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Abstract. We construct a smooth compact n-dimensional manifold Y
with one point singularity such that all its Lipschitz homotopy groups
are trivial, but Lipschitz mappings Lip (Sn, Y ) are not dense in the
Sobolev space W 1,n(Sn, Y ). On the other hand we show that if a met-
ric space Y is Lipschitz (n − 1)-connected, then Lipschitz mappings
Lip (X,Y ) are dense in N1,p(X,Y ) whenever the Nagata dimension of
X is bounded by n and the space X supports the p-Poincaré inequality.

1. Introduction

Let M and N be compact Riemannian manifolds, ∂N = ∅. Being mo-
tivated by the theory of harmonic mappings Eells and Lemaire, [7], asked
a question whether smooth mappings C∞(M,N ) are dense in the space of
Sobolev mappings between manifolds W 1,p(M,N ). Here we assume that N
is isometrically embedded in an Euclidean space Rν and we define

W 1,p(M,N ) = {u ∈W 1,p(M,Rν) : u(x) ∈ N a.e.}.

The space is equipped with the metric of W 1,p(M,Rν). Equivalently one
may ask about density of Lipschitz mappings. This is indeed equivalent
question, because Lipschitz mappings can be approximated by smooth map-
pings in the Sobolev norm. If p ≥ dimM, then smooth mappings are dense
in W 1,p(M,N ), by the theorem of Schoen and Uhlenbeck [31, 32], but if
p < dimM, the answer depends on the topology of manifolds M and N .
The following necessary condition for the density is due to Bethuel and
Zheng [3].

Proposition 1.1. If π[p](N ) 6= {0} and 1 ≤ p < dimM, then the smooth

mappings C∞(M,N ) are not dense in W 1,p(M,N ).

Here πk stands for the homotopy group and [p] is the integral part of p.
This result is relatively easy to prove (see also [12, 9]). Bethuel [2] proved
that in the local case (mappings from a ball) this condition is also sufficient.
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The proof of sufficiency is, however, very difficult (see [16] for corrections to
Bethuel’s paper).

Theorem 1.2. If 1 ≤ p < n, then smooth mappings C∞(Bn,N ) are dense
in W 1,p(Bn,N ) if and only if π[p](N ) = 0.

In the general case of W 1,p(M,N ), 1 ≤ p < dimM , the necessary con-
dition π[p](N ) = 0 is not always sufficient for the density, see [17] for an
example. The necessary and sufficient condition has been discovered by
Hang and Lin in [16]. While we will not state this condition here, we will
state a sufficient condition that was obtained earlier in [12], because this
condition will play a role in what is to follow.

Proposition 1.3. If π1(N ) = π2(N ) = . . . = π[p](N ) = 0, then C∞(M,N )

mappings are dense in W 1,p(M,N ).

If p ≥ dimM, density is always true, so the interesting case is when
1 ≤ p < dimM.

The theory of Sobolev mappings between manifolds has been extended
to the case of Sobolev mappings with values into metric spaces. The
first papers on this subject include the work of Ambrosio, [1], on limits
of classical variational problems and the work of Gromov and Schoen, [8],
on Sobolev mappings into the Bruhat-Tits buildings, with applications to
rigidity questions for discrete groups. Later the theory of Sobolev map-
pings with values into metric spaces was developed in a more elaborated
form by Korevaar and Schoen, [27], in their approach to the theory of har-
monic mappings into Alexandrov spaces of non-positive curvature. Other
papers on Sobolev mappings from a manifold into a metric space include
[4, 6, 22, 23, 24, 25, 30, 33]. Finally, analysis on metric spaces, the theory
of Carnot–Carathéodory spaces and the theory of quasiconformal mappings
between metric spaces led to the theory of Sobolev mappings between met-
ric spaces, [20, 21, 28, 35], among which the theory of Newtonian-Sobolev
mappings N1,p(X,Y ) is particularly important.

The question in what way the results about density of smooth map-
pings between manifolds can be generalized to the case of mappings between
metric spaces was formulated by Heinonen, Koskela, Shanmugalingam and
Tyson, [21]. In this context one asks about density of Lipschitz mappings,
because the class of smooth mappings make no sense. In order to formulate
the problem we need to define the class N1,p(X,Y ) of Sobolev mappings
between metric spaces.

A metric-measure space (X, d, µ) is a metric space (X, d) equipped with
a Borel-regular measure µ. We say that the measure µ is doubling if there is
a constant Cd ≥ 1 such that for every ball B in X, µ(2B) ≤ Cdµ(B). Here
and in what follows by σB, σ > 0 we denote the ball concentric with B and
with the radius σ times that of B. In the paper we will always assume that
the measure µ is doubling. For simplicity we will also always assume that
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the diameter of X is finite. Note that this and the doubling condition imply
µ(X) <∞.

Let U ⊂ X be open. Following [20] we say that a Borel function g : U →
[0,∞] is an upper gradient of a Borel function u defined in U if

|u(γ(b))− u(γ(a))| ≤
∫
γ
g

for all rectifiable curves γ : [a, b]→ U . Then we say that the space (X, d, µ)
supports the p-Poincaré inequality, 1 ≤ p <∞ if there are constants CP > 0
and σ ≥ 1 such that for every ball B in X, every u ∈ L1(σB) and every
upper gradient g of u in σB the following version of the Poincaré inequality
is satisfied ∫

B
|u− uB| dµ ≤ CP (diamB)

(∫
σB

gp dµ

)1/p

.

Here the barred integral denotes the integral average and uB is the integral
average of u over B.

The Sobolev space N1,p(X, d, µ) was introduced in [34] and it is defined
as follows. We say that u ∈ N1,p(X, d, µ) if u ∈ Lp and there is an upper
gradient g ∈ Lp of u. The space is equipped with a norm which turns the
space into a Banach space:

(1.1) ‖u‖N1,p = ‖u‖p + inf
g
‖g‖p.

Here the infimum is taken over all upper gradients of u. To be more precise
we have to identify functions u, v ∈ N1,p such that ‖u− v‖N1,p = 0, just like
we identify functions in Lp that are equal almost everywhere.

If (V, ‖ · ‖) is a Banach space, then the vector valued Sobolev space
N1,p(X,V ) is defined in a similar manner [21]: u ∈ N1,p(X,V ) if u ∈
Lp(X,V ) and there is 0 ≤ g ∈ Lp(X) such that

‖u(γ(b))− u(γ(a))‖ ≤
∫
γ
g

for all rectifiable curves γ : [a, b]→ X. Then N1,p(X,V ) is a Banach space
with respect to the norm (1.1). Here we also call g an upper gradient of u.
For more details, see [21]. If X = M is a Riemannian manifold and V is
dual to a separable Banach space, then this definition is equivalent to the
classical definition of the vector valued Sobolev space W 1,p(M, V ) via the
distributional derivatives, see [5, 15].

In the case of real valued functions the next result was proved in [13,
Theorem 3.2] from the Poincaré inequality via the telescoping argument.
It was extended to the Banach space valued case in [21, Proposition 4.6].
Recall that we assumed that diamX <∞.

Proposition 1.4. Suppose that the space (X, d, µ) supports the p-Poincaré
inequality, (V, ‖ · ‖) is a Banach space, u ∈ N1,p(X,V ), and g is an upper

3



gradient of u. Then the pointwise inequality

‖u(x)− u(y)‖ ≤ Cd(x, y)
(

(Mgp(x))1/p + (Mgp(y))1/p
)

holds a.e. with some constant C independent of u and g. Here M stands
for the Hardy-Littlewood maximal operator.

This inequality implies that on the set {(Mgp)1/p ≤ t} the mapping
u is 2Ct-Lipschitz continuous. Using the Whitney decomposition of the
complement of the set and the associated Lipschitz partition of unity one can
extend the function to a Lipschitz function from X to V . Since the Lipschitz
function differs from u on a set of small measure standard estimates lead to
the following known result (see e.g. [10, Lemma 13]).

Proposition 1.5. Suppose that the space (X, d, µ) supports the p-Poincaré
inequality for some 1 ≤ p <∞ and V is a Banach space. If u ∈ N1,p(X,V ),
then for every ε > 0 there is uε ∈ Lip (X,V ) such that µ({x : u(x) 6=
uε(x)}) < ε and ‖u− uε‖1,p < ε.

Every separable metric space admits an isometric embedding into the
Banach space of bounded sequences `∞ (the Kuratowski embedding). This
can be used to define the space of Sobolev mappings N1,p(X,Y ) with values
in Y . Namely if λ : Y → V is an isometric embedding then we define

N1,p(X,Y ) = {u : X → Y : λ ◦ u ∈ N1,p(X,V )}.
The space is equipped with the metric d(u, v) = ‖λ ◦ u − λ ◦ v‖N1,p . This
definition resembles the definition of the class of Sobolev mappings between
smooth manifolds, but now instead of taking an embedding of the manifold
into a Euclidean space we take an embedding of a metric space into a Banach
space.

If X = M is a Riemannian manifold and Y is embedded in a Banach
space V that is dual to a separable Banach space (that is always possible,
because we can take V = `∞), then we will write W 1,p(M, Y ), because, as
it was explained earlier, we have N1,p(M, V ) = W 1,p(M, V ).

Observe that each mapping u ∈ N1,p(X,Y ) (or rather λ◦u) can be approx-
imated by Lipschitz mappings with values into V (Proposition 1.5). In this
setting Heinonen, Koskela, Shanmugalingam and Tyson [21, Remark 6.9]
asked: It is an interesting problem to determine when one can choose the
Lipschitz approximation to have values in the target Y . [. . . ] For instance,
one can ask to what extent Bethuel’s results have analogs for general targets.
The following partial answer was obtained in [10, Theorem 6].

Theorem 1.6. Let Y be a finite Lipschitz polyhedron and 1 ≤ p < ∞.
Then the class of Lipschitz mappings Lip (X,Y ) is dense in N1,p(X,Y ) for
every metric-measure space X of finite measure that supports the p-Poincaré
inequality if and only if π1(Y ) = π2(Y ) = . . . = π[p](Y ) = 0.

Note that this condition appeared also in Proposition 1.3, but now it is
necessary and sufficient. While the theorem treats a general class of spaces
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X as a source, the targets are Euclidean-like, and it is an interesting question
to investigate more general targets. Of particular interest is the Heisenberg
group Hn which is a fundamental example of a metric space in the analysis
on metric spaces. The motivation for the investigation of density of Lipschitz
mappings in N1,p(X,Hn) stems from the theory of harmonic mappings with
values in the Heisenberg group developed by Capogna and Lin [4], just
like the theory of harmonic mappings was the original motivation for the
questions of Eells and Lemaire. This problem was investigated in [5, 14].

In the case of mappings between manifolds, the answer to the density
question depends on the topology of manifolds and in particular on the
homotopy groups of the target, see Proposition 1.3 and Theorem 1.6. The
Heisenberg group Hn is homeomorphic to the Euclidean space R2n+1 and
thus its homotopy groups are trivial. It turns out, however, that more
appropriate objects to consider in the case of metric targets are the Lipschitz
homotopy groups. For the following definition, see [5].

Definition 1.7. Let (Y, y0) be a pointed metric space. We define the Lips-

chitz homotopy group πLipn (Y, y0) in the same way as the classical homotopy
group [18], with the exception that both mappings and homotopies are re-
quired to be Lipschitz. We do not require that the Lipschitz constant of the
homotopy between Lipschitz mappings f, g : (Qn, ∂Qn) → (Y, y0), where
Qn = [0, 1]n, is comparable to the larger of the Lipschitz constant of the
mappings f, g.

In particular πLip0 (Y, y0) is the set of Lipschitz-path-connected compo-
nents, i.e. components in which any two points can be connected by a

rectifiable curve, and πLip0 (Y, y0) = 0 means that the space is rectifiably
connected. The following result is easy to prove [5].

Proposition 1.8. πLipn (Y, y0) = 0 if and only if every Lipschitz map
(Sn, s0)→ (Y, y0) admits a Lipschitz extension Bn+1 → Y .

Here and in what follows Sn stands for the unit sphere Sn(0, 1) in Rn+1.
In the case of compact smooth manifolds Lipschitz homotopy groups are

equivalent to the classical homotopy groups, because continuous mappings
and homotopies can be approximated by smooth ones, however, for non-

smooth spaces the situation is different. In [5] it was proved that πLipn (Hn) 6=
0 and it was used to prove the corresponding lack of density of Lipschitz
mappings: If M is a compact Riemannian manifold of dimension dimM≥
n+ 1, then Lipschitz mappings Lip (M,Hn) are not dense in W 1,p(M,Hn)
when n ≤ p < n + 1. Similarly using a generalized Hopf invariant it was

proved in [14] that πLip4n−1(H2n) 6= 0 and the following result was concluded
from it: IfM is a compact Riemannian manifold of dimension dimM≥ 4n,
then Lipschitz mappings Lip (M,H2n) are not dense in W 1,p(M,H2n) when
4n − 1 ≤ p < 4n. Thus the two non-density results are counterparts of
Proposition 1.1 for the Heisenberg group targets, so one might expect that
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this result extends for other metric targets. Thus one might ask the following
question for the class of mappings from a manifold M to a metric space Y :

Question 1.9. Suppose that πLip[p] (Y ) 6= 0 and 1 ≤ p < dimM. Is it true

that Lipschitz mappings Lip (M, Y ) are not dense in N1,p(M, Y )?

We do not know the answer. One may ask also whether Proposition 1.3
and Theorem 1.6 extend to more general targets.

Question 1.10. Suppose that πLip1 (Y ) = . . . = πLip[p] (Y ) = 0. Is it true that

Lipschitz mappings Lip (M, Y ) are dense in W 1,p(M, Y )?

It turns out that the answer is in the negative as the following results
shows.

Theorem 1.11. For n ≥ 2 there is a compact subset Y ⊂ Rn+1 and a point
p ∈ Y ∩ Sn such that

• Y is homeomorphic to Sn;
• Y \{p} is a smooth manifold diffeomorphic to Sn \{p}. In fact there

is a Lipschitz continuous homeomorphism Φ : Y → Sn such that
Φ : Y \ {p} → Sn \ {p} is a smooth diffeomorphism;

• πLipk (Y ) = 0 for all k ≥ 1 (for any choice of y0);
• Lipschitz mappings Lip (Sn, Y ) are not dense in W 1,n(Sn, Y ).

Although Y is Lipschitz homeomorphic to Sn, it is not bi-Lipschitz home-
omorphic to the sphere. The space Y is not rectifiably connected: any curve
in Y connecting p to another point has infinite length. Thus π0(Y ) 6= 0.
By adding a segment to Y connecting p with the antipodal point of Sn, we
obtain a set Z that is rectifiably connected and has similar properties as Y .

Theorem 1.12. For n ≥ 2 there is a compact set Z ⊂ Rn+1 such that

πLipk (Z) = 0 for all k ≥ 0 and Lipschitz mappings Lip (Sn, Z) are not dense
in W 1,n(Sn, Z).

Thus in order to obtain positive density results we need a stronger con-
dition than vanishing of Lipschitz homotopy groups. The next definition is
taken from [29].

Definition 1.13. A metric space Y is Lipschitz n-connected for some integer
n ≥ 0 if there is a constant γ ≥ 1 such that for each k ∈ {0, 1, . . . , n}, every
L-Lipschitz map f : Sk → Y admits a γL-Lipschitz extension F : Bk+1 → Y .

The condition that the space is Lipschitz n-connected is stronger than
vanishing of the Lipschitz homotopy groups for k ≤ n, because we want
to control the Lipschitz constant of the extension. As it will be explained
later the set Z is not Lipschitz (n − 1)-connected despite the fact that all
its Lipschitz homotopy groups are trivial.

Definition 1.14. The Nagata dimension dimN X of a metric space X is
the least integer n with the property that there is C > 0 such that for any
s > 0, there is a covering X =

⋃
i∈I Ai such that
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• diamAi ≤ Cs for all i ∈ I;
• Every ball B(x, s) intersects at most n+ 1 sets Ai.

If such n does not exist, then dimN X = +∞.

The following result is easy to prove (see e.g. [29, Lemma 2.3])

Proposition 1.15. If X is equipped with a doubling measure, then
dimN X <∞.

For spaces that are n-Lipschitz connected we have the following density
result which in some sense is a counterpart of Proposition 1.3 and Theo-
rem 1.6 but with an important additional restriction on the dimension of
the domain, see also Question 1.9.

Theorem 1.16. Suppose that the space (X, d, µ) supports the p-Poincaré
inequality and dimN X ≤ n. If a separable metric space Y is Lipschitz (n−
1)-connected, then Lipschitz mappings Lip (X,Y ) are dense in N1,p(X,Y ).

Remark 1.17. If a space supports the p-Poincaré inequality, then it sup-
ports the q-Poincaré inequality for all p ≤ q < ∞ (by Hölder’s inequality)
and hence we have density in N1,q for all q ≥ p. If in addition X is complete
and p > 1, then there is ε > 0 such that the space supports the q-Poincaré
inequality for all p − ε < q < ∞, [26], and thus the density is true for this
range of q.

Remark 1.18. If X supports 1-Poincaré inequality, then we have density
for all 1 ≤ p < ∞. This is consistent with results for mappings between
manifolds: if π1(N ) = . . . = πn−1(N ) = 0, and dimM ≤ n, then Proposi-
tion 1.3 gives density for 1 ≤ p < n, but if p ≥ n we always have density by
the result of Schoen-Uhlenbeck [31, 32].

Remark 1.19. Theorems 1.16 and 1.12 show that the set Z is not Lipschitz
(n − 1)-connected, but it can be checked more directly. Every Lipschitz
mapping f : Sk → Z, k ≥ 0 admits a Lipschitz extension F : Bk+1 → Z,
but using the construction of Z one can show that for k = 0 and k = n− 1,
there is no constant C ≥ 1 with the property that every L-Lipschitz mapping
f : Sk → Z admits a CL-Lipschitz extension F : Bk+1 → Z. This is a good
exercise for the reader. We do not provide details here, because this direct
argument will play no role in the paper.

Remark 1.20. According to [19, Proposition 2.13] Lipschitz n-connected
sets in Rn+1 are Lipschitz retracts of Rn+1. This also follows from a more
difficult result of Lang and Schlichenmaier, Lemma 2.1 below. From this
fact the density of Lipschitz mappings in W 1,p for all 1 ≤ p < ∞ easily
follows, see also [11, Theorem 1.3].

It was proved in [36] that the Heisenberg group Hn is Lipschitz (n − 1)-
connected and hence we obtain
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Corollary 1.21. Suppose that the space (X, d, µ) supports the p-Poincaré
inequality and dimN X ≤ n. Then Lipschitz mappings Lip (X,Hn) are dense
in N1,p(X,Hn).

This result generalizes Theorem 1.2(b) from [5], where the case of X being
a compact manifold was considered.

Notation is pretty standard. By C we will denote a general constant whose
value may change in a single string of estimates. The paper is organized as
follows. In Section 2 we prove Theorem 1.16 and in Section 3 we prove
Theorems 1.11 and 1.12.

2. Proof of Theorem 1.16

The following result due to Lang and Schlichenmaier [29, Theorem 1.5]
will play a fundamental role in the proof.

Lemma 2.1. Suppose that X and Y are metric spaces such that dimN X ≤
n and Y is Lipschitz (n−1)-connected. Then there is a constant C ≥ 1 such
that for any closed set Z ⊂ X and any L-Lipschitz map f : Z → Y there is
a CL-Lipschitz extension F : X → Y .

Since the metric in N1,p(X,Y ) is defined via an isometric embedding of
Y into a Banach space, we may assume that Y ⊂ V is a subset of a Banach
space V . Let u ∈ N1,p(X,Y ) ⊂ N1,p(X,V ). Let 0 ≤ g ∈ Lp(X) be an upper
gradient of u. According to Proposition 1.4

‖u(x)− u(y)‖V ≤ Cd(x, y)
(

(Mgp(x))1/p + (Mgp(y))1/p
)
.

Let
Et = {x ∈ X : (Mgp(x))1/p ≤ t}.

It follows from the weak type estimates of the maximal function that tpµ(X\
Et) → 0 as t → ∞. Hence we can find a closed set Ft ⊂ Et such that
tpµ(X\Ft)→ 0. The function u restricted to Ft is 2Ct-Lipschitz continuous.
According to Lemma 2.1 there is a C ′t-Lipschitz extension ut : X → Y . It
remains to prove that ‖u− ut‖N1,p → 0 as t→∞. Since X is bounded and
the mapping ut is C ′t-Lipschitz, we conclude that ‖ut‖V ≤ C+CtdiamX ≤
C ′(1 + t). Thus∫

X
‖u− ut‖pV =

∫
X\Ft

‖u− ut‖pV

≤ C

∫
X\Ft

‖u‖pV + C(1 + t)pµ({X \ Ft})→ 0

as t → ∞. The following elementary lemma shows a localization property
of upper gradients; the proof is quite standard and left to the reader.

Lemma 2.2. If 0 ≤ g ∈ Lp(X) is an upper gradient of f ∈ N1,p(X,V ) and
f is constant on a closed set E ⊂ X, then h = gχX\E is an upper gradient
of f .
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Since ut is Ct-Lipschitz, the constant function Ct is its upper gradient
and since u − ut = 0 on the closed set Ft it follows from the lemma that
h = (g + Ct)χX\Ft

is an upper gradient of u− ut. We have∫
X
hp dµ ≤

∫
X\Ft

(g + Ct)p dµ→ 0

as t→∞. Thus ‖u− ut‖N1,p → 0 as t→∞. The proof is complete. 2

3. Example

In this section we will prove Theorems 1.11 and 1.12. In the first sub-
section we will provide details of the construction of the set Y and we will
prove all its properties except the lack of density of Lipschitz mappings.
In the second subsection we will construct set Z and we will prove that

πLipk (Z) = 0 for all k ≥ 0. In the last subsection we will prove the lack of
density of Lipschitz mappings in W 1,n(Sn, Y ) and W 1,n(Sn, Z).

3.1. Construction of Y . The main idea is to pick a point p ∈ Sn and add
continuous oscillations into the normal direction around that point. The
oscillations should be so that the resulting set is still homeomorphic to the
sphere with the homeomorphism φ being in W 1,n.

The amplitude of the oscillations is described by a ∈ C0([0,∞)) ∩
C∞((0,∞))

a(t) :=



0 t = 0,
sin(log(log(e/t)))

1 + log(log(e/t))
t ∈ (0, 1],

smooth extension t ∈ (1, 3/2),

0 t ≥ 3/2.

Fix a point p ∈ Sn and define φ : Sn → Rn+1 by

φ(x) =

(
1 +

1

2
a(|x− p|)

)
x.

The set Y is defined as the image of the mapping φ, Y = φ(Sn). Since
φ ∈ C0(Sn,Rn+1) translates points of the sphere along the direction of
the outer normal to the sphere, φ has no self-intersections and thus it is
a homeomorphism. Clearly Y \ {p} is a smooth manifold. Let Φ = φ−1 :
Y → Sn be the inverse homeomorphism. Obviously, Φ is the restriction of
the projection mapping

π(x) =
x

|x|
∈ C∞(Rn+1 \ {0},Sn)

to Y . Hence Φ is Lipschitz continuous and its restriction to Y \ {p} is a
smooth diffeomorphism. The function a was chosen in order to satisfy the
claim of the next lemma.
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Lemma 3.1.

(3.1)

∫ s

0
|a′(t)| dt =∞ for any s > 0,

but

(3.2)

∫ 1

0
|a′(t)|ntn−1 dt <∞ for all n ≥ 2.

Proof. Since

(log(log(e/t)))′ = − 1

t log(e/t)
,

for 0 < t < 1 we have

a′(t) =
− cos(log(log(e/t)))

t log(e/t) · (1 + log(log(e/t)))
+

sin(log(log(e/t)))

t log(e/t) · (1 + log(log(e/t)))2
.

Thus for any 0 < s < 1 the change of variables x(t) = log(log(e/t)) yields∫ s

0
|a′(t)| dt =

∫ ∞
x(s)

∣∣∣∣− cosx

x+ 1
+

sinx

(x+ 1)2

∣∣∣∣ dx
≥

∫ ∞
x(s)

| cosx|
x+ 1

dx−
∫ ∞
x(s)

dx

(x+ 1)2
=∞.

On the other hand for n ≥ 2 we have∫ 1

0
|a′(t)|ntn−1 dt ≤ 2n

∫ 1

0

dt

t logn(e/t)
= 2n

∫ ∞
1

dx

xn
<∞.

The proof is complete. �

Lemma 3.2. φ ∈W 1,n(Sn, Y ).

Proof. It suffices to show that the derivative of φ is integrable with the
exponent n in some neighborhood of the singularity p. Using a suitable
coordinate system in a neighborhood of p ∈ Sn both in the domain and in
the target Rn+1, the image of φ becomes the graph of the function a(|x|).
The fact that the function a(|x|) has derivative integrable with exponent n
follows from (3.2) after integration in the polar coordinate system:∫

Bn(0,1)
|∇(a(|x|))|n dx = C

∫ 1

0
|a′(t)|ntn−1 dt <∞.

The proof is complete. �

In the last subsection we will prove that the mapping φ ∈ W 1,n(Sn, Y )
cannot be approximated by Lipschitz maps Lip (Sn, Y ) in the Sobolev norm.

But now we will prove that πLipk (Y ) = 0 for all k ≥ 1. This immediately
follows from the next lemma.

Lemma 3.3. If k ≥ 1 and f : Sk → Y is Lipschitz continuous, then f(Sk) =
{p} or p 6∈ f(Sk).
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Indeed, if p 6∈ f(Sk), then the image of φ omits a certain neighborhood
of p and hence it is contained in a subset of Y which is diffeomorphic to Bn
and thus Lipschitz contractible.

Proof of Lemma 3.3. Since f is Lipschitz, any two points in the image of
f(Sn) can be connected by a rectifiable curve. Thus it suffices to show
that the point p ∈ Y cannot be connected to any other point in q ∈ Y by a
rectifiable curve. Using the coordinate system near p as in the previous proof
we can represent a neighborhood of p ∈ Y as the graph of the function a(|x|)
defined in Bn. In this coordinate system p = 0. Consider the plane through
p and q that is orthogonal to Bn. The curve obtained in the intersection
of this plane with the graph of a(|x|) is the graph of the function a(t) of
one variable. This curve connects p to q. If the Euclidean distance of the
projections of p and q onto Bn equals s, the length of this curve is∫ s

0

√
1 + a′(t)2 dt =∞

by (3.1). Note that no other curve connecting p to q can be shorter. The
proof of the lemma is complete. This also completes the proof of the fact

that πLipk (Y ) = 0 for k ≥ 1. �

3.2. Construction of Z. In this section we will provide the construction

of the set Z from Theorem 1.12 and we will prove that πLipk (Z) = 0 for all
k ≥ 0. The proof of the lack of density will be given in the next section.
The set Z is simply obtained from Y by adding the segment I that connects
the point p through the center of the sphere with the antipodal point of Sn.
Note that this antipodal point belongs also to Y . Clearly the set Z is now
rectifiably connected since the point p can be connected with the rest of the

set through the added segment, so πLip0 (Z) = 0. The fact that πLipk (Z) for

k ≥ 1 is also easy. If f : Sk → Z is Lipschitz, then f(Sk) is contained in Y
with a neighborhood of p removed, plus I. This set is Lipschitz contractible.
2

3.3. Proof of the lack of density of Lipschitz maps. In this section we
will complete the proofs of Theorems 1.11 and 1.12 by showing the lack of
density of Lipschitz mappings.

Proof of Theorem 1.11. We will prove that the mapping φ ∈ W 1,n(Sn, Y )
cannot be approximated by Lipschitz mappings Lip (Sn, Y ) in the W 1,n

norm. Suppose by contrary that there is a sequence gk ∈ Lip (Sn, Y ) such
that

(3.3) ‖φ− gk‖1,n → 0 as k →∞.

By Lemma 3.3, p 6∈ gk(Sn). As we know π = Φ = ϕ−1 : Y → Sn is smooth
in a neighborhood of Y in Rn+1. Hence fk := Φ ◦ gk ∈ Lip (Sn,Sn \ {p}),
Φ ◦ φ = id : Sn → Sn and (3.3) yields

(3.4) ‖fk − id‖1,n → 0 as k →∞.
11



Degree of a Lipschitz mapping can be expressed as the integral of the Jaco-
bian. The integral of the Jacobian is continuous in the W 1,n norm. That
easily follows from the definition of the Jacobian and Hölder’s inequality.
Hence (3.4) implies that the degree of the mapping fk converges to the de-
gree of the identity mapping, i.e. it converges to 1, but this is impossible,
because the mapping fk is not surjective and hence its degree equals zero.
The proof is complete. �

Proof of Theorem 1.12. Now we will prove that Lipschitz mappings
Lip (Sn, Z) are not dense in W 1,n(Sn, Z). Namely we will prove that
φ ∈W 1,n(Sn, Y ) ⊂W 1,n(Sn, Z) cannot be approximated by Lipschitz map-
pings Lip (Sn, Z). By contrary suppose that gk ∈ Lip (Sn, Z) is a Lipschitz
approximation. Denote the endpoints of the segment I by p and q, i.e. q is
the antipodal point to p. The image of gk is contained in Y with a neighbor-
hood of p removed, plus I. Thus composing gk with the retraction of I onto
q gives a Lipschitz map g̃k : Sn → Y . Since gk → φ in Ln, it easily follows
that the measure of the set g−1k (I) converges to zero as k →∞. Since g̃k dif-

fers from gk only on the set g−1k (I) one can easily show that ‖gk− g̃k‖1,n → 0
and hence ‖g̃k−φ‖1,n → 0. Now the result follows directly from the previous
proof, because Lipschitz mappings g̃k into Y cannot approximate φ in the
W 1,n norm. �

References

[1] Ambrosio, L.: Metric space valued functions of bounded variation. Ann. Scuola
Norm. Sup. Pisa Cl. Sci. 17 (1990), 439–478.

[2] Bethuel, F.:, The approximation problem for Sobolev maps between two manifolds.
Acta Math. 167 (1991), 153–206.

[3] Bethuel, F. Zheng, X. M. Density of smooth functions between two manifolds in
Sobolev spaces. J. Funct. Anal. 80 (1988), 60–75.

[4] Capogna, L., Lin, F.-H.: Legendrian energy minimizers. I. Heisenberg group tar-
get. Calc. Var. Partial Differential Equations 12 (2001), 145–171.

[5] DeJarnette, N., Haj lasz, P., Lukyanenko, L. Tyson, J. T.: On the
lack of density of Lipschitz mappings in Sobolev spaces with Heisenberg target.
arXiv:1109.4641.

[6] Eells, J., Fuglede, B.: Harmonic maps between Riemannian polyhedra. Cam-
bridge Tracts in Mathematics, 142. Cambridge University Press, Cambridge, 2001.

[7] Eells, J., Lemaire, L.: A report on harmonic maps. Bull. London Math. Soc. 10
(1978), 1–68.

[8] Gromov, M., Schoen, R.: Harmonic maps into singular spaces and p-adic super-

rigidity for lattices in groups of rank one. Inst. Hautes Études Sci. Publ. Math. 76
(1992), 165–246.

[9] Haj lasz, P.: Sobolev mappings between manifolds and metric spaces. In: Sobolev
spaces in mathematics. I, pp. 185–222, Int. Math. Ser. (N. Y.), 8, Springer, New
York, 2009.

[10] Haj lasz, P. Density of Lipschitz mappings in the class of Sobolev mappings between
metric spaces. Math. Ann. 343 (2009), 801–823.

[11] Haj lasz, P.: Sobolev mappings: Lipschitz density is not a bi-Lipschitz invariant of
the target. Geom. Funct. Anal. 17 (2007), 435–467.

12



[12] Haj lasz, P.:, Approximation of Sobolev mappings, Nonlinear Analysis 22 (1994),
1579-1591.

[13] Haj lasz, P., Koskela, P.: Sobolev met Poincaré. Memoirs Amer. Math. Soc. 688
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