Übungen zur Reellen Analysis Serie 1 vom 18.09.2015

Aufgabe 1 Für eine Folge $(s_n)_{n\in\mathbb{N}_0}$ in \mathbb{C} definieren wir die Folge des arithmetischen Mittels durch

$$\sigma_n := \frac{s_0 + s_1 + \ldots + s_{n-1}}{n}$$
 für $n = 1, 2, \ldots$

Ist $(\sigma_n)_{n\in\mathbb{N}}$ konvergent, so heißt die Folge $(s_n)_{n\in\mathbb{N}_0}$ Cesàro-summierbar. Beweisen Sie

- (i) Für $(s_n)_{n\in\mathbb{N}_0}$ mit $s_n=(-1)^n$ gilt $\lim_{n\to\infty}\sigma_n=0$.
- (ii) Ist $(s_n)_{n\in\mathbb{N}_0}$ konvergent, so gilt

$$\lim_{n\to\infty}\sigma_n=\lim_{n\to\infty}s_n.$$

(iii) Wahr oder falsch: Ist $(s_n)_{n \in \mathbb{N}_0}$ Cesàro-summierbar, so ist $(s_n)_{n \in \mathbb{N}_0}$ beschränkt.

Wir setzen

 $\mathcal{R}(\mathbb{T}) := \{ f: \mathbb{R} \to \mathbb{C}, \quad f \text{ ist } 2\pi - \text{periodisch \& Riemann-integrierbar} \}.$

Der k-te Fourierkoeffizient eines $f \in \mathcal{R}(\mathbb{T})$, für $k \in \mathbb{Z}$, war definiert als

$$\hat{f}(k) := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-ikt} dt.$$

Aufgabe 2 Für $f, g \in \mathbb{R}(\mathbb{T})$ definieren wir die *Konvolution* durch

$$f * g(x) := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) g(x - t) dt.$$

Es lässt sich zeigen (ohne Beweis), dass $f * g \in \mathbb{R}(\mathbb{T})$. Zeigen Sie weiterhin

- (i) Kommutativität: f * g = g * f
- (ii) Fourier-Koeffizienten transformieren Konvolution in Multiplikation: $\widehat{f * g}(k) = \widehat{f}(k) \ \widehat{g}(k)$ für alle $k \in \mathbb{Z}$.

Aufgabe 3 Eine Funktionen-Folge $f_n \in \mathcal{R}(\mathbb{T})$ konvergiert in $L^2(-\pi,\pi)$, bzw. im quadratischen Mittel, gegen ein $f \in \mathcal{R}(\mathbb{T})$, falls gilt

$$\lim_{n \to \infty} ||f_n - f||_{L^2} := \lim_{n \to \infty} \sqrt{\frac{1}{2\pi} \int_{-\pi}^{\pi} |f_n(t) - f(t)|^2 dt} = 0.$$

Zeigen Sie: Gilt $f_n \to f$ gleichmäßig in $[-\pi, \pi]$, so gilt auch $f_n \to f$ in $L^2(-\pi, \pi)$.