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Abstract. We consider critical points of the energy

E(v) :=

∫
Rn

|∇sv|ns ,

where v maps locally into the sphere or SO(N), and ∇s =
(∂s1 , . . . , ∂

s
n) is the formal fractional gradient, i.e. ∂sα is a com-

position of the fractional laplacian with the α-th Riesz transform.
We show that critical points of this energy are Hölder continuous.

As a special case, for s = 1, we obtain a new, more stable proof
of Fuchs and Strzelecki’s regularity result of n-harmonic maps into
the sphere [22, 9], which is interesting on its own.

1. Introduction

Fix s ∈ (0, n) and a domain Ω ⊂ Rn. In [7] Da Lio and the author
proved Hölder continuity of critical points of the energy

Ẽs(v) :=

∫
Rn
|∆

s
2v|

n
s

for mappings v : Rn → RN , such that v(x) belongs to the (N − 1)-
dimensional sphere SN−1 for a.e. x ∈ Ω. Here, ∆

s
2 denotes the frac-

tional laplacian which for s ∈ (0, 1) is defined as

∆
s
2v(x) = cs

∫
Rn

v(x)− v(y)

|x− y|n+s
dy,

and more generally for s ∈ (0, n) is defined via its Fourier transform

F(∆
s
2v)(ξ) = cs|ξ|s Fv(ξ).
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A priori, mappings with finite energy Ẽs belong to BMO, and the
structure of the Euler-Lagrange equation is

∆
s
2 (|∆

s
2u|

n
s
−2∆

s
2u) ∈ L1,

a structure which in general allows discontinuous solutions such as
log log |x| – the equation is critical.

The motivation for defining an energy like Ẽ in [7] comes from the
n-harmonic mappings which are critical points of the energy

E1(v) :=

∫
Rn
|∇v|n, v : Ω→ SN−1,

whose regularity properties had been studied in the sphere-case by
Strzelecki and Fuchs [22, 9]. Higher regularity for these maps was
obtained in [15]. The case where the target sphere SN−1 is replaced
by a general closed manifold is largely open, and only under additional
assumptions on the solution (which seem unnatural from the point of
view of the Calculus of Variations) there are regularity results, cf. [8,
14, 17]. On the other hand, in [19] the author showed that the methods
from the theory of fractional harmonic maps (i.e. the L2-case) can treat
very general Euler-Lagrange equations, which contain as special case
both, fractional, i.e. the results of [5], and classical harmonic maps,
[16]. Consequently, there is hope to obtain new approaches to the
classical energy E1 by investigating the regularizing mechanisms of the
fractional harmonic maps.

Nevertheless, the energy Ẽ1 = ‖∆ 1
2v‖nLn is different from E1 =

‖∇v‖nLn , and it is easier to handle: Indeed it turned out that the reg-

ularity of critical points of Ẽs in [7] follows essentially from the theory
of fractional harmonic maps into spheres [6, 20], since it is possible to
treat |∆ s

2v|ns−2 simply as a weight. In particular, the arguments [7] fail
to recover Strzelecki’s/Fuchs’ result [22, 9] for E1.

Hence, here we are interested in the regularity of critical points of
the energy

Es(v) :=

∫
Rn
|∇sv|

n
s , v : Ω→ SN−1.

Here,

∇sv =
(
R1[∆

s
2v],R2[∆

s
2v], . . . ,Rn[∆

s
2v]
)T
,

where Rα is the α-th Riesz transform, i.e. the operator with Fourier
symbol iξα/|ξ|. Let us also remark, that there has recently been some
interest in the classical theory of linear and non-linear equations in-
volving ∇s [21].
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Now Es contains for s = 1 the classical n-harmonic maps case

E1(v) :=

∫
Rn
|∇v|n, v : Ω→ SN−1.

We then obtain the following theorem

Theorem 1.1. Let u : Rn → RN , s ∈ (0, n) such that Es(u) < ∞,
u(Ω) ⊂ SN−1, and assume that u is a critical point of Es, i.e.

d

dt

∣∣∣
t=0
Es

(
u+ tϕ

|u+ tϕ|

)
= 0 for any ϕ ∈ C∞0 (Ω,RN).

Then there exists α > 0 such that u ∈ C0,α(Ω).

As mentioned above, one of our main motivations for this work was to
obtain an argument that extends to the classical case of E1. We think
that the new proof for [22] following from the proof of Theorem 1.1 is
interesting in its own right, since it seems to be more robust than the
original proof, or Hélein’s proof for the n = 2 case [11]. In Section 2
we describe a possibly new angle for a proof of Hélein’s [11], and then
describe how our argument for Es can extend this idea to the n-case
treated in [22, 9]. In particular, in this part we explain the main steps
of the proof of Theorem 1.1.

In the classical case s = 1, the arguments for the sphere case [11] can
be naturally extended to more general manifolds with symmetries [12],
using Noether’s theorem. For the p-harmonic case, cf. [23]. In the case
of small s < 1, we lose the ability to work with tangent spaces, since
∂iu is only a distribution. Nevertheless, it not too difficult to extend
our argument to a very special case of a Lie Group. Indeed, the case
where the unit sphere SN−1 is replaced by the special orthogonal group
SO(N) ⊂ RN×N follows along the same lines as Theorem 1.1.

Theorem 1.2. Let u : Rn → RN×N , s ∈ (0, n) such that Es(u) < ∞,
u(Ω) ⊂ SO(N). Let π : Bδ(SO(N)) → SO(N) be the orthogonal
projection from a tubular neighbourhood onto SO(N), and assume that
u is a critical point of Es, i.e.

d

dt

∣∣∣
t=0
Es (π(u+ tϕ)) = 0 for any ϕ ∈ C∞0 (Ω,RN×N).

Then there exists α > 0 such that u ∈ C0,α(Ω).

The proof of Theorem 1.1 and Theorem 1.2 are given in Section 3.

We introduce some notation in Section 3, but let us remark here,
that we will make frequent use of Einstein’s notation, i.e. summing over
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repeated indices. Also we will denote with Greek symbols coordinates
in the domain, in particular ∂α is the α’s derivative. Coordinates in
the target will be denoted by roman letters, such as (ui(x))Ni=1 ∈ RN .
With -, ≈ we denote estimates up to multiplicative constants (which
depend on dimension, s, etc., but not on relevant information), i.e.
A - B means that there is some C > 0 such that A ≤ C B. Also we
will denote the Lp(A)-norm by ‖ · ‖p,A. With p′ we denote the Hölder
dual of p, p′ = p

p−1 .

2. A regularity proof for n-harmonic maps into spheres

In this section we explain a scheme for proving two classical results:
first for n = 2 Hélein’s [11] regularity for harmonic maps into spheres,
and then for n > 2 Strzelecki’s/Fuchs’ [22, 9] regularity for n-harmonic
maps into spheres. The n = 2-case uses ideas developed in [6, 20]
which treated the fractional harmonic maps into spheres. The case
n > 2 follows from the proof of Theorem 1.1.

The arguments presented here are more lengthy and seem more com-
plicated than the beautiful proofs by Hélein and Strzelecki. On the
other hand, they are robust enough under disturbances, and work in
particular with with non-local operators.

The two-dimensional case. For n = 2, a critical point of the energy
E1(v) =

∫
|∇v|2, v : Ω→ SN−1, satisfies

(2.1) ∆u = u |∇u|2 in Ω.

The goal is to show that there is a τ < 1, on all (small) balls B4r ⊂ Ω,

(2.2)

∫
Br

|∇u|2 ≤ τ

∫
B4r

|∇u|2 + good terms.

Indeed, if we assume (2.2) and the “good terms” behave as their name
suggests, crucially using that τ < 1 by iteration1 we obtain a σ ∈ (0, 1)
such that for any small ball Bρ

(2.3)

∫
Bρ

|∇u|2 ≤ ρσ(E1(u) + C).

The estimate (2.3) tells us that ∇u belongs to the Morrey space Mσ,2

strictly smaller than L2 ≡M0,2. Without (2.2) from ∇u ∈ L2 Sobolev

1For this kind of iteration, and the following Morrey and Campanato spaces, we
refer to [10, Chapter III], and for Sobolev imbedding to [1].
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embedding implied only u ∈ BMO = Ln,2, where Lλ,p are the Cam-
panato spaces; now from ∇u ∈ Mσ,2 via Sobolev imbedding we infer

that u ∈ L4 1−σ
2−σ ,2 = C0,2 1−σ

2−σ . That is, (2.2) implies Hölder regularity of
u.

In order to obtain (2.2), one might be tempted to just multiply (2.1)
with u (up to a cutoff-functions) and integrate by parts, but this implies
only ∫

Br

|∇u|2 ≤ ‖u‖L∞(B4r)

∫
B4r

|∇u|2 + good terms

at best. So the main idea which was used in [6, 20] is to split up ∇u:
Since |u| ≡ 1, for any x ∈ Ω, α = 1, 2

|∂αu(x)| - |u(x) · ∂αu(x)|+ max
o⊥u(x),|o|=1

|o · ∂αu(x)|.

On the other hand, it is not too difficult to show, that

max
o⊥u(x),|o|=1

|o · ∂αu(x)| - max
ω
|uiωij∂αu(x)|,

where the maximum is over all finitely many ω ∈ Rn×n, ωij = −ωji ∈
{−1, 0, 1}. This can be seen as a consequence of Lagranges identity,
also the proof is given in the appendix of [7]. That is,

(2.4) |∂αu(x)| - |u(x) · ∂αu(x)|+ max
ω
|uiωij∂αu(x)|.

Now,

u(x) · ∂αu(x) =
1

2
∂α|u(x)|2 =

1

2
∂α1 = 0.

Thus, in order to obtain (2.2), we need to show for an arbitrary but
constant ω ∈ Rn×n, ωij = −ωji ∈ {−1, 0, 1},

(2.5)

∫
Br

|uiωij∇uj|2 ≤ τ

∫
B4r

|∇u|2 + good terms.

But now, (2.1) together with the antisymmetry of ω implies
div(uiωij∇uj) = 0, and

curl(uiωij∇uj) = ωij ∇⊥ui ∇uj,

where ∇⊥ = (−∂2, ∂1)T . Since ω is constant, the right-hand side is
a product of divergence-free and rotation-free vectorfields and by [3]
belongs to the Hardy space. In particular it can be tested against
BMO-functions (such as u), and by a Hodge-decomposition this implies∫

Br

|uiωij∇uj|2 ≤ C [u]BMO,B4r

∫
B4r

|∇u|2 + good terms.
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Now in contrast to ‖u‖L∞(B4r), for small enough radii r we know that
[u]BMO,B4r is small from which we can construct τ < 1 in (2.5) and
thus in particular we have (2.2), which implies Hölder continuity.

The general case. If n > 2, the Euler-Lagrange equations (2.1) be-
come

(2.6) div(|∇u|n−2∇u) = u |∇u|n in Ω.

Following the rough idea of the 2D-case, one wants to show now that
there is a τ < 1, and on all (small) balls B4r ⊂ Ω,

(2.7)

∫
Br

|∇u|n ≤ τ

∫
B4r

|∇u|n + good terms,

which again implies immediately Hölder regularity of u.

Now, one would decompose |∇u| as in (2.4), and we would try show
the existence of τ < 1 such that∫

Br

∣∣|∇u|n−2 uiωij∇uj∣∣n′ ≤ τ

∫
B4r

|∇u|n + good terms.

In order to do that, one would compute that the divergence

div(|∇u|n−2 uiωij∇uj) = 0,

but when one computes the rotation a problem occurs, since in general
for n 6= 2 it is not clear why it should be true that

curl(|∇u|n−2 uiωij∇uj) ∈ H1.

We conclude that it does not seem feasible to decompose |∇u| in that
way.

Instead, one first shows, see Lemma 4.1

(2.8) ‖∇u‖nn,Br -
∫
B2r

∣∣Rα[|∇u|n−2∂αu]
∣∣n′ + good terms.

Recall that Rα denotes the the α-th Riesz transform, and that accord-
ing to Einstein’s summation convention we sum over α = 1, . . . , n. Es-
timate (2.8) is the crucial point that makes our argument work: trying
to estimate |∇u|n−2∇u seems to inevitably lead to a rotation-problem,
like the one that spoiled our first attempt above. Instead, we estimate
R[|∇u|n−2∇u], a term which looks more complicated, but where this
rotation-problem does not appear:
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We decompose as in (2.4),

|Rα[|∇u|n−2 ∂αu]| - |uiRα[|∇u|n−2 ∂αui]|(2.9)

+ max
ω
|uiωijRα[|∇u|n−2 ∂αuj]|.

We shall call the first term the orthogonal part (since u(x) is orthogonal
to the tangential space Tu(x)SN−1). It is now non-zero (in contrast to
the n = 2- case), but ui∂αu

i = 0 still implies

(2.10) uiRα[|∇u|n−2 ∂αui] = C(ui,Rα)[|∇u|n−2 ∂αui],

where C denotes the commutator,

(2.11) C(b, T )[v] = bT [v]− T [bv].

Now we employ the Coifman-Rochberg-Weiss Theorem [4] which states
that C(b,Rα)[·] is bounded on Lp(Rn) for p ∈ (1,∞) whenever b ∈
BMO(Rn) with

‖C(b, T )[f ]‖p,Rn - [b]BMO ‖f‖p,Rn .

Together with a localization argument, we thus obtain

‖uiRα[|∇u|n−2 ∂αui]‖Ln′ (B2r)

- [u]BMO,B3r ‖|∇u|n−2 ∂αui‖Ln′ (B3r)
+ good terms

- [u]BMO,B3r ‖∇u‖n−1Ln(B3r)
+ good terms.

The “good terms” stem from cut-off functions, and for the precise for-
mulation we refer to Lemma 3.1. Now, we can use that [u]BMO is small
on small sets, and have for the orthogonal part, that for some τ < 1,

(2.12) ‖uiRα[|∇u|n−2 ∂αui]‖Ln′ (B2r)
≤ τ

2
‖∇u‖n−1Ln(B3r)

+ good terms.

It remains to estimate the “tangential part”, and here we use the equa-
tion (2.6). Firstly, by Lemma A.2, for some ϕ ∈ C∞0 (B2r), ‖∇ϕ‖n ≤ 1,

‖uiωijRα[|∇u|n−2 ∂αuj]‖n′,B2r(2.13)

-
∫
Rn
uiωijRα[|∇u|n−2 ∂αuj] ∆

1
2ϕ+ good terms.

Now since Rα∆
1
2 = ∂α, and using (2.6),

∆
1
2Rα[|∇u|n−2 ∂αuj] = div(|∇u|n−2∇uj) = |∇u|nuj,

and consequently,

(2.14)

∫
Rn
ϕ uiωij∆

1
2Rα[|∇u|n−2 ∂αuj] = 0.
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Moreover, by the antisymmetry of ω,

(2.15) ωijRα[∆
1
2u] |∇u|n−2 ∂αuj ≡ 0.

We recall the bi-commutator Hs, which measures how much ∆
s
2 is away

from having a product rule,

(2.16) Hs(a, b) = ∆
s
2 (ab)− a∆

s
2 b− b∆

s
2a.

From (2.13) we then have

‖uiωijRα[|∇u|n−2 ∂αuj]‖n′,B2r

(2.14)

- − ωij
∫
Rn
H1(u

i, ϕ) Rα[|∇u|n−2 ∂αuj]

− ωij
∫
Rn

∆
1
2ui Rα[|∇u|n−2 ∂αuj] ϕ

+ good terms

(2.15)
= ωij

∫
Rn
H1(u

i, ϕ) Rα[|∇u|n−2 ∂αuj]

+ ωij

∫
Rn

∆
1
2ui C(Rα, ϕ)[|∇u|n−2 ∂αuj]

+ good terms

where C(·, ·)[·] is again the commutator defined in (2.11). The estimates
on bi-commutators established in [6, 18] and the commutator estimates
in [4], imply

‖uiωijRα[|∇u|n−2 ∂αuj]‖n′,B2r

- ‖∆
1
2u‖n,B4r ‖∇u‖n−1n,B4r

(
‖∆

1
2ϕ‖n + [ϕ]BMO

)
+ good terms.

Since ∇u ∈ Ln, so is ∆
1
2u, and for small radii, we have

‖uiωijRα[|∇u|n−2 ∂αuj]‖n′,B2r ≤
τ

2
‖∇u‖n−1n,B4r

+ good terms.

This, (2.12) and the decomposition (2.9), imply (2.7), which again
implies regularity. �

In the remaining part of the paper we give the details of the argu-
ments sketched above – in the setting of Theorem 1.1 and Theorem 1.2.

In the next section we prove the decay estimate of Lemma 3.1 which
serves as generalization of the goals (2.2), (2.7) above and from which
the theorems follow.

The first ingredient needed in the proof of Lemma 3.1 is the “left-
hand side” estimate Lemma 4.1 which serves as a generalization of
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(2.8) in that it estimates ‖∆ s
2u‖ps in terms of ‖Rβ[|∇su|ps−2 ∂sβu]‖p′s .

Then, after using a splitting argument as in (2.9), we have two parts
– the orthogonal part u · Rβ[|∇su|ps−2 ∂sβu] which is estimated in

Lemma 5.1, and the tangential part uiωijRβ[|∇su|ps−2 ∂sβuj] estimated
in Lemma 6.1.

3. The Goal

The analogue of the “goal” (2.2), (2.7) is the following Lemma, for
which we need to introduce some notation: We fix some reference ball
scale BR(x0) ⊂ Ω. If χA is the characteristic function on A, we denote
for l ∈ Z,

(3.1)
•
χl := χB

2lR
(x0), and

◦
χl :=

•
χl −

•
χl−1.

Lemma 3.1. Let ps := n
s
. Assume that u as in Theorem 1.1 or The-

orem 1.2. Then for some L0 ∈ Z, K0 ∈ N, τ ∈ (0, 1), σ > 0, for any
L ≤ L0, K ≥ K0,

‖ •χL∆
s
2u‖psps ≤ τ ‖ •χL+K∆

s
2u‖psps + C 2−Kσ

∞∑
l=1

2−lσ ‖ •χL+K+l∆
s
2u‖psps .

This Lemma implies Theorem 1.1, Theorem 1.2 by iteration and
Sobolev imbedding, essentially as described in Section 2. For the de-
tails, we refer to, e.g., [6] and also to the appendix in [2].

Proof of Lemma 3.1. Before starting the proof, we set

“good terms (C,K, σ)” := C 2−Kσ
∞∑
l=1

2−lσ ‖ •χL+K+l∆
s
2u‖psps .

Note that for any ε > 0 there is K sufficiently large such that for any
K̃ > K,

“good terms (C,K, σ)”

≤ ε‖ •χL+K̃∆
s
2u‖psps + C 2−K̃

K
K̃
σ
∞∑
l=1

2−lσ ‖ •χL+K̃+l∆
s
2u‖psps

= ε‖ •χL+K̃∆
s
2u‖psps + “good terms (C, K̃, σ̃)”,

where σ̃ = K
K̃
σ. Consequently, for proving the claim, we don’t need

to care to much about the precise values of K, C, σ, as long as K is
sufficiently large.
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Now we start the proof: Fix ε > 0 to be determined later. By
Lemma 4.1, for some τ ∈ (0, 1),

‖ •χL∆
s
2u‖psps ≤ τ ‖ •χL+K∆

s
2u‖psps + “good terms”

+ C ‖ •χL+KRβ[|∇su|ps−2 ∂sβu]‖p
′
s

p′s
.(3.2)

Let us first concentrate on the sphere case: we use the decomposition
(2.9), which is valid as long as suppχL+K ⊂ Ω.

‖ •χL+KRβ[|∇su|ps−2 ∂sβu]‖p
′
s

p′s

- ‖ui •χL+KRβ[|∇su|ps−2 ∂sβui]‖
p′s
p′s

+max
ω
‖ujωij

•
χL+KRβ[|∇su|ps−2 ∂sβuj]‖

p′s
p′s

For the first term we use Lemma 5.1,

‖ui •χL+KRβ[|∇su|ps−2 ∂sβui]‖
p′s
p′s

-
(
‖ •χL+2K∆

s
2u‖ps + 2−Kσ

)p′s ‖ •χL+2K∆
s
2u‖psps .

If K ∈ N is large enough, and L ∈ Z negative enough so that

‖χL+2K∆
s
2u‖p

′
s
ps < ε by absolute continuity of the integral, and 2−Kσp

′
s <

ε, we arrive at

‖ •χL∆
s
2u‖psps ≤ (τ + Cε) ‖ •χL+2K∆

s
2u‖psps + “good terms”

+ max
ω
‖ujωij

•
χL+KRβ[|∇su|ps−2 ∂sβuj]‖

p′s
p′s
.

For the second term, we first use Lemma A.2 and then Lemma 6.1, to
obtain

‖ujωij
•
χL+KRβ[|∇su|ps−2 ∂sβuj]‖

p′s
p′s
- (‖ •χL+2K∆

s
2u‖p′sps+2−σK)‖ •χL+K∆

s
2u‖psps+“good terms”.

Again, if K is large enough L+ 2K is small enough, this implies

‖ujωij
•
χL+KRβ[|∇su|ps−2 ∂sβuj]‖

p′s
p′s
- ε ‖ •χL+K∆

s
2u‖psps + “good terms”.

Thus, we finally arrive at

‖ •χL∆
s
2u‖psps ≤ (τ + Cε) ‖ •χL+2K∆

s
2u‖psps + “good terms”.

Since C is a generic constant, depending on the dimension, s, and
possibly ‖∆ s

2u‖ps , if ε was chosen small enough such that τ̃ := τ+Cε <
1 this gives the claim with τ̃ instead of τ .

In the case of SO(N), in (3.2) we use decomposition Proposition C.1.
Then, for symmetric θij = θji ∈ {−1, 0, 1} (i.e. the orthogonal part),
we apply Lemma 5.2 to

‖ •χL+KθijuikRβ[|∇su|ps−2 ∂sβukj]‖
p′s
p′s
,
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and Lemma 6.2 to antisymmetric ωij = ωji ∈ {−1, 0, 1} (i.e. the
tangential part) to

‖ •χL+KωijuikRβ[|∇su|ps−2 ∂sβukj]‖
p′s
p′s
,

and obtain exactly the same estimates. �

4. Estimates on the Left-hand side

Here, we prove the estimate that leads to (2.8). It is an extension
and localization of the following simple argument

‖∇u‖nn =

∫
|∇u|n−2∇u · ∇u =

∫
|∇u|n−2∂αu Rα∆

1
2u

= −
∫
Rα[|∇u|n−2∂αu] ∆

1
2u - ‖Rα[|∇u|n−2∂αu]‖n′ ‖∆

1
2u‖n′ .

Now one uses that ‖∆ 1
2u‖p ≈ ‖∇u‖p, and obtains an estimate similar

to (2.8).

Although this arguments seems trivial, it is related to one of the main
problems in the n-harmonic map case, or related n-laplace PDE’s, e.g.
such as [8]:

By the Iwaniec stability result [13], one can prove an estimate like
(2.8) also for p ≈ n, i.e.

‖∇u‖pp - ‖Rα[|∇u|n−2∂αu]‖
p
p−1

p
2p−n−1

,

However, to our knowledge, it is not known whether

‖∇u‖n(n,∞) - ‖Rα[|∇u|n−2∂αu]‖n′(n′,∞),

where L(n,∞) is the weak Ln-space. If proven, this estimate would
possibly be quite useful, in analogy to the n = 2 case of harmonic
maps [12] where one uses estimates of ∇u in L(2,∞)(R2).

Lemma 4.1 (Left-Hand side). Recall (3.1). There exists a constant
T1, a τ ∈ (0, 1), σ > 0, such for any T ≥ T1, and any u,

‖ •χS∆
s
2u‖psps ≤ C ‖ •χS+TRβ[|∇su|ps−2 ∂sβu]‖p

′
s

p′s

+ τ ‖ •χS+T∆
s
2u‖psps

+ C 2−Tσ
∞∑
l=1

2−lσ ‖ •χS+T+l∆
s
2u‖psps .
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Proof. In order to reduce the number of indices a little bit, we assume
S = 0. This is fine, since all the arguments in the following can be
shifted by +S. We follow the argument presented at the beginning of
this section, only taking care about localization. Then we have,

‖ •χ0 ∇su‖psps =

∫
Rn
|∇su|ps−2 ∂sβui · Rβ[

•
χK∆

s
2ui]

−
∫

(
•
χK+L −

•
χ0) |∇su|ps−2 ∂sβui · Rβ[

•
χK∆

s
2ui]

−
∞∑

l=K+L+1

∫
◦
χl |∇su|ps−2 ∂sβui · Rβ[

•
χK∆

s
2ui]

+
∞∑

k=K+1

∫
Rn

•
χ0|∇su|ps−2 ∂sβui · Rβ[

◦
χk∆

s
2ui]

=: I − II − III + IV.

The first term I is exactly the part we want. Young’s inequality and
partial integration of Rβ implies for any ε > 0,

I ≤ C

εp′s
‖ •χK Rβ[|∇su|ps−2 ∂sβui]‖

p′s
p′s

+ εps‖ •χK ∆
s
2ui‖psps .

Next for any δ > 0,

II ≤ C

δp′s
‖( •χK+L −

•
χ0)|∇su|‖psps + δps‖ •χK ∆

s
2ui‖psps .

Then we apply Lemma A.3, and have for any M ≥ 2,

II ≤ C

δp′s
‖( •χK−L+M −

•
χ−M) ∆

s
2u‖psps

+
C

δp′s

∞∑
k=1

2−(M+k)n
p ‖ ◦χK−L+M+k ∆

s
2u‖psps

+ 2(K−L)n−Mn(ps−1) C

δp′s
‖ •χ−M ∆

s
2u‖psps

+ δps‖ •χK ∆
s
2ui‖psps .
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Now we treat III. Applying Lemma A.5, and Lemma A.1,

III -
∞∑

l=K+L+1

‖ ◦χl∇su‖ps−1ps ‖
◦
χlRβ[

•
χK∆

s
2ui]‖ps

-
∞∑

l=K+L+1

(
‖ •χl+M∆

s
2u‖ps +

∞∑
k=1

2−
n
p
(M+k)‖ ◦χl+M+k∆

s
2u‖ps

)ps−1

2
(K−l) n

p′s ‖ •χK∆
s
2ui‖ps

-
∞∑

l=K+L+1

(
‖ •χl+M∆

s
2u‖ps−1ps + 2

−M n
p′

∞∑
k=1

2−
n
p
(k)min{(ps−1),1}‖ ◦χl+M+k∆

s
2u‖ps−1ps

)
2
(K−l) n

p′s ‖ •χK∆
s
2ui‖ps

-
∞∑

l=K+L+1

2
(K−l) n

p′s ‖ •χl+M∆
s
2u‖psps

+

{∑∞
i=1 2

− n
p′s

(L+M+1+i) |i| ‖ ◦χK+L+M+1+i∆
s
2u‖psps ps ≤ 2,∑∞

i=1 2
− n
p′s
M

2
n
p′s
K

2−
n
ps
i ‖ ◦χK+L+M+1+i∆

s
2u‖psps ps > 2.

Finally, for any γ > 0,

IV -‖ •χ0∇su‖ps−1ps

∞∑
k=K+1

2−k
n
p ‖ •χk∆

s
2ui‖ps

-γp
′
s‖ •χ0∇su‖psps + γ−ps 2

−K n
p′s

∞∑
k=K+1

2−k
n
ps ‖ •χk∆

s
2u‖psps .

Together, we arrive for some constant C depending only on ps and the
dimensions, for any ε, δ, γ ∈ (0, 1), and for any K,L,M ∈ N, and ≥ 2

‖ •χ0 ∇su‖psps ≤
C

εp′s
‖ •χK Rβ[|∇su|ps−2 ∂sβui]‖

p′s
p′s

+ εps‖ •χK ∆
s
2ui‖psps

+
C

δp′s

(
‖( •χK−L+M −

•
χ−M) ∆

s
2u‖psps

+
∞∑
k=1

2−(M+k)n
p ‖ ◦χK−L+M+k ∆

s
2u‖psps

+2(K−L)n−Mn(ps−1) ‖ •χ−M ∆
s
2u‖psps

+δps‖ •χK ∆
s
2ui‖psps

+
C

δp′s

∞∑
l=K+L+1

2
(K−l) n

p′s ‖ •χl+M∆
s
2u‖psps

+C

{∑∞
i=1 2

− n
p′s

(L+M+1+i) |i| ‖ ◦χK+L+M+1+i∆
s
2u‖psps ps ≤ 2,∑∞

i=1 2
− n
p′s
M

2
n
p′s
K

2−
n
ps
i ‖ ◦χK+L+M+1+i∆

s
2u‖psps ps > 2.
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+Cγp
′
s‖ •χ0∇su‖psps + Cγ−ps 2

−K n
p′s

∞∑
k=K+1

2−k
n
ps ‖ •χk∆

s
2ui‖psps .

If we take γ > 0 so that Cγp
′
s < 1

2
, we can substract Cγp

′
s‖ •χ0∇su‖psps on

both sides and then divide the whole estimate by (1 − Cγp′s) ∈ (1
2
, 1).

We now set M := 2K, L = 2K, and regroup the above estimate.
Firstly, each tail, i.e. each term involving infinite sums can be estimated
by

C
(

1 + δ−p
′
s + γ−ps

)
2−Kσ1

∞∑
l=1

2−lσ2 ‖ •χ5K+l∆
s
2u‖psps ,

if σ1, σ2 > 0 are just small enough. Of the remaining terms, all but
two can be estimated by

C

(
1

δp′s
2−K(n+2ps−2) + δps + εps

)
‖ •χK ∆

s
2u‖psps .

So we arrive at

‖ •χ0 ∇su‖psps ≤
C

εp′s
‖ •χK Rβ[|∇su|ps−2 ∂sβui]‖

p′s
p′s

+
C

δp′s
‖( •χK −

•
χ−2K) ∆

s
2u‖psps

+ C

(
1

δp′s
2−K(n+2ps−2) + δps + εps

)
‖ •χK ∆

s
2u‖psps

+ C
(

1 + δ−p
′
s + γ−ps

)
2−Kσ1

∞∑
l=1

2−lσ2 ‖ •χ5K+l∆
s
2u‖psps

Now, for some S ∈ N we convert the left-hand side into a ∆
s
2 -term: By

Lemma A.4

‖ •χ−S∆
s
2u‖ps - ‖

•
χ0∇su‖p +

∞∑
l=1

l 2−
n
p
(S+l)‖ ◦χl∆

s
2u‖ps
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Together with the above estimate we arrive at,

‖ •χ−S∆
s
2u‖psps ≤

C

εp′s
‖ •χK Rβ[|∇su|ps−2 ∂sβui]‖

p′s
p′s

+
C

δp′s
‖( •χK −

•
χ−2K) ∆

s
2u‖psps

+ C

(
1

δp′s
2−Kσ1 + δps + εps

)
‖ •χK ∆

s
2u‖psps

+ C (
(

1 + δ−p
′
s + γ−ps

)
2−Kσ1 + 2−Sσ1)

∞∑
l=1

2−lσ2 ‖ •χ5K+l∆
s
2u‖psps .

The proof of the above estimate did not depend at all on the scale, so
we can shift all indices by +S. Setting S := 2K, for possibly smaller
σ1, σ2, for any T ∈ N, T ≥ T0 for some uniform T0 > 0, we have shown

‖ •χ0∆
s
2u‖psps ≤

C

εp′s
‖ •χT Rβ[|∇su|ps−2 ∂sβui]‖

p′s
p′s

+
C

δp′s
‖( •χT −

•
χ0) ∆

s
2u‖psps

+ C

(
1

δp′s
2−Tσ1 + δps + εps

)
‖ •χT ∆

s
2u‖psps

+ C
(

1 + δ−p
′
s + γ−ps

)
2−Tσ1

∞∑
l=1

2−lσ2 ‖ •χT+l∆
s
2u‖psps .

Adding C

δp
′
s
‖ •χ0 ∆

s
2u‖psps on both sides and dividing by (1 + C

δp
′
s
), we

have

‖ •χ0∆
s
2u‖psps ≤ (1 +

C

δp′s
)−1

C

εp′s
‖ •χT Rβ[|∇su|ps−2 ∂sβui]‖

p′s
p′s

+ (1 +
C

δp′s
)−1
(
C

δp′s
+ C

(
1

δp′s
2−Tσ1 + δps + εps

))
‖ •χT ∆

s
2u‖psps

+ (1 +
C

δp′s
)−1C

(
1 + δ−p

′
s + γ−ps

)
2−Tσ1

∞∑
l=1

2−lσ2 ‖ •χT+l∆
s
2u‖psps .

Now we choose ε, δ, and then T1 ≥ T0 such that for any T ≥ T1,

C

(
1

δp′s
2−Tσ1 + δps + εps

)
< 1.
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Then for some τ < 1, for any T ≥ T1,

‖ •χ0∆
s
2u‖psps ≤ C̃ ‖ •χT Rβ[|∇su|ps−2 ∂sβui]‖

p′s
p′s

+ τ ‖ •χT ∆
s
2u‖psps

+ C̃ 2−Tσ1
∞∑
l=1

2−lσ2 ‖ •χT+l∆
s
2u‖psps .

�

5. Right-hand side I: orthogonal part

The following lemma is the fractional analogue of the argument in
(2.10):

Lemma 5.1. For any K ∈ Z, L ∈ N, L ≥ L0, and any u the following
holds: If χ2L|u| ≡ 1, then for some uniform σ > 0,

‖ •χKui Rβ[|∇su|ps−2 ∂sβui]‖p′s
-
(
‖ •χK+L∆

s
2u‖ps + 2−Lσ

)
‖ •χK+L∆

s
2u‖ps−1ps

+ (1 + ‖∆
s
2u‖ps)

∞∑
k=1

2−(L+k)σ‖ •χK+L+k∆
s
2u‖ps−1ps .

Proof. Again, we may assume K = 0, in order to work with fewer
indices.

For any constant ci, we again decompose the quantity in question
into differently localized terms

•
χ0u

i Rβ[|∇su|ps−2 ∂sβui] = I + II + III,

Recall the definition (2.11) of the commutator C(·,R)[·], then

I :=
•
χ0Rβ[

•
χL|∇su|ps−2 ui∂sβui],

II :=
•
χ0 C(

•
χL(ui − ci), Rβ)[

•
χL|∇su|ps−2 ∂sβui],

III :=
∞∑
l=1

•
χ0u

i Rβ[
◦
χL+l|∇su|ps−2 ∂sβui].

Firstly, for II, by the usual Rochberg-Weiss commutator theorem,

‖II‖p′s - [
•
χL(ui − ci)]BMO ‖

•
χL|∇su|ps−1‖p′s = [

•
χL(ui − ci)]BMO ‖

•
χL∇su‖ps−1ps .
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Since ci was chosen arbitrarily, we can employ Lemma B.2 and then
Lemma A.5, and obtain some σ > 0, some S ≥ 2, for which

‖II‖p′s - ‖
•
χL+S∆

s
2u‖psps + ‖∆

s
2u‖ps

∞∑
k=1

2−(S+k)σ‖ •χL+S+k∆
s
2u‖ps−1ps .

As for I,

‖I‖p′s - ‖
•
χL ∇su‖ps−2ps ‖ •χL u · ∂sβu‖ps .

With the bi-commutator

HT (a, b) := T (ab)− aTb− bTa,

we then have

χLu · ∂sβu = −1

2
χLH∂sβ

(u, u)− χL
1

2
∂sβ|u|2

Since χ2L|u| ≡ 1 we can use the arguments on bi-commutators, in e.g.
[2, 7], to conclude that for some σ > 0,

‖ •χL u·∂sβu‖ps - ‖
•
χL+S∆

s
2u‖2ps+2−Lσ‖ •χL+S∆

s
2u‖ps+

∞∑
k=1

2−(S+k)σ‖ •χL+S+k∆
s
2u‖2ps ,

and consequently for possibly a smaller σ, using Lemma A.5, we have

‖I‖p′s - ‖
•
χL+S∆

s
2u‖psps+2−Lσ‖ •χL+S∆

s
2u‖ps+‖∆

s
2u‖ps

∞∑
k=1

2−(S+k)σ‖ •χL+S+k∆
s
2u‖ps−1ps .

It remains to analyze III, which we do by Lemma A.1

‖III‖p′s -
∞∑
l=1

2
− n
p′s

(L+l) ‖ ◦χL+l|∇su|ps−1‖p′s

- 2
− n
p′s
L‖ •χL+S∆

s
2u‖ps−1ps +

∞∑
l=1

2−σ(L+S+l) ‖ ◦χL+l∆
s
2u‖ps−1p′s

.

Taking again S a multiple of L and adjusting σ, the claim is established.
�
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For the SO(N)-case, we use essentially the same argument: If θij =
θji and QkiQkj = δij,

θijQ
kiRα[|∇sQ|ps−2∂sαQkj]

=θijRα[|∇sQ|ps−2Qki∂sαQ
kj]

+ θij C(Qki,Rα)[|∇sQ|ps−2∂sαQkj]

θ∈sym
=

1

2
θijRα[|∇sQ|ps−2

(
Qki∂sαQ

kj + (∂sαQ
ki) Qkj

)
]

+ θij C(Qki,Rα)[|∇sQ|ps−2∂sαQkj]

QTQ≡I
=

1

2
θijRα[|∇sQ|ps−2

(
Qki∂sαQ

kj + (∂sαQ
ki) Qkj − ∂sα(QkiQkj)

)
]

+ θij C(Qki,Rα)[|∇sQ|ps−2∂sαQkj]

=
1

2
θijRα[|∇sQ|ps−2 H∂sα(Qki, Qkj)]

+ θij C(Qki,Rα)[|∇sQ|ps−2∂sαQkj]

Thus, we obtain the following

Lemma 5.2. For any K ∈ Z, L ∈ N, L ≥ L0, and any u the following
holds: If χ2Lu

Tu ≡ 1, then for some uniform σ > 0,

‖ •χKθijuki Rβ[|∇su|ps−2 ∂sβukj]‖p′s
-
(
‖ •χK+L∆

s
2u‖ps + 2−Lσ

)
‖ •χK+L∆

s
2u‖ps−1ps

+ (1 + ‖∆
s
2u‖ps)

∞∑
k=1

2−(L+k)σ‖ •χK+L+k∆
s
2u‖ps−1ps .

6. argument: tangential part

Lemma 6.1. Let u be as in Theorem 1.1. For any ωij = −ωji ∈
{−1, 0, 1}, any smooth suppϕ ⊂ supp

•
χL, L ∈ Z

ωij

∫
∆

s
2ϕ uj Rβ[|∇su|ps−2Rβ[∆

s
2ui]]

-‖ •χL+K∆
s
2u‖psps + ‖∆

s
2u‖ps,Rn

∑
k=1

2−σ(k+L+K)‖ •χL+K+k∆
s
2u‖ps−1ps

Proof. Again we show the claim for
•
χ0 instead of

•
χL. The Euler-

Lagrange equations imply that for any ϕ ∈ C∞0 (Ω), we have for
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ωij = −ωji ∈ {−1, 0, 1}

(6.1) ωij

∫
Rn
Rβ[|∇su|ps−2Rβ[∆

s
2ui]] ∆

s
2 (ujϕ) = 0.

This is true, since (uiωijϕ)j ∈ RN is perpendicular to TuSN−1 and using
partial integration of Rβ.

On the other hand, by the antisymmetry of ω,

(6.2) ωij

∫
Rn
|∇su|ps−2Rβ[∆

s
2ui] Rβ[∆

s
2uj]ϕ = 0.

Consequently, recalling the definition of the commutator C(·, T )[·) in
(2.11) and the bi-commutator Hs defined in (2.16),

ωij

∫
∆

s
2ϕ uj Rβ[|∇su|ps−2Rβ[∆

s
2ui]]

=− ωij
∫
Hs(ϕ, u

j) Rβ[|∇su|ps−2Rβ[∆
s
2ui]]

− ωij
∫

•
χ2KC(ϕ,Rβ)[

•
χK∆

s
2uj] |∇su|ps−2Rβ[∆

s
2ui]

−
∞∑
l=1

ωij

∫
•
χ0ϕRβ[

◦
χK+l∆

s
2uj] |∇su|ps−2Rβ[∆

s
2ui]

+
∞∑
k=1

ωij

∫
◦
χ2K+kRβ[ϕ ∆

s
2uj] |∇su|ps−2Rβ[∆

s
2ui]

=: I + II + III + IV.

For the first term, by the usual arguments on bi-commutators, e.g., as
in [2, Lemma 3.2.], [7, Lemma 2.8], using also again Lemma A.5, we
obtain readily,

|I| - ‖ •χK∆
s
2u‖psps + ‖∆

s
2u‖ps,Rn

∑
k=1

2−σ(k+K)‖ •χK+k∆
s
2u‖ps−1ps

For the second term, we use again the Rochberg-Weiss commutator
theorem [4], and then again Lemma A.5,

|II| - ‖ •χ2K∇su‖ps−1ps [ϕ]BMO ‖
•
χK∆

s
2u‖ps

- ‖ •χK∆
s
2u‖psps + ‖∆

s
2u‖ps,Rn

∑
k=1

2−σ(k+K)‖ •χK+k∆
s
2u‖ps−1ps .
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As for III, by Poincaré inequality and the localization Lemma A.1,
and yet again Lemma A.5,

|III| -
∞∑
l=1

∫
•
χ0ϕRβ[

◦
χK+l∆

s
2uj] |∇su|ps−2Rβ[∆

s
2ui]

-
∞∑
l=1

‖ •χ0Rβ[
◦
χK+l∆

s
2uj]‖∞ ‖ϕ‖ps ‖

•
χ0∇su‖ps−1ps

-
∞∑
l=1

2−(K+l) n
ps ‖ ◦χK+l∆

s
2uj‖ps ‖

•
χ0∇su‖ps−1ps

- ‖ •χ2K∆
s
2u‖psps + ‖∆

s
2u‖ps,Rn

∑
k=1

2−σ(k+2K)‖ •χ2K+k∆
s
2u‖ps−1ps .

Finally, we treat IV , now using additionally Sobolev-Poincaré-
inequality

|IV | -
∞∑
k=1

2
−(K+k+k) n

p′s R
− n
p′s ‖ϕ ∆

s
2uj‖1 ‖

•
χ2K+k∇su‖ps−1ps

-
∞∑
k=1

2
−(K+k+k) n

p′s R
− n
p′s ‖ϕ‖p′s ‖

•
χ0∆

s
2uj‖ps ‖

•
χ2K+k∇su‖ps−1ps

-
∞∑
k=1

2
−(K+k+k) n

p′s ‖∆
s
2ϕ‖p′s ‖

•
χ0∆

s
2uj‖ps ‖

•
χ2K+k∇su‖ps−1ps .

�

Again in the same fashion we obtain an estimate for the case of
SO(N)-target. The Euler-Lagrange equation tells us that a critical
point u : Ω→ SO(N) satisfies

(6.3)

∫
|∇su|ps−2∂sαukj ∇sψkj = 0,

for any ψ with support in Ω and a.e. ψ ∈ TuSO(N). For antisymmetric
ω ∈ so(N), ϕ ∈ C∞0 (Ω), we thus set

ψkj := Qkiωijϕ.

Then ψ ∈ TQSO(N). Indeed, ν : (−1, 1) → SO(N) defined as ν(t) :=
uetωϕ has ν ′(0) = ψ. That is, (6.3) implies for any ϕ ∈ C∞0 (D), ω ∈
so(N),

(6.4) ωij

∫
|∇su|ps−2∂sαukj ∇s(ukiϕ) = 0.
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Moreover, by the antisymmetry of ω,

(6.5) ∂sαQ
kj ωij∂

s
αQ

T
ik = 0.

Consequently, for ω ∈ so(N), using in the last step (6.4) and (6.5),∫
ωijQ

T
ikRα[|∇sQ|ps−2∂sαQkj] ∆

s
2ϕ

=−
∫
|∇sQ|ps−2∂sαQkj Rα[ωijQ

T
ik∆

s
2ϕ]

=− ωij
∫
|∇sQ|ps−2∂sαQkj QT

ik∂
s
αϕ

− ωij
∫
|∇sQ|ps−2∂sαQkj C(QT

ik,Rα)[∆
s
2ϕ]

=ωij

∫
|∇sQ|ps−2∂sαQkj H∂sα(QT

ik, ϕ)

− ωij
∫
|∇sQ|ps−2∂sαQkj C(QT

ik,Rα)[∆
s
2ϕ]

From this argument, we obtain readily

Lemma 6.2. Let u be as in Theorem 1.2. For any ωij = −ωji ∈
{−1, 0, 1}, any smooth suppϕ ⊂ supp

•
χL, L ∈ Z

ωij

∫
∆

s
2ϕ uik Rβ[|∇su|ps−2Rβ[∆

s
2ukj]]

-‖ •χL+K∆
s
2u‖psps + ‖∆

s
2u‖ps,Rn

∑
k=1

2−σ(k+L+K)‖ •χL+K+k∆
s
2u‖ps−1ps

Appendix A. Some basic Estimates

In this section we state some known estimates involving ∆
s
2 -

operators. Recall the notation for cutoff functions from (3.1).

The most basic estimate is the following pseudo-localization. It fol-
lows quite naturally from the potential definition of the involved oper-
ators. For details we refer, e.g., to the appendix of [2].

Lemma A.1. Let s ∈ (−n, n), and let T s be defined as follows:

• if s > 0, T s = ∇s or T s = ∆
s
2

• if s = 0, T 0 = Rα, for any α ∈ {1, . . . , n},
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• and if s < 0, T s = ∆−
s
2 .

Then, l ≥ k + 1, for any f ,

‖ ◦χlT s[
•
χkf ]‖∞ - (2k)−n−s‖ •χkf‖1

and

‖ •χkT s[
◦
χlf ]‖∞ - (2l)−n−s‖ ◦χlf‖1

The following Lemma estimates an Lp-norm by an elliptic PDE. For
the proof we refer to, e.g., [2, Proposition A.3.].

Lemma A.2 (Estimate by PDE). Let f ∈ Lp(Rn), then

‖ •χLf‖p,BR - sup
ϕ

∫
Rn
f∆

s
2ϕ+2−σK‖ •χL+Kf‖p+

∞∑
k=1

2−σ(K+l) ‖ •χL+K+kf‖p,

where the supremum is taken over all ϕ ∈ C∞(Rn) with suppϕ ⊂
supp

•
χL and ‖∆ s

2ϕ‖p′ ≤ 1.

Let R = (R1, . . . ,Rn) be the vector of all Riesz transforms. It
is well-known that the norm ‖f‖p,Rn and ‖Rf‖p,Rn are equivalent for
p ∈ (1,∞). This is certainly not true anymore if the norm is taken
on strict subsets of Rn. However Lemma A.1 provides a comparison,
which tells us that

‖f‖p,Br behaves more or less like ‖Rf‖p,Br ,

up to error terms. More precisely, we have Lemma A.3, Lemma A.5,
and Lemma A.4. The main idea is always that f = c RβRβf ; then
one inserts the cutoff-functions

•
χi and uses Lemma A.3.

Lemma A.3. Let f ∈ Lp(Rn) and K ≥ L ∈ Z, M ≥ 2

‖( •χK −
•
χL)f‖p - ‖(

•
χK+M −

•
χL−M) Rf‖p

+
∞∑
k=1

2−(M+k)n
p ‖ ◦χK+M+k R[f ]‖p

+ 2
(K−L)n

p
−M n

p′ ‖ •χL−M R[f ]]‖p
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Proof. We have

‖( •χK −
•
χL) f‖p ≈‖(

•
χK −

•
χL) RβRβ[f ]‖p

≤‖( •χK −
•
χL) Rβ[(

•
χK+M −

•
χL−M) Rβ[f ]]‖p

+
∞∑
k=1

‖( •χK −
•
χL) Rβ[(

◦
χK+M+k Rβ[f ]]‖p

+ ‖( •χK −
•
χL) Rβ[(

•
χL−M Rβ[f ]]‖p.

Now the claim follows from Lemma A.1 �

Lemma A.4. Let f ∈ Lp(Rn),

‖ •χLf‖p - ‖
•
χL+SR[f ]‖p +

∞∑
l=1

l 2−
n
p
(S+l)‖ ◦χS+L+lf‖p.

Proof. W.l.o.g., L = 0. Again we have

‖ •χ0f‖p ≤ ‖
•
χ0Rβ[

•
χSRβ[f ]]‖p +

∞∑
l=1

‖ •χ0Rβ[
◦
χS+lRβ[f ]]‖p

- ‖ •χSR[f ]‖p +
∞∑
l=1

2−
n
p
(S+l)‖ ◦χS+lR[f ]‖p.

We still need to remove the R[·] in the second term.

‖ ◦χS+lR[f ]‖p - ‖
◦
χS+lR[

•
χS+l+1f ]‖p +

∞∑
k=2

‖ •χS+lR[
◦
χS+l+kf ]‖p

- ‖ •χS+l+1f‖p +
∞∑
k=2

2−k
n
p ‖ ◦χS+l+kf‖p.

Consequently,

‖ •χ0f‖p - ‖
•
χSR[f ]‖p +

∞∑
l=1

2−
n
p
(S+l)‖ •χS+l+1f‖p +

∞∑
l=1

2−
n
p
(S+l)

∞∑
k=2

2−k
n
p ‖ ◦χS+l+kf‖p.
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Finally, we observe

∞∑
l=1

2−
n
p
(S+l)

∞∑
k=2

2−k
n
p ‖ ◦χS+l+kf‖p

=
∞∑
l=1

2−
n
p
(S+l)

∞∑
k=l+2

2−(k−l)
n
p ‖ ◦χS+kf‖p

=
∞∑
k=3

2−(k+S)
n
p ‖ ◦χS+kf‖p

k−2∑
l=1

1

≤
∞∑
k=3

(k − 2) 2−(k+S)
n
p ‖ ◦χS+kf‖p.

�

By the same arguments as above, we also have

Lemma A.5. Let f ∈ Lp(Rn), K ∈ Z, L ∈ N

‖ •χLRf‖p ≤ C ‖ •χL+Kf‖p + C
∞∑
k=1

2−
n
p
(K+k)‖ ◦χL+K+kf‖p.

Appendix B. BMO-Estimates

In the estimates we sometimes have to estimate the BMO of
•
χ(u−

(u)). Let us recall the definition of the pseudo-norm for BMO:

[f ]BMO := sup
Br⊂Rn

|Br|−1
∫
Br

∣∣∣∣f(x)− |Br|−1
∫
Br

f(y)dy

∣∣∣∣ dx.
We will use the notation (3.1). For simplicity of presentation, we

assume throughout this section that
•
χ0 = χB1(0).

Firstly, we have the following

Proposition B.1.

sup
Br⊂B2(0),r≤1

r−2n
∫
Br

∫
Br

|u(x)− u(y)|+ sup
Br⊂B2(0),r≤1

r−n
∫
Br

∫
B1

|u(x)− u(y)|

- ‖ •χB
2K

(0)|∆
s
2u|‖ps +

∞∑
l=1

2−(K+l)‖ •χB
2K+l (0)∆

s
2u‖ps
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Proof. By definition of the Riesz-potential

∆−
s
2f(x) = c

∫
|z − x|s−nf(z),

and since ∆−
s
2 ∆

s
2 = Id, we have for any K ≥ 3

|u(x)− u(y)| -
∫
Rn
||x− z|s−n − |y − z|s−n| |∆

s
2u(z)| dz

=

∫
Rn
||x− z|s−n − |y − z|s−n| •χK(z)|∆

s
2u(z)| dz

+
∞∑
l=1

∫
Rn
||x− z|s−n − |y − z|s−n| ◦χK+l(z)|∆

s
2u(z)| dz

=: I(x, y) + II(x, y).

As for II(x, y): for x, y ∈ B2(0), and z ∈ supp
◦
χK+l we have

||x− z|s−n − |y − z|s−n| - 2K(s−n−1))|x− y| ≤ 2K(s−n−1)|x− y|,

that is, since p′s = n
n−s ,

II(x, y) ≤ |x− y| 2−(K+l)‖ •χK+l∆
s
2u‖ps .

Consequently,

r−2n
∫
Br

∫
Br

|II(x, y)|+ r−n
∫
Br

∫
B1

|II(x, y)|

-
∞∑
l=1

2−(K+l)‖ •χK+l∆
s
2u‖ps

It remains to estimate I. As in [18], see also the presentation in [2,
Lemma A.4.], we have for almost all x, y, z,

||x− z|s−n − |y − z|s−n| ≤χ|x−y|-|x−z|,|y−z||x− y|1 min{|y − z|s−n, |x− z|s−n}
+ χ|y−z|<|x−y||y − z|s−n

+ χ|x−z|<|x−y||x− z|s−n.
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Thus,

r−2n
∫
Br

∫
Br

|I(x, y)|

-r−2n
∫
Br

∫
Br

|x− y|
∫
z:|x−z|>|x−y|

|x− z|s−1−n •χK(z)|∆
s
2u(z)| dz dy dx

+ 2r−2n
∫
Br

∫
B3r

∫
Br∩|y−z|<|x−y|<2r

|y − z|s−n •χK(z)|∆
s
2u(z)| dy dz dx

-r−2n
∫
Br

∫
Br

|x− y|
(∫

z:|x−z|>|x−y|
|x− z|(s−1−n)

n
n−s

) 1
p′s
‖ •χK |∆

s
2u|‖ps dy dx

+ rs−n
∫
B3r

•
χK(z)|∆

s
2u(z)| dz

-r−2n
∫
Br

∫
Br

|x− y| |x− y|−1 ‖ •χK |∆
s
2u|‖ps dy dx

+ rs−n
∫
B3r

•
χK(z)|∆

s
2u(z)| dz

-r−2n
∫
Br

∫
Br

|x− y| |x− y|−1 ‖ •χK |∆
s
2u|‖ps dy dx

+ rs−n
∫
B3r

•
χK(z)|∆

s
2u(z)| dz

-‖ •χK |∆
s
2u|‖ps .

�

Lemma B.2 (BMO Estimate). For any u and L there exists a constant
c ∈ R such that

[
•
χL(u− c)]BMO ≤ C ‖ •χL+K |∆

s
2u|‖ps + C

∞∑
l=1

2−(K+l)‖ •χL+K+l∆
s
2u‖ps

Proof. Again we may assume that L = 0. Let c := (u)0 be the average
of u over B1(0).

[
•
χ0(u− (u)0)]BMO

- sup
Br⊂B2(0),r≤1

r−2n
∫
Br

∫
Br

| •χ0(x)(u(x)− (u)0)−
•
χ0(y)(u(y)− (u)0)|

+ sup
Br⊂B2(0),r≤1

r−n
∫
Br

∫
B1(0)

|u(x)− u(y)|.
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Since

| •χ0(x)(u(x)− (u)0)−
•
χ0(y)(u(y)− (u)0)|

≤ |u(x)− (u)0|+ |u(x)− u(y)|+ |u(y)− (u)0|,
this becomes

[
•
χ0(u− (u)0]BMO

- sup
Br⊂B2(0),r≤1

r−2n
∫
Br

∫
Br

|u(x)− u(y)|

+ sup
Br⊂B2(0),r≤1

r−n
∫
Br

∫
B1(0)

|u(x)− u(y)|.

Now the claim follows from Proposition B.1. �

Appendix C. Decompositon for SO(N)

In (2.4) we decompose vectors into orthogonal and tangential part
along u ∈ SN−1. The analogue for Q ∈ SO(N) is the following

Proposition C.1. There exists a uniform constant C > 0 such that
the following holds for any matrix A ∈ RN×N , for any Q ∈ SO(N),

|A| ≤ max
ω
|ωijQikAkj||+ max

σ
|θijQikAkj|

where the maxima are taken over the finite sets {ω ∈ {−1, 0, 1}N×N ∈
so(N)} and {σ ∈ {0, 1}N×N ∈ sym(N)}, respectively.
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[11] F. Hélein. Régularité des applications faiblement harmoniques entre une sur-
face et une sphère. C.R. Acad. Sci. Paris 311, Série I, pages 519–524, 1990.
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