LP-GRADIENT HARMONIC MAPS INTO SPHERES
AND SO(N)

ARMIN SCHIKORRA

ABSTRACT. We consider critical points of the energy

E(v) ;:/ |st\%,
]Rn

where v maps locally into the sphere or SO(N), and V¢ =
(07,...,02) is the formal fractional gradient, i.e. 93 is a com-
position of the fractional laplacian with the a-th Riesz transform.
We show that critical points of this energy are Holder continuous.

As a special case, for s = 1, we obtain a new, more stable proof
of Fuchs and Strzelecki’s regularity result of n-harmonic maps into
the sphere [22, 9], which is interesting on its own.

1. INTRODUCTION

Fix s € (0,n) and a domain 2 C R™. In [7] Da Lio and the author
proved Holder continuity of critical points of the energy

Bo)i= [ |ake

for mappings v : R* — R¥, such that v(z) belongs to the (N — 1)-
dimensional sphere SV~! for a.e. x € Q. Here, Az denotes the frac-
tional laplacian which for s € (0, 1) is defined as

o=yl

n
s

and more generally for s € (0,n) is defined via its Fourier transform

F(AR)(€) = cl€]* Fu(€).
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2 ARMIN SCHIKORRA

A priori, mappings with finite energy E, belong to BMO, and the
structure of the Euler-Lagrange equation is

A% (|Au[®2A%) € L,
a structure which in general allows discontinuous solutions such as
log log |x| — the equation is critical.

The motivation for defining an energy like E in [7] comes from the
n-harmonic mappings which are critical points of the energy

Ey(v) ;:/ Vol", v SV

whose regularity properties had been studied in the sphere-case by
Strzelecki and Fuchs [22, 9]. Higher regularity for these maps was
obtained in [15]. The case where the target sphere S¥~! is replaced
by a general closed manifold is largely open, and only under additional
assumptions on the solution (which seem unnatural from the point of
view of the Calculus of Variations) there are regularity results, cf. [8,
14, 17]. On the other hand, in [19] the author showed that the methods
from the theory of fractional harmonic maps (i.e. the L?-case) can treat
very general Euler-Lagrange equations, which contain as special case
both, fractional, i.e. the results of [5], and classical harmonic maps,
[16]. Consequently, there is hope to obtain new approaches to the
classical energy F; by investigating the regularizing mechanisms of the
fractional harmonic maps.

Nevertheless, the energy Ey = [|Az2o||%, is different from B, =
IVo||7., and it is easier to handle: Indeed it turned out that the reg-
ularity of critical points of E; in [7] follows essentially from the theory
of fractional harmonic maps into spheres [6, 20], since it is possible to
treat |A2v|s~2 simply as a weight. In particular, the arguments [7] fail
to recover Strzelecki’s/Fuchs’ result [22, 9] for Ej.

Hence, here we are interested in the regularity of critical points of

the energy
Eq(v) ::/ Vi
R

Voo = (Ri[A%0], Ro[AS0), ..., Ru[AZ0])
where R, is the a-th Riesz transform, i.e. the operator with Fourier
symbol i€, /|£|. Let us also remark, that there has recently been some

interest in the classical theory of linear and non-linear equations in-
volving V* [21].

L3
s

. v:Q— SN

Here,
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Now F, contains for s = 1 the classical n-harmonic maps case
Ei(v) = / Vo|*, v — SV

We then obtain the following theorem

Theorem 1.1. Let u : R* — RY, s € (0,n) such that Ey(u) < oo,
u(Q2) € SNt and assume that u is a critical point of Ej, i.e.

d u+tp
—| Ei;|———— =0 Ceo(Q,RY).
dt lt=0 (|u—|—tg0|) for any ¢ € Cg*(2, )

Then there exists a > 0 such that u € C%%(Q).

As mentioned above, one of our main motivations for this work was to
obtain an argument that extends to the classical case of F;. We think
that the new proof for [22] following from the proof of Theorem 1.1 is
interesting in its own right, since it seems to be more robust than the
original proof, or Hélein’s proof for the n = 2 case [11]. In Section 2
we describe a possibly new angle for a proof of Hélein’s [11], and then
describe how our argument for E, can extend this idea to the n-case
treated in [22, 9]. In particular, in this part we explain the main steps
of the proof of Theorem 1.1.

In the classical case s = 1, the arguments for the sphere case [11] can
be naturally extended to more general manifolds with symmetries [12],
using Noether’s theorem. For the p-harmonic case, cf. [23]. In the case
of small s < 1, we lose the ability to work with tangent spaces, since
O;u is only a distribution. Nevertheless, it not too difficult to extend
our argument to a very special case of a Lie Group. Indeed, the case
where the unit sphere S¥~! is replaced by the special orthogonal group
SO(N) C RN*N follows along the same lines as Theorem 1.1.

Theorem 1.2. Let u : R* — RY*YN s € (0,n) such that Ey(u) < oo,
u(2) € SO(N). Let m : Bs(SO(N)) — SO(N) be the orthogonal
projection from a tubular neighbourhood onto SO(N), and assume that
u s a critical point of E, i.e.

d

dt lt=o
Then there exists a > 0 such that u € C**(Q).

E,(m(u+tp)) =0 for any p € C°(Q, RN*N).

The proof of Theorem 1.1 and Theorem 1.2 are given in Section 3.

We introduce some notation in Section 3, but let us remark here,
that we will make frequent use of Einstein’s notation, i.e. summing over
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repeated indices. Also we will denote with Greek symbols coordinates
in the domain, in particular 0, is the a’s derivative. Coordinates in
the target will be denoted by roman letters, such as (u'(x))Y, € RY.
With =, &~ we denote estimates up to multiplicative constants (which
depend on dimension, s, etc., but not on relevant information), i.e.
A =X B means that there is some C' > 0 such that A < C' B. Also we
will denote the LP(A)-norm by || - ||, 4. With p’ we denote the Holder
p

dual of p, p' = T

2. A REGULARITY PROOF FOR n-HARMONIC MAPS INTO SPHERES

In this section we explain a scheme for proving two classical results:
first for n = 2 Hélein’s [11] regularity for harmonic maps into spheres,
and then for n > 2 Strzelecki’s/Fuchs’ [22, 9] regularity for n-harmonic
maps into spheres. The n = 2-case uses ideas developed in [6, 20]
which treated the fractional harmonic maps into spheres. The case
n > 2 follows from the proof of Theorem 1.1.

The arguments presented here are more lengthy and seem more com-
plicated than the beautiful proofs by Hélein and Strzelecki. On the
other hand, they are robust enough under disturbances, and work in
particular with with non-local operators.

The two-dimensional case. For n = 2, a critical point of the energy
Ei(v) = [|Vuf?, v: Q— SV satisfies

(2.1) Au=u|Vul* in Q.
The goal is to show that there is a 7 < 1, on all (small) balls By, C €2,

(2.2) / Vul? < 7'/ |Vul? + good terms.
Br B4'r

Indeed, if we assume (2.2) and the “good terms” behave as their name
suggests, crucially using that 7 < 1 by iteration' we obtain a o € (0, 1)
such that for any small ball B,

(2.3) /B Yl < o7 (B (u) + C).

The estimate (2.3) tells us that Vu belongs to the Morrey space M2
strictly smaller than L? = M%2. Without (2.2) from Vu € L? Sobolev

IFor this kind of iteration, and the following Morrey and Campanato spaces, we
refer to [10, Chapter III], and for Sobolev imbedding to [1].
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embedding implied only v € BMO = L£™?, where LM are the Cam-

panato spaces; now from Vu € M%? via Sobolev imbedding we infer
l1—0o l—o

that u € £'2=o% = C°?2== . That is, (2.2) implies Holder regularity of

u.

In order to obtain (2.2), one might be tempted to just multiply (2.1)
with u (up to a cutoff-functions) and integrate by parts, but this implies
only

/ [Vul® < ||ul| 2o (B4 / |Vul? + good terms
B By

at best. So the main idea which was used in [6, 20] is to split up Vu:
Since |u| =1, for any x € Q, « = 1,2

0u0(a)| 3 fula) - (@) + | max o Opu(a)|.

On the other hand, it is not too difficult to show, that

max |0 Oyu(z)] 3 max [u'w;;jOau(r)],
olu(z),lo|=1 w

where the maximum is over all finitely many w € R™", w;; = —wj; €
{=1,0,1}. This can be seen as a consequence of Lagranges identity,
also the proof is given in the appendix of [7]. That is,

(2.4) 10au(2)| 2 |u() - Opu()| + max |u'w;;Oau(x)|.
Now,
1 , 1

u(z) - Oqu(x) = §8a|u(x) = 5(%1 = 0.
Thus, in order to obtain (2.2), we need to show for an arbitrary but
constant w € R™", w;; = —w;; € {—1,0,1},
(2.5) [u'w;; Vul |* < T/ |Vul? + good terms.

By By
But now, (2.1) together with the antisymmetry of w implies
div(u'w;; Vu?) = 0, and

curl(u'wy; Vul) = wy; V' Vad,

where V+ = (=0,,0,)7. Since w is constant, the right-hand side is
a product of divergence-free and rotation-free vectorfields and by [3]

belongs to the Hardy space. In particular it can be tested against
BMO-functions (such as u), and by a Hodge-decomposition this implies

/ lu'w; Vul | < C [u]BMo’BM/ |Vul? + good terms.
BT B47‘
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Now in contrast to ||u||z(p,,), for small enough radii r we know that
[u| grro, By, 1s small from which we can construct 7 < 1 in (2.5) and
thus in particular we have (2.2), which implies Holder continuity.

The general case. If n > 2, the Euler-Lagrange equations (2.1) be-
come

(2.6) div(|Vu"?Vu) = u |Vu" in Q.

Following the rough idea of the 2D-case, one wants to show now that
there is a 7 < 1, and on all (small) balls By, C €2,

(2.7) / |Vu|" < 7'/ |Vu|™ + good terms,
BT B4'r

which again implies immediately Holder regularity of w.

Now, one would decompose |Vu| as in (2.4), and we would try show
the existence of 7 < 1 such that

/ |[Vu|" uiwijVuj‘n/ < 7'/ |Vu|™ + good terms.
B By,

In order to do that, one would compute that the divergence
div(|Vu|"? v'w; V') = 0,

but when one computes the rotation a problem occurs, since in general
for n # 2 it is not clear why it should be true that

curl(|[Vu"? v'w; Vul) € H'

We conclude that it does not seem feasible to decompose |Vu| in that
way.

Instead, one first shows, see Lemma 4.1
(2.8) [Vully 5, 2 / }Ra[|Vu|"_20aanl + good terms.
By

Recall that R, denotes the the a-th Riesz transform, and that accord-
ing to Einstein’s summation convention we sum over a« = 1,...,n. Es-
timate (2.8) is the crucial point that makes our argument work: trying
to estimate |Vu|""2Vu seems to inevitably lead to a rotation-problem,
like the one that spoiled our first attempt above. Instead, we estimate
R[|Vu|["2Vu], a term which looks more complicated, but where this
rotation-problem does not appear:
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We decompose as in (2.4),
(2.9) [RallVul"™* Oau]| 3 [u"Ral|Vul""* Oau']]
+ max |u'w;; Ra[|Vul""? d,u’]).
We shall call the first term the orthogonal part (since u(z) is orthogonal

to the tangential space T, u(x)SN ~1). Tt is now non-zero (in contrast to
the n = 2- case), but u'd,u’ = 0 still implies

(2.10) UR[|Vu|""2 0qu’] = C(u', Ro)[| V"2 Ouuf],
where C denotes the commutator,
(2.11) C(b,T)[v] = bT[v] — T[bv].

Now we employ the Coifman-Rochberg-Weiss Theorem [4] which states
that C(b, R,)[-] is bounded on LP(R™) for p € (1,00) whenever b €
BMO(R") with

1CO, T) [ Allpen < [blrio [[fpre-
Together with a localization argument, we thus obtain
' Ra[[Vul"™* 0utt]l| v (5,
3 [ulsyo,s,, VU™ 0att'|| s g, + good terms
2 [Wlprmo.ss, [Vulia, (Bs,) T g00d terms.

The “good terms” stem from cut-off functions, and for the precise for-
mulation we refer to Lemma 3.1. Now, we can use that [u]gyo is small
on small sets, and have for the orthogonal part, that for some 7 < 1,

(212)  [[u'Ra[[Vul""? 05t [| ot ) < Sl Vullfly, , + good terms.

-2
It remains to estimate the “tangential part”, and here we use the equa-
tion (2.6). Firstly, by Lemma A.2, for some ¢ € C§°(Ba,), ||V, < 1,
(2.13) lu'wijRal[Vul""* 8att?] || s,

~Y

= / U'wi Ra|[|Vu|" 2 0,07 A%go + good terms.
Now since RoA? = §,, and using (2.6),

ATR[|Vu|" 2 84uf] = div(|Vu|" 2Vu) = [Vu|"u!,
and consequently,

(2.14) / ") uiwijA%RaHVu]”’Q Dau?] = 0.
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Moreover, by the antisymmetry of w,
(2.15) wifRa[AZu] [Vu|"? 84’ = 0.

We recall the bi-commutator H,, which measures how much Az is away
from having a product rule,

(2.16) H,(a,b) = A3(ab) — aA3b — bA3a.
From (2.13) we then have

s Ral[Val"2 03]t s,

(2.14) ' , '
J 0wy [ Hi(uwe) Ral|Vul" ™" Oat’]
Rn
— wz-j/ A2y Ra[|Vu|"2 0,07] @
Rn
+ good terms
(2.15)

Wij Hy(u', 0) Ro||Vu|""2 04u]

Rn
+ wij / A2 C(Ra, )[| V"2 9att’]
Rn
+ good terms

where C(+, -)[-] is again the commutator defined in (2.11). The estimates
on bi-commutators established in [6, 18] and the commutator estimates
in [4], imply

sy RVl 00,

3 183l I9ullg, (1436l + [¢lpio) + good terms

Since Vu € L™, so is A%u, and for small radii, we have
. . T
||uzwina[|Vu\"72 OaW ||| By, < §HVU! Z}ir + good terms.

This, (2.12) and the decomposition (2.9), imply (2.7), which again
implies regularity. 0

In the remaining part of the paper we give the details of the argu-
ments sketched above — in the setting of Theorem 1.1 and Theorem 1.2.

In the next section we prove the decay estimate of Lemma 3.1 which
serves as generalization of the goals (2.2), (2.7) above and from which
the theorems follow.

The first ingredient needed in the proof of Lemma 3.1 is the “left-
hand side” estimate Lemma 4.1 which serves as a generalization of
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(2.8) in that it estimates |[A2ul|,, in terms of |R[|V*ulP*=2 d5u]|l,,.
Then, after using a splitting argument as in (2.9), we have two parts
— the orthogonal part u - Rg[|V*u[P*=> dju] which is estimated in
Ps=2 95u’] estimated

Lemma 5.1, and the tangential part u'w;;Rs[|V*u
in Lemma 6.1.

3. THE GoAL

The analogue of the “goal” (2.2), (2.7) is the following Lemma, for
which we need to introduce some notation: We fix some reference ball
scale Br(xg) C €. If x4 is the characteristic function on A, we denote
for [ € Z,

(3.1) Xi= X By p(w0)> and X; == X1 — Xi-1-

Lemma 3.1. Let ps := . Assume that u as in Theorem 1.1 or The-

orem 1.2. Then for some Ly € Z, Ky € N, 7 € (0,1), 0 > 0, for any

L S LO; K Z KO;

ARRCPRLD ST TN
1=1

P <7 [N e A2u

H;(LA%U

Ps
ps®

This Lemma implies Theorem 1.1, Theorem 1.2 by iteration and
Sobolev imbedding, essentially as described in Section 2. For the de-
tails, we refer to, e.g., [6] and also to the appendix in [2].

Proof of Lemma 3.1. Before starting the proof, we set

“000d terms (C, K, 0)" := C 2757 22_1"

=1

NerpAzulbe.

Note that for any € > 0 there is K sufficiently large such that for any
K> K,
“good terms (C, K, 0)”

— 50 - —lo o S
pe TC2 o ZQ : [RO-SPARLY
=1

Ps
Ps

< 5||>.<L+I”<A%U

!
+ “good terms (C, K, a)”,

= elXprArullp;
where 6 = %0. Consequently, for proving the claim, we don’t need
to care to much about the precise values of K, (', o, as long as K is

sufficiently large.
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Now we start the proof: Fix ¢ > 0 to be determined later. By
Lemma 4.1, for some 7 € (0,1),

Xe+kAZu
(3.2) +C [XprxRs[| Vol O5ul

Let us first concentrate on the sphere case: we use the decomposition
(2.9), which is valid as long as supp xr+x C €.

XLA%U

Ps Ps “ ’
ST o+ “good terms

Pl
Ps”

X2+ x RalIVoul =2 Oulll};
S X Rl Vo ul™ ™ 0507 +max [|u?wi X 4 RVl 93|
For the first term we use Lemma 5.1,
lu'X L+ xR [V ulP =2 ']
3 (IXzr2xA2ul,, + 24{0)103 NrroxAZu be.
If K € N is large enough, and L € Z negative enough so that
I XLy2rAzullh: < e by absolute continuity of the integral, and 2~ 5% <

€, we arrive at

H)’(LAgu be < (17 +C¢) H)'(LJFQKA%u Pe + “good terms”

ps—2 quj]

+ max || wi; X1+ x Ra[|Vu b
For the second term, we first use Lemma A.2 and then Lemma 6.1, to
obtain

Xr+xA2u

A —oK
p 2770

/
N (IXpr2xA%u

ps—2 aguj]
Again, if K is large enough L + 2K is small enough, this implies

P sl S e

| wij X+ xRs[|Viu Pe+%good terms”.

° s
Xr+xA2u

| wij Xk Rs[|Viu be + “good terms”.
Thus, we finally arrive at

Ps < (T+C€) H;(L+2KA%'U/

pPs —

XLA%U

Ps «“ ’
o+ “good terms”.

Since C' is a generic constant, depending on the dimension, s, and
possibly ||A2ul,., if € was chosen small enough such that 7 := 7+Ce <
1 this gives the claim with 7 instead of 7.

In the case of SO(N), in (3.2) we use decomposition Proposition C.1.
Then, for symmetric 0;; = 6;; € {—1,0,1} (i.e. the orthogonal part),
we apply Lemma 5.2 to

/
P2 Ogunglly

XL+ KOs Rs[| Viu
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and Lemma 6.2 to antisymmetric w;; = w;; € {—1,0,1} (i.e. the
tangential part) to

/
P Oung]l

and obtain exactly the same estimates. 0

H;(LJerz‘jUikRB [|VSU

4. ESTIMATES ON THE LEFT-HAND SIDE

Here, we prove the estimate that leads to (2.8). It is an extension
and localization of the following simple argument

||VUHZ:/|VU|”_2VU-VU:/|Vu|”_28au RoAbu
- ‘/ Ral| V" 200u] A2u 3 | Ra[|Vul" 2051 ||w | A7 00

Now one uses that ||A%u||p ~ ||[Vul|,, and obtains an estimate similar
to (2.8).

Although this arguments seems trivial, it is related to one of the main
problems in the n-harmonic map case, or related n-laplace PDE’s, e.g.
such as [8]:

By the Iwaniec stability result [13], one can prove an estimate like
(2.8) also for p ~ n, i.e.

_p_
I9ull; 3 I RalVul 2007

However, to our knowledge, it is not known whether
IVullfnoe) B IRl VUl 200t [, 00):

n,00) ~J

where L("*) is the weak L"-space. If proven, this estimate would
possibly be quite useful, in analogy to the n = 2 case of harmonic
maps [12] where one uses estimates of Vu in L(2%)(R?).

Lemma 4.1 (Left-Hand side). Recall (3.1). There exists a constant
Ti, aT€(0,1), 0 >0, such for any T > T, and any u,

b < C IXsaRsl| Vul™ ™ O5u]

j2
P

tshtu

+ 7 |[Xsar Ayl

+ C 27TU 22710 H)‘CS+T+IASU
=1

ps
Pps”
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Proof. In order to reduce the number of indices a little bit, we assume
S = 0. This is fine, since all the arguments in the following can be
shifted by +5. We follow the argument presented at the beginning of
this section, only taking care about localization. Then we have,

Ps __ s
ps—/ |Viu
Rn

- / (R — %0) [V¥u

_ Z /)%l |vsu

I=K+L+1

+ Z / )ZO\VSU
k=FK+17R"
=] —II—IIT+1V.

Ixo Viu P2 9ut - R[N Aru']

P2 9sul - R[N A2u]

ps—2 aguz X R,B [)'(KAguZ]

ps—2 aguz . R,B[)%kA%UZ]

The first term [ is exactly the part we want. Young’s inequality and
partial integration of R implies for any ¢ > 0,

e
_gps

/ ° s .
Pe +€ps||XK Azy!

Pl

X Rel|Voul"~* O5u’] P

Next for any § > 0,

— 5ps

Ps Ps Ps
Ps + 6 ps”

(>.CK+L - )20)|Vsu|

Then we apply Lemma A.3, and have for any M > 2,

C . 0 s
IT < EH(XK—L—&-M — X-nr) Azulb

C = (M)
- P kz: 2 !
=1

C . s
+ 2(K—L)n—Mn(ps—1) 6pg XM A?u

Ps

Pps

o s
XK—L+M+k D2U

p
p

s
K]

_'_ 5ps

XK Az

Ps
ps®
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Now we treat I11. Applying Lemma A.5, and Lemma A.1,
HIZ Y IVl R A2,
I=K+L+1

I=K+L+1

S (uxHMAsu

o0 ps*l
- o s K-1)% . LY
et )2 p(M+’“>||xl+M+kAzu||ps> 2" ke As
k=1
N Z <||>.(l+MA;u

- -MZ —2 (k) min{(ps—1), o s s — K= |1
pE2y E 2 pWmEDA 8 A P 1) e Ix
I=K+L+1

k=1

— (K-
e
I=K+L+1
— 2 (L+MA+1+1) .
" > i 25M n i Z M
Sy 2 T 24T 27 R A RullB:
Finally, for any v > 0,

X arA2u

Ps
Ps

o s
XK+L+M+14+:02U

Ps
Ps

ps < 2,
ps > 2.
v =

).(stu

o0

ol ST 7R AT,
k=K+1

<P

o0

. s s —ps —KL; —k ° el s
XoViulb: +~7P 2w Z 2 K [ XeAzulb:
k=K+1
Together, we arrive for some constant C' depending only on p, and the
dimensions, for any ¢,4,v € (0,1), and for any K, L, M € N, and > 2
H)Zo Viu

<
C ® s P/s P
QHXK Rs[|Viu o te

P2 9]

>.<K Ay
+57/S(H(>.CK7L+M —X_m) Adu

+ Z 2~ MR XKLy arer Adu
f—1

Pps
Ps

Ps
Ps

Ps
Ps

+2(K7L)nan(psfl) ||>.(7M A%’U,

ps
Pps

+5ps

>.<K Ay

Ps
Ps

C < K- | o s
5 o 2R e Abul;

I=K+L+1
g o~ o (LHM+1+i
:1 S
+C 4 =

; il R aes s
S22

+

b Ds<2
M 5K -y o s
2057 270" || XKL M1 D20

be ps > 2.
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Cpe oK NS ok e A5 il
+OYP* || XoVoul|Bs + Cy7Pe 27 Z 2 kg PETACTA [
k=K+1
If we take v > 0 so that Cy#* < 1, we can substract C7+ || X, V*u beon

both sides and then divide the whole estimate by (1 — Cy?*) € (3, 1).
We now set M := 2K, L = 2K, and regroup the above estimate.
Firstly, each tail, i.e. each term involving infinite sums can be estimated

by

C (1 Ty 7—1’8) g~Ker § gl

=1

Xsr1Azul[b,

if 01,00 > 0 are just small enough. Of the remaining terms, all but
two can be estimated by

1 . s
O( 2_K(n+2ps_2) _|_5ps _|_€p5) ||XK AE’U, gz

s

So we arrive at

C

. S
X0 Viu =

IXx RpllVou

C ° ° s .
+ 5o (XK — X—2r) Azul/}:

Ps pPs—2 s, 171]|P.
b < 5’|l

1 R s
+C ((572—1((71+2ps—2) o+ oPs +6ps> ||XK A2y

Ps
Ps

ps
Pps

FC (1487 4y 278 S om i Afy
=1

Now, for some S € N we convert the left-hand side into a A2-term: By
Lemma A.4

[e.e]
pe S XoVoull, + Y 127 g AR
=1

X-sA2u

Ps



LP-GRADIENT HARMONIC MAPS 15

Together with the above estimate we arrive at,

Ra[|VoulPs~? d5u'] ;

c . . s
b e = Xoare) Aul:

+0<5 RN gps) ¥k

C ((1 + 5—17’5 +,y—ps> Q—Kol + 2—501)

The proof of the above estimate did not depend at all on the scale, so
we can shift all indices by +S5. Setting S := 2K, for possibly smaller
o1, 09, for any T' € N, T' > T; for some uniform 7 > 0, we have shown

. < —HXT RsllViu

C’
5p (X7 — Xo) A2u||

T

1 —To ° El
+O (2™ £ e ) e Al

+C <1 + 0P 4 fy*pS) 27T Ny "o-
=1

Addlng ~ IXo Az
have

s c
P+ on both sides and dividing by (1 + 57), we

c._.C .. .
be< (14 @) 187/S||XT Rsl|Viu
pS

C C Ly 1o, — . Az
+(1+5ps) <5ps+0(5ps + 0P +sp)> X7 Azull?

52,5)—10 (1+6—Pé+v"’3) 2717 iz—
=1

[XoA2u

= gl

+ (1 +

Ps
ps*

Now we choose ¢, §, and then T} > Tj such that for any 7" > T,

1
O( _g~Tor 4 gps +sp5> <1.
OPs
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Then for some 7 < 1, for any 7' > T7,

IRoA2ully: < C X7 Rsl|Vou

+7 X Azy

. /
ps—2 02u’] Zs

Ps
Ps

+ 9 T ZQ—log ||>.(T+ZA§U||£:'
=1

5. RIGHT-HAND SIDE I: ORTHOGONAL PART
The following lemma is the fractional analogue of the argument in
(2.10):

Lemma 5.1. For any K € Z, L € N, L > Ly, and any u the following
holds: If xar|u| = 1, then for some uniform o > 0,

IXrcu’ Ral|Veul™™= 0u']|ly,

S (IRa 2 ullp, +275) [ RaernAsul!
+ (14 [|A%u],,) 22_(L+k)0||).(K+L+kA%U pel,
k=1

Proof. Again, we may assume K = 0, in order to work with fewer
indices.

For any constant ¢!, we again decompose the quantity in question
into differently localized terms

Xou' Rl|VoulP~? O5u') = I + 11+ 111,
Recall the definition (2.11) of the commutator C(-, R)[:], then
= Rl Voul = wiogu]
I1:= Yo C(Xe(u' =), Rp)[Xe|Vu

ps—2 8gui],

IIT = ) xou' Ra[Xp|ViulP~* ofu'].
=1

Firstly, for I1, by the usual Rochberg-Weiss commutator theorem,
111

P, = X (v — c)Bumo ||>.<LVS“||§Z_1'

w DX = Npmo XL ViuP
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Since ¢! was chosen arbitrarily, we can employ Lemma B.2 and then
Lemma A.5, and obtain some ¢ > 0, some S > 2, for which

|11

P ||).CL+SA§U|| + ||A2u||ps ZQ (8+k)o
k=1

As for I,

pG 2 XL u- 8[8'3’/”“173

[l = 11Xz Vu

With the bi-commutator
Hr(a,b) :==T(ab) —aTb — bTa,

we then have

1 1
Xzu - Oju = —§XLH8§(uau) - XL§5§|U|2

Since xaor|u| = 1 we can use the arguments on bi-commutators, in e.g.
2, 7], to conclude that for some o > 0,

oo

ps+z2 (S+k)o

k=1

SAi’U,

1205+27L0H>'<L+5A%U

kAQU,Hp ,

and consequently for possibly a smaller o, using Lemma A.5, we have

1

oy S I s AT ul 4275 X s A% ulp, +[| Az ully, 22 S % ppsanAzulp
k=1

It remains to analyze 111, which we do by Lemma A.1

o0
Z — 2 (L+)
S
S

=3 Q_ELMLJFSA%U

1111]),,

pral’s

(o]
ps—1 —o(L+S+1 o s 1ps—1
Pty T2 S 0 Al

=1

Taking again S a multiple of L and adjusting o, the claim is established.
O
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For the SO(N)-case, we use essentially the same argument: If 6;; =
Qﬂ and QkZQk] = (Sij,

0,;Q" Rao[|V2Q[*205Q"]
=0;;R.[|V*Q P2 QM5 QM)
+0;; C(Q™, Ra)[IV°QIP205,QM]
R QP (QU0QM + (03QM) Q)]
+0; C(Q™, Ra)[IVQI"20,Q"]
To=r1 A . . . C
CETD0RAIVIQPT? (QR QY + (22QM) Q¥ — 92(QNQM))]
+ 05 C(Q", R)[IVEQP 205 Q"]
5B RalIVQ? Hog (@, Q)
+6; C(Q". Ra) IV QP 20,QY]

Thus, we obtain the following

Lemma 5.2. For any K € Z, L € N, L > Ly, and any u the following
holds: If xoruTu = 1, then for some uniform o > 0,

X refiu™ R[|VoulP=? d5uM]

3 (IR 2A%ullp, +275)

[e.o]

+ (L4 Asull,,) Y27
k=1

P

>°<K+LA§U||§§_1

ps—1
ps

. S
XK+L+kAZU

6. ARGUMENT: TANGENTIAL PART

Lemma 6.1. Let u be as in Theorem 1.1. For any w;; = —wj; €
{-=1,0,1}, any smooth supp ¢ C supp xr, L € Z

w [ Algw Rallvu

o R" E 270’(’6+L+K)
Sy
k=1

PR [A ]

. s —1
p
XL+K+kA2ullp:

ol N

ZXpexAlu

Proof. Again we show the claim for yq instead of Y. The Euler-
Lagrange equations imply that for any ¢ € C§°(f2), we have for
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wij == —wﬂ < {—1,0, 1}

(6.1) Wij R5[|V5u

R

PRIAS ] A () = 0.

This is true, since (u'w;;¢); € RY is perpendicular to 7;,SV~! and using
partial integration of Rg.

On the other hand, by the antisymmetry of w,
(6.2) Wij IVoulP 2 Rg[A2u’] Rs[A2u’]p = 0.
R
Consequently, recalling the definition of the commutator C(-,T)[-) in

(2.11) and the bi-commutator H defined in (2.16),

o / Abpud Ry[|VoulP>Rs[Adul]

N / H,(p,u) Ry[|Vou

PR [ART]

‘””’/ oo, Ra) e Ab] [Viul 2Ry A
- wa [ oRaliueatil] [voulr R[]

iy / RarcieRalp Adud] [VoulP 2Ry A%u]
= 1+I1I+I1I1+1V.

For the first term, by the usual arguments on bi-commutators, e.g., as
n [2, Lemma 3.2.], [7, Lemma 2.8], using also again Lemma A.5, we
obtain readily,

Psl

* |]A2u

pSRnE 2-
k=1

For the second term, we use again the Rochberg-Weiss commutator
theorem [4], and then again Lemma A.5,

11| <

Psl[

elemo | XxA2ull,,
3 ||XKA§U

P+ |A2u

—o(k+K)||.e 2 ps—1
ps,R”E 27 O X g p Az
k=1
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As for I, by Poincaré inequality and the localization Lemma A.1,
and yet again Lemma A.5,

PR s[AR ]

(11| 3 Z/;CO‘PRﬁ[)OCKHA;Uj] Viu
=1

o
3D IRoRs[Xktid 30w oo N2llp, X0V oulh: ™
=1
[0.9]
Ps ).COVSU g:il

332 Ak
=1

b+ HASU

_ E
ps,R™ E 2 U(k+2K)H>.(2K+kA2u
k=1

2 [fexAfu

Finally, we treat IV, now using additionally Sobolev-Poincaré-
inequality

ps—1
ps

@«

N (Kt S s s . s
11V 227 RTE o ARy [[Rerer Vou
k=1

[o¢]
—(K-‘rk‘-ﬁ-k‘)il —l, . s 4 . s s—1
iE 2 RO e » [[XoAzu ||, [ X2r 11 VU is
k=1
(o]
—(K+k+k) 2 s o A5 . s (pa—1
j} 2 A2y [[XoA2W |lp, (IX2x+6Voullp: ™
k=1
O

Again in the same fashion we obtain an estimate for the case of
SO(N)-target. The Euler-Lagrange equation tells us that a critical
point u : 2 — SO(N) satisfies

(6.3) / IVou

for any v with support in Q and a.e. ¢ € T,SO(N). For antisymmetric
w € so(N), p € C§°(2), we thus set

Uiy = QM wijp.
Then ¢ € ToSO(N). Indeed, v : (—1,1) = SO(N) defined as v(t

)=
ue™? has /(0) = ¢. That is, (6.3) implies for any ¢ € C°(D), w €
so(N),

(6.4) Wij / |Veu

s—2 98 s _
p 8aukj V Q/ka = 0,

P25k o (uFip) = 0.
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Moreover, by the antisymmetry of w,
(6.5) D2QM wi;0:QL = 0.

Consequently, for w € so(V), using in the last step (6.4) and (6.5),
/ Wi Qi Ral|V* QI 20,Q%] Ay

_ / VEQPP 205 QY Rufw QL A3y

:—wij/st
—wij/WSQ

_y / VP QPP 205 QM Hye (QF, )

—wz'j/WSles_Qaiij C(Qi Ra)[A% ]

20,08 Qhone

2050 C(Qf Ra)[AZ ]

From this argument, we obtain readily

Lemma 6.2. Let u be as in Theorem 1.2. For any w;j = —wj €
{-1,0,1}, any smooth supp ¢ C supp xr, L € Z

wij/AScp u* Rs[|Viu

—o(k+L+EK)||.® s
ps,R7 E 27 NN Lok ssA2u
k=1

PR (AT

Sl Azul + [|Azu

p.s_l
Ps

APPENDIX A. SOME BASIC ESTIMATES

In this section we state some known estimates involving A2-
operators. Recall the notation for cutoff functions from (3.1).

The most basic estimate is the following pseudo-localization. It fol-
lows quite naturally from the potential definition of the involved oper-
ators. For details we refer, e.g., to the appendix of [2].

Lemma A.1. Let s € (—n,n), and let T* be defined as follows:

¢ ifs>0,T°=V°orT°=A2
o ifs=0,T° =Ry, forany o € {1,...,n},
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o andif s <0, T° = A"z,
Then, | > k+1, for any f,
X T Xk Ao 3 25) "X f I
and

T fllse 32X f I

The following Lemma estimates an LP-norm by an elliptic PDE. For
the proof we refer to, e.g., [2, Proposition A.3.].

Lemma A.2 (Estimate by PDE). Let f € LP(R™), then

>.(Lpr,BR é sup fA%(p_FQiUK >%L+K+kap7

¢ JRrn

)'(LJrKf”p‘i‘Z 270(K+l)
k=1

where the supremum is taken over all ¢ € C*(R"™) with suppy C
supp X1, and [|Azepll, < 1.

Let R = (R4,...,R,) be the vector of all Riesz transforms. It
is well-known that the norm || f||, g and |[|Rf]|, g~ are equivalent for
p € (1,00). This is certainly not true anymore if the norm is taken
on strict subsets of R”. However Lemma A.l provides a comparison,
which tells us that

| fllp,5, behaves more or less like ||Rf||, 5,

up to error terms. More precisely, we have Lemma A.3, Lemma A.5,
and Lemma A.4. The main idea is always that f = ¢ RsgRaf; then
one inserts the cutoff-functions y; and uses Lemma A.3.

Lemma A.3. Let f € LP(R") and K > L € Z, M > 2
10X = XL) fllp 3|

DI
k=1
+ 25T o RIAN

(XK+m — Xo—m) Rflp

Xicem+k RUp



LP-GRADIENT HARMONIC MAPS 23

Proof. We have

(X —x1) fllp =Xk — Xz) ReRelf]llp
<I(xx —X) Ral(Xx+ar — Xo—ar) Ralflp
+ ) NG = x) Ral(Recarsr Ralf Nl

G — %) Ral(Roonr Rlf]l

Now the claim follows from Lemma A.1 O

Lemma A.4. Let f € LP(R"),

o0
IRefllp 3 IRees R + D1 277 i s [
=1

Proof. W.lo.g., L =0. Again we have

IXofllp < IXoRaXsRalFNlp + > IXoRs[Xs+1Ralf1ll,

=1

XsRIfp + Z 27X RIf] -
=1

<

~Y

We still need to remove the R[] in the second term.

XsaRXs e flllp + >
k=2

3 WXste fllp + )27
k=2

XstRIfllp 2

Xs+R[Xs+i+xf]lp

Xs-+i+kS |lp-

Consequently,

Xofllp 3

XsRU e + D277 s fllp + D272 07 [ Rswrsnf -
=1 =1 k=2
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Finally, we observe

227D 2 s
1=1 h=2

=227 S 2 sl
=1

k=I1+2
(e’ k—2
:ZQ—(k+S); ;(SJrkale
k=3 =1
<3k —2) 275 Rt e

Bl
Il
w

By the same arguments as above, we also have

Lemma A.5. Let f € LP(R"), K €Z, L€ N

Xoixfllp + C Z 9~ p (E+k)
k=1

XeRfllp, £ C

)%L+K+kf”p-

APPENDIX B. BMO-ESTIMATES

In the estimates we sometimes have to estimate the BMO of y(u —
(u)). Let us recall the definition of the pseudo-norm for BMO:

[flmo = sup |Br|_1/

B, CR"

f@ - 1B [ f(y)dy' i,

We will use the notation (3.1). For simplicity of presentation, we
assume throughout this section that o = x5, (0)-

Firstly, we have the following

Proposition B.1.

sup 2 / u(e) —uly)| + swp " / ju(z) — u(y)|
7T§1 r Br 7T§1 r Bl

B, CBs(0) B, CBs(0)

Ps + Z 2_(K+Z) ||>.(BQK+l (0)A§u||175
=1

3 X8y« ) |A2 Y|
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Proof. By definition of the Riesz-potential
aif@ = [|a=ap ),
and since A"2Az = [d, we have for any K >3

u(z) —u(y)] 3 / [l = 27" = |y — 2°7"| [AZu(z)| d2

Rn

= [ llo = 2l = Iy = 2177 Rl Al d
£ [l oy o (AT
Iy + ().
As for I1(x,y): for z,y € By(0), and 2z € supp Yx; we have
e — 27" = |y — 27| 3 2K D —y| < 2RE Dz —y),

that is, since p|, = ",

[(z,y) < |z —y| 27"

).(K‘i'lA%qus .
Consequently,

N RCCTIRTS i W)

o

3 2 Al
=1

Ps

[t remains to estimate I. As in [18], see also the presentation in [2,
Lemma A.4.], we have for almost all x,y, z,

|z — 2" — |y — 2" <X ja—yi= ozt v [z — Y| min{]y — 27", Jo — 2[*7"}
+ Xjy—zi<je—ylly — 27"

+ Xja—z|<|z—y||T — 2"
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Thus,

o [ )

By J B,

s [ el | o= 2 () A u(2)| = dy da
- - zi|lz—z|>|z—y|

o2 / / / ly — z|8_”)°<K(z)]A5u(z)| dy dz dx
» J B3y J BrNly—z|<|z—y|<2r

1
s [ eu(f o st )
r J By zilx—z|>|z—y|

—I—TS"/ i (2)|Asu(z)| dz
Bsr

s [ [ el . dy di
T BT
475" / )'(K(z)|A5u(z)] dz
BB’V‘
s [ le=alle -l . dy d
r BT‘

o [ fal@)atu(a)] ds
BSr

0

Lemma B.2 (BMO Estimate). For any u and L there exists a constant
c € R such that

[Xz(u— c)saro < C || Xpex|A2ul|l,.

=1

Proof. Again we may assume that L = 0. Let ¢ := (u)y be the average
of u over B;(0).

[XO(U - (U) BMO

< sup / o) (u(z) — (w)o) — Xo(¥)(uly) — (w)o)|

BrCBQ 7‘<1

Br
+  sup / / u(y)l.
BrCBQ 7"<1 o B1
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Since

Xo () (u(z) = (w)o) = Xo(y) (uly) — (w)o)]
< u(z) = (ol + |u(z) = u(y)] + |uly) = (),

this becomes

[f(o (U - ( BMO

< s / / u(y)
B»,—CB2 T<1 r r

L swp / / ().
B,CBs 0),7~<1 Bi(0

Now the claim follows from Proposition B.l. O

ApPENDIX C. DECOMPOSITON FOR SO(N)

In (2.4) we decompose vectors into orthogonal and tangential part
along u € SV~1. The analogue for Q € SO(N) is the following

Proposition C.1. There exists a uniform constant C > 0 such that
the following holds for any matriz A € RN*N_ for any Q € SO(N),

A < max |wig Q™ Agsl] + max 10:Q™ Aj|

where the mazima are taken over the finite sets {w € {—1,0,1}"V*N ¢

so(N)} and {o € {0,1}V*N € sym(N)}, respectively.
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