Hard analysis meets critical knots
Stationary points of the M6bius energy are smooth
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We prove that if a curve y € H>?(R/Z, R") parametrized by arc length is a sta-
tionary point of the Mobius energy introduced by Jun O’Hara in [O’H91], then y
is smooth. Our methods only rely on purely analytical arguments, entirely with-
out using Mobius invariance. Furthermore, they are not fundamentally restricted
to one-dimensional domains, but are generalizable to arbitrary dimensions.
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1. Introduction

To find nice geometric representatives within a given knot class, several new energies have
been invented in the last two decades. The earliest knot energy for smooth curves was the
so-called Mobius energy introduced by Jun O’Hara in [O’H91],

12

1 1
= | [ et
@ y(u+w) =yl dy(u+w,u)?

R/Z-1/2

v (u + w)| y'(u)| dw du

which was later on extended to the family of energies
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for e, p € [1, 00), see [O’H94]. Here d, (u+w, u) denotes the intrinsic distance between y(u+w)
and y(«) on the curve y. More precisely,

dy(u+ w, u) := min (£ Ylwusu), £ @) = L Vlwuswr)) (1.1)

v (u+ w)| y’(u)| dwdu

provided |w| < % where Z(y) := fol |y’ (6)| dé is the length of vy.

Crucially using the Mobius invariance of this knot energy, Michael Freedman, Zheng-Xu He,
and Zhenghan Wang [FHWO94] were able to show that there are minimizers of the Mdbius
energy within every prime knot class and that these are in fact of class C!"!. More precisely,
they could show that if vy is a local minimizer with respect to the L*-topology, and if y is
parametrized by arc length, then y is C'!. Together with a bootstrapping argument due to
He [HeOO0], one then obtains that local minimizers of the Mobius energy are smooth, also
see [Rt10].

Unfortunately, motivated by numerical evidence, Rob Kusner and John Sullivan were led to
conjecture that there are no minimizers within composite knot classes [KS97]. In contrast to
that, there are minimizers of the energies E®? in the case that jp > 2 as shown in [O’H94].

In this article, we will prove that even only stationary points of the Mdbius energy are of
class C*™ under the mildest condition one can think of: that E®(y) is finite - an assumption
which, as shown in a recent work of the first author [Blal2], is equivalent to assuming that y
is an injective curve of class H 3 (R/Z,R™). Our motivation to do so is twofold: First of all, of
course, this is a much stronger result than the smoothness of local minimizers as stated above.
Secondly, the Mdbius invariance is not essential for proving smoothness of local minimizers
as we do not need it in our arguments. Thus there is the chance to study other, possibly
not Mobius invariant, critical knot energies, using the techniques developed in this article.
Additionally, our arguments are not restricted to the one-dimensional situation but can be
applied to arbitrary dimensions.



The price we pay is that, instead of the very appealing geometric argument in [FHW94],
we have to adapt some sophisticated techniques originally developed by Tristan Riviere and
Francesca Da Lio [DLR11a, DLR11b, DL11] and the third author [Sch12, Sch11] to deal with
5- harmonic maps into manifolds.

The first task in order to prove this result, is to derive the Euler-Lagrange equation for such
stationary points. In [FHW94], it was shown that for simple closed curves y € C LI(R/Z, R™)
and h € C"1(R/Z, R") we have

E@(y + th) — E®(y)

SE® 2h) =1
(r;h) lim

-
Y Wl () — I
) f f [ e | @Iy @l dvdu

R/ZR/Z

We will show that this formula is still valid under the weaker assumption that y € H*(R/Z,
R"™) with ¢’ € L™, i.e., for arc-length parametrized y we only assume that the Mobius energy
is finite. We call a curve regular if there is a positive constant ¢ = c¢(y) with |y’(x)| > ¢ for all
x € R/Z.

Theorem I (E® € Cl(Hisr/ NH Leoyy, The energy E® is continuously differentiable on the

space of injective and regular curves belonging to H*> N H'°. Furthermore, ify € H*? is
injective and parametrized by arc-length and ¢ € H>'*> N H' the first variation

EP(y +19) — E?(y)
T

SE@ (y; ) := lim

exists and equals

) };1{% f f ((7’ W), ¢ (W) — (y(u+w) —y(u), p(u + w) — sﬂ(u))) dw du
Ue

by(u + w) — y@)l* ly(u + w) — yw)l*

where
U :=R/Zx ([-3.-€] U[&. }1). (1.2)

Though the space H*?> N H'** seems somewhat artificial at first sight, it just guarantees that

we do not use bad parametrizations of our curves. The proof of this result is similar to [BR12].

We will then use the resulting Euler-Langrange equation for stationary points of the Mdbius
energy to prove that these points are smooth:

Theorem II (Stationary points are smooth). Any stationary point y € H?(R/Z,R") of E@,
3
i.e., any curve y € H2(R/Z,R") for which

SE@(y;h) =0 forall h e C*(R/Z,R"),

belongs to C* when parametrized by arc-length.



In [BR12], improving a previous result [Rt12], the smoothness of stationary points of finite
energy was already shown for the case of E@ = E@D o e (2,3), instead of the Mobius
energy. It is worth noting, that those energies lead to a subcritical Euler-Langrage equation,
and that in some sense the regularity theory can be based on Sobolev embeddings for fractional
Sobolev and Besov spaces. In contrast to this, the Euler-Lagrange equation of the Mdbius
energy is critical. As for well-known critical geometric equations — like the Euler-Lagrange
equation of the Willmore functional, see, e.g., [Sim93, Riv08], or harmonic maps on RZ, see,
e.g., [HEI91, Riv07], — one has first to find a way to gain an ¢ of additional regularity (via
gaining a § of additional integrability) and then start a bootstrapping argument. That is, in a
quite natural way, the proof of Theorem II is an immediate consequence of two technically
independent steps:

Theorem III (Initial regularity). Lety € H %(R/Z, R™), ¥ € S"™\, be a stationary point of
the Mobius energy, i.e. satisfying SE®(y, ) = 0 for all ¢ € C*(R/Z,R"). Theny € C'9, for
some @ > 0, and y € H%’P(R/Z, R™) for some p > 2.

Theorem IV (Bootstrapping). For some p > 2, let y € H%’P(R/Z, R", ¥ € S*!, be a
stationary point of the Mébius energy. Then vy is smooth.

Theorem III is proven in Section 3, Theorem IV in Section 4. While Theorem IV relies mainly
on bringing together Sobolev embeddings and standard commutator estimates for Bessel po-
tential spaces with techniques developed in [Blal2], some very delicate estimates are needed
to get anything more than the critical and initial regularity H ? for stationary points as stated
in Theorem III.

Both theorems rely on a decomposition of the first variation dating back to [He00, For-
mula (4.5)] which already proved to be helpful in the analysis of the functionals E® for a €
(2,3) (cf. [BR12]) and the gradient flow of the energies E@ for a € [2,3) [Blalla, Blal1b].

For f,g: R - R", &> 0 let

1
d
0= [ [ (F@g @)t - s w - g o) - o) 5 du

0 -1 INC-50)
(1.3)

1
T = - dwd 1.4
(o) = ff“wg@%m+wﬁmW|w)w” (14)



and
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T (f,9) := ff(f(u tw) - f), gu+w)—gw) | ——— - —) dw du.
J Y flu+w)= fal ful?
‘ (1.5)
From Theorem I we deduce that a critical knoty € H 3 (R/Z,R™), parametrized by arc length,

satisfies
Oy, h) := liI% Oc(y,h) = T1(y,h) + To(y,h) forallh e C*(R/Z). (1.6)

This is the form of the Euler-Lagrange equation, with which we will work in the proofs of
Theorem IIT and Theorem IV.

Let us conclude this introduction by remarking that, in contrast to stationary points of E@,
for p > 1 we do not expect stationary points of E@P to be C*-smooth: The resulting Euler-
Lagrange equation should be in some sense a nonlocal degenerate elliptic equation. Keeping
in mind the regularity theory for elliptic degenerate equations, one might expect nevertheless
that stationary points are at least a bit more regular than an arbitrary finite-energy curve alone.
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like to thank Tristan Riviere and the ETH for their hospitality.

2. Euler-Lagrange equation: Proof of Theorem |

This section is devoted to the proof of Theorem I which especially involves the derivation of
a formula for the first variation.

By Hi3r /2 we will denote the set of injective and regular curves in H*2. The set Hilr")O is defined
accordingly. First we will need the following lemma, to guarantee that E® is well defined on
a sufficiently small H3/2 N H'* neighborhood of the curve :

Lemma 2.1 (Hfr’2 NH is open in H¥>*NH"). Foranyy € H.*(R/Z,R")NH"*(R/Z,R")
there is some 19 = To(y) > 0 with

Y = {y+ go|ga € H"’"(R/Z,R”)J

¢l <70} C HE™. 2.1



Moreover, there is a constant ¢ = c(y) > 0 with
min{[y(u + w) — y(w)l, dy(u + w, u)} > clwl, |y (w)| > ¢ (2.2)
forally €Y and (u, w) € U.

Proof. We first show that y is bi-Lipschitz. To this end, choose ¢ € (0, %) with
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fly(u+w) Y (W) dwdu| <1
|w]?
,(2) B,(0)
for all z € R/Z and all r € [0, 6] which gives
S pe-s [ e
2r yix 2r L e

B.(2) B.(2)

1
< ’ A
<13 f fly () = 7'l dxdy
B,(z

) B,(2)

1/2
1 ’ 7
<|iz f fw () =¥ )P dxdy
B,(2) B/(2)
1/2
’ A 2
< f () -y 2(y)l dxdy
Ix =yl
\B,(2) By(2)
1
<3
Since 2% fB,(z) v (y) dy| < 1 we deduce that
inf — [ |y'w)—dldy <3
aeR" 2r -
R X

For x,y € R/Z with |[x —y| < 20 let r := %Ix — y| and z € R/Z be the midpoint of the shorter
arc between x and y. Then

y(x) = y®)l = sup f Y (),a)dt
o1 B
= sup f Y @O,y @)+ (a-vy (1)) dt

aeR”
lal<1 B,(z)
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>11- inf — (1) — -
> [}gﬁg > fbf () —aldt]|x -yl
lal<1 B.(2)
> 3lx -yl

for all x,y € R/Z with |x — y| < 26. Since y is embedded and

ly(y) — y(x)|

(x,y) -
ly — x|

defines a continuous positive function on Is := {(x,y) € (R/Z)? : |x— y| > 26}, we furthermore

have . .
() -y > min PO
&pels  |j — X

>0

for all (x, y) € I5. Hence, there is a ¢y = co(y) > 0 with
ly(x) = y(x + w)l = colwl
for all w € [-1/2, 1/2]. Lessening c if necessary, we can also achieve by regularity

V|>cy  onR/Z.

Letting 79 := %co we obtain for arbitrary y € Y

Y+ w) =yl = ly(u +w) =y = (¥ = )+ w) = (¥ = y)w)l

> colwl = ||y =¥ . Iwl
1
> §C0|w|
and
~ ~ - 1
7/ > _y/ _ 7’_7’ ZCO_||7,_')/ LWZECO-

From the latter estimate we deduce by (1.1) foru e R/Z, w € [—%, %]

dy(u+w,u) > dy(u + w,u) > %colw|.

We have established (2.2) which gives (2.1). O

We will use the last lemma to prove the following theorem, from which Theorem I will follow
quite easily.



Proposition 2.2. The energy E® is continuously differentiable on (Hi3r/ NH 1’°°) R/Z,R™).
The derivative of E? aty € Hi3r/2 N H' in direction ¢ € Hi/z N HY® exists and is given by

SEP(y;9) =

. 1 1 v (1) ,
21 -
0 ﬂ { (Mu vw)—ywP  dlutw, u>2) < P (”)>

(o w) = @), ol w) = () el D+ wi0) }
G+ w) =yl dy(u + w, u)?

(2.3)

Iy’ (u + wlly’ (w)| dw du.

As vy is absolutely continuous and regular, the derivative d% |r:o dyirp(u +w, u) is well-defined
for almost all (#, w) € Uy. From (1.1) we deduce

1 '(u+ow ’ .
wl f; (L2 ' (u+ ow))do i L Wlasn) < 3L ),

d - Iy’ (u+ow)|? ¥

ar = dy+ﬂp(u +w, u) - 1 4 .

=0 ) f (LD o w+ ow))do i L V) > 3L D).
2.4

To prove Proposition 2.2, we will first show that the following approximations of the energy
E@, in which we cut off the singular part, are continuously differentiable and provide a for-
mula for the first variation. For € € (0, %) we set

1 1
[T
= ) ly(u + w) — )/(u)|2 dy(u + w, u)?

Lemma 2.3. For e € (0, %) the functional Ef) is continuously differentiable on the space of
all injective regular curves in H*?(R/Z,R") N H'"*(R/Z,R"). The directional derivative at
y € H*(R/Z,R") N H'"(R/Z,R") in direction ¢ € HY*(R/Z,R") N H'"(R/Z,R") is given
by

v (u + w)| y’(u)| dwdu.

SEP (v ) =
! 1 Y
2 - 9
ﬂ {(W(Hw)—v(u)ﬁ dy(u+w,u>2)<|y'(u)|2 ‘”(”)>

[+ w) — v, @+ w) - @) el e+ w0 }
[y + w) =y dy(u + w, u)®

2.5)

by’ (u + w)lly’ (w)| dw du.



Proof. Applying Lemma 2.1, we obtain an H*>> N H'**-neighborhood ¥ c Hi3r/2 N H" of
v such that (2.2) uniformly holds on Y for any element in U,. The integrand in (2.5) is
almost everywhere the pointwise derivative of the integrand in Ef). Using (1.1) and (2.4),
one sees furthermore that this pointwise derivative is majorized by some L!-function. So,
Lebesgue’s Theorem permits to interchange differentiation and integration which, by a suitable
reparametrization, results in (2.5).

As for continuity of E((C,z) and 6E§) the only difficulty is to treat the intrinsic distance. Recalling
the continuity of the length functional with respect to absolutely continuous curves we can
directly read off from (1.1) that the integrand of Ef) defines a continuous operator (Hi 2n

H")R/Z,R") - LY(U,). l
1 1

Since 7y is regular, for any u € R/Z there are at most two points w € [-3, 5] satisfying
L Niwwrw) = %.,Sf(y) which results in a null set in Uy. Additionally using (2.4), we see
that the integrand of 6E§2) gives rise to a continuous mapping (Hfr 2 H")R/Z,R") x
H'"(R/Z,R") — LY(U,). Being linear and bounded in the second component, it can be
viewed as a continuous mapping from H'* into the linear bounded operators Hfr PAH"> -

LY(U,).

Altogether, the integrand of Ef) is a continuously differentiable functional Hfr 2ANH" -
L'(U,). The statement now follows from the chain rule and the fact that the integration oper-
ator

LY(U,) - R, ngf g(u, w) du dw,

is continuously differentiable as it is a bounded linear operator. O

Due to the fact that bounded L!-sequences are not uniformly integrable, the approximations
Eéz) do not even form a Cauchy sequence in C O(Hfr/ 2NH"). In order to prove Proposition 2.2,
we state in Lemma 2.4 below that Eéz) is nearly a Cauchy sequence in C 1(X5) for subsets
Xs C Hfr 2N H", 5> 0, which satisfy the following substitute of the uniform integrability

property

1/2
’ + A 2
lim sup sup (ff ' (u w)2 YWl dwdu| <6. (2.6)
£-0  yeXs R/ZX[—£,6] w
The statement involves the Lipschitz constant
E(f) - E(f)
lipy E = sup u
rier =1
f£f

for some real-valued functional E and a subset Y contained in its domain.

Lemma 2.4. We have
EQ () - E? (@)



orally € H'> 0 HY™.
y 1

Furthermore, for any vy, € Hi3r/2 NH* there is an open subset Y C Hi3r/2 NH"* and a constant
C = C(yp) < oo such that

lim sup lipy,~y (E® — E&)) < C6 2.7)

€1
£1,6,—0

for all subsets X5 ¢ H*> n H satisfying (2.6) with 6 € [0, 1].

Proof. From Lemma 2.1 we get a H*/?> N H"**-neighborhood Y c H?r/z N H"> of y such that
(2.2) holds for all y € Y. Making Y smaller if necessary, we may also assume the existence of
an gy > 0 with

dy(u +w, Lt) = g('yl[u,bﬁw])
forall y € Y and w € [—&, &].

In order to bring the integrand in the definition of E® and E in a more convenient form we
introduce the function
(—2 _ 77—2
9(¢,n, 9,0 = ——5"h
772 — 42
which is Lipschitz continuous and positive on [, c0)* for any & > 0. We define for u € R/Z,
w € [—&o, £0]

1 1

gwwWw%4j}m+awwhf
0

0

Y (u + 6ow)| 6,

Y u+w) |y ||

We have chosen Y in such a way that the arguments in G are uniformly bounded away from
zero. Then we decompose the integrand in the definition of E® for |w| < &, into

Y (u+w)||y W)

1 1
(Iy(u rw)—ywf  dutw, u)z)
1 1 1

) 2
R e ol (b i de.)

3 | @+ wly' @
1 2 1 2
(' e+ owrdss) = | [+ o) da
Jwl®
)ﬂ@ﬁww+mmww+%m—wm+mwmm+%w»wm&

2
|wl

= Gy(u,w)

=G,(u,w
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Using 2|allb| — 2{a, b) = |a — b|2 — |lal - |b||2 for a, b € R" this can be written as

1 Jop 1Y @+ 610) =¥ (u + 62w)P* d6 d6
56 (u,w) .

w

T ¥ @+ G1w)] = 1y (u + 62w)))* d6y ds
. .

-16,(u,w)

w

We first use this to get

Jop 1Y @+ 61w) =¥ (u + 62w)* d6 d6

E®() - E?(y) < C f f G, (u,w)

5 dwdu
w
R/Z &
& 2
[y (u + 6w) — ¥ (u + Grw)|~ d6, db, .
<C ff S : wdu == 0
w
R/Z —¢
which proves the pointwise convergence stated in the lemma.
Letnow 0 < g1 < & < gy and set
F:=E? -ED.
Using the decomposition of the integrand above, we get
, Jop 1Y @+ 61) =¥ (u + 62w)* d6 d6
Fiy)=3 f f Gy(u, w) " dw du
R/Z &1 <|w|<ey
1 Jo.p 0 @+ G1w)] = 1y (u + Gw)])? d6; db
-1 f f Gy(u, w) " dwdu

R/Z &1 <|w|<&y
2 2
= 3P0 = 3 FP ().
To estimate the difference F(y) — F(y) for y,¥ € Y,, we first consider

G5 (u, w) — G, (u, w)|

1 1

<C fi/'(u+91w)d91 - fy’(u+92w)d92
0 0
1
+Cf(
0

+C|

¥ (u+ 0w)| - |y (u + 6w)]) do

Y (u+w)| -y u+w)l + ||y @| - |y |

11



1

ccf

0
<Cly =7l

¥ (u+ 6w) =¥ (u + 6w)| dg + C

Y (u+w) -y u+w)|+ Cly -y @)

We arrive at

IFP®) - FP o)
T 17+ 61w) = ¥ + Bow)I d6; d6

5 dwdu

< If|%mw—@mwi

R/ZX[-¢&2,&2]

+ f f |G, (u, w)|
R/ZX[-&2,6,]
T 17 @+ 610) =7 + Ow) — 1y + 6w) = ' + Gw)| d6) d6

w

w2
dwdu
' (u+ 01w) — 7 (u + yw)|*
<C 5«// _y/ L f |7 (l/l 111)) 27’ (l/l 2U))| dwdu dgl dg2
w
[0,112 R/ZX[~&2,&2]
el [ ff

[0,11? R/ZX[-&2,62]
|7 +Y)u+6iw) — F +v)u+bwlF —v)u+6w) —F —y)Nu+ 6w
2
w

dwdu d01 d92
<C [7”]2;5 1V -7+l 7+ 7'],&/; [y - 7'],45

where we set for & € (0, §)

2 1/2
2= (ff —If(u * w)z— S dwdu) .
Hg R/Zx[-¢.€] w

For the second term we compute

|FP®) - FP ()

S 07 + 1w = ¥ + Ow)))* d6; d6;

< |[ losww - yww) L dwdu

R/ZX[~&;,85]

12



+ ff |G, (u, w)|-
R/ZX[-&3,e2]
Joa 107 @+ 61w = 7 (@ + 020)) = (' (u + Gw)] = 1y (u + 6,w))?| d6y d6;

w2
dwdu
¥ (u + O1w) — 7 (u + w)|?
< C 5/’ - 7, L® f h/ (u lw) 27 ('4 ZU))I dw du d01 d92
w
[0,1]2 R/ZX[~&2,82]
+Clv ff ff (1Y’ (u + Brw)l = 1Y (u + Gow)]) + (Iy' (u + Orw)| = |y (u + 92W)|)|'
s ol
[0,1]? R/ZX[~&2.2]
V' (u+ 6w =17 (W + 6w)) — (Iy (u+ 6w -y (u+6
_I(I)’ (u + O1w)| — 1y (u 2w)|)| |(|7 (u + 01w)| = Iy’ (u + Gw)))| dw du 6, 6,
w
~7 ’ ~712 ’ ~7 ’ ~7 ’
<Cly =l WL n + I 71+ W]z (7] = b1
2e, 2&) 2e,

Using the chain and product rule for Sobolev spaces and the formula

~| _ _ ¥ /’7 -
|y| |7/| _YHYYV =)
¥+ 1y'|

we obtain, assuming &y < }T’ for C > 0 depending on the constant from (2.2)
(A P )

< =Y bz 17+ Vi (14 17030+ D)
2

282

where
Il g1/2mze = 172 + 1l -

Hence
P2 - P00 < (17 By + I e (193 + D I 4 D
2¢&, 2& 2&,

: (1 + [5’/]@/2 + [7']H1/2))||)7’ =Y 1200
&

2&,
The claim follows from

limsup sup [¥'] 12 <.
e \0 yeXsNY e

13



Proof of Proposition 2.2. In order to prove that directional derivatives exist at yy € Hisr/ 2N
H'"> for all directions ¢ € H?> N H"* let Y be as in the proof of Lemma 2.4 and

Xo:={yo+1p|lTE(-1,1)}.

First we observe that X satisfies (2.6), thus being an admissible set for Lemma 2.4. Indeed,
fory, :=vyo+ 710, 7] < 1,

’ + A 2 1/2
( ff lyz(u w)2 VA dw du)
R/ZX[-5.¢] [w]

’ ’ 1/2 ’ ’
- (ff lyo(u +w) — yo(u)|2 dw du) . (ff " (u + w) — ¢’ W) dwdu)l/z
B R/ZX[~.] |wl? R/ZX[~¢.6] lwf?

N @8)

From this we deduce, for
fe T EQ (v + 19),

that
2.0 = f£,0)] = [6ES (o + 73 0) = SED (y0 + 75 0)|
EQ(o+ (T +0)9) —EQ (o +19)  EQ (v + (T + 0)¢) = ES (0 + 79)

< lim

ot 0 6
< lipy, oy (EL = E2) @l 32050100 (2.9)
2200 by 7).

As Eff) — E@ pointwise, this proves that (f;),. is a Cauchy sequence in C Y((~79,70)) con-
verging to EPD(yo + TPp) = limg o Ef) (yo + 79) as € — 0. Hence, especially all directional
derivatives of E® exist and

SE® (yo; ¢) = lim SEP (y0; )
e\\0

forallyp € H> N H'", g € H> nH'*.

The next step is to establish Gdteaux differentiability. To this end we merely have to show
SE@(yy,-) € (H3/2 N H1’°°) for yg € Hi/z N H*. Linearity carries over from E?. In order
to prove boundedness we introduce

Xs={y e H” tlly = yoljpp <6} forse(0,1] (2.10)

14



which also satisfies (2.6) as for y € X5 we have

’ A 2 172
( ff s w -y @p du)
R/Zx[-&.] [w]

’ + A 2 172 c
< (ff ot + w) 5 Yo dw du) +0 ———>\0 0.
R/Zx[-e.6] w]

SE® (03 9) = SEP (03 ) + SE (93 ) — SEP (703 )
= SEP (yos ) + lim (OE2 (vo: ¢) — SEL (v0: )
&

2.11)

Now

*
b}

and thus, arguing as in (2.9) and recalling SEZ (yy; -) € (H3/2 N H""")

GE® (o3 @) < BES (yos @)l + lim sup lipy oy (ES — EX )il 3720100 < Clllla/20p.
1 \0

<oo

forall yo € H> N H' and ¢ € H*> n H'*. Hence, E? is Gateaux differentiable and the
differential is given by

(E®) (o) = 6E@ (o3 )
forallyp € H> N H'", g € H¥> nH'*.

Finally, to see that the differential is continuous, let oo > 0 be given and let us choose 6 > 0
and & > 0 so small that

) 2.7)
lipy, ~y (Eg) - Eg)) <Co< %O’
for all £, &, < & where X is as in (2.10). Then we have fory € X;NY and any ¢ € H3?>nH">
SE®(r;9) = SE (03 @)l < BED (v 9) = SE (v @)l + BE (v 9) = SE (03 )
+I6EP (v0; 9) = SEX (y0; )|
(2.9)
<EL (v 9) = SEP (vo: @) + 20 10l 3/2,1p91.00 -
Since EZ is C! we deduce that there is an open neighborhood V c X; of vy such that
SEZ (v ¢) = SEL (Yo @)l < 30 @ll 3200109

and hence
IBE? (y:0) = SEP (v0: ©)| < o llell 372,10

for all y € V. This proves that (E(z))/ is continuous from Hfr/z N H'* into (H3/2 N Hl’m)* and
hence E@ is C'(H.> nH'*). O
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Proof of Theorem I. Using Proposition 2.2 we merely have to derive the formula of the first
variation for a curve y € H?r/z N H'* parametrized by arc-length and ¢ € H?> N H'*. As
[¥'| = 1 a. e. we deduce from Lemma 2.3 and Equation (2.4)

D (- ) 0 1 _i) / /
SET9) zﬂug{(mww)—y(u)v w2 ) 7' - #0)

o[+ w) =y, o+ w) = ) Gl dyerele + w10
- - wdu
Y+ w) =P P

where now

1
|y e + w, 1) = wl f Y (u + 6w), ¢’ (u + 6w)) do
0

for all (u,w) € R/Z X (-3, 3). Hence,

2)(n,. N0 1 _ i ’ ’
B =2 ffu { (Iv(u rw) -y WP wz) e, '@

((y(u W) = (), @+ w) — )y o e+ 6w), ¢ (u + bw)) dﬂ]}
- — dwdu

by +w) - y@l* w?

1 1 , ,
=2 ffy {(W(u ) -yl E) ¢ 1)

_ (W ) =y (), ol + w) = W) (¥ W), sv’("”) } du du

ly(u + w) = yw)l* w?
_9 f f ( YW, o' @)  (yu+w) —yw), o(u +w) - w(u)>) d
= - w du.
A\ y(u+w) —y(w)? ly(u + w) = yw)*

3. Initial regularity: Proof of Theorem Il

Note that if we consider the constant factors to be irrelevant with respect to the mathematical
argument, for the sake of simplicity we will omit them in the calculations, writing <, 2, =
instead of <, > and =.

Most techniques for dealing with critical partial differential equations of fractional order have
been developed for equations on the whole Euclidean space. For that reason, we prefer work-
ing on the real line over working on the circle.
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We will show that for every u € R/Z we have
|D|%g’ € LP((u—1/20,u + 1/20))

for a p > 2. Due to the invariance of the problem under shifting the parametrization, it is
enough to show this for u = 1/2, i.e.

|D|%g’ € LP((9/20, 11/20)). (3.1)

Let |[D* = (=0%)*/*> = (-=A)? be the fractional Laplacian on R. The inverse, I, = (—A)73,
s € (0, 1), is the Riesz potential by

S d

— (32)
lx—yl'

I f(x) = ¢
R

In case of positive powers s of the Laplacian |D|’, s € (0, 1), we use the corresponding formula

priw =z | fg)_;y{m dy. (33)
R

For a detailed introduction to the fractional Laplacian we refer to, e.g., [DNPV11], [Sch10,
Section 2.5].

To switch from the circle to the real line, we interpret functions on R/Z as functions on R
which are periodic with period 1. We then choose a cutoff function n € Cy(R), 7 = 1 on
[-3,4] and consider

g=n-vy (3.4)

instead of y. We will show that |D|%g’ € LP((17/40,23/40),R"), for some p > 2 to conclude
the proof.

Before we begin to outline the structure of the proof, let us shortly recapitulate the notion of
Lorentz spaces and the main properties we are going to use in this article. For a measurable
function f : Q — R and Q C R one considers the decreasing rearrangement

S =inf{s>0: L'AIf > sh < 1)

where £! denotes the Lebesgue measure. We define

00 ) l/q .
(F@ P e it p.g e [1,00),
sup,o 1'/7 f*(1) if g = co.

Iflp.go = {

To prevent technical problems, unless p € (1, c0) we will only take the spaces L' = L! and
L>* = L™ into consideration.

17



Furthermore, |f|(p’p) = ||fll, for all p € [1,00]. If Q = R we will omit Q in the notation.
Though | - |(p4).0 is not a norm, as it does not obey the triangle inequality, there is a norm
Il - llp.9). Oon the Lorentz spaces which is equivalent to | - |, 4) . These norms satisfy a Holder
inequality, i.e., for pi,ps,p € [1,00) and q1,¢2,q9 € [1,00] with 1/p; + 1/p, = 1/p and
1/g1 +1/q2 = 1/g we have

I gllip..e < Wfllipgn.a 1gllpm.an.0- (3.5)

For p1, pa, p € (1,0) and q1,q5 € [1,00] with 1/py + 1/po =1/p+1and 1/q; + 1/q2 = 1/q
we have the Young-O’Neil inequality [Hun66]

I gl < 1fllprgne 9l g0 (3.6)
Furthermore, we have the Sobolev inequality

”IsfH(p*,q) < ||f||(p,q)

p

forall s > 0, p € [1,00),q € [1,00] and p* := T—sp

can be found in [Hun66, Gra08, Tar07].

The main reason for using Lorentz spaces in the context of critical equations, i.e. equations to
which standard Gagliardo-Nirenberg-Sobolev embeddings cannot be applied to gain regular-
ity, is the following fact. Although for functions f the L*-norm of |D|% f does not control the
L*-norm of f, the L*! norm does, i.e. we have the estimate

1
Iflleo < IIDI> fll2,1)-
We will also need this in the more general form

I/lle < NDFfll1,y  forall s € (0, 1).

€ [1, o). Further information and proofs

In order to prove our regularity result, we will prove a Dirichlet growth theorem for the weak
H'/?-energy of ¥’ on balls in a manner comparable to [DLR11a, Sch12] — which are as well
in the setting of sphere-valued mappings. In contrast to these papers, the techniques from
[DLR11b, DL11, Sch11] deal with a more general setting, but have to work (as we will here)
with estimates of the L>*-norm instead of the L?-norm. Note nevertheless that our right-hand
side is very different from their’s. In order to obtain the estimates of the norms |||D|%g’||(2’oo)
on small balls, we will have to use new arguments.

To prove the regularity theorem, we begin with an approach appearing in [DLR11a, Sch12]

and divide IDI%g’ into the part parallel to g’ (and thus normal to the sphere S"~!) and the term
perpendicular to g’ (tangential to the sphere). More precisely, we use that for p € [1, o),
g €[1,00]

i, ’ 1, ’ Ly
DG 05, % K9 D1 W5, + S0P g 0D Gl (3.7)

where the supremum is over w;; = —wj;; € {~1,0,1}. For a detailed version of this linear
algebraic fact, the interested reader is referred to the appendix of [DLS12].
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3.1. Estimate of the normal part

We have

(@Dl = ~3 Hi (g o) + 31D (3.8)
where

Hg(a,b) := |D|’(ab) — a |D|°b — b |D|’a. (3.9
Note that for any s € (0, 1), we have

Q2B oty S (1ot oo

IDPlg' =" 1D + 21D ('Y 9) + DI (i PhyP) € L¥((0, 1). (3.10)
In fact, |D|*n* € L™ by interpolation inequalities. For the remaining terms we use the quasi-
locality, Lemma A.1, and the support of  and 7".

As in [Sch11] we will use pointwise estimates for H; and some quantitative version of the
. . . 1
quasi-locality to estimate the normal part of |[D|2g":

Lemma 3.1 (Normal part). Forany s € [0, %) there exists 0 > 0 such that for any B, C [0, 1],
A>4

1 1 2 1 = 1 1
1 1 -0 3 -0k 3 2
DI 1D G Ml 2 o, S DG Nl + A MDEG gz D2 DI ooy, 17

T+2s° 2kAr
k=1

@3.11)

For the readers’ convenience, a proof will be given in the appendix.

3.2. Estimate of the tangential part

It then remains to estimate the part normal to ¢’ (tangential to the sphere), i.e. for w;; =
-wj; € {~1,0,1}, 1 < i, j < n we need to estimate suitable norms on small balls of the term

1
g wij|DI> g;.

We have

, 1, 1 L, 1 , L, L, Ly ’
[qwipiiainite= [0t 1D} (@ige) - [ 1D wiiplia; e~ [ 1DV wittaig)
R R R R

L, 1 ’ 1, ’
= f DI g, 1DI* (wisg) - f DI g, wiiHi (g ) (3.12)
R R

where we have used that due to w;; = —w}; the second term on the right-hand side of the first

line vanishes.

The second term can be estimated analogously to similar terms in [DLR11b, DL11, Schl1]
using again quasi-locality together with Sobolev embeddings.
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Lemma 3.2 (Tangential part). There is 6 > 0, 59 € (0, %) such that for all ¢ € C7(B,),
A > 16, s € [0, 59) we have

l ’ ’
f|D|29iwin1/2(9j,¢)dx

—s+l/2 1|12 -0p|s 0= 11 7y
<D+l 2y, [|||D| 29 Iy, + ANDIEG oz 27 PUIDE G ooy, |-
k=1
A proof is provided in the appendix.

It remains to estimate the first term on the right-hand side of Equation (3.12) for which we
will use the Euler-Langrange equation (1.6).

Combining this equation with the formula
[N
[oits oty
R

et [ [ (< o fi - )~ A, St w)—fz(u)>) Do, 313

w?

R R\(-¢&,&)

due to He [He99, Proposition 2] we get the following estimate which contains all the informa-
tion of the Euler-Langrange equation we need to proceed in the proof:

Lemma 3.3 (Essential estimate of the Euler-Lagrange equation). There is a constant C <
oo such that

f (IDI*g'.IDI*¢) < C f I$@IC(w)du + Cligll2 (3.14)
R R
forany ¢ € C((4/10,6/10),R") with (¢, y') = 0 where
1/4
g/ () = g’ (u + 530)| g’ (u + s53w) = g (u + sqw)?

e dw ds.
w

T(u) =

(-1,1)3 -1/4

The heart of the proof of Theorem III is the following pointwise estimate of the most prob-
lematic term I'(«), which permits to localize it and which afterwards will be transformed into
a bound of its L!'-norm.

Lemma 3.4 (Estimate of the critical term). We have
I 1, 21, i1, T R T 2
[L(w) < (IDI"2(|D12g'|w)| IDI731ID12g'|(w) + |DI"=|D|2g"|(w) |DI™*#||DI" 2 ||D|2g"[(w)|  (3.15)

almost everywhere.
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In fact, Lemmata 3.3 and 3.4 provide the essential new estimates in this article on which
our entire reasoning relies crucially. Using these and the above-mentioned improved Sobolev
embeddings for Lorentz spaces, we are ready to show the following estimate. This will allow
us to prove a Dirichlet growth of the L>*-norm of |D|%g'.

Lemma 3.5. There exist R > 0, 5o € (0, %), and o > 0 such that for any A > 2, s € [0, s9),
By C (35, 3), r€ (0,A™'R) and ¢ € C3(B,) we have

, N
fgiwij|D|zgj [D|2¢

%kar |

1 1,2 _9 1 - ok 1
< ||IS|D|2¢||(122J,1)[r" + 1D g 2018, + AMNDIG Nz D 27" MDI>G 3.0
k=1

3.3. Conclusion of the proof of Theorem Il
Combining Lemma 3.5 with Proposition A.3, we get
5 ’ 1 7

DY (g D)),

m,‘x’)»Br

2 \& 1 2 1 _ - _ 1
< ((A P) "+ DI Ny, + D17 No.cr A D27 NIDI G Ny

A32kr
k=1
-0 —s —06k Ly
+ A 2D G 2

k=1

o— —_ 1

< ( | AT 2R DR G (3.16)
k=1

for some 6 > 0 uniformly in A.
Let us first use this for s = 0, to get in view of (3.7) and Lemma 3.1 that for all £ > 0 we have

for sufficiently small r > 0, B, C (%, ]—%> and big enough A

2kA3r

1, o 1, 1, _ _ 1,
D12l 20005, < C[(Azr) + &IP3, + (1 + DG 2 DA™ D27 1DI g |3,
k=2

uniformly in A and €.

Let us fix such an ry, and consider the above equation for A = 23, r = 27" *r; (w.lo.g.
ro = 1). Setting b := 1D ¢’ 2,00, and by := IDI*¢/l| 00,5, the above estimate gives

k
bam < C270&M3) o gp 4 €270/ [Z 2% + sz’k]
=1
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for every k € Ny where C < oo does not depend on k.

Using the iteration argument, Lemma A.8, leads to
Ly o
lDI2g ||(2,oo),B" <C,r (3.17)
for all B, C (29—0, %) and r small enough.
This immediately implies Holder regularity of the solution ¢’. Instead, let us iterate the above
argument to get |D|%g’ € Lf;c((9/20, 11/20)), for some p > 2.

Let us assume without loss of generality that & < ¢. Then, plugging (3.17) into (3.16) one

-
obtains
min{o,5,6—s5,0/2}

s( oo DI o
DK (gl PG

< C/\,y,s,R r

for small enough 0 < s < (0,6), r > 0, and B, c [9/20,11/20]. Here we have used that
kA3 —0k —ok2 (A2 012 o

2°A°r > Ry for some Ry > 0 leads to 2 <2 (R—O) /<. So the series in (3.16)

converge and are bounded by some small positive power of r.

On the other hand, (3.17) and (3.11) together imply for any small enough r > 0, A := r~%,and

9 11
Br C (2—0, E)

1, 1 3.11) 1 2 0 ., 2 3
DG, D12 g3 )8, S IDIPG 20y p, +72 DG N0 00)m + 77
? 2
(3.17) - 0 3
< G (r‘T +r2 + rZ).

That is, |D|“(g;wij|D|%g;), and |D|#(¢’,|D|Zg’) both belong locally to a Morrey space £

loc
on (%, %) More precisely, for some 4 € (0, 1) we have

sf s 1, (2004 9 11
r(geninte) € £33 5)

Ly ik (oo 9 11
DIi{g.IDI*g’y € L=, —|.
IDI#¢g",IDI2g") L (20,20

The boundedness of Riesz potentials on Morrey spaces, as shown in [Ada75], implies that for
some p > 2

i i 9 11
: l“Di ,'7 ,’D7 Lp An’ An |
g;wijlDI> g, (g, IDI>g") € 105(20 20)
Together, using (3.7), we have shown
| 9 11
Di2g, el | =, —
IDI%g; 106(20’20)’

which finishes the proof of Theorem III. O
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3.4. Proof of Lemma 3.3

The main idea is to use ¢ as the derivative of a test function for the Euler-Lagrange equation.
Of course this is not possible generally, but with some precaution we can actually do it up to
a benign error term: For ¢ € C;((4/10,6/10)) we set

h(u) = fqﬁ(v)dv —au
0

where a = fol ¢(v)dv is chosen such that 4(0) = h(1). Hence, if we set

ho(k +1) := h(t), Vtel0,1),keZ,
bolk+1):= ¢(1), Vtel[0,1),keZ,

h, is a smooth one periodic function satisfying

h;r(bt) = ¢7r —a.
and, as we assume in Lemma 3.3 that (¢,y’) = 0, also
(¢r¥') =0.

Since vy is a stationary point of the Mobius energy, testing the equation (1.6) with &, (recall

(1.4), (1.5),(1.3))
O hx) 1= im Qo (y, hx) = T1(¥: hx) + To(y, he). (3.18)

As ¢, is perpendicular to y’ we can estimate the term 7' (y, h;) by

1172
1 1

Ti(y, ha) = f f 0w, ) )\ oS O T R

-1 -1/2
<lal E?(y) < Cligli < Cligll2- (3.19)

As for the remaining terms Q(y, h,) and T5(y, h,), we will identify them essentially with
the left-hand side of (3.14) and the I'-term on the right-hand side of (3.14), respectively. A
technical detail one has to take into account here, is that the domain of (3.18) is the torus R/Z,
whereas the respective domain in (3.14) is the real line R. To estimate the other terms, let us
introduce for fi, f> € H*(R,R") the operators

loc

(il +w) — fw), olu+w) - HH(w) ) dw

w? w?

du

1
onp=[ [ (<ff<u>, ) -
0 I
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w?

1 11 , ,
_ f f f f (fra, fw) (fl<u+s1w),f2<u+szw)>)dS1dS2dw "
0 7 0 0

where I, := [-1/4,1/4]\ [-¢, €],

0:= l{rg) 0.,
and
To(fi. f2)
1 1/4 1 1
= f f <.f1 (l/l + w) - f] (u), fZ(M + w) — fz(u)) (m |w|4 )dw du
0 -1/4
1 1/4 1 1 1 1
= f f ff(f{(u +s1w), fy(u+ sw))w? (m o )d51 ds, dw du.
0 -1/4 0 0
(3.20)
Recall that [—5, 3]\( g,¢€) is used for the definition of Q and I, := [-1/4,1/4] \ [-¢, €] is

used for O, so the difference only contains the set where |w| > l, thus |w|’2 is not singular.

1
Quantitatively, this reads as

10(y, ) = Qv )| + 1T2(y, b) = Ta(y, W] < CIY 2l ll 2 < CIY 282, (3.21)

where we have used that y is bi-Lipschitz in order to deal with 7.

We now compute

1 I 1
0o(y: ) = ffff(()”(u), () = (¥ (u + syw), hy(u + sw))) dsy dsZ% du
0 7. 0 0

1 1 1
) ffff«”/(”)’ $r) — (Y (u+ s1w), 2 (u + s20))) ds dszi_f du

1 11
d
ffff(()/(u), ay = {y'(u+ syw),a)) ds dszw—lf du (3.22)
07 00
1 11 J
f f f f (g’ ), ¢p(w)) —{g'(u+ s1w), p(u + sow))) ds; dSzw—l;) du. (3.23)
07 00
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Here we have used that fol v (u+ @)du = 0 for all @, i.e., the term (3.22) is constantly zero for

any w. The term (3.23) essentially is the Lz—pairing of |D|%g’ and |D|%¢: More precisely we
will show

10y he) — f D¢/ ] < C, 1o (3.24)
R

Proof of (3.24). Using (3.13), we have for any f1, , € CY(R)ase —» 0
[ 10t 1t g+ 1)
R

¥ . (3.25)
= Cf f ff((f{(”)? fZ,(M)> - <f1,(u + S]H)),le(l/t + S2w)>) dSl dSZﬁdM.

R R\[-g¢] 0O O

We now connect and (3.25) and (3.23). The technical problem is, that the integral of ¢ is not
a feasible test-function for (3.25). Let therefore for ni_10,10] € Cy’((=11,11)) and n_10,101 = 1

in [-10, 10],
UBES [u > 7](-10,10] ffﬁ] € C7(R).

0
Thus, ¥ is a feasible test-function for (3.25), which ¢ is not. Moreover,

u u
’ 7 Suplp(ﬁ ’
1/ =77[—10,10]¢+77[—1o,10]f¢ = ¢+77[—10,10]f¢~ (3.26)
0 0

‘We thus arrive at
1

11

~ d

Q:(y, h) m°2 ffff( (), pw)) —{g'(u + syw), p(u + srw))) ds; dszw—lf du
0

0 0

&

11
su; 5 (W, (3. d
O [t w0 = @ s s ds dss g d
R

o~

Il
—
—

0 0

1 1 d
ff(( (), ' () —{g'(u+ syw), ¢ (u+ sw))) ds; dsZw—lg du
0 0

R R\[-&.e]

1 1
d
- ff((g'(u), W) —{(g'(u+ syw), ¢ (u + sw))) dsy dSzw—lf du
0 0

[w]>

el
sl
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(3.25) Lo,
=" | (D24, IDI7y")

1o
d
_ f f ff((g’(u), W)y = (g (u+ syw), ¥ (u + sw))) ds; dszw—l;) du
0

R |w|>% 0

+o(1)

(3.26)

(DI*g'.|DI*¢) + f (IDI*g’ \DI* (11,10, f )
0

1 1
d
—f f ff((g'(u), W) —{g'(u+ syw), ¢ (u + sw))) dsy dSzw—lf du
0 0

Now, by usual interpolation and/or imbedding of Sobolev spaces, see, e.g. [Tar07, Sch10],

1
DI fllo < fllog + 1 g

we have '
1, supp ¢
D12 (77} 10,10 f¢)”2,R Slielly +ligll, < ligll,.
0
Moreover,
1o
’ ’ /7 ’ dw
(g’ (w), &' (W) — {g' (u + syw), ¥ (u + srw))) ds; dszﬁ du
R \w\>% 0 0
< f 0l g 1l
|w|>§
(3.26)

. , supp g
< g s (I8l s +16lhz) S Cy lidls.
Thus, we have shown that (3.24) holds.

To estimate T»(y, i) we calculate

1 1/4

1 1
To(y. h) = f f(y'(u + 510), Grlu+ s30) + ay w*-
0

0 -1/4 0
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1 1

|——————— — — |ds; dsr dw du
(|y(u+w>—y<u>|4 |w|4) L

1/4

11
ff()’l(u + s1w), P(u + srw) — du + syw) + a) w
0 0

|

~1/4
( ! ! )d ds, dw d
—_— S S w au
b+ w) -yl w7
and using
u+w)—ylu 4
. | _L)_ A I - -yl
ly(u+w)—yl*  |w*) |+ w) -yl w?
1— byu+w)—y )
< C—w2
1 1
:gfflv(uﬂsw) Y (u+ sqw)? dss dss
2
0 0
we get

T2y, h)| < lalE@(y)

1 1/4
[y (u + s1w) — ¥ (u+ ssw)| Y (u + s3w) — Y (u + saw)? o + s,w)|
" w2 dsdw du
0 —1/4©.1)¢
1 1/4 i
+ + +
< Cligllz + f f f ly'(u+ syw) —y' @) Iy’ (u wZSgw) Y (u + sqw)l |¢(u)| o
0 -1/4(-1,1
(3.27)

From (3.21),(3.19),(3.24), and (3.27) one gets the claim, since y' = g’ on [-1/4,5/4].

3.5. Proof of Lemma 3.4

Let 1
F(u) := |IDI> g’ (w).

. 1 .
Since ¢’, |D|2¢’ € L2, we obtain

g'(0) =g ) = 1;(DI*g")(®) - 1, (DI* ¢ ()
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=cCi
2

(f|x—§|-“é |D|%g<f>d§—f|y—fr‘+% IDI*g (&) dé),

then
lg'(0) — ' W)l < f 1€ — X712 = jg =y T2 F (@) dé,
R

and hence
1/4

() < f f f &) F(&) F&) k. u, s, w) dw dé ds,

(-1 R} -1/4
where for almost every s = (sq, 52, 53) € (=1, 1), & = (£1,6,6) eRP, w e R, u € R,

m(&r —u, 0, s1,w) m(& — u, 52, 53, w) M(E3 — U, 52, 53, W)

k(& u,s,w) = > (3.28)
|wl
and 1 1
m(a, s, t,w) = |la + sw|"2 — |a + tw|”2|.
The characteristic behavior of k is as follows: The factors m(-, -, -, w) will behave like [w|° in a

neighborhood of w = 0 such that they somewhat absorb the singular behaviour of |w| 2, that is,
k becomes integrable around w = 0. This is an effect very similar to the behaviour of H,(:, -),
see Lemma A.5, as developed in [Sch11].

More precisely, we will derive the estimate

f k&, u, s, w)ds

[-L1P

1
S T S R IAa f (o —u+ 1w dr - (3.292)
(0(2),5(3))€{(2,3),(3,2)} 3

1
+ WP e — w0 f &2 — u + tw| V20 — u + w720 dr. (3.29b)
-1

We start with some abstract treatment of m.

In case 1, max (la + sw|, la + tw]) = 2|s — #||wl, (3.30)

we obtain
la + sw| = |a + tw). (3.31)

Applying the mean value theorem, for any ¢ € (0, 1) we arrive at

m(a, s,t,w) < max (Ia + sw|_3/2, la + tw|_3/2) |s — f]|lw|
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< max (|a + 5w 7?70 la + tw|_1/2_6) max (la + sw| ™0, la + twl_”‘s) Is = #lwl

(3.30) B
< max (la + swl ™27, Ja + | 270) s - °
N——
<26
(331 s 12—
< min (Ja + sw™27, ja + |27 wp’. (3.32)
In case 2, max (la + sw|, |a + tw]) < 2|s — tw), (3.33)

we immediately obtain

m(a, s, t,w) < max (Ia + swl’l/z, la + twl’l/z)

< max (Ia + sw| V270 Ja + zwrl/H) s — #° |wl’. (3.34)
N——

<20
We begin with the first factor in (3.28). In case 1 we always have
m(é —u,0,s1,w) < & —ul" 7wl (3.35)

In case 2 we have either |£] — u + sjw| > %Ifl — u| which immediately results in (3.35) or the
opposite
1 — u+ sjwl < 1€ —ul (3.36)

which leads to

1
— 0 dst < 0 _ -1/2-6 d
Xié—utsiwl<ie—am(E1 — 1,0, 51, w) dsy < |w] &1 —u + sqw) 1
-1

[E1—u+siwl<Iér—ul

< lwpP™! o™ *0 dor < Jwl® g — w20
o <[é1 —ul
(3.38
Sl —ul PO, forse (0, L),
(3.37)

Here we made use of the fact that, given case 2 for a := &, — u and (3.36),
la| < min (la + sw| + |s||w], |a + tw| + |t]lw]) < min (|la + sw|, |a + tw]) + |w]|
(3.36)

- 1
< slal+ |wl,

implies
lal < 2|w. (3.38)
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Applying (3.32) and (3.34), we arrive at

f k(& u, s,w)ds

[-11P

S w2y — w70 ff m(&r — u, $2, 83, WN(E3 — u, 52, 53, W) dsy dsz 3.39
111 (3.39)

36-2 -1/2-6 -1/2-6 -1/2-6
< P 2lgr - ul™ ff 102 (162 = u+ sl ™27, 1€y — u + szw|770).
[-1,11?

~1/2-6 -1/2-6
-,u3(|§3 —u+ s / , 163 — u+ s3w)| / ) ds, dss3

where
Wi = i (& — u, 52, 83, w) € {min, max}, i=2,3,

depending on the respective case. If case 1 holds for at least one of the two factors in the
integrand, say the first one, we may choose the argument of

-1/2-6 -1/2-6
Nz(lfz—u+szw| 2006 —u+ syul ™ )

which contains the same integration variable as the second one. This results in terms of
type (3.29b). If, however, case 2 applies to both factors, the integral in (3.39) is bounded

by
ff (162 = u+ 52l 1y — o+ sl ).
[-L1)

. (|§3 —u-+ s2w|_1/2_5 + |§3 —u-+ S3w|_1/2_5) dSz dS3.

Expanding the integrand, the terms |£&, — u + siw|_1/2‘6|§3 —u+sw| Y0, i = 2,3, lead us
to (3.29b). For the two remaining terms we may separate the integrals which gives

1

1
Z fl{;},(z) —u+ s2w|_1/2_6 ds, f |E0z) — u + S3w|_1/2_'5 dss.
-1

(0(2),53))€l(2,3).3.2)} =}

One integral is kept in order to arrive at (3.29a), the other one is treated analogously to (3.36)
and (3.37). In order to estimate I'(x), we obtain thus for 61,5, € (O, %)

f f F&) F(&) F(&) K& u, 5, w) ds dé
R (=11

1
~ f |w|_1+(36‘1)|I%F(u)|2 Tz F(u — tw)dr
-1

1
+ f |w|_1+(3§_l)l% F(u) 11 F(u ~ w)l* dt,
-1
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which implies

1
Fw) < f f % |w|*“<35*1>|1%26F(u)|2 I F(u — ) ' dodr

-1 o

1
+ f f 3 |w|*1+<35*”1%25 F(u) 1120 F(u ~ @) ! div dr
-1 o
X f |w|_l+(3‘5_l)|1% F(u))? Tz F(u~ w) dw
p
+ f |w|‘1+(35—1)I%F(u) 120 F (1 w)? dw
p

~ o Fu) T F(u) + Lo F(u) iy [T F().
2 2 2 2

Setting 6 := 33, this is (3.15).

3.6. Proof of Lemma 3.5

Plugging together (3.12), Lemma 3.2, and Lemma 3.3 we get for small s and some 6 > 0 that
, 1o, 1
fgiwij IDI>g; IDI>¢

1
S lI@lleo TN, 5, + S|P @l 2 1y

—0(k—1 L
Q)R Z AT lIDP g/”(z’m)’BAk’].
T =2

By the estimate of I from Lemma 3.4, for F := ||D|%g’|,

1 1 2 1
: (rz DB 5, + |01

IPls, < |11 1FIP 1y0FV+ 2y VF L1 (1 FIP)]|
< @(11|F|1| + [ )
3 (6,0),B, 12 (%,2),B,
where
. 2 2
Q= |I%|F|‘ Gont ||1% (1, 1FI )| .
Observe,

< (o8]
I3 Fll 5 IFllee

1L Fll < Fl,

)
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5 5,1 _
and because Stpte= 1,

<
||1T12F||(%q) S Fllegs
) 2
< - <
||I%|]%F| ||(¥’]) < |||I%F| ||(g’]) |||I F|”(12 2 [|1F|l>.

Consequently, ® is uniformly small, if 7 is small enough. In order to conclude, it only remains
to apply Lemma A.2 to f := |F|. O

4. Bootstrapping: Proof of Theorem IV

In Theorem III we have shown, that |D|%g’ € L? for some p > 2. We now work with Bessel-

potential / Sobolev spaces H*4, cf. [RS96, Tar07, Tri83], and the fact that |D|%g’ € L7? readily
implies that ¢’ € H>"? for some p € (2, p). The proof of Theorem IV relies on the decomposi-
tion of the first variation

SEy. Iy = 21im ff ( YW <y(u+w)—y(u),h<u+w>—h<u>>) o

ly(u + w) — y(u)|? ly(u + w) — yw)*

U, as in (1.2), into
200y, h) = Ti(y,h) = Ta(y, h)) .

For a stationary point of the Mobius energy we have
O(y,h) =T(y,h) :==Ti(y,h) + Ta(y, h)
for all h € H3*(R/Z,R™).

Let us bring these terms in a common form. Using

y(utw) =y @l
—1 —_ 1 = |w|(l 1 5 u+‘|vwluy -
ly(w+w) —y@l® |w* |y +w) -y [w]®

7 _ o burw)—y(wp?

_ Ga(7<u+ w) —y(u))[ —]
w |w|(y

1 1
[ [e (y(u+w> 7(”))(|7'(M+T1w)—7'(M+Tzw)|2) i
0 0

|w|af

where
1 1 —z*

Ga z = .
@ = o Toee
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is an analytic function away from the origin for @ > 2. We hence get

1 1
Ti(y,h) = — f f T3 0.2z, (WdT1dT,
0 0

1 1

1 1
Ta(y,h) = f f f f T} o 2o (WdTidTods ds)
0O 0 0 O

where
T:,I] ,82,T1,T2 (h)
1 12 X
u+w)—yu "(u+1w) — ¥y (u+ 1w
;=J“j}?(w ) w>)w< ) = Y G TR ik s du
w w
0 -1/2

In the rest of this section, we will derive some estimates for the linear operators 77, ¢ . ., that

do not depend on sy, 53,71, and 75.

For this task, we will work with the Besov spaces B;,’q. Given s € (0,1) and p, g € [1, o) one
way to define the norm on these spaces is to set

12 )q/p l/q

|f(u +w) = fwlrd
Ny, = f(ﬁi/zfu w) = f)lPdu »

|ll)| 1+sq

-12

and to put

Ifllsy, = {1l + 17155,
The Besov space B, ,(R/Z,R") then consists of all functions f € L” with |f]g; < co.
Apart from this definition we just need the Sobolev embedding

5.p s
H>*? c BM

ifs<5and s— ﬁ <5- }ﬁ which can be found in textbooks like, e.g., [Tri83, RS96, Tar07].
We also refer to [DNPV11].

The proof relies furthermore on the following rules for Bessel potential spaces.

Lemma 4.1 (Fractional Leibniz rule [CM78], [RS96, Lem. 5.3.7/1 (i)] ). Let f € H*?(R/Z,R"),
ge HY(R/Z,R") withs >0, p,q,r € (1,00)and 1/p+ 1/q = 1/r.

Then fg € H*"(R/Z,R") and

Wfgllzsr < C (LA lzsellglize + Nl ligllasa) -
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For the following statement, one mainly has to treat H(Dkw) of ” yop for k € N'U {0} and
o € (0, 1) which is e. g. covered by [RS96, Thm. 5.3.6/1 (i)].

Lemma 4.2 (Fractional chain rule). Let f € H*P(R/Z,R"), s > 0, p € (1,00). Ify € C*(R)
is globally Lipschitz continuous and  and all its derivatives vanish at O then o f € H*P and

o fllase < Cll okl fllasp

where k is the smallest integer greater than or equal to s.

The key to the proof of Theorem IV is the following lemma.

Lemma 4.3. Lety € H%”ﬁo"’(R/Z, R, a>2 andBy =B >0, p,q € (1,00) be such that
Bo—-1/qg>pB- ﬁ. Then for all 1,7, 51 € [0, 1] the function

1/2
g(u) := f G* (ﬂu - 7(“)) by (u + T1w) — ¥ (u + Tow)|*

w w?

v (u+ syw)dw
-12

is in HPP. Furthermore, there is a constant C < oo depending on ||y||31+604 and a, but not on
T1, T, and sy, such that

llgllpsr < C.
Proof. Note that
1/2
llguwllgs.r
gl < | 22
|l
-1/2

where

Y+ siw)ly’ (u+ tiw) — y(u + row)l*.

YUt w) = y(w)
gu(W) =G (—w )

Choosing some p € (p, p + 1) which will be determined later on and letting § := 2% leads to
1 1 1 1 1
- = —+ —=+ -+
p 20 20 q q

Using that
1

yutw) -y _ fy,(wm)dﬁ

w
0

that 7y is bi-Lipschitz, and that G* is analytic away from the origin, we get according to the
fractional chain rule (Lemma 4.2)

G® (w) < C||')’||H/3”~‘7 <C.

w HP
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Using the fractional Leibniz rule (Lemma 4.1), we derive

lgullues < C G(W)

2
Y lsally’ ¢ + 71w) =¥/ (- + T2w)llps05
HBa

< C (I ¢ +7iw) =¥ + 22wl + IDF (- +71w) = IDP (- + 12w}, )

Hence,
Y+ Tw) =y + rw)l?
Yy +Tiw) -y (+ 1w 5
lotr <€ [ & L gy
-1/2
12 gl 41 2
f|||D| y(+7w) - IDF 'y + w2,
C 5 dw
w
-1/2
FIYO =y ¢+ @-mw)P
)=y + (M —THwll]y
SCf Y Y 22 1 szdw
w
-1/2
Ry 41 2
IIDP* y() = IDP*y (- + (r2 = TW)II,
C 5 dw
w
-1/2

1
') =¥+ wl?,
SC|T2—T1|f > L7 qw
w
-1

1%
5 dw

~IDE () - IDP Y + w2
+Clta =] f
21

w

< CIY I +CUDP* IR, <C
2p.2

25.2
if p € (p, p+ 1) is chosen so small that

B 1>ﬂ 1>ﬂ !
0~ — 5= -5
q 2p 2p

This proves Lemma 4.3. O

We use the last lemma to prove

Corollary 4.4. Let y,[B0,8,p and q be as in Lemma 4.3 and p’ be such that 1/p + 1/p’ = 1.
Then
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o forall @ > 2 there is a constant C such that

IT%, (W] < CllAll s

51,82,T1,T2
forall si,s,, 71,72 €[0,1] and h € C*,

o the operator T(y,) = Ti(y,") + Ta(y.) € (H¥*(R/Z, R"))* can be extended to a

bounded operator on H' 7',

Proof. For h € C*(R/Z,R") we have

11 I 1 1 1
T(y,h) = - f f T3040, (Wd1dty + f f f f T} i (Wdsidsydtdt
0 0 0 0 0 O

and hence the second part is an immediate consequence of the first one.

Let A* := (id —A)?. Using that A? is self adjoint, we get

1/2
-+ — . / + A n 2
TS rim (W) = f f GQ(Y( “’Uz 70)'? (u ﬁw>w2y (1 + Tow)|
—-1/2R/Z

v (u + syw)h’ (u + srw)dudw

1/2 B
= f f %(A_ﬂh')(u+s2w)dwdu
R/Z-1/2

and hence as in the proof of Lemma 4.3

1/2
llguwllz.p
|TA‘1,S2,T1,T2(h)| <C f T dw”h”Hl—ﬁ,p’ < C”h“Hl—ﬁ.p’
-1/2

where C < oo as in Lemma 4.3 does not depend on on s, s», 71,01 T5. O

Using the two statements above, we are led to the following fact from which Theorem IV
immediately follows.

Lemma 4.5. Lety € H*Bo9(R/Z,R"), By = 0, g € [2, o) and By — é > —1/2 be a stationary
point of the Mobius energy parametrized by arc length. Then,

e ifBy =0, we havey € H® forall s <3/2+2(1/2-1/g),

e if0<By<1/2, wehavey e H' forall s <3/2+2By+1/2-1/9),

e if By > 1/2, we have y € H3/>*Bo+1/4,
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Proof. We set

1 2
ﬁ:o, ;:5+8, ifﬁO:O,
1 2 .
B =0, —=—-=-2By+¢, if0<By<1/2,
P 4
1 1
B=0B0—1/4, - =2/3, if Bp > =
p 2

and see that in each case the exponents satisfy the assumptions for the preceding Corollary 4.4
for all small enough & > 0, so, for p” with % + [% = 1, the functional T'(y, ) = T1(y, ")+ T2(y, )

can be extended to an operator in (H 1‘5’P')* C (H3*Up' =By,
From the fact that y is a stationary point of the Mobius energy we then deduce that
Q(y.) € (HP1Fy:

and a comparison of the Fourier coefficients gives

ye 2B
Since
] 3/2+2(1/2-1/q)—¢ if By =0,
3/2+ﬁ+? =5/2+p—==43/2+2Bo+1/2-1/g)—¢ if0<By<1/2,
3/2+ 6o+ 1/4 else,
this proves Lemma 4.5. O

A. Appendix

In this section we gather some facts most of which can already be found in [Sch11] in slightly
different versions. The main aim is to prove Lemma 3.1 and 3.2 which both rely on quasi-
locality of the Riesz potential I;. Afterwards, we give an easy proof of the iteration lemma
needed to deduce Dirichlet growth.

We will mainly deal with functions belonging to the Schwartz space S(R) of rapidly decreas-
ing smooth functions R — R. The statements carry over to more general situations by suitable
approximation arguments.

A.1. Quasi-locality

The essential tool apart from Sobolev inequalities is the following quantitative version of the
quasi-locality of the fractional Laplacian and the Riesz potential.
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Lemma A.1 (Quasi-locality). Let py, p2,q1,q> € [1, ], where we assume that g, = 1 if
p2 =1, s € (=1,1) and Q1,Q, be disjoint domains with d := dist(Q;,Q;) > 0 and with
positive and finite Lebesgue measure. Then, for any f € S(R),

3 -1- 1 1-1
A2 (Fxa)lpnan.er S A 1PN 2| fll g0

where we set

IDI* ifs>0,
A :=3id  ifs=0,
Im l'fS < 0.

Note, that || - |l(1,4,)> Il - ll¢wo,q..) are only considered in the inequalities that follow for g¢; = 1 and
Goo = ©0.

Proof. For ki(z) = IZJ%XR\B ,(2) and supp f C €, we have for all x € Q;

A2 f(x) = cy(ky * f)(x)
and hence ) N
IA2 £ < I llgullksllo < d7 N f g,

Hence,

s 1 s —1-3 1
IAZ Fllipygnen < 1117PHIA? fllwg, < d7' 1017,
e 1 1-1
< d 1M PP Fll gy, n - ]

A quite immediate consequence of this quasi-locality and Sobolev imbeddings is the following
lemma. To state it, let

Alf\’r = Boip, — Bor-1p,- (A.1)
Lemma A.2. Let p € (1,00),4,g € [1,00], s € (=1,1/p) and —5; = 5 —
(1) For f € S(R) with supp f C B, we have

1
"

_s —1+4
1A fllggrz-gr, < A7 a5,

uniformly for all A > 2.
(ii) If s € [0, ), we have for all f € S(R)

—1+1L
WL fllgr pyr—Bar S A 21 fllparis, + 1 lpgym—8,

uniformly for all A > 2.
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(iii) For s € [0, %) and any f € S(R), we have

e L
- _k )*
PN, < Wl + A7 D (275 fllpgas,
k=1

uniformly for all A > 2.

Proof. For the first inequality we use Lemma A.1 and sum up the estimate
-3 ky—1+1
coak < z 7):B.-
IA™2 fll e g, < (D297 1 fllip.p:3,
In the second case, we use

s fllp . r=Bar < MO, N pr=Ba, + (1 = xB) l(p* g)R-Bn,

and estimate the first term using (i) and the second term using Sobolev’s inequality to get
—1+4
Wl g-a < A 21 flipar., + 1 lp.qyz—8, -

To deduce the last inequality, we decompose f = xp,f + 2 Xak f and estimate using
Sobolev’s inequality 1

IsOx o, llp 1.8, S 1 llip.g).Ba,

and using Lemma A.1

_L
sear, P, S A2 77 1l gyt -

Summing up, this proves the last inequality. O

Finally, we use the quasi-locality to prove

Proposition A.3. For p € (1,0), g € [1,0], s,t >0 withQ < s+t < 1 there is a 6 > 0 such
that we have for any f € LP4(R), A > 2, andr > 0

; s —s A0 —s A0 -6l
WD fllpgs, S Sup f ADE e + 1A U fllpgrzy, + 7 A 27 gt
P B2, = '

DY gll g1y <1

Proof. Assume that
sup fleI”’(p <K.

@eCy (B2 ) IDI ¢l 41
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For g € Cy°(B,) we consider

[avrpadx= [ riovaax= [ rpraax+ Y [ soreax
R R Bl

Bar

For the first term we use a smooth partition of unity (77i)enuo; With suppne C By, and
SUpp 7k C B(a2ots1)r = Biazar-i-1), to get

f fIDI'gdx| < f AIDI™ (olig) dx| + f SIDI™ (ilig) dox
=1
Ar Ar Ar

< Kligl.g) + 1 lpaginy, Y DI ilig) Ny gy, -
=1

Since by Lemma A.1 we have

DI niligllr aryipy, < (D22 S(AD P (A2 ) VP gl )

< (21)—t—s—1/p'A—(23+2t+l/p/)r_s—t”Irg”(p/’q’)
we can estimate this further by

—0, —s—
K”g”(p’,q’) + AT r”f”(p,q);B,\,”Itg”(p’,q’)

for0, =2t+2s+1/p’.

Since suppg C B, we get a scaled Poincaré inequality by applying first the Sobolev and then
the Holder inequality

2
Meglrar S gl g g, S lellir
and using the quasi-locality (Lemma A.1) once more
: ka z=1=s 1=1/p’ ;ok A N1/p’ —02 =k~
DL Gl gy s QAR F P QAN gl gy = A2 ligllr )

for6, =1+s—-1/p’.

Hence,
f (DI’ f) gdx < [K + AW gz + AT 2N g | Nl
R =1

for & = min{fy, 6,} which by duality proves the proposition. O
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A.2. Proofs of Lemmata 3.1 and 3.2

The following lemma is the starting point for the estimates of H; and essentially follows from
the mean value theorem or a first-order Taylor expansion.

Lemma A4. Let 6 € [0, 1], a € (0, 1). Then for almost all x,y,& € R" we have
|l = €7 = ly = &7 s = yl” (ly — €770 + v = &7 e ypaean)
Proof. If |x — y| > 2|x — &| we get
ly =&l zly—xl—lx=&l >lx—-¢l

and hence
-1 -1 -1 1 —l+a-6
e =& =y — &) S e — &7 S x— yPle— g0

If |x — y| < 2|x — £| we first observe that the above argument leads to
e =& =y — &7 < -yl — €7
if [x —y| > 2ly - &l.
To deal with the case that both |x — y| < 2|x — £] and |x — y| < 2|y — | we observe that then
ly — &l < lx—&l+|x—yl < 3lx - &l
Hence, we get using the mean value theorem

|l = &7 — Jy = &7 < x = ylmax {lx — &7, |y — €7

Sl —ylly — €77 < lx —yPly — &7, o

We use the lemma above to derive the following pointwise estimate for Hj ..

Lemma A.5 ([Sch11]). For s € [0, }) and functions a,b € S(R) the following holds for any
g, & €10, é - %)
|H ) 245(a, b)| < 11 jo—sj3(L1 j6—s/3-6lID1" >~ al T s 3-|IDI/> 72 B])
+ 11 j3oas3-lIDI"*72al Iy jo—s3-e11D) />~ b
+ Djosys-ell DIl hsspso 1D 1
+ D jamsyr-ellDI' 7 al Iy jaespo- 1D b,
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Proof. In order to shorten notation, we restrict to & = &; the general case is parallel. We use
. .\ 1 1
the identities a = I%_8|D|2 aand b = I%_8|D|2 ®b. Then,

|Hij245(a, b)(x)|

(Iy _ Z|—1+1/2—£ _ |x _ Z|—1+1/2—€) (|y _ w|—1+1/2—8 _ |X _ w|—1+1/2—a)
I/ |

|y _ x|l+(1/2+s)

: ||D|%a(z)| '|D|"T“b(w)| dw dz dy.
Applying Lemma A.4 we get

(Iy _ Z|—1+1/2—£ —|x— Z|—1+1/2—£) (Iy _ w|,1+1/2,g —|x— w|,1+1/2,g)

|y _ xll+(1/2+s)

72750 2750 e )(ly—2

x — y|l+1/2+5-26

|—1+1/2—5—<5+|X_Z|—]+1/2—5—6

< (ly—w Xie-yi>2lx—d])

~

<y —wlly - AT 4 (I = wlly = 2DV (ly — wllx - g

~

[ — y|I+1/2+525
(lx _ w”x _ Z|)—l+l/2—8—6
|)C — y|1+1/2+s_2§ X x—y|>2lx—w| X |x—y|>2|x—z|-

For 6 = 1/3 + 5/3 we hence get

[Hyj215(a, b)| S Tye-s3U116-s5/3-c1DI 2 al 11/6-573-llDI 2 b))
+ 11j6-5/3-cllDI 2 al I1j3-24/3-¢|lD) 2 B
1-2¢

1-2¢ e
+ I3-053-6lIDI 2 al Ljs—s/3-6lIDI 2 bl + A

where

(Ix = wllx - Z|)_1+1/2_6_6 1-2¢ 1226
A < ff( |)C _ y|1+1/2+s_2,5 Xlx—y|>2|x—w| Xlx—y|>2|xfz| d.’/ ”Dl 2 a(Z)l ||D| 2 b(w)ldwdz

_ PN _ e 1-2¢ 1-2¢
Sffbc—w' Pl dems/2y _ g m 1 A=essl2) D 5 (o)) 1D]'F b(w)| dw dz
1=2¢ 1-2¢
S ija—sp2-ellDI 2 al 1y ja—gpo-6|lDI 72 D). m|

To estimate this further, we will use the following fact about lower order products which we
get using the quasi-locality.

Lemma A.6 (Lower order products). Let for s > 0,0 < s1,5,53 < 1/2, s+ 55+ 853 =5,
and at least two of these s;, i = 1,2,3, non-zero. Let p € (1,00), p, € (1 1 ), p3 € (1, é) and

such that "
1 1 1
—=— 4+ — -y

p D2 D3
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Assume moreover that
IG(u, )| < Iy, (I, lul Iy,]v]),

then there is some 6 > 0 such that we have for any A > 4, and é = —+

1,1
q q’

||G(M, U)”(p,q),B,

(o]
—0 —0k
S Wl 100,088, + lpsigy A D 27 ol g8,
k=2

If supp |D|'v C B, for some t € [0, %], we furthermore get for any k > 2, A > 16,

-0~ -0k
G @, )l gy, = AT27 Ml pycop e Mollips, 1) -

Proof. Let
1 1
_*:___SZ’
123 P2
1 1
— = T 83,
2 p3
1 1 1 1 1
— ==t =—+——-5-353,
P1 P, Pj P2 P3
and
1 1 1 1 1
— :—E—+——s:——sl
Py p D2 P3 P1

Then by Lemma A.2 (iii), for A2 VA, p*2p? = p, p=py, s=s

-1/2 —k
G, 05, S Wlid Lol gy, + A7) 27PNl Lol 5
k=1

Al/20k,

(A2)

(A.3)

(e8]
-1/2p E —k/p
S ”Is?lulH(PZ,ql),BAl/zr ||Is3|l)”|(p§.q2),3,\1/2, +A 2 ”152|u|||(17;,m),32k,\1/2,. ”153lv”l(P;qz),sz,\]/z,'

k=1

Applying yet again Lemma A.2 (iii) to both factors in each sum with A= VA we arrive at

o0
-6 —0k
G )15, < 1680 00 o130, + Wellipnigy A D" 27110l 4215,

k=2

As for the second estimate, we apply Lemma A.2 (ii) with A2 VA to get

”G(u’ U)”(p,q),]R—BA, = ”Isl (Isz|u| IS3|U|) ”(pT,q),R—B,\,.
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-6
< ATy lul 153|U|||(p1,00),BA1/2, + (15, ul Isgll)”l(pl,q),R—BAl/zr

where 6, = % - ﬁ We estimate the first term using Holder’s inequality and Sobolev imbed-
ding theorem to get

-6 -9
A ]||IS2|M| IS3|U”|(p1,00),BA1/2, < A I”“”(Pz»w)”U”(m,])'
For the second term we use Holder’s inequality and Sobolev’s imbedding theorem to get

||IS2|M| IS3|U|||(p],q),R—BA1/2r $ ”ISZ|u|||(p;,q]),R—BA]/zr”ISg,|U|||(p§,q2),R—BA1/2r

S Nullps, 000 R 1M 55 [0l 3,00, R= B, 12,

Since
s, 0lllps. g0 8B, 110, S A_92||U||(,;3,1);BA1/4 + [[Vllps.q1r-B, 10
where 6, = }1 - ﬁ and, using Lemma A.2 (i)
0l (ps.qy2-B,1s = IIDI Tl ps.qp2-B,1s < A_ez||1zv||(p§*,1) < ALl s )
we deduce the statement for 6 := min{6,, 6,}. |

We then have the following
Lemma A.7. There is a gy > 0 such that for 6, € € [0, &), for any a,b € SR), A > 4

1/2-6 1/2—
IH (@, D)2, < DI all 2 g, 5 NDIP7BN 2 ) 5, +
1/2-6 -0 —0(k—1) 1/2-¢
+ DI all 2 g AN 2D
k=1

If supp b C B, we furthermore get for any k > 2, A > 16, s € [0, %)

— 1 1/2—
IH (@ D)l 2 g < A2 WD gy 1DV 7Bll 25

2
1+

Proof. Immediately from Lemma A.5, Lemma A.6 where s = % —&-0. O

We use the lemma above to estimate the normal part as stated in Lemma 3.1.

Proof of Lemma 3.1. With (3.10) we obtain |||D|*lg’|| ( < r2*S. Inorder to show (3.11)

57008, ~
1+2s
by the decomposition (3.8) it remains to treat the H-term. We rewrite

1425

b—|D|(alD|?b) +b|D| = a — DI (b|D|? a) .

=1 =111

1+2s

IDI'Hy(a,b) = H,,1(a,b)+alD|

———
=/
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We will show that all three terms satisfy the hypotheses of Lemma A.6. Due to Lemma A.5
this is true for the term /.

As for II note that I1 = 0 in case s = 0. If s € (0, 1), the potential definition (3.2) of |D|® gives

II(x):c(a(x) f|D|fb(y>—|D|éb(x) dy - fa(y)u)ﬁb(y)—a(x>|D|fb<x> dy]

|x_y|1+s |x_y|1+s
~ f (a(x) — a(y)) ID|* b(y)
=c 145 dy
[x =yl

. 1 .
Using a = I%IDIZa we arrive at

s | we [ [

|x_y|1+s Ix_y|1+s

DI b(w)|ID1 at2) o
y dz.

For almost all x, y, z we get from Lemma A.4 choosing ¢ := i +3

—1+4 —1+4
ly =274 - g

- < (Ix =zl =)™+ (ly — 2l - g,
lx—yl™*
which implies, using again (3.2)
11(x)| $ I1=|IDI2a Loz ID|2b +11,425( IDI*b| I |D|%a).

By symmetry a respective estimate holds also for the term 77/. Applying Lemma A.6 one
concludes. O

Proof of Lemma 3.2. Again the proof relies on quasi-locality. First we decompose

L, , 1L, ’ - 1L ’
‘f|D|zgiwin1/2(gj7¢)‘ < f ID|> g;wijH1/2(g ¢) +Z f ID|> g;wijH1/2(g ¢)
By, ! 2,
l ’ ’
S D12 G 2,008,410, 1H1/2(G 5 D218, 2,

1
+ D DG oy at , 11200 DVl iy at
k=1 !

12,

Using Lemma A.7, the first summand can be estimated by

1 1,0 1 -0 -0l 1
MEADI @l 21y |12 1 oy, + WDV l2cr0, A " 27D 20015, |
=1
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Applying the second part of Lemma A.7, the infinite sum can be estimated by

—6k 1
D12 ' ll2.00).5

2kAr®
k=2

A.3. lteration lemma

In order to prove Dirichlet growth, we need an iteration lemma whose proof is based on the
technique presented in [TaoO1, notes4, p. 11]. The statement is also similar to the correspond-
ing one appearing in [DLR11a]. One should see this as a generalized version of De Giorgi’s
Iteration Lemma, cf., e.g., [Gia83].

Lemma A.8 (Iteration lemma). Ler C < co and 6 > 0 be given.

If by > 0, k € Ny, satisfy

k
Bram < &by + C | 270k+m) 4 p=tm Z 270, (A.4)
=1

forall k € Ny and & > 0 is small enough, m is big enough, then
bk <2~ Ok
for all k € Ny with 6 = 0/2.

Proof. We will prove that
D2p<c Z 2, + C. (A.5)
k=0 1=0

Especially, the infinite sum converges and hence the summands are a null series, which proves
the lemma.

Multiplying Equation (A.4) with 2% and summing over k we get

e8]

z—ém Z 2é<k+m) Drom < Z 29k by +C Z 9= 6(k+m)20k + Z Z 9= 9129k by

k=0 k=0 I=1

k=0
<e kz(; 20kp, + c27fm Z ,Z 200K 4D, 4 =Om

P kZ; 20kp, 4 Gt kZ‘) 2 by, + 270,

IA

46


http://www.math.ucla.edu/~tao/254a.1.01w/notes4.dvi
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Assuming that m is so large that 2709 = €27% < 1/4and 0 < & < 127" we get

i 20kp, < % i 2%p, + i 2y, + C

k=0 k=0 =0

and hence

00

Z 2%kp < C zm] 2p, + C

k=0 =0
if the infinite series converges. If the sum is not known to converge, we apply the above
argument to the cut-off series

Bk =b, ifk<N,
by=0 else

and get the uniform bound Y¥  2%b, < ¥ 2%b;, + 1. Letting N — oo we get (A.5). m
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