 12. Assume that a, b, c ∈ R be fixed. To any λ ∈ R we associate the polynomial

pλ(x) := λax2 + bx+ c x ∈ R.

Show that if a < 0 and c < 0 then there exists a λ > 0 so that

sup
x∈R

pλ(x) < 0.

Hint: p-q formula

Theorem 2.2.6 (Strong Maximum Principle). Let b, c = 0, L elliptic, X ⊂ Rn+1 open and
bounded, u ∈ C2

1(X) ∩ C0(X̄) and assume in X :

(∂t − L)u ≤ 0.

Assume there is (x0, t0) ∈ X, such that

u(x0, t0) = sup
X
u,

then

u(x, t) = u(x0, t0) ∀(x, t) ∈ S(x0, t0),

where

S(x0, t0) = {(x, t) : ∃ g ∈C0 ([0, 1], X\∂pX) , g(0) = (x0, t0),

g(1) = (x, t), g decreasing in t}.

Proof. Set

M := max
X̄

u.

Claim: Assume a maximal point (y0, t0) ∈ X, r > 0, such that

Q(y0, t0, 3r) ⊂ X



2.3. HOPF LEMMA 32

and such that there is (y1, t1) ∈ Q(y0, t0, r) with

u(y1, t1) < M.

Then u(y0, t0) < M. Set v = M − u and

R = 2|y1 − y0| < 2r, α :=
t0 − t1
R2

.

By continuity there exists ε > 0 and h > 0 such that

v(x, t1) > h, |y| < εR.

By 2.2.5 there exists c > 0, such that v(y, t0) > ch > 0 for all |y − y1| < R/2, a contra-
diction. Hence if u(x0, t0) = M, then u(y, t) = M for all (y, t) ∈ Q(x0, t0; r), whenenver
Q(x0, t0; 3r) ⊂ X. Hence {u = M}∩S(x0, t0) is (parabolically) open and closed and hence
all of S(x0, t0). �

2.3. Hopf Lemma

This section follows the presentation in [And11].

Definition 2.3.1. [Spherical cap condition] Let X ⊂ Rn+1. We say (x0, t0) ∈ ∂PX
satisfies the spherical cap condition, if there exist r > 0 and (x1, t1) ∈ Rn+1 with x1 6= x0,
such that

(x0, t0) ∈ ∂Bn+1
r (x1, t1)

and

∅ 6= Bn+1
r (x1, t1) ∩ {t < t0} ⊂ X.

Theorem 2.3.2 (Hopf Lemma). Let X ⊂ Rn+1 open and bounded, L elliptic, b, c = 0 and
u ∈ C2

1(X) ∩ C0(X̄) with

(∂t − L)u ≤ 0

in X. Assume (x0, t0) ∈ ∂P (X) satisfying the spherical cap condition with cap A and

u(x, t) < u(x0, t0) ∀(x, t) ∈ A.

Then

(2.3.1) lim sup
h→0

u((x0, t0) + he)− u(x0, t)

h
< 0 ∀e ∀h� 1: (x0, t) + he ∈ A.

Observe that the inequality (2.3.1) with “≤” is trivial. The strict inequality “<” is the
main result.
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Proof. Set

M = u(x0, t0).

We also know that from the strong maximum principle

u(x, t0) < M ∀(x, t0) ∈ ∂A.

Obviously (2.3.1) holds with with the weak inequality. Wlog

u(x, t) < M ∀(x, t) ∈ ∂A\{(x0, t0)}.

Set

w(x, t) = e−α(|x−x1|
2+|t−t1|2) − e−αr2 , α > 0.

then

w(x, t) ∈ [0, 1] ∀(x, t) ∈ Bn+1
r (x1, t1),

w(x, t) = 0 ∀(x, t) ∈ ∂Bn+1
r (x1, t1).

Then

ẇ = −2α(t− t1)e−α(|x−x1|
2+|t−t1|2),

∂iw = −2α(xi − xi1)e−α(|x−x1|
2+|t−t1|2),

∂j∂iw = −2αe−α(|x−x1|
2+|t−t1|2) (δij − 2α(xi − xi1)(xj − xj1)

)
.

Hence

ẇ − Lw = 2αe−α(|x−x1|
2+|t−t1|2) (−(t− t1) + aijδij − 2αaij(xi − xi1)(xj − xj1)

)
≤ 2αe−α(|x−x1|

2+|t−t1|2) (−(t− t1) + ‖tr(A)‖∞ − 2αλ|x− x1|2
)
.

Set

Ωε = A ∩ {|x− x0| < ε}.

Hence for all (x, t) ∈ Ωε we have |x− x1| ≥ 1
2
|x1 − x0| > 0. Thus choose α large such that

ẇ − Lw ≤ 0 ∀(x, t) ∈ Ωε.

Put

v = u+ µw, µ > 0.

Then v̇ − Lv ≤ 0 in Ωε. We have

∂PΩε = S1 ∪ S2,

with

S1 = ∂PA ∩ ∂Br(x1, t1), S2 = Ā ∩ {|x− x0| = ε}.
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On S1 we have v ≤ M. On S2 there exists σ > 0, such that u(x, t) < M − σ. Hence
v = u+ µw ≤M − σ + µ < M for small µ. Thus

v(x, t) ≤M ∀(x, t) ∈ ∂PΩε.

Also

v̇ − Lv ≤ 0 = (u̇− Lu) (x0, t0)

and hence

v(x, t) ≤M = v(x0, t0) ∀(x, t) ∈ Ωε.

We deduce for all e with (x0, t0) + he ∈ A for small h, that

lim sup
h→0

v((x0, t0) + he)− v((x0, t0))

h
≤ 0.

But

∂ew = 2αe−α|x0−x1|
2+|t0−t1|2 〈e, (x1 − x0, t1 − t0)〉 > 0,

and hence (2.3.1) follows. �

2.4. Harnack’s inequality

Later we prove some weak Harnack estimates. Without proof, now we state:

Theorem 2.4.1 (Parabolic Harnack inequality). Assume u ∈ C2
1(UT ) and solves

(∂t − L)u = 0 in UT

and
u ≥ 0 in UT

Assume moreover that b ≡ 0 and c ≡ 0 and a is smooth.

If V c U is connected, then for each time 0 < t1 < t2 ≤ T there is a constant C such that

sup
x∈V

u(x, t1) ≤ C inf
x∈V

u(x, t2).

Proof. See [Eva98, Theorem 10, p.391]. �



CHAPTER III

A short look at Semi-group theory

As references we refer to [Eva98, §7.4] and [CH98].

In Section 1.2 we looked at (∂t −∆)u = 0 and naively we should have

u = et∆u(0).

We made this precise with the help of the Fourier Transform.

Is there a similar relation if we look at L instead of ∆?

Generally: Let X be a real Banach space and a linear map A,

A : D(A) ⊂ X → X,

where D(A) is the domain of A, a linear (usually dense) subset of X. We are looking for
solutions u ∈ C1((0, T ), X) of

(3.0.1)
u̇ = Au, t ∈ (0, T ),

u(0) = ϕ.

A is in general not bounded, but closed. Assume there exists a solution to (3.0.1), then

T (t)ϕ := u(t)

defines an operator. Properties of T :

• T (t) : X → X is linear,

• T : [0,∞)→ L(X).

• T (0) = id ,

• T (t+ s) = T (t) ◦ T (s),

• t 7→ T (t)ϕ is continuous.

The latter three properties are characteristic for a semigroup.

Assume now that we have a semigroup

T : [0,∞)×X → X.

Then we find some A such that T is the semigroup of A. A will then be called the generator
of T.

35
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u̇(t) = lim
s→0

u(t+ s)− u(t)

s
= lim

s→0

T (t+ s)ϕ− T (t)ϕ

s

= lim
s→0

T (s)− T (0)

s
u(t)

≡ Au(t).

Hence let

Au = lim
s→0

T (s)− T (0)

s
u,

whenever the limit exists. Call D(A) the set of u ∈ X where this limit exists.

One might conjecture there is some sort of equivalence between generators A and semi-
groups T .

Questions: Which generators A allow semigroups? Which generators are implies by semi-
groups?

The main theorem which gives us an answer to this question is the Hille-Yoshida Theorem
at the end of this Section.

3.1. m-dissipative operators

We want to solve

(3.1.1)
u′(t) = Au, t > 0

u(0) = ϕ

with some operator

D(A) ⊂ X → X,

where X is a Banach space and D(A) a linear subspace, e.g. X = L2 and D(A) = H2. In
general A will not be bounded.

3.1.1. linear bounded operators. (i) Let X = Rn or Cn, A : X → X linear (and
thus bounded), then

u(t) = etAϕ

is the unique solution to (3.1.1), where

etA =
∞∑
k=0

1

k!
tkAk.

(ii) Let X be a general Banach space and A ∈ L(X), where L(X) is the space of bounded
linear operators. Here etA also makes sense.



3.1. M-DISSIPATIVE OPERATORS 37

Lemma 3.1.1. Let A,B ∈ L(X). Then

(i) eA converges absolutely,

(ii) e0 = id ,

(iii) AB = BA ⇒ eA+B = eAeB,

(iv) e−A =
(
eA
)−1

.

Theorem 3.1.2. Let A ∈ L(X), ϕ ∈ X, T > 0. Then there exists a unique solution
u ∈ C1((0, T ), X) of

u′(t) = Au(t)

u(0) = ϕ.

Proof. Put

u(t) = etAϕ.

Then

u′(t) = etAAϕ = Au(t).

For a second solution v set

w(t) = e−tAv(t),

then w′(t) = 0 and hence w(t) = w(0) = ϕ. �

3.1.2. unbounded operators. Let X be a real or complex Banach space. An oper-
ator

A : D(A) ⊂ X → X

is called linear, if and only if D(A) is a linear subspace and A ist linear on D(A). We say
A is densely defined, if

D(A) = X.

A is bounded, if and only if

‖A‖ := sup
‖x‖≤1

‖Ax‖ <∞.

Otherwise it is called unbounded.

examples

(1) X = L2(Rn), A = ∆, D(A) = H2(Rn) or D(A) = C∞.
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(2) X = C0([0, 1]), D(A) = X, K ∈ C0([0, 1]× [0, 1])

Au(x) =

ˆ 1

0

K(x, y)u(y) dy

is bounded.

We use the following notation.

G(A) = {(u,Au) ⊂ X ×X : u ∈ D(A)}
is the graph of A,

R(A) = {Au : u ∈ D(A)}
the range of A. An extension of A is

Ã : D(Ã) ⊂ X → X,

such that

D(A) ⊂ D(Ã) and Au = Ãu ∀u ∈ D(A).

A is called closed, if G(A) is closed in X ×X. A is called closable, if there exists a closed
extension Ã.

Theorem 3.1.3 (Closed Graph Theorem). Let A : X → X be linear. Then A is continuous
(i.e. bounded) if and only if A is closed.

3.1.3. Notion of m-dissipative operators. X Banach space, A : D(A)→ X linear.

Definition 3.1.4. A is dissipative, if

‖u− λAu‖ ≥ ‖u‖ ∀u ∈ D(A), λ > 0.

A is called accretive, if −A is dissipative.

Lemma 3.1.5. Let X be a Hilbert space,

A : D(A) ⊂ X → X

linear, then A is dissipative if and only if

Re 〈u,Au〉 ≤ 0 ∀u ∈ D(A).

If for example A = ∆, X = L2(Rn), D(A) = H2(Rn), then

〈u,∆u〉 = −
ˆ
Rn
|∇u|2 ≤ 0.

For Schroedinger equation:

〈u,±i∆u〉 = ∓i
ˆ
Rn
|∇u|2

and hence the real part is 0 and both i∆ and −i∆ are dissipative.
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Proof of Lemma 3.1.5. Let A dissipative, then:

‖u‖2 + λ2‖Au‖2 − 2λRe 〈u,Au〉 − ‖u‖2 = ‖u− λAu‖2 − ‖u‖2 ≥ 0.

Dividing by λ and letting λ→ 0 gives

Re 〈u,Au〉 ≤ 0.

Let

Re 〈Au, u〉 ≤ 0,

then

‖u− λAu‖2 = ‖u‖2 + λ2‖Au‖2 − 2λRe 〈u,Au〉 ≥ ‖u‖2.

�

Definition 3.1.6 (m-dissipative). A linear operator A : D(A) ⊂ X → X is called m-
dissipative, if A is dissipative and I − λA is surjective for all λ > 0. (hence I − λA is
continuously invertible.)

Our aim is to show that for any m-dissipative A we can define (some sort of) eA. We also
call A m-accretive, if −A is m-dissipative. Set

Jλ = (I − λA)−1 : X → D(A).

Then

‖Jλv‖ ≤ ‖v‖ ∀v ∈ X.

Lemma 3.1.7. Let A be dissipative, then A is m-dissipative if and only if there exists λ0 > 0
such that I − λ0A is surjective.

Proof. Let λ ∈ (0,∞) and v ∈ X. Find u ∈ D(A) such that u− λAu = v.

u− λ0Au =
λ0

λ
v +

(
1− λ0

λ

)
u

is equivalent to

u = Jλ0

(
λ0

λ
v +

(
1− λ0

λ

)
u

)
≡ F (u).

We show the right hand side is a contraction in u. Then

‖F (u)− F (w)‖ =

∥∥∥∥Jλ0 ((1− λ0

λ

)
(u− w)

)∥∥∥∥ ≤ ∣∣∣∣1− λ0

λ

∣∣∣∣ ‖u− w‖.
Hence F is a contraction, if λ < λ0/2. Then there is a unique u ∈ D(A) with F (u) = u.
Iteration give the result. �

Proposition 3.1.8. All m-dissipative operators are closed.

Proof. J1 exists and is continuous, hence I −A is closed and hence A is closed. �
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example:
X = L2, A = ∆, D(A) = H2. Then A is m-dissipative. We only have to show that

∀v ∈ L2 ∃u ∈ H2 : u−∆u = v.

Here we see that the choice of D(A) is important (the above will not work for D(A) = C∞.)
We solve this by Fourier-transform.

û(ξ) + |ξ|2û(ξ) = v̂(ξ)

and hence we conjecture

û(ξ) :=
1

1 + |ξ|2
v̂(ξ).

Hence û ∈ L2 and

ξ1ξ2

1 + |ξ|2
v̂(ξ) ∈ L2

implies that u,∇2u ∈ L2.

Proposition 3.1.9. Let A be m-dissipative, then

∀u ∈ D(A) : ‖Jλu− u‖
λ→0−−→ 0.

Proof. There holds

‖Jλ − I‖ ≤ ‖Jλ‖+ ‖I‖ ≤ 2.

Hence it suffices to prove the result for u ∈ D(A).

‖Jλu− u‖ = ‖Jλ (u− (I − λA)u) ‖ ≤ λ‖Au‖ → 0, λ→ 0.

�

Set

Aλ := AJλ =
1

λ
(Jλ − I).

This Aλ ∈ L(X) will serve as an “approximation” for A, so that we can make (certain)
sense of an operator etA in terms of limλ→0 e

tAλ . This is justified by the following

Proposition 3.1.10. Let A be m-dissipative and D(A) = X. Then

Aλu→ Au, ∀u ∈ D(A).

Proof.

JλAu→ Au,

since D(A) is dense. Furthermore, we have

(I − λA)A = A(I − λA).
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Thus, multiplying both sides with Jλ from the left and also from the right, we have Aλ =
AJλ = JλA. �

3.2. Semigroup Theory

Let X be a Banach space. A semigroup is an operator

T : [0,∞)→ L(X),

such that

(i) T (0) = I,
(ii) T (t+ s) = T (t)T (s).

T is called C0-semigroup (strongly continuous semigroup), if

(iii) limt→0 ‖T (t)u− u‖ = 0 ∀u ∈ X.

Note, that T (s)T (t) = T (t)T (s).

Examples

(1) A ∈ L(X), T (t) = etA.
(2) X = Lp(R), p ∈ [1,∞].

T (t)u(x) = u(t+ x).

If p < ∞, then T is a continuous semigroup, since C∞c is dense and hence for
u ∈ Lp and ε > 0 there exists f ∈ C∞c with

‖f − u‖p < ε/3.

We have for small t,

sup
x
|f(x− t)− f(x)| < t‖∇f‖∞ < ε/3

Then

‖T (t)u− u‖p ≤ ‖T (t)f − f‖p + ‖T (t)(u− f)‖p + ‖u− f‖p

≤ 2ε

3
and (ˆ

R
|T (t)f − f |p

) 1
p

<
ε

3
(diam(supp f) + 1) .

For p =∞ let u = χ[0,1], then

‖u− T (t)u‖∞ = sup
x
|u(x)− u(x+ t)| ≥ 1 ∀t > 0.

Thus T is no C0-semigroup for p =∞.
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Proposition 3.2.1. Let T (t) be a C0-semigroup. Then ∃M ≥ 1 and ω ∈ R such that

‖T (t)‖ ≤Meωt.

Proof. Show that there exists δ > 0 such that

(3.2.1) sup
0<t<δ

‖T (t)‖ <∞.

If this was not the case, then there exists a sequence tn → 0 with ‖T (tn)‖ → ∞. Recall
Banach-Steinhaus: If for a sequence An ∈ L(X) we have

∀u ∈ X : sup
n
‖Anu‖ <∞,

then supn ‖An‖ <∞.

Hence in our case we find u ∈ X such that ‖T (tn)u‖ → ∞, in contradiction to the C0-
property. Hence (3.2.1) must be true. Now let t > 0, then there exists n ∈ N and s ∈ (0, δ),
such that

t = nδ + s.

Then

T (t) = T (δ) ◦ · · · ◦ T (δ) ◦ T (s).

Then

‖T (t)‖ ≤ ‖T (δ)‖n‖T (s)‖ ≤Mn+1 ≤MM
t
δ = Met log M

δ .

�

Proposition 3.2.2. Let T (t) be a C0-semigroup. Then the map

(t, u) 7→ T (t)u

is continuous.

Proof. Exercise. �

Definition 3.2.3. Let T (t) be a C0-semigroup. Then

ω0 = inf{w ∈ R : ∃M ≥ 1, ‖T (t)‖ ≤Meωt}
ist called the growth bound of the semigroup.

Definition 3.2.4. A C0-semigroup is called contraction semigroup, if

∀t > 0: ‖T (t)‖ ≤ 1.

Recall that

‖Jλ‖ ≤ 1, ‖Aλ‖ ≤
2

λ
.

We define

Tλ(t) = etAλ ,
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which is a C0-semigroup and we have

‖Tλ(t)‖ ≤ ‖etJλ
1
λ e−

t
λ
I − e−

t
λ‖e

t
λ
Jλ‖ ≤ e−

t
λ e

t
λ = 1.

Theorem 3.2.5 (Hille Yoshida (Part I)). Let A : D(A) ⊂ X → X m-dissipative and
densely defined. Then for all u ∈ X the limit

T (t)u = lim
λ→0

Tλ(t)u

exists and the convergence is uniform on intervals of the form [0, T ]. Furthermore (T (t))t≥0

is a contraction semigroup and for all u ∈ D(A),

u(t) := T (t)u

is the unique solution u ∈ C0([0,∞), D(A)) ∩ C1((0,∞), X) to

(3.2.2)

{
u̇(t) = Au(t) t > 0

u(0) = u

Proof. Step (1): On the contraction semigroup property

There holds JλJµ = JµJλ and the same for Aλ. Let λ, µ > 0, then

Tλ(t)u− Tµ(t)u =
(
etAλ − etAµ

)
u

= etAλ(I − et(Aµ−Aλ))u

and hence

‖Tλ(t)u− Tµ(t)u‖ ≤ ‖I − et(Aµ−Aλ)u‖
≤ |t|

(
‖etAµ‖+ ‖etAλ‖

)
‖(Aµ − Aλ)u‖

≤ 2|t|‖ (Aµ − Aλ)u‖ → 0, |µ− λ| → 0

uniformly on bounded intervals. Hence the proposed limit exists, if u ∈ D(A). Since T (t)
is a uniformly bounded linear operator and hence extends to all of X, since D(A) is dense.

Now let u ∈ X with approximating sequence un ∈ D(A).

‖Tλ(t)u− T (t)u‖ ≤ ‖Tλ(t)u− Tλ(t)un‖+ ‖Tλ(t)un − T (t)un‖
+ ‖T (t)(un − u)‖
≤ 2‖un − u‖+ ‖Tλ(t)un − T (t)un‖.

Hence Tλ(t)u→ T (t)u. Furthermore

‖T (t)T (s)u− T (t+ s)u‖ ≤ ‖T (t)T (s)u− T (t)Tλ(s)u‖
+ ‖T (t)Tλ(s)u− Tλ(t)Tλ(s)u‖
+ ‖Tλ(t+ s)u− T (t+ s)u‖
→ 0.

Step (2): On the equation (3.2.2)
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Let u ∈ D(A) and set

uλ(t) = etAλu.

Then

d

dt
= etAλAλu = Tλ(t)Aλu.

Equivalently, also using Aλu→ Au and Tλ → T ,

u(t)← uλ(t) = u+

ˆ t

0

Tλ(s)Aλu ds→ u+

ˆ 1

0

T (s) Au ds.

Thus u ∈ C1 and

u̇(t) = T (t)Au = Au(t).

Uniqueness proceeds as in Theorem 3.1.2. �

3.2.1. Generators of semigroups. Let T (t) be a contraction semigroup. Define

D(L) :=

{
u ∈ X : lim

h→0

T (h)u− u
h

exists

}
.

For u ∈ D(L) set

Lu = lim
h→0

T (h)u− u
h

.

Example: X = Cub(R) be the set of uniformly continuous, bounded functions with the
L∞-norm.

T (t)u(x) := u(x+ t).

Then T (t) is a contraction semigroup. Then

Lu = u′, D(L) = {u, u′ ∈ Cub(R)}.

Proof. It is clear that u, u′ ∈ Cub(R) implies∥∥∥∥u(x+ h)− u(x)

h
− u′(x)

∥∥∥∥
∞
→ 0.

Now let u ∈ D(L), then u′+ ∈ Cub(R) and hence u′+ = u′ ∈ Cub(R). �

Theorem 3.2.6 (Hille Yoshida Part II). Let T (t) be a contraction semigroup with generator
L. Then L is m-dissipative and densely defined.
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Proof. (i) L is dissipative, i.e. for all λ > 0, ‖u− λLu‖ ≥ 0.∥∥∥∥u− λT (h)u− u
h

∥∥∥∥ =

∥∥∥∥(1 +
λ

h

)
u

∥∥∥∥− ∥∥∥∥λhT (h)u

∥∥∥∥
=

(
1 +

λ

h

)
‖u‖ − λ

h
‖T (h)u‖

≥
(

1 +
λ

h
‖u‖ − λ

h
‖u‖
)

= ‖u‖.

h→ 0 on the left hand side shows L is dissipative.

(ii) L is m-dissipative. It suffices to show that (I − L) is surjective. Thus we want to find
Ju, such that

(I − L)Ju = u.

Ansatz:

Ju =

ˆ ∞
0

e−tT (t) dt.

Then

‖Ju‖ ≤
ˆ ∞

0

e−t‖T (t)u‖ dt ≤ ‖u‖

and hence ‖J‖ = 1. We claim that

(I − L)Ju = u

and therefore calculate

(T (h)− I) Ju =

ˆ ∞
0

e−tT (t+ h)u dt−
ˆ ∞

0

e−tT (t)u dt

=

ˆ ∞
h

e−t+hT (t)u dt−
ˆ 8

0

e−tT (t)u dt

=

ˆ ∞
0

(
e−t+h − e−t

)
T (t)u−

ˆ h

0

e−t+hT (t)u dt

= (eh − 1)

ˆ ∞
0

e−tT (t)u dt− eh
ˆ h

0

e−tT (t)u dt

= (eh − 1)Ju− eh
ˆ h

0

e−tT (t)u dt.

Hence

T (h)− I
h

Ju =
eh − 1

h
Ju− eh

h

ˆ h

0

e−tT (t)u dt.

Thus Ju ∈ D(L) and

LJu = Ju− u,
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which is the claim.

(iii) D(L) is dense. Set

uh =
1

h

ˆ h

0

T (s)u ds.

There holds

‖uh − u‖ =

∥∥∥∥1

h

ˆ h

0

(T (s)− I)u ds

∥∥∥∥
≤ 1

h

ˆ h

0

‖ (T (s)− I)u‖ → 0.

Thus we show uh ∈ D(L) for all h > 0 and u ∈ X. Now let t << h, we calculate

T (t)− I
t

uh =
1

ht

ˆ t+h

t

T (s)u ds− 1

ht

ˆ h

0

T (s)u ds

=
1

ht

ˆ t+h

h

T (s)u ds+
1

ht

ˆ h

t

T (s)u ds

− 1

ht

ˆ t

0

T (s)u ds− 1

ht

ˆ h

t

T (s)u ds

→ 1

h
T (h)u− 1

h
T (0)u ∈ X

and hence the left hand side converges in X. �



CHAPTER IV

Schauder estimates

References: [IS13] and [Kry96]

Our aim is that for some solution of

(∂t −∆)u = f

we want to obtain C2+α estimates in dependence of f ∈ Cα.

4.1. Parabolic Hölder spaces

X ⊂ Rn+1, Also here, the philosophy is that functions have half smoothness in time
compared to space.

For (xi, ti) ∈ Rn+1 put

ρ ((x1, t1), (x2, t2)) =
√
|t1 − t2|+ |x1 − x2|.

Definition 4.1.1. Let X ⊂ Rn+1, α ∈ (0, 1). Set

[u]α,X := sup
(x1,t1)6=(x2,t2)∈X

|u(t1, x1)− u(t2, x2)|
ρ ((x1, t1), (x2, t2))α

and

‖u‖α,X = [u]α,X + ‖u‖∞.

Also let

[u]2+α,X := [u̇]α,X + [D2u]α,X

and

‖u‖2+α,X = ‖u‖∞ + [u]2+α,X .

The spaces (C2+α(X), ‖ · ‖2+α), (Cα(X), ‖ · ‖α) are Banach spaces.

Lemma 4.1.2 (Computations). For all α ∈ (0, 1) there hold:

(1)

[uv]α,X ≤ ‖u‖∞[v]α,X + ‖v‖∞[u]α,X ,

47
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(2) k ∈ {0, 2},
[u+ v]k+α ≤ [u]k+α,X + [v]k+α,X .

There is an alternative description for the Hölder norms. We define

P2 = {polynomials in t, x of the form p(t, x) = λ1t+ λi2xi + λij3 xixj + λ4}
and

[u]′2+α,Rn+1 = sup
(t1,x1)∈Rn+1

sup
ρ>0

1

ρ2+α
inf
p∈P2

‖u− p‖∞,Qρ((x1,t1)),

where Q is the parabolic cylinder of radius ρ.

Theorem 4.1.3 (Equivalence of Hölder norms). There exists C > 0, such that for all
u ∈ C2+α(Rn+1)

(4.1.1) [u]′2+α,Rn+1 ≤ C[u]2+α,Rn+1

and

(4.1.2) [u]2+α,Rn+1 ≤ C[u]′2+α,Rn+1 .

Proof. (4.1.1) is an exercise (take p a Taylor polynomial).

As for (4.1.2), let h > 0 and set

σh(∂t)u(t, x) =
u(t, x)− u(t− h2, x)

h2

σh(∂ij)u(t, x) =
1

h2
(u(t, x+ hei + hej)− u(t, x+ hei)− u(t, x+ hej) + u(t, x))

Observe that

σh(∂t)(p) = c, σh(∂ij)p = c

and, due to Taylor,

|σh(∂t)u(t, x)− ∂tu(t, x)| ≤ Chα[u]2+α,Rn+1

and similarly in ∂ij. Now let (xi, ti) ∈ Rn+1 and

ρ = ρ((x1, t1), (x2, t2)), h := ερ,

where ε will be chosen.

Then
|∂tu(x1, t1)−∂tu(t2, x2)| ≤ |σh(∂t)u(t1, x1)− σh(∂t)u(t2, x2)|

+ |σh(∂t)u(t1, x1)− ∂tu(x1, t1)|
+ |σh(∂t)u(t2, x2)− ∂tu(x2, t2)|
≤ 2Chα[u]2+α,Rn+1

+ |σh(∂t)(u− p)(t1, x1)− σh(∂t)(u− p)(t2, x2)|.
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Suppose t1 ≤ t2. Then (t1, x1), (t1 − h2, x1), (t2, x2), (t2 − h2, x2) ∈ Q3ρ(t2, x2) and hence

|σh(∂t)(u− p)(t1, x1)|+ |σh(∂t)(u− p)(x2, t2)| ≤ 4

h2
‖u− p‖∞,Q3ρ

for all p ∈ P2. Taking the infimum gives

1

ρα
|∂tu(t1, x1)− ∂tu(t2, x2)| ≤ 2C

hα

ρα
[u]2+α,Rn+1 +

4

ραh2
inf
p∈P2

‖u− p‖∞,Q3ρ

≤ 2Cεα[u]2+α,Rn+1 +
4

ε2
[u]′2+α,Rn+1 .

An analogueous estimate holds for spatial derivatives. Absorbing the [u]-part into the right
hand side gives the result. �

Proposition 4.1.4. (Interpolation)

∀α ∈ (0, 1), γ > 0: ‖∂tu‖∞,X ≤ C(γ)‖u‖∞ + γ[u]2+α,X .

The same holds for Du and [u]α,X .

Proposition 4.1.5 (Arzela-Ascoli). Let X ⊂ Rn+1 be bounded and uk ∈ C2,α(X) uni-
formly bounded. Then there exists a subsequence converging in C2,β for all β < α.

4.2. Schauder estimates with constant coefficients

References: [IS13, Chapter 2.4], [Kry96, Chapter 8.6]

First, we prove the (interior) Schauder estimate for the heat equation. The general case is
a consequence of this theorem.

Theorem 4.2.1. (Schauder) Let α ∈ (0, 1), T ∈ R ∪ {∞}, u ∈ C∞(Rn × (−∞, T ]). Set

f := (∂t −∆)u.

Then there exists C = C(n, α) > 0 such that

[u]2+α,Rn×(−∞,T ) ≤ C[f ]α,Rn×(−∞,T ).

There are several proofs of this theorem. A popular one is due to Safanov and can be
found in [Kry96]. We use here the blow-up approach due to Simon [Sim97].

Proof. We prove the case T =∞, the case T <∞ is an exercise the reader is urged
to do, Exercise 13.

Assume the claim is false, that is for any k ∈ N there exists a smooth uk ∈ C∞(Rn+1) so
that

[uk]C2+α(Rn+1) ≥ k [(∂t −∆)uk]Cα(Rn+1).

Our goal is to produce a contradiction from this assumption. For this we first modify the
sequence (uk)k∈N appropriately, then we pass to the limit as k →∞.
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• Firstly, without loss of generality, we can assume

(4.2.1) [uk]C2+α(Rn+1) = 1,

(4.2.2) [(∂t −∆)uk]Cα(Rn+1) <
1

k
,

otherwise we rescale ũk := uk/[uk]C2+α(Rn+1) and work with ũk instead of uk.
• The condition (4.2.1) implies for some (xk, tk) ∈ Rn+1 and some ~vk ∈ Rn+1\{0}

1

2
≤ |D

2uk((tk, xk) + ~vk)−D2uk(tk, xk)|
ρ(~vk, 0)α

+
|∂tuk((tk, xk) + ~vk)− ∂tuk(tk, xk)|

ρ(~vk, 0)α
.

Let ei = (0, . . . , 0, 1, 0, . . . , 0)T the i-th unit vector in Rn+1. By decomposing ~vk
into its components we may simplify and for c0 := 1

2(n+1)
we necessarily find some

ik ∈ {1, . . . , n+ 1} and some hk > 0 so that

c0 ≤
|D2uk((tk, xk) + hkeik)−D2uk((tk, xk))|

ρ(hkeik , 0)α

+
|∂tuk((tk, xk) + hkeik)− ∂tuk((tk, xk))|

ρ(hkeik , 0)α
.

• Up to taking a subsequence k → ∞ (again denoted by k), we may assume that
eik = ei0 for some fixed i0 ∈ {1, . . . , n+ 1}: there must be a constant subsequence
of ik ∈ {1, . . . , n+ 1}.
• W.l.o.g. (tk, xk) = 0, otherwise replace uk by ũk(t, x) := uk(t+ tk, x+ xk).
• W.l.o.g.

uk(0) = ∂tuk(0) = ∂xiuk(0) = ∂xixjuk(0) = (∂t −∆)uk(0) = 0,

otherwise we add a polynomial p ∈ P2, i.e. of the form

p(t, x) = c1 + tc2 + xc3 + xT c4x,

so that ũk := uk − p satisfies these conditions.
• Furthermore we may assume hk = 1. Otherwise we scale

ũk(t, x) =

{
h−2−αuk(h

2t, hx), if ei0 ∈ {0} × Rn

√
h
−2−α

uk(ht,
√
hx), if ei0 ∈ R× {0}.

All these assumptions yield that without loss of generality, uk ∈ C∞(Rn+1) satifies (4.2.1)
and (4.2.2) and moreover

(4.2.3) |D2uk(ei0)|+ |∂tuk(ei0)| ≥ c0 ∀k ∈ N.

Observe that the latter condition is stable under local C2,β-convergence (β < α), while
(4.2.1) is not, which is the main reason we did these simplifciations. Now we can pass to
the limit:
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For large R > 1 to be chosen later, we set

Γ(R) = {(t, x) ∈ Rn+1 : |x| ≤ R, |t| ≤ R2}.

For any (t, x) ∈ Γ(R) there holds

|uk(t, x)| = |uk(t, x)− uk(0, 0)|
≤ |uk(t, x)− uk(0, x)|+ |uk(0, x)− uk(0, 0)|
≤ R2‖∂tuk‖∞,Γ(R) + C R‖Duk‖∞,Γ(R)∩{t=0}

≤ R2‖∂tuk‖∞,Γ(R) + C R‖Duk −Duk(0)‖∞,Γ(R)∩{t=0}

≤ R2‖∂tuk‖∞,Γ(R) + C R2‖D2uk‖∞,Γ(R)

≤ C R2+α[uk]2+α,

For some dimensional constant C > 0.

In particular, in view of (4.2.1),

(4.2.4) sup
k∈N
‖uk‖L∞(Γ(R)) ≤ C R2+α.

In particular

sup
k∈N
‖uk‖2+α,Γ(R) ≤ C(1 +R2+α).

With Arzela-Ascoli, Proposition 4.1.5 we find some u ∈ C2,α and have w.l.o.g. (otherwise
we take a subsequence),

uk → u, in C2,β

for any β < α.

In particular, we have pointwise convergence of first and second derivatives and thus by
(4.2.3),

(4.2.5) |D2u(ei0)|+ |∂tu(ei0)| ≥ c0.

Moreover, by locally uniform convergence, (4.2.4) takes over and we have

‖u‖L∞(Γ(R)) ≤ C R2+α.

In particular, we have an L1-estimate we can later use for the Cauchy estimates (observe
that the size of Γ(R) is |Γ(R)| = C Rn+2)

‖u‖L1(Γ(R)) ≤ C Rn+4+α.

Furthermore by (4.2.2), (∂t−∆)u is constant in Γ(R), and since (∂t−∆)u(0) = 0, we have

(∂t −∆)u = 0 in Γ(R).
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We thus may apply the Cauchy-estimates, Theorem 1.6.2, (they are written for C2
1 but they

can easily be extended to C2+β). Assume that R > 1 is so large that B1(0)n+1 ⊂ Γ(R/4).
For this we estimate

|D2u(ei0)|+ |∂tu(ei0)|
≤‖D2u‖∞,Bn+1

1 (0) + ‖∂tu‖∞,Bn+1
1 (0)

≤ ‖D2u−D2u(0)‖∞,Bn+1
1 (0) + ‖∂tu− ∂tu(0)‖∞,Bn+1

1 (0)

≤ C
(
‖D3u‖∞,Bn+1

1 (0) + ‖∂tD2u‖∞,Bn+1
1 (0) + ‖∂tDu‖∞,Bn+1

1 (0) + ‖∂t∂tu‖∞,Bn+1
1 (0)

)
,

and with the Cauchy-estimates, Theorem 1.6.2, we then have

|D2u(ei0)|+ |∂tu(ei0)| ≤ C
(
R−n−5 +R−n−6

)
‖u‖L1(Γ(R)).

In view of (4.2) we then finally obtain

|D2u(ei0)|+ |∂tu(ei0)| ≤ C
(
R−n−5 +R−n−6

)
Rn+4+α ≤ 2C Rα−1,

which (since α < 1) for large enough R > 1 contradicts (4.2.5). �

Exercise 13. Zeigen Sie Theorem IV.3.2 (Schauder für konstante Koeffizienten) aus der
Vorlesung für T <∞:

Sei α ∈ (0, 1), T <∞, u ∈ C∞(Rn × (−∞, T ]) und

f := (∂t −∆)u.

Dann gilt für eine Konstante C = C(α, n),

[u]2+α,Rn×(∞,T ) ≤ C [f ]α,Rn×(∞,T ).

Hinweise:

• Zeigen Sie, dass Sie Ohne Einschränkung annehmen können: T = 0
• Die Cauchy-Abschätzungen, Theorem I.6.2, gelten rückwärts in der Zeit!

Corollary 4.2.2 (Schauder with constant coefficient)). Let α ∈ (0, 1), L = aij∂ij elliptic
and aij symmetric and constant. Then there exists C = C(α, n, |aij|, λ) > 0 such that for
all u ∈ C∞(Rn × (−∞, T )) we have

[u]2+α,(−∞,T )×Rn ≤ C[u̇− Lu]α,(−∞,T )×Rn .

Proof. There exists P ∈ SO(n) and a diagonal matrix D with

A = P TDP = P T
√
DPP T

√
DP ≡ B2.

Put

v(t, x) = u(t, Bx).
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Then

∆v(t, x) = ∂2
i (u(t, Bx))

= ∂i
(
Bij∂ju(t, Bx)

)
= (B2)ij∂iju(t, Bx)

= aij∂iju(t, Bx).

Hence

∂tv −∆v = ∂tu− aij∂iju

and Theorem 4.2.1 gives the result. �

4.3. Schauder Estimate for variable coefficient

Proposition 4.3.1. Let X = Ω × (0, T ) ⊂ Rn+1, u ∈ C2(X̄), u ∈ C0(X ∪ ∂PX). For
g = u|∂PX and

f = ∂tu− Lu,

where aij is continuous, b = c = 0. Then

‖u‖∞ ≤ T‖f‖∞ + ‖g‖∞.

Proof. Set

v±(t, x) = u± (‖g‖∞ + t‖f‖∞) .

Then

(∂t − L) v+ = f + ‖f‖∞ ≥ 0

and reversed for v−. Furthermore

v+ ≥ 0, v− ≤ 0

on ∂PX. By the maximum principle

v+ ≥ 0, v− ≤ 0

throughout X, which implies the claim. �

Theorem 4.3.2 (Schauder (interior)). Let u ∈ C2,α((0, T )× Rn), a ∈ (0, 1), h = u|{0}×Rn ,
∂tu− Lu = f for

L = aij∂ij + bi∂i + c,

with coefficients in Cα. Then there exists C = C(α, n, λ, ‖a‖∞, [aij]α, [b]α, [c]α) such that

‖u‖2+α,(0,T )×Rn ≤ C
(
[f ]α,(0,T )×Rn + [h]2+α,Rn + ‖u‖∞,Rn×(0,T )

)
.
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Proof. First suppose b = c = 0 and h ∈ C2,α(Rn+1) and u = h on (Rn × {0}). We
freeze the aij. Let 0 < γ < 1 be chosen later. Let (x1, t1), (x2, t2) ∈ (0, T )× Rn such that

‖∂tu‖α,(0,T )×Rn ≤ 2
|∂tu(x1, t1)− ∂tu(x2, t2)|
ρ((x1, t1), (x2, t2))α

.

Case 1: ρ ≥ γ. Then

[∂tu]α,(0,T )×Rn ≤ 4γ−α‖∂tu‖∞,(0,T )×Rn

≤ 1

4
[u]2+α,(0,T )×Rn + C(γ)‖u‖∞,(0,T )×Rn .

Case 2: ρ < γ. Let ξ ∈ C∞c (Rn+1) with

ξ((y, t)) = 1, ρ((y, t), 0) < 1

and

ξ((y, t)) = 0, ρ((y, t), 0) ≥ 2.

Set

η(t, x) = ξ

(
t− t1
γ2

,
x− x1

γ

)
.

Then by 4.2.2

[∂tu]α,(0,T )×Rn ≤ 2ρ((x1, t1), (x2, t2))−α|∂t(uη)(x1, t1)− ∂t(uη)(x2, t2)|
≤ 2[uη]2+α,(0,T )×Rn

≤ C[(∂t − L)(x1, t1)(uη)]α,Rn×(−∞,T )

≤ C[(∂t − L)(x1, t1)(uη)]α,(0,T )×Rn + ‖h‖2+α,Rn

≤ C[(∂t − L)(uη)]α, (0, T )× Rn

+ [((∂t − L)(x1, t1)− (∂t − L))(uη)]α,(0,T )×Rn

+ ‖u‖∞ + [h]2+α,Rn

≡ I + II + ‖u‖∞ + [h]2+α,Rn .

(∂t − L)(uη) = ηf + u(∂t − L)η − 2aij∂iu∂ju

and hence

I ≤ C(γ, aij) ([f ]α + [u]2 + [Du]α)

≤ γα[u]2+α + C(γ)[f ]α + ‖u‖∞,(0,T )×Rn .

Also with Proposition 4.1.4,

[
(
aij(x1, t1)− aij

)
∂ij(uη)]α,(0,T )×Rn ≤ Cγα[u]2+α + C(γ)‖u‖∞,

since

‖aij(x1, t1)− aij‖∞,supp η ≤ Cγα[a]α
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and hence

II ≤ Cγα[u]2+α + C(γ)‖u‖∞.
The same argument holds for D2u and thus

[u]2+α,(0,T )×Rn ≤
(
Cγα +

1

2

)
[u]2+α,(0,T )×Rn

+ C(γ) ([f ]α + ‖u‖∞ + [h]2+α) .

Choose γ such that the first term of the right hand side is absorbed in the left hand side,
which gives the result in case b = c = 0. In general:

∂tu− aij∂iju = f + bi∂iu+ cu

and thus

[u]2+α ≤ C
(
‖u‖∞ + [h]2+α + [f + bi∂iu+ cu]α,(0,T )×Rn

)
≤ ‖u‖∞ + [h]2+α + [f ]α

+ [b]α‖∂iu‖∞ + [c]‖u‖∞ + ‖b‖∞[∂iu]α + ‖c‖∞[u]α

≤ ‖u‖∞ + [h]2+α + [f ]α + C(b, c, ε)‖u‖∞ + ε[u]2+α.

�



CHAPTER V

Viscosity Solutions

Viscosity solutions were introduced by Crandall and Lions. A standard reference is [CIL92].
See also [Koi12] and [IS13, Chapter 3].

Consider the equation

(5.0.1) ∂tu+ F (t, x,Du,D2u) = 0.

Observe that there is no u-term here, and thus corresponds to the linear equation (∂t+L)u
with c ≡ 0.

F is called degenerately elliptic, if

(5.0.2) F (t, x, p, A) ≥ F (t, x, p, B) ∀(t, x) ∈ Rn+1, p ∈ Rn, A ≤ B,

with symmetric matrices A,B.

It is a simple observation, see also Exercise 9, that for parabolic linear operators L =
aij∂ij + bj∂j with c ≡ 0, the operator F given as

F (t, x, p, A) := −aijAij + bjpj

is degenerate elliptic in the above sense.

Also, we observe that if a smooth u is a solution to

∂tu+ F (t, x,Du,D2u) = 0 in a point (t0, x0) ∈ Rn+1

then for any test-function ϕ “touching u from above”, i.e. so that ϕ ≥ u and ϕ(x0, t0) =
u(x0, t0) then ∂tϕ(x0, t0) = ∂tu(x0, t0), Dϕ(x0, t0) = Dϕu(x0, t0) andD2ϕ(x0, t0) ≥ D2u(x0, t0)
and consequently

∂tϕ(t0, x0)+F (t0, x0, Dϕ(x0, t0), D2ϕ(x0, t0) ≤ ∂tu(t0, x0)+F (t0, x0, Du(t0, x0), D2u(t0, x0)) = 0

In words, if u is a smooth solution of (5.0.1) in (t0, x0), then any ϕ touching u from above
in (t0, x0) is a subsolution of (5.0.1) in (t0, x0).

The same way, if u is a smooth solution of (5.0.1) in (t0, x0) then any ϕ touching u from
below in (t0, x0) is a supersolution of (5.0.1) in (t0, x0).

The converse trivially holds true: If any ϕ touching u from above in (t0, x0) is a subsolution
of (5.0.1) in (t0, x0), then taking ϕ := u so is u. The same holds of course for supersolutions.
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Also for merely continuous functions u we can define what it means to be touched above
or below from some test-function ϕ, thus for thus functions u will can define the following
weak notion of subsolution (in the Viscosity sense). If any testfunction ϕ touching from u
above in a point (t0, x0) is a subsolution, then we say that u is a (Viscosity-)subsolution.
Similar definitions hold for supersolution. A Viscosity solution is then simply a function
which is sub- and supersolution.

5.1. Definitions and first properties

A function u is lower semicontinuous (lsc) , if

u(x) ≤ lim inf
y→x

u(y)

and upper semicontinuous (usc) if

u(x) ≥ lim sup
y→x

u(y).

For a function u the upper semicontinuous envelope is

u∗ = lim
r→0

sup{u(y) : |y − x| ≤ r}.

u∗ is the smallest upper semicontinuous function with u ≤ u∗. The isc envelope is

u∗ = lim
r→0

inf{u(y) : |y − x| ≤ r},

which is the largest isc function with u∗ ≤ u. Cf. Exercise 15.

Definition 5.1.1 (Test-function). A test function on an open Q ⊂ Rn+1 is a function
ϕ : Q→ R which is C1 in time and C2 in space.

A test function ϕ touches a function u : Q→ R from above (below) in (t0, x0), if

ϕ ≥ u, (ϕ ≤ u)

and

ϕ(x0, t0) = u(x0, t0).

Definition 5.1.2 (Viscosity solution). Let Q ⊂ Rn+1 open and u : Q→ R a function. We
define (super-, sub-)solutions of the equation

(5.1.1) ∂tv + F (t, x,Dv,D2v) = 0.

(1) u is a subsolution of (5.1.1), if u is upper semicontinuous and for all (x, t) ∈ Q
and for all test functions ϕ touching u from above in (x, t) we have

∂tϕ+ F (t, x,Dϕ,D2ϕ) ≤ 0.

(2) u is a supersolution of (5.1.1), if u is lsc and for all (x, t) ∈ Q and for all test
functions ϕ touching u from below in (x, t) we have

∂tϕ+ F (t, x,Dϕ,D2ϕ) ≥ 0.
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(3) u is a vixcosity solution of (5.1.1), if u is a sub- and supersolution. Observe, that
in particular u is supposed to be continuous.

Definition 5.1.3 (2nd order sub/super differentials).

P±(u)(t, x) = {(α,p,X) ∈ R× Rn × Rn×n
sym :

(α, p,X) = (∂tϕ(x, t), Dϕ(x, t), D2ϕ(x, t))

for some test function from above (below) ϕ}.

Observe that if (α, p,X) ∈ P+(u)(t, x) and ϕ is the associated test-function then we have
by u(y, s) ≤ ϕ(y, s) and by Taylor

u(y, s) ≤ u(x, t) + α(s− t) + p · (y − x) +
1

2
(y − x)TX(y − x) + o(|y − x|2 + |s− t|)

In particular u being viscosity subsolution is equivalent to saying u is usc and for all
(α, p,X) ∈ P+(u) we have

α + F (x, t, p,X) ≤ 0.

A similar characterization holds for supersolutions.

Definition 5.1.4 (Limit of (sub-) superdifferentials).

P̄±(u)(t, x) = {(α,p,X) ∈ R× Rn × Rn×n
sym : ∃(tn, xn → (t, x))

∃(αn, pn, Xn) ∈ P±(u)(tn, xn),

(αn, pn, Xn)→ (α, p,X)

u(tn, xn)→ u(t, x)}.

We suppose from now on that F is continuous and degenerately elliptic.

Proposition 5.1.5. (1) Let Q ⊂ Rn+1 open and assume that (uα)α∈A be a family of
subsolutions for

∂tu+ F (t, x,Du,D2u) = 0 in Q

Let u be the upper semicontinuous envelope of supα u (which itself needs not to be
upper semicontinuous), that is

u =

(
sup
α
uα

)∗
and suppose u is pointwise finite, then u is a subsolution.

(2) Let (un)n∈N a sequence of subsolutions. The upper relaxed limit ū is defined by

ū(t, x) = lim sup
(s,y)→(t,x),n→∞

un(s, y).

If ū is pointwise finite, then ū is a subsolution in Q.
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Proof. We only show (1), the argument for (2) is ananlogous.

Fix (t0, x0) ∈ Q and (α0, p0, X0) ∈ P+(u)(t0, x0) throughout this proof.

We want to show that

α0 + F (t0, x0, p0, X0) ≤ 0.

By the definition of u we find a sequence in (un)n∈N ⊂ A and points (xn, tn) ∈ Q so that

(xn, tn, un(xn, tn))→ (x0, t0, u(x0, t0)).

For small r ∈ (0, 1) let (x̂n, t̂n) be a maximizer of B(r) := Bn+1
r (x0, t0) of the function

(s, y) 7→ un(s, y)− p · (y − x0)− α(s− t0)− 1

2
(y − x0)TX(y − x0)

The maximum is attained because of upper semicontinuity of un.

Then we have

un(s, y) ≤ un(x̂n, t̂n) + p · (y − x̂n) + α(s− t̂n) +
1

2
(y − x0)TX(y − x0)

− 1

2
(x̂n − x0)tX(x̂n − x0)

=: ϕn(s, y),

and we also have

un(x̂n, t̂n) = ϕn(x̂n, t̂n).

That is, ϕn is a (smooth) test function from above for un in (x̂n, t̂n). In particular,

∂sϕn(x̂n, t̂n) + F (x̂n, t̂n, Dϕn(x̂n, t̂n), D2ϕ(x̂n, t̂n)) ≤ 0.

Computing the derivatives of ϕn, this becomes

α + F (x0 + (x̂n − x0), t0 + (t̂n − t0), p0 +X0(x̂n − x0), X0) ≤ 0.

Up to a subsequence we may assume that x̂n → x̄ ∈ B(r) and t̂n → t̄ ∈ B(r). With the
continuity of F , we then have

α + F (x0 + (x̄− x0), t0 + (t̄− t0), p0 +X0(x̄− x0), X0) ≤ 0.

This holds for any small r > 0, and (x̄, t̄), (x0, t0) ∈ B(r). Letting r → 0, and again with
the continuity of F , we conclude

α + F (x0, t0, p0, X0) ≤ 0.

�

Exercise 14. Zeigen Sie:
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•
u∗(x) := sup{ũ(x) : ũ ≤ u, ũ unterhalbstetig}

ist unterhalbstetig.
• Ist (uα)α eine Familie von oberhalb stetigen Funktionen, so ist u := infα uα ober-

halb stetig
• Ist (uα)α eine Familie von unterhalb stetigen Funktionen, so ist u := supα uα

unterhalb stetig
• überlegen Sie sich ein Beispiel einer Familie von oberhalb stetigen Funktionen, so

dass u := supα uα beschränkt ist, aber nicht oberhalb stetig ist.

Exercise 15. Zeigen Sie, dass der upper semicontinuous envelope u∗(x) für eine Funktion
u : Rn → R,definiert als

u∗(x) := lim
r→0+

sup
|y−x|<r

u(y),

tatsächlich die kleinste oberhalbstetige Funktion oberhalb u ist. Dazu zeigen Sie:

• Für jedes feste x ∈ Rn und jede Funktion u : Rn → R gilt

lim sup
y→x

u(y) = lim
r→0+

sup
|y−x|<r

u(y)

• u∗(x) ≥ u(x)
• u∗(x) ist oberhalb stetig
• Für jedes oberhalbstetige v mit v ≥ u gilt v ≥ u∗.



CHAPTER VI

Harnack inequality for fully nonlinear parabolic equations

Reference: [IS13, Chapter 4].

6.1. Setup

We look at

∂tu+ F (D2u, (x, t)) = f

and assume F to be uniformly elliptic, see Definition 6.1.2 below. We aim to prove an
equality of the form

sup
K
u(·, t1) ≤ C inf

K
u(·, t2) + C‖f‖,

for t2 > t1.

Definition 6.1.1 (Pucci-operator). Let M ∈ Rn×n be symmetric, 0 < λ ≤ Λ. Then

P+(M) = sup
λI≤A≤ΛI

(− tr(AM))

and

P−(M) = inf
λI≤A≤ΛI

(− tr(AM))

Observe, if u satisfies

∂tu− Aij∂iju = f

with

λ|ξ|2 ≤ Aijξiξj ≤ Λ|ξ|2,
then

∂tu(x, t) + P+(D2u(x, t)) ≥ f(x, t) ≥ ∂t + P−(D2u(x, t)).

Compare the following with degenerate ellipticity (5.0.2).

Definition 6.1.2. (Uniformly elliptic) Let

F : Rn×n
sym ×X → R

is uniformly elliptic with (λ,Λ), if

P−(X − Y ) ≤ F (X, (x, t))− F (Y, (x, t)) ≤ P+(X − Y ).
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Observe that then

P−(X) ≤ F (X, (x, t))− F (0, (x, t)) ≤ P+(X)

and hence if

∂tu+ F (D2u(x, t), (x, t)) = f,

then

∂tu− P+(D2u) ≥ f(x, t) + F (0, (x, t))

and similarly for P−.

6.2. Alexandrov-Bakelman-Pucci maximum principle

Recall the elliptic case. For u we define the contact set {u = Γ(u)}, where Γ(u) is the
convex envelope of u, i.e. the largest convex function below u. Then there holds: Elliptic
ABP maximum principle: Let Lu ≤ f in Ω. Then

sup
Ω
u− ≤ sup

∂Ω
u− + CΩ

(ˆ
{u=Γ(u)}

|f |n
) 1

n

.

We state (without proof) the parabolic version.

Definition 6.2.1. (Monotone envelope) Let Ω ⊂ Rn be convex, (a, b) an open interval
and assume

u : (a, b)× Ω→ R

to be l.s.c. Then Γ(u) is the monotone envelope, defined as the largest function

v : (a, b)× Ω→ R,

such that

• v ≤ u
• v(t, ·) is convex for all t ∈ (a, b)
• v is nonincreasing in time.

One can show

Γ(u)(t, x) = sup{ξ · x+ h : ξ ∈ Rn, h ∈ R,
ξ · y + h ≤ u(s, y) ∀y ∈ Ω ∀s ∈ (a, t)}.

Theorem 6.2.2. (Parabolic ABP) Let u be a supersolution of

∂tu+ P+(D2u) = f
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Figure 1. The sets K̃1, K̃2

in Qρ = (−ρ2, 0)×Bn
ρ (0). If u ≥ 0 on ∂PQρ, then

sup
Qρ

u− ≤ Cρ
n
n+1

(ˆ
u=Γ(u)

|f+|n+1

) 1
n+1

,

where Γ(u) is the monotone envelope in Q2ρ of{
min(0, u), Qρ

0, Q2ρ\Qρ.

6.3. The Lε-estimate

We want to prove:

Theorem 6.3.1 (Lε-estimate). There exists ε > 0, R ∈ (0, 1), C > 0, depending on λ, Λ
and n such that for all nonnegative supersolutions u of

∂tu+ P+(D2u) = f in (0, 1)×Bn
1
R

(0),

then (ˆ
K̃1

uε
) 1

ε

≤ C

(
inf
K̃2

u+ ‖f‖Ln+1((0,1)×Bn1
R

(0))

)
,
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Figure 2. The sets K1, K2, K3

where (see Figure 1)

K̃1 =

(
0,
R2

2

)
× (−R,R)n,

K̃2 = (1−R2, 1)× (−R,R)n.

Further sets, see Figure 2

K1 = K1(R) = (0, R2)× (−R,R)n,

K2 = (R2, 10R2)× (−3R, 3R)n,

K3 = (R2, 1)× (−3R, 3R)n.

Lemma 6.3.2. (Barrier for Lε) For all R ∈
(

0,min
(

1
3
√
n
, 1√

10

))
there exists a Lipschitz

function

0 ≤ Φ: Q1(0, 1)→ R

such that Φ is C2 in x where Φ > 0 and

∂tΦ + P+(D2Φ) ≤ g

for g : Q1 → R continuous and bounded with

supp g ⊂ K1,
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Φ ≥ 2 in K3 and Φ = 0 on ∂pQ.

Proof. It suffices to construct ϕ, such that

∂tϕ+ P+(D2ϕ) ≤ 0,

ϕ = 0, ∂pQ1\{(0, 0)},

ϕ > 0 in K3

and

ϕ→∞ in (0, 0).

Then we set

Φ(x, t) =

{
2 ϕ(t,x)

minK3
ϕ
, (t, x) /∈ K1

Lipschitz ext. with zero on ∂pQ1 in K1.

For some T ∈ (0, 1) we first construct ϕ on (0, T ). Take in (0, T )×B1 :

ϕ(t, x) = t−pψ

(
x√
t

)
.

(6.3.1)

∂tϕ+ P+(D2ϕ)

= t−p−1

(
−pψ

(
x√
t

)
− 1

2
Dψ

(
x√
t

)
x√
t

+ P+(D2ψ)

(
x√
t

))
We want the bracket to be nonpositive. Substitute z = x/

√
t. If (x, t) ∈ K2, then

|z| = |x|√
t
≤ 3R

√
n

R
= 3
√
n.

Choose ψ such that ψ(z) = 1 for |z| = 3
√
n and ψ(z) = 0 for |z| > 6

√
n. For q > 0 let:

ψ(z) =


(6
√
n)q(2q − 1) (|z|−q − (6

√
n)−q) , 3

√
n ≤ |z| ≤ 6

√
n

smooth ∈ [1, 2], |z| ≤ 3
√
n

0, |z| > 6
√
n.

For |z| ∈ (3
√
n, 6
√
n) compute:

−1

2
zDψ(z) = (6

√
n)q(2q − 1)

q

2
|z|−q,

P+(D2ψ)(z) = (6
√
n)q(2q − 1)−1q

(Λ(n− 1)− λ(q + 1)) |z|−q

|z|2
.

For large q we have

−1

2
zDψ(z) + P+(D2ψ) ≤ 0
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in the set (3
√
n, 6
√
n). For |z| < 3

√
n note that ψ(z) ∈ [1, 2] and hence

−pψ(z)− 1

2
Dψ(z)z + P+(D2ψ)(z) < 0.

Hence, in view of (6.3.1),

∂tϕ(x, t) + P+(D2ϕ)(x, t) ≤ 0 for t ∈ (0, T ].

Recall ψ = 0 for |z| > 6
√
n and hence if x ∈ ∂B1 and t ∈ (0, T ) for T = 1

36n
, then

x√
t
≥ 1

6
√
n

and hence

ϕ(x, t) = 0 ∀x ∈ ∂Bn
1 , t ∈ (0, T ).

Also, we have

lim
t→0

ϕ(t, x) = 0

uniformly in B1(0)\Bε(0) for any ε > 0, since then x√
t
→∞.

Then ϕ(t, x) is properly defined for t ∈ (0, T ],

Now we need to give a definition for ϕ(t, x) for t ≥ T , which we do by a continuation
argument. Note that by construction of ψ,

(6.3.2) ϕ(T, x) ≥ T−p > 0 whenever |x| ≤ 1

2
Moreover

(6.3.3) ϕ(T, x) ≥ 0, P+(D2ϕ) ≤ 0 for |x| ∈ (1
2
, 1).

Set

C = max

0, sup
x∈B 1

2
(0)

P+(D2ϕ(T, x))

ϕ(T, x)
<∞


For t > T we simply define

ϕ(t, x) := e−C(t−T )ϕ(T, x).

Then

∂tϕ(t, x) + P+(D2ϕ) = −Ce−C(t−T )ϕ(T, x) + P+(D2ϕ(T, x))e−C(t−T )

= e−C(t−T )
(
−Cϕ(T, x) + P+(D2ϕ(T, x))

)
≤ 0

for |x| ∈ (1/2, 1) by (6.3.3) and for |x| < 1/2 by (6.3.2). Thus ϕ is a subsolution and since
ϕ > 0 on K3 ∩ {t = T}, we have still that infK3 ϕ > 0.

�
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Proposition 6.3.3 (Basic measure estimate). There exists ε0 ∈ (0, 1), M > 1, µ =
µ(R, λΛ, n) ∈ (0, 1), so that for all supersolutions u ≥ 0 of

∂tu+ P+(D2u) = f in Q1(0, 1),

then, if infK3 u ≤ 1 and ‖f‖Ln+1(Q1(0,1)) ≤ ε0, then

|{u ≤M} ∩K1| ≥ µ|K1|.

Proof. Let φ be from Lemma 6.3.2 and set

w = u− φ.
Then

∂tw + P+(D2w) ≥ ∂tu+ P+(D2u)− ∂tφ− P+(D2φ)

≥ f − g,
where g is also from Lemma 6.3.2. Also w = u ≥ 0 on ∂pQ1(1, 0) and

inf
K3

w ≤ inf
K3

u− 2 ≤ −1.

Hence

sup
K3

w− ≥ 1.

Let Γ(w) be the monotone envelope in Q1 of{
min(w, 0), Q1

0, Q2\Q1.

Then Γ(w) = w, if w ≤ 0 and hence

{Γ(w) = w} ∩K1 ⊂ {u ≤ φ} ∩K1.

With the ABP principle, Theorem 6.2.2,

1 ≤ sup
K3

w− ≤ sup
Q1

w− ≤ CABP‖f‖Ln+1(Q1(1,0))

+ C

(ˆ
{Γ(w)=w}∩K1

|g|n+1

) 1
n+1

.

Put

M = max{max
K1

φ, 1}.

Then

1 ≤ Cε0 + C‖g‖L∞(Q1)|{u ≤M} ∩K1|
1

n+1

and thus, if ε0 > 0 is chosen small enough,

|{u ≤M} ∩K1| ≥
c

|K1|
|K1| ≡ µ|K1|.

�



6.3. THE Lε-ESTIMATE 68

Remark 6.3.4. • An equivalent formulation of Lemma 6.3.3 is:
If ‖f‖Ln+1(Q1(0,1) ≤ ε0, then for nonnegative supersolutions the following holds:

|{u > M} ∩K1| ≥ (1− µ)|K1| ⇒ u ≥ 1 on K3.

One should compare this to the propagation of positivity from Lemma 2.2.5.
There we had that u > M for some time t1 implies u > cM for some time t2.
In Lemma 6.3.3 we obtained a finer assumption: u > M just has to hold on a
substantial part of K1 and then u > 1 on all of K3.
• This estimate also holds on Bn(0, 1)×(0, T ) instead of Bn(0, 1)×(0, 1). Let u ≥ 0,
∂tu+ P+(D2u) ≥ f in (0, T )×B1. If

inf
(R2,T )×(−3R,3R)n

and then

|{u ≤M} ∩K1| ≥ µ|K1|.

Corollary 6.3.5. (Scaled basic measure estimate) Same ε,M, µ as in (6.3.3), x0 ∈ Rn,
t0 ∈ R, h > 0. If u ≥ 0 and ∂tu+ P+(D2u) ≥ f in (t0, x0) + ρQ1(1, 0) and

‖f‖Ln+1((t0,x0)+ρQ1(1,0)) ≤ ε0
h

Mρ
n
n+1

,

then, if

|{{u > h} ∩ {(t0, x0) + ρK1}}| < (1− µ)|(t0, x0) + ρK1|,
then

u >
h

M
in (t0, x0) + ρK3.

Proof.

v(t, x) = Mh−1u(t0 + ρ2t, x0 + ρx),

then

∂tv + P+(D2v) ≥ f in Q1(1, 0).

f̃ =
M

h
ρ2f(t0 + ρ2t, x0 + ρx).

Apply 6.3.3. �

Now we stack those cubes K2, see Figure 3: Define

K
(k)
2 = (αkR

2, ak+1R
2)× (−3kR, 3kR)n,

where

αk =
k−1∑
i=0

gi =
gk − 1

8
.
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Figure 3. Stacked K2

Now scale K1 and K
(k)
2 .

ρK1 = (0, ρ2R2)× (−ρR, ρR)n,

ρK2 = (ρ2R2, 10ρ2R2)× (−3ρR, 3ρR)n,

ρK
(k)
2 = (αkρ

2R2, αk+1ρ
2R2)× (−3kρR, 3k, ρR).

For ρ > 0, (t0, x0) ∈ Rn+1 let

L1 = (t0, x0 + ρK1)

and

L
(k)
2 = (t0, x0) + ρK

(k)
2 .

As one can see already from Figure 3, the stacked cubes grow very quickly. It will be im-

portant to understand how the stacked cubes L
(k)
2 eventually leave the set (0, 1)× (−3, 3)n.

The following Lemma essentially states: If the initial scaled cube L1 belongs to K1 then

the stacked cubes
⋃
k≥1 L

(k)
2 do not leave the the cube (0, 1)× (−3, 3)n sideways, but only

through the top 1× (−3, 3)n, see Figure 4. Moreover, any such stacked cube
⋃
k≥1 L

(k)
2 will

eventually completely cover K̃2 from Figure 1.

Lemma 6.3.6 (Stack of cubes). (1) Let R ≤ min(3−2
√

2,
√

2/5) = 3−2
√

2, then for
all (x0, t0), ρ > 0 such that L1 ⊂ K1,⋃

k≥1

L
(k)
2 ∩ ((0, 1)× (−3, 3)n) =

⋃
k≥1

L
(k)
2 ∩ {0 < t < 1}.
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Figure 4. How the stacks
⋃
k L

(k)
2 leaves the big box (0, 1)×(−3, 3)n: What

cannot happen (red): leave the big box sideways or not cover K̃2. What has
to happen (green), the stack leaves through the top and covers K̃2

(2) In particular if R < 1
3
√
n
, then

{t ∈ (0, 1)} ∩
⋃
k≥1

Lk2 ⊂ (0, 1)×Bn
1
R

(0).

(3)

K̃2 ⊂
⋃
k≥1

L
(k)
2 .

(4) Moreover if k∗ is minimal so that

L
(k∗+1)
2 ∩ {t = 1} 6= ∅,

then

ρ2R2 ≤ 1

αk∗
.
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Proof. We define paraboloids inside and outside of the stacked cubes
⋃
k≥1 L

k
2. More

precisely we find S+ and S− so that

(t0, x0) + S− ⊂
⋃
k≥1

L
(k)
2 ⊂ S+ + (t0, x0).

Indeed, define for some s+, s− in R,

S± =
⋃
s>s±

p±(s)× (−s, s)n,

where

p±(z) = a±z
2 + b±ρ

2R2,

so that

p+(3kρR) = αkρ
2R2,

p−(3kρR) = αk+1ρ
2R2

and

p±(s±) = ρ2R2.

Hence

a+ =
1

8
, b± = −1

8
, s+ = s− =

√
9

8
ρR, a− =

9

8
.

These paraboloids are useful, since we can use the following characterization:

(x, s) ∈ (x0, t0) + S± ⇔ p±(rx) ≤ s− t0.

where rx > 0 is the minimal positive number so that x− x0 ∈ (−r, r)n.

ad (i) We need to show

(6.3.4) x ∈ Rn\(−3, 3)n ∧ (x, s) ∈ S+ + (t0, x0)⇒ s ≥ 1.

which should hold for any (t0, r0), ρ such that L1 ⊂ K1. Now L1 ⊂ K1 simply means that
ρ ∈ (0, 1) arbitrary, 0 ≤ t0 ≤ (1 − ρ2)R2, and x0 + (−ρR, ρR)n ⊂ (−R,R)n. Moreover
x = (x1, . . . , xn) ∈ Rn\(−3, 3)n implies that there exists at least one i ∈ {1, . . . , n} so that

|(x− x0)i| ≥ 3− (1− ρ)R

Thus we need to show that for any ρ ∈ (0, 1), t0 ∈ (0, (1 − ρ2)R2) and for any r >
3− (1− ρ)R) it holds that

p+(r) + t0 ≥ 1
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Clearly, t0 = 0, r = 3 − (1 − ρ)R is the worst case, so we need to show that for any
ρ ∈ (0, 1),

1

8
(3− (1− ρ)R)2 − 1

8
ρ2R2 ≥ 1

⇔1

8
(3−R)2 +

3

4
ρR(3−R) ≥ 1

Now we see that the worst case is ρ = 0, and (6.3.4) holds if and only if

1

8
(3−R)2 ≥ 1,

which is equivalent to R ≤ 3− 2
√

2. This proves (i)

ad (ii) easy consequence of (i)

ad (iii) Show: starting with L1 = (t0, x0) + ρK1 ⊂ K1, then (s, x) ∈
⋃∞
k=1 L

(k)
2 , for every

(s, x) ∈ K̃2. The worst case is

x = −R, s = 1−R2, x0 = R(1− ρ), t0 = (1− ρ2)R2.

So we have to show that for all 0 < ρ < 1:

p−((2− ρ)R) ≤ 1−R2 − (1− ρ2)R2.

Compute the derivative w.r.t ρ to deduce that ρ = 0 is the worst case. Hence provide

p−(2R) ≤ 1− 2R2 ⇔ R ≤ 3−
√

8.

ad (iv) If L
(k∗+1)
2 ∩ {t = 1} 6= ∅, then

t0 + αk∗R
2s2 ≤ 1 ≤ t0 + αk∗+1R

2ρ2

and thus

R2ρ2 ≤ 1− t0
αk∗

≤ 1

αk∗
.

�

Now we want to iterate the basic measure estimate.

Proposition 6.3.7. (Stacked measure estimate) Let ε0, M,µ as in 6.3.3. Assume u ≥ 0
and

∂tu+ P+(D2u) ≥ f in (0, 1)×B 1
R

(0).

Assume that (t0, x0) ∈ Rn+1 and ρ ∈ (0, 1) satisfy

(t0, x0) + ρK1 ⊂ K1.
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Assume that for some k ∈ N and h > 0 we have

‖f‖Ln+1((0,1)×B 1
R

(0)) ≤ ε0
h

Mkρ
n
n+1

.

Then, if |{u > h} ∩ L1| > (1− µ)|L1|, then

inf
L
(k)
2 ∩{0<t<1}

u >
h

Mk
.

Proof. Induction on k. k = 1 is the rescaled basic measure estimate, because

(t0, x0) + ρQ1(1, 0)) ⊂ (0, 1)×B 1
R

(0).

Assume we know

inf
L
(k−1)
2 ∩{0<t<1}

u >
h

Mk−1
.

If L
(k−1)
2 is not contained in (0, 1)×Bn

1
R

(0), then

L
(k)
2 ∩ {0 < t < 1} = ∅.

Otherwise by induction hypothesis

|{u > h

Mk−1
} ∩ L(k−1)

2 | = |L(k−1)
2 | ≥ (1− µ)|L(k−1)

2 |.

We have L
(k−1)
2 = (t0, x0) + ρK2(k − 1) = (t1, x0) + ρ1K1, where t1 = t0 + αk−1R

2ρ2 and
ρ1 = 3k−1ρ. Furthermore

L
(k)
2 = (t1, x0) + ρ1K2.

Then by hypothesis

|{u > h

Mk−1
} ∩ (t1, x0) + ρ1K1| > (1− µ)|(t1, x0) + ρ1K1|

and

inf
L
(k)
2 ∩{0<t<1}

>
h

Mk
.

�

Corollary 6.3.8. (Straightly stacked estimate) Under the assumption of 6.3.7 let k ∈ N
and

R ≤ 1√
10(k + 1)

.

Assume L1 ⊂ K1 and L̄1(m) be a straight stack. Then, if |{u > k} ∩ L1| > (1− µ)|L− 1|,
then

u >
h

Mk
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in
⋃k
l=2 L̄

(l)
1 .

Proof. L̄
(k)
1 ⊂ L

(k)
2 . �

Coverings. A cube is always a set

Q = (t0, x0) + (0, s2)× (−s, s)n.

Every cube Q can be decomposed in 2n+2 subcubes K of sidelength s2/4 in time and s/2
in space and so that the interiors are disjoint, see Figure 5. We say Q is precedessor/father
of K and K is the successor/child of Q.K is a dyadic cube of Q, if it can be constructed
in finitely many steps from Q.

Let K be a dyadic cube of Q. Then call K̄ its precedessor and K̄m the stack of m copies
over K̄, see Figure 6.

Figure 5. Dyadic decomposition of a (parabolic) cube Q = (0, s2)× (−s, s)2

Lemma 6.3.9. (Stacked covering lemma) Let m ∈ N, A,B ⊂ Q be measurable. Assume
that |A| ≤ δ|Q| for some δ ∈ (0, 1), that for all dyadic K ⊂ Q

|K ∩ A| > δ|A| ⇒ K̄m ⊂ B.

Then

|A| ≤ δ
m+ 1

m
|B|.

Proof. Pick a family of dyadic cubes (Ki)
∞
i=1, possibly finite. Pick them with the

algorithm: Subdivide Q in 2n+2 successors K̃. Add a cube to the family if

|K̃i ∩ A| ≥ δ|K̃i|,

otherwise subdivide K̃i and repeat. Then, since |A| ≤ δ|Q|, for all i ∈ N
|Ki ∩ A| ≥ δ|Ki|, |K̄i ∩ A| < δ|K̄i|.

We claim, for some subset N with |N | = 0.

(6.3.5) A ⊂
∞⋃
i=1

Ki ∪N,
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Figure 6. Stack of dyadic cubes

If this was false, there existed N ⊂ A\
⋃∞
i=1Ki with positive measure. We observe: For

a.e. (t, x) ∈ Rn+1 we have 
(t,x)+(−r2,r2)×(−2r,2r)n

(1− χA)→ 1− χA(t, x).

Hence, since |N | > 0, there is (t, x) ∈ N with 
(t,x)+(−r2,r2)×(−2r,2r)n

(1− χA)→ 0.

On the other hand (t, x) /∈
⋃∞
i=1Ki and hence there exists a sequence of dyadic bad cubes

Li = (ti, xi)× (−r2
i , r

2
i )× (−ri, ri)n

with r0 → 0,

(t, x) ∈
∞⋂
i=1

Li

and

|Li ∩ A| ≤ δ|Li|.
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Hence

(6.3.6)

 
Li

(1− χA) ≥ 1− δ.

Observe (t, x) ∈ Li and hence

Li ⊂ (t, x) + (−r2
i , r

2
i )× (−2ri, 2ri)

n =: L̃i

and we have |L̃i| ∼ |Li|. Hence

(6.3.7)

 
Li

|1− χA| ≤
|L̃i|
|Li|

 
L̃i

(1− χA)→ 0.

(6.3.6) and (6.3.7) are a contradiction, and the claim (6.3.5) is established.

Now let
⋃∞
j=1 K̄j be the collection of father cubes of Ki (doubly appearing cubes removed).

Then the claim implies

|A| ≤
∞∑
j=1

|A ∩ K̄j| ≤ δ
∞∑
j=1

|K̄j|.

To show ∣∣∣∣∣
∞⋃
j=1

K̄j

∣∣∣∣∣ ≤ m+ 1

m

∣∣∣∣∣
∞⋃
j=1

Km
j

∣∣∣∣∣ .
We write

∞⋃
j=1

K̄j =
∞⋃
l=1

Cl ×
∞⋃
k=1

(alk, a
l
k + hlk),

where Cl ⊂ Rn are p.d. cubes, then

∞⋃
j=1

K̄m
j =

∞⋃
l=1

Cl ×
∞⋃
k=1

(alk + hlk, a
l
k + (m+ 1)hlk).

Thus ∣∣∣∣∣
∞⋃
j=1

K̄m
j

∣∣∣∣∣ =
∞∑
l=1

|Cl| ·

∣∣∣∣∣
∞⋃
k=1

(alk, a
l
k + hlk)

∣∣∣∣∣
≤

∞∑
l=1

|Cl|

∣∣∣∣∣
∞⋃
k=1

(alk + hlk, a
l
k + (m+ 1)hlk)

∣∣∣∣∣ ,
where the latter estimate is shown in the next lemma.

�
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Lemma 6.3.10. Let (ak)
∞
k=1, (hk)

∞
k=1, m ∈ N. Then∣∣∣∣∣

∞⋃
k=1

(ak, ak + hk)

∣∣∣∣∣ ≤ m+ 1

m

∣∣∣∣∣
∞⋃
k=1

(ak + hk, ak + (m+ 1)hk)

∣∣∣∣∣ .
Proof. We write

∞⋃
k=1

(ak + hk, ak + (m+ 1)hk) =
∞⋃
l=1

Il,

where Il are disjoint intervals. Il has the form

Il =

Nl⋃
i=1

(bi + µi, bi + (m+ 1)µi)

=

(
inf

i=1,...,Nl
(bi + µi), sup

i=1,...,Nl

(bi + (m+ 1)µi)

)
=: (binf + µinf , bsup + (m+ 1)µsup) ,

where we assumed wlog that Nl <∞. Assume there is (a, a+ h) and l so that

(a+ h, a+ (m+ 1)h) ⊂ Il.

Hence

a+ (m+ 1)h ≤ bsup + (m+ 1)µsup, −a− h ≤ −binf − µinf

and by summing we get

h ≤ 1

m
|Il|.

binf + µinf ≤ a+ h ≤ a+
1

m
|Il|

and hence

a ≥ binf + µinf −
1

m
|Il|.

Thus

(a, a+ h) ⊂ (binf + µinf −
1

m
|Il|, bsup + (m+ 1)µsup).

We obtain ⋃
a,h : (a+h,a+(m+1)h)⊂Il

(a, a+ h) ⊂
(
binf + µinf −

1

m
|Il|, bsup + (m+ 1)µsup

)
and ∣∣∣∣∣∣

⋃
a,h : (a+h,a+(m+1)h)⊂Il

(a, a+ h)

∣∣∣∣∣∣ ≤
(

1 +
1

m

)
|Il|.
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Since the Il are disjoint we obtain the estimate. �

Proof of Theorem 6.3.1. The idea is to use the stacked covering lemma and the
stacked measure estimate for {u > Mk} ∩ K̃1.

First observation: It suffices to show, that if

(6.3.8) inf
K̃2

u ≤ 1, ‖f‖Ln+1((0,1)×B 1
R

(0)) ≤ ε0,

then

(6.3.9)

(ˆ
K̃1

uε
) 1

ε

≤ C.

Proof that (6.3.9) implies Theorem 6.3.1. Take

vδ =
u

infK̃2
u+ ε−1

0 ‖f‖Ln+1((0,1)×B 1
R

(0)) + δ
.

which satisfies (6.3.8). (6.3.9) then gives the claim, letting δ → 0. �

From now on, assume (6.3.8) to hold. (6.3.9) follows once we show

(6.3.10)

∃k0 ∈ N,m ∈ N, B > 0, C1 > 0 ∀k ≥ k0 :

|Ak| :=
∣∣∣∣{u > Mkm

}
∩
((

0,
R2

2
+ C1B

−k
)
× (−R,R)n

)∣∣∣∣ ≤ C
(

1− µ

2

)k
,

where M and µ are from 6.3.7.

Proof that (6.3.9) follows from (6.3.10). From (6.3.8) the claim follows via:

For τ > Mk0m let k ≥ k0 such that τ ∈ (Mkm,M (k+1)m), hence

|{u > τ} ∩ K̃1| ≤ |Ak| ≤ C
(

1− µ

2

)k
≤ Cτ−2ε,

for

ε = −1

2

log
(
1− µ

2

)
m logM

.

Since |K̃1| <∞ we have

|{u < τ} ∩ K̃1| ≤ Cτ−2ε ∀τ > 0.
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Then ˆ
K̃1

(u(t, x))ε = ε

ˆ ∞
0

τ ε−1|{u > τ} ∩ K̃1| dτ

≤ ε

ˆ 1

0

|K̃1| dτ + ε

ˆ ∞
1

τ−2ετ ε−1 dτ

≤ C.

�

So we need to show (6.3.10), which we do by induction.

For k = k0, simply take

C ≥
(

1− µ

2

)−k0
|K̃1|.

Now we proceed with the induction step:

Suppose there holds

|Ak| ≤ C
(

1− µ

2

)k
then we need to show that

|Ak+1| ≤ C
(

1− µ

2

)k+1

.

Firstly, take k0 >> 1 such that

2C1B
−k ≤ R2

2
∀k ≥ k0,

thus Ak, Ak+1 ⊂ K1.

We want to apply Lemma 6.3.9. The first assumption we need to satisfy is the following:

Lemma 6.3.11.

|Ak+1| ≤ (1− µ)|K1|.

Proof.

inf
K̃2

u ≤ 1

and hence

inf
K3

u ≤ 1.

Proposition 6.3.3 implies

|{u ≤M} ∩K1| ≥ µ|K1|.
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Thus

|Ak+1| ≤ |{u > M} ∩K1| = |K1| − |{u ≤M} ∩K1| ≤ (1− µ)|K1|.
�

The second assumption for Lemma 6.3.9 is the following:

Lemma 6.3.12. Let K be a dyadic cube of K1. If |K ∩Ak+1| > (1−µ)|K|, then K̄m ⊂ Ak.

Proof. From 6.3.8 we have

K̄m ⊂ {u > Mkm}.
Show

K̄m ⊂
(

0,
R2

2
+ C1B

−k
)
× (−R,R)n.

There holds (
K ∩

(
0,
R2

2
+ C1B

−k−1

)
× (−R,R)n

)
6= ∅

and hence

K̄m ⊂
(

0,
R2

2
+ C1B

−k−1 + height(K̄) + height(K̄m)

)
× (−R,R)n.

Thus the desired estimate holds iff

R2ρ2 ≤ C1(B − 1)

4(m+ 1)
B−k−1.

Let L1 = K. By the stacking of cubes we have

K̃2 ⊂
∞⋃
i=1

L
(l)
2 .

But we know
inf
K̃2

u ≤ 1.

Letting k∗ be the first index with Lk
∗

2 ∩ {t > 1} 6= ∅, we get

(6.3.11)
inf⋃k∗
l=1 L

(l)
2

u ≤ 1.

On the other hand for all l ≤ (k+ 1)m the assumptions of 6.3.7 are fulfilled (h = M l). We
obtain

inf⋃(k+1)m
l=1 L

(l)
2

u > 1.

Thus, in view of (6.3.11)

(k + 1)m ≤ k∗ + 1
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and there holds

R2ρ2 ≤ 1− t0
αk∗

≤ 9

4(k+1)m
.

Setting B = 9m and

C1 =
36(m+ 1)

9m − 1
,

the desired estimate holds. �

Having Lemma 6.3.11 and Lemma 6.3.12 we can now apply Lemma 6.3.9, and find

|Ak+1| ≤ (1− µ)
m

m+ 1
|Ak|

For large m we have

≤
(

1− µ

2

)
|Ak|

and with the induction hypotesis on Ak

≤ C1

(
1− µ

2

)k+1

.

This concludes the induction, and thus the proof of Theorem 6.3.1.

6.4. Harnack inequality

Proposition 6.4.1 (Local maximum principle). Let u be a subsolution of

∂tu+ F (D2u, t, x) = 0 in Q1(0, 0).

Then

sup
Q 1

2
(0,0)

u ≤ C

((ˆ
Q1

|u|ε
) 1

ε

+ ‖f‖Ln+1(Q1)

)
,

where f = F (0, t, x) and ε is coming from the Lε-estimate.

Proof. We may assume u ≥ 0, since u+ is a subsolution. For γ > 0 put

ψ(t, x) = hmax
(
(1− |x|)−2γ, (1 + t)−γ

)
for h > 0 which is minimal such that u ≤ ψ in Q1. There holds

h = min
(t,x)∈Q1

u(t, x)

max ((1− |x|)−2γ, (1 + t)−γ)

and

sup
Q 1

2
(0)

u ≤ Ch.
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Thus we have to calculate h. Let (t0, x0) ∈ Q1 such that

h =
u(t0, x0)

max ((1− |x0|)−2γ, (1 + t0)−γ)
.

Set

δ = min
(
(1− |x0|)−2, (1 + t0)

)
,

i.e.

h = δγu(t0, x0).

Qδ(t0, x0) = (t0 − δ2, δ2)×Bn
δ (x0) ⊂ Q1.

Set

v(t, x) = C − u(t, x),

where

C = sup
Qβδ(t0,x0)

ψ ∈ (hδ−2γ, h ((1− β)δ)−2γ),

β to be chosen. Then v ≥ 0 in Qβδ(t0, x0) and

∂tv + P+(D2v) + |f | ≥ 0.

The Lε-estimate givesˆ
(t0−βδ,t0)+βδK̃1

vε ≤ C(βδ)n+2

(
inf

(t0−βδ,x0)+βδK̃2

v + (βδ)
n
n+1‖f‖Ln+1

)
.

We know

v(t0, x0) ≤ h ((1− β)δ)−2γ − hδ−2γ.

So ˆ
(t0−βδ,t0)+βδK̃1

vε ≤ C(βδ)n+2
(
h
(
(1− β)−2γ − 1

)
δ−2γ + (βδ)

n
n+1‖f‖Ln+1

)
.

Let

L = (t0 − βδ, t0) + βδK̃1

and

A =

{
(t, x) ∈ L : u(t, x) ≤ 1

2
u(t0, x0) =

1

2
hδ−2γ

}
.

Then ˆ
A

vε ≥ |A|
(
hδ−2γ − 1

2
hδ−2g

)ε
= |A|

(
hδ

2

)−2γε

and thus

|A| ≤ C|L|
((

(1− β)−2g − 1
)ε

+

(
δ2γ

h

)ε
(βδ)

ε
n+1 ‖f‖Ln+1

)
.
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Furthermore ˆ
Q1

uε ≥
ˆ
L\A

uε ≥ (|L| − |A|) 2−ε(hδ−2γ)ε,

so

β2+nC1h
ε = |L|2ε

(
hδ−2γ

)ε
≤
ˆ
Q

uε + Cβn+2+ nε
n+1‖f‖Ln+1 + Cβn+2hε

(
(1− β)−2γ − 1

)ε
,

hence for small β

hε ≤ Cβ

(ˆ
Q

uε + ‖f‖Ln+1

)
.

�

Theorem 6.4.2 (Harnack inequality). Let u ≥ 0 be solution of

∂tu+ F (x, t,D2u) = 0 in (−1, 0)×Bn
1
R

(0),

then
sup
K̃3

u ≤ C inf
QR

u+ C‖f‖Ln+1((−1,0)×Bn1
R

(0)),

where

K̃3 =

(
−1 +

3

8
R2,−1 +

R2

2

)
×B R

2
√
2
(0).

Proof. By the Lε-estimate:ˆ
(
−1,−1+R2

2

)
×B R√

2

uε ≤ C

(
inf
QR

uε
)

+ ‖f‖Ln+1 .

Rescale:

v(t, x) = t

(
t+ 1− R2

2
R2

2

,

√
2

R
x

)
.

Then

sup
Q 1

2

≤ C

((ˆ
Q1

vε
) 1

ε

+ ‖f‖Ln+1(Q1)

)
.

�
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