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We prove continuity on domains up to the boundary for n/2-polyharmonic maps into manifolds. Tech-
nically, we show how to adapt Hélein’s direct approach to the fractional setting. This extends a
remark by the author that this is possible in the setting of Riviere’s famous regularity result for critical
points of conformally invariant variational functionals. Moreover, pointwise behavior for the involved
three-commutators is established. Continuity up to the boundary is then obtained via an adaption of
Hildebrandt and Kaul’s technique to the non-local setting.
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1 Introduction

In his seminal work [Hé191], Hélein proved that harmonic maps from a two-dimensional surface D into a compact
manifold M C RY are smooth, by an optimal choice of frame (Pe); which was obtained by minimizing a simple
energy functional of the general form

E(P) := / |PVPT + POPT|?, for P—T € WH(D,RN*N), P e SO(N) ae.,
D

where Q € L?(D,so(N) ® R?) is a tensor stemming from the right-hand side of the respective Euler-Lagrange
System. In [Sch09] the author remarked that this kind of minimizing approach might still be considered helpful
in the general setting of Riviere’s celebrated result in [Riv07] where it was shown that in general critical points u
of conformally invariant variational functionals between D and M satisfy an equation like

Au=Q-Vu,

and are — because of the antisymmetry of £ — continuous. In fact, instead of constructing a Coulomb gauge
adapting the powerful, yet indirect and involved techniques by Uhlenbeck [Uhl82], one can still minimize E(-) in
order to construct the same gauge, see [Sch09] for more details.
Nevertheless, there are several settings inspired by Riviere’s result where adaptions of Uhlenbeck’s method have
seemed more viable in order to show regularity. One of these settings is the work by Da Lio and Riviere regarding
fractional polyharmonic maps, [DLR10], [DL10] - cf. also [DLR09], [Sch10b]. Here, we’d like to show how to
adapt Hélein’s moving frame approach — in a similar fashion as in [Sch09] — to the following setting, which can be
considered a fairly general model case for these fractional polyharmonic maps u if v ~ A%y — as was shown in
[DLR10], [DL10]:
Let v € L%(R™) be a solution to

Aty =Qv in DCR" (1.1)

We then can prove the following theorem, which for D = R™ was proven first in [DL10] — but we will be using
Hélein’s direct approach instead of Uhlenbeck’s.

Theorem 1.1. Let v € L2(R™) be a solution of (1.1). Then, for any D CC D there exists an o > 0, R > 0 such
that
sup T

xeD
r€(0,R)

In particular, (see [DLR10], [DL10]) we have v € LY (D) for any p € (1,00).

loc

*Nvll(2,00), B, (z) < 0

Moreover, by an extension of techniques by Hildebrandt and Kaul [HK72], see also [Str03], we are able to show
that solutions are continuous up to the boundary similar to the two-dimensional case as in [MS09]. More precisely,
we have

Theorem 1.2. Let u € L?(R"), v := A%u € L?(R") be a solution of (1.1). Then for some a € (0,1) we have
u € C%*(D). Moreover, if D CC R™, u € C°(R™\D) and D € C*(R") we have u € C®*(D)NC(R"™), in other
words u is continuous up to the boundary 0D.

Let us sketch the new arguments involved (for necessary definitions we refer to Section 2): Transforming equation

(1.1) as Da Lio and Riviere, we have (cf. (6.2)) for w:= Pvand P—1 € H(?(D), P € SO(N) almost everywhere,
for any ¢ € C3°(R™)

. 1
/w Aip= /SO(QP) w <p+/ <2H(P ~I,PT - 1) p—H(p, P — I)PT> w.
]R’n Rn Rn

Here, we denote

Qg = QAT(QT — 1) + QOQ”,
so(A) = %(A - AT),

and
H(a,b) :== A% (ab) — aATh — bATa.



Again, similar in its spirit to [Sch09], instead of using the ingenious adaption of Uhlenbeck’s approach by Da Lio
and Riviere, we simply minimize

E(Q) = 1|3k~
on a suitable class of @, cf. Section 5. Note, that the arguments in [DLR10] suggest, that the minimal value
should be attained for some P with E(P) = |A% P||3, although we were not able to prove that with this kind of
direct method. Instead, we are able to prove that Euler-Lagrange equations of this functional imply that

so(Qp) e LD

loc

(D). (1.2)

Indeed, in Lemma 5.2 we prove that
/so(Qp) Afp= /so(H(ga,P —I)PTQp) for all p € C5°(D).

This and the following Lemma, whose localized version will be shown in Lemma 5.3, imply (1.2).

Lemma 1.3. Assume that f,g,h € L*(R"), and that for all ¢ € C§°(Bioy)

/fA%soz/gH(h,w)-

Rn R

Then,
1 fll2,1),8, < C llgllzrn [A%Fhl2rs +C || fll2rn-

In order to show the “gain in integrability”-effect of Lemma 1.3, we need some results on the behavior of H(,-)
similar to the one used in [DLR09], although we prefer to view these, as in [Sch10al, in the form of lower order
operators:

In [Schl0a] the author remarked that by a fairly simple argument inspired by Tartar’s approach to Wente’s
inequality [Tar85], quantities like H(-,-) behave like a product of lower order operators — after taking the Fourier
transform. As we deal here with spaces different from L2, Tartar’s argument (which for our purposes relies on
Plancherel’s theorem) does not apply that easily any more in order to get our needed estimates. One might
try bilinear real interpolation on the fractional “Leibniz rule” originally due to Kato and Ponce [KP88], see also
[Hof98]. Another possibility is the following, and it is closer to the argument in [Sch10a]: Using simple estimates on
multipliers appearing in the representation as potential of the involved operators rather than their representation
as Fourier multiplier, one can be quite specific (even pointwise) about how H (-, -) behaves like a product of lower
order operators'?:

Lemma 1.4. For some constants L € N, s, € (0, %), tr € (0, si], C >0, for zero-multiplier operators My, 1, My o,
My, 3, and for any a, b € S(R™)

Stk

L
|H(A %, A %0)|(@) <O Y My,a~ ™3 (Mk,QA*T’“|a| Mk73A7%+%\b|)(x).
k=1

With this, instead of dealing with paraproducts (although, of course, the underlying arguments are similar),
Sobolev’s inequality shows all the necessary “integrability gain” or “compensation phenomena” to be used (see
Proposition 2.11).

Then, an argument similar to the one in [DLR10] (though locally in D instead of R™), implies the following Lemma,
of which Theorem 1.1 is a consequence by an iteration result as in Lemma A.1

Lemma 1.5. Let v € L2(R™) be a solution of (1.1). Then there exists Ag >0, v >0, C = C, q > 0 such that for
any A > Ag there is an R € (0,1) such that if Br.(z) C D, r € (0, R)

H’U”(Q’OO)’BT(CE) S C A_’Y H’UH(Q,OO),BAT(Z) + C A_V Z2_’Yk||UH(2’00)’B2kAr(z)\BQk—1Ar(z).
k=1

1For the sake of shortness of presentation, we will restrict the proof to cases where n > 5 and n — 1 € 4N.
21t seems likely, that using the general potential representation of A2 for arbitrary s € R, cf. [SKM93], by arguments similar to the
ones we use here, one might obtain a more precise estimate. Nevertheless, this is not needed for our argument.



We will use fairly standard notation, similar to [Sch10a]:

As usual, we denote by S = S(R™) the Schwartz class of all smooth functions which at infinity tend faster to zero
than any quotient of polynomials, and by s=¢ (R™) its dual. We say that A CC R™ if A is a bounded subset
of R™. For a set A C R™ we will denote its n-dimensional Lebesgue measure by |A|, and rA, r > 0, will be the set
of all points rz € R™ where z € A. By B,.(z) C R" we denote the open ball with radius r and center x € R™. If
no confusion arises, we will abbreviate B, = B,(x). For a real number p > 0 we denote by |p] the biggest integer
below p and by [p] the smallest integer above p. If p € [1, 00] we usually will denote by p’ the Holder conjugate,
that is % + 1% = 1. By f * g we denote the convolution of two functions f and g. We set f” to be the Fourier
transform and fV to be the inverse Fourier transform, which on the Schwartz class S shall be defined as

16 = [ fla) e ) [ ) e as
R® B

By i we denote here and henceforth the imaginary unit i2 = —1. We will speak of a zero-multiplier operator M,
if there is a function m € C*°(R"\{0}) homogeneous of order 0 and such that (Mv)"(£) = m(&) v"(€) for all
& € R"\{0}. For a measurable set D C R", we denote the integral mean of an integrable function v : D — R to
be (v)p = fD v = ﬁ f p v- Lastly, our constants — frequently denoted by C' or ¢ — can possibly change from line
to line and usually depend on the space dimensions involved, further dependencies will be denoted by a subscript,
though we will make no effort to pin down the exact value of those constants. If we consider the constant factors
to be irrelevant with respect to the mathematical argument, for the sake of simplicity we will omit them in the
calculations, writing < , > , & instead of <, > and =.

We will use the same cutoff-functions as in, e.g., [DLR09], [Sch10a]: n* € C§°(A,.x) where

Br,k’(x) = BQA-,T(;E)
for k > 1,
Ar,k(x) = BT,]C-’-l('T)\BT,k—l(x)?
and for k=0
AT’O(ZE) = BT,()(.’E).
Moreover, ", nk =1 pointwise everywhere, and we assume that |Vlnf| <(C (2’%) -

Acknowledgment. The author would like to thank Francesca Da Lio and Tristan Riviere for introducing him to
the topic.
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2 Preliminaries

2.1 Lorentz Spaces

In this section, we recall the definition of Lorentz spaces, which are a refinement of the standard LP-spaces. For
more on Lorentz spaces, the interested reader might consider [Hun66], [Zie89], [Gra08, Section 1.4], and also
[Tar07].

Definition 2.1 (Lorentz Space). Let f: R™ — R be a Lebesgue-measurable function. We denote
dr(N) = {z € B" : [f(x)] > A}l
The decreasing rearrangement of f is the function f* defined on [0,00) by
fr(t) :==inf{s > 0: ds(s) <t}

For1 <p<oo, 1< q< oo, the Lorentz space LP?7 = LP4(R™), is the set of measurable functions f : R" — R
such that || f||Lr.e < 00, where

(?(tém)q?)é, if g < o0,

1.y rn = I fllpg) = I f lLpagny == q ° 1, .
(P (p.a) (&) Supt>0t1’f (t)a qu =00, p <00,
| £l oo (m)s if ¢ =00, p=o00.

As usual, if A CR™ and x4 denotes its characteristic function, we define

1 lp.a).a = lIxafll g2
If p=q, and as a consequence L9 = LP, we write instead of || - ||(p,p),a mostly || - ||, 4.

Remark 2.2. Observe that || - ||(,,q) as defined here does not satisfy the triangle inequality. Nevertheless, if one
defines || - ||(p,q) replacing f* by the averaged version f**,

ok 1 K *
=g [ 5o ds
0

one obtains an equivalent quantity for 1 < p < oo, q € [1,00], and this is in fact a norm, see [Hun66] or [Gra08,
Ez. 1.4.8]. We will switch between the two definitions without mentioning it again.
Proposition 2.3 (Some facts about Lorentz spaces). (i) (LP9)* = LP"¢ for 1 < p,q < cc.

(ii) (LP1)" = L' for 1 < p < cc.

(iii) Simple functions are dense in LP9 for p € (1,00), q € [1,00).

(iv) Simple functions are not dense in LP>°, p € [1,00].

(v) C(R™) is dense in LP1(R™) and for smoothly bounded A CC R™ also C§°(A) is dense in LP1(A) for
p € (1,00), q € [1,00).

(vi) Forp € (1,00), q € [1,00], A=R" or A a smoothly bounded domain

Iflpaa~ s [ o
9gECH(A)

<
Noll(pr gy, 4 <1

Proof of Proposition 2.3.

Facts (i), (ii) are stated and proven in [Gra08, Theorem 1.4.17]. Claim (iii) can be found in [Gra08, Theorem 1.4.13].
And claim (iv) is explained in [Gra08, Ex. 1.4.4]. Claim (v) and (vi) then can be proven by an approximation
scheme.

Proposition 2.3 [

Remark 2.4. Note, however, that there is no reason for q # p that

1A WGy, 4 + 1 W0, = 1 1Gp.), 408

even if A and B are disjoint sets.



2.2 Some Facts about the Fractional Laplacian and its Inverse

Definition 2.5. (¢f. [SKM93, Chapter 5, §26])
For f € S(R™), s > 0, we define the operator A% f via

El N S| 1S
(AZF)7(€) = (wn) €I F(6),
where wy, € R is chosen such that the classic differential operator A =Y. 0;0; suffices
Af = A%f for any f € S(R™).
For s € (0,2) we set for a function f € L*(R™) + L>(R")

A% f(z) = c, P.v.-/f@y)ﬂ;(ﬁ; v =2
RTL

whenever this integral is defined. One can show (see, e.g., [Sch10b]), that these operators coincide on S(R™) if cg
is chosen appropriately.
Finally, for s € (0,—n) we set for f € LY(R™) + L>(R")

A_%f(g;) = CSP. V—/ |.’L‘ — y|_n+‘8| f(y)a
R"L

whenever this integral is well-defined. One checks, that this is the case if f € LP(R™) for any p € [1,%). If
f e SR™) then for any ¢ € C§°(R™)

[atise=[170 60,
J J

that is (A_%f)/\ = c|-|°f" in the sense of distributions, and by the same argument ASAT3f = f = AT3A3f in
the sense of distributions for any f € S(R™) and this is true also pointwise, see for example [SKM93, Chapter 5,
§26.3].

Definition 2.6 (Fractional Sobolev Spaces). For s > 0 we set
H® = H(R") := {f € L*(R"), A>fe L*R")}.
Moreover, for a domain D C R™ we denote
H(D) := {f € H*(R"), suppfC D},
and more generally for measurable ¢ : R™ — R™ we define
H3(D):={f € L'"R") + L=(R"), f —p € Hj(D)}.

As wusual for any finitely dimensional vectorspace V. and any subset A C V we mean by H*(R™, A) all these
vectorvalued functions f : R™ — V such that f € A almost everywhere and (f,v) € H*(R™). Similar definitions
are used for Hy(D, A) and H3(D, A).

Proposition 2.7. Let f € S(R") then A2 f € LP4(R"™) for any s > 0 and arbitrary p € (1,00), q € [1,00], as
well as (p,q) = (1,1) and (p,q) = (00, 00). In particular,

”A%WI:H(EQ),R" < Cpyg (2]67');7 .

Proof of Proposition 2.7.
It suffices to show the claim for s € [0,2), as A¥f € S(R") for any k € N. The operator A3 f is defined by the
Fourier-definition, so for any p € [2, o]

Az f

prr = M e <€



because f* € S(R™). By interpolation arguments, it now suffices to show that the claim holds also for p = 1. In
this case,

L/|;L,/uw+yn+uuyn+mﬂ@(Mdy<mem

ly|=2 R™
And
/||H5/Uw+m+f@—)—2ﬂﬂdm@
ly |<2
1
=< // / " \n—H 2/’V2 x—|—sty’da:dydtds
0 Jyl<2 R
<92 f e

Proposition 2.7 [

2.3 Sobolev And Poincaré Inequalities

As we stated in the introduction, once we show that certain quantities behave like products of lower order operators,
all we need are Sobolev inequality, some versions of which we are going to state in this section.

Proposition 2.8 (Sobolev inequality). For s € (0,n), p1 € (1,%), p € (5%, 00) such that

n—s’

1 S 1

Plnp’

and for any zero-multiplier operator M there is a constant Chrp s such that for any g € [1, o0]
IMA™2all(p.q)rn < CMp,s lallp.q)rn

Lemma 2.9 (Convolution, one limit case). ([Hun66, Lemma 4.7, p. 25])
For any p € (1,00), q € [1,00] we have a constant C, > 0 such that

1 % 9llco < Cp 1 Fllpgy 91l pr.a-

Proof of Lemma 2.9.
We have for any z € R™ (see, e.g., [Gra08, Exercise 1.4.1(b)])

As

this implies

Hf”(p,q),R" 91l ,q7),R7 -

%

Lemma 2.9 (O

Lemma 2.10 (Sobolev inequality for oo). For any s € (0,n) and any zero-multiplier operator M there is a
constant Cpr,s > 0 such that for any g € S(R™),

IMA™2g|loorr < Chrsllg

(2,1).R"



Consequence of Lemma 2.9 and of the fact, that m(-)|-|~""® € L7 °°(R"), where m(-) is the zero-homogeneous
Lemma 2.10 O
5) and

Proof of Lemma 2.10.
m, g (and n

symbol of M.
Proposition 2.11 (Lorentz Space Estimates for Products of Lower Order Operators). For any 8 € (0,

a € (0,8] and zero-multiplier-operators My, My, Ms the following holds: For any p €

particular for p=2) and any q, q1, g2 € [1,00] such that
111
a @ Qg2

B—a

there exists a constant Cu g,p.g.q:,m Such that for any a,b € S(R™)
_a ny B
(M227% la] MaATEE o)) gy < Capianas ol gy n 1Bl 2,010

HMlA_ 2
Remark 2.12. Note that for, say, a = 5 and =0 (or vice versa), the estimate
1(A™%a) bll@,grn =< llall2qzn 12,08

Proof of Proposition 2.11.
First of all, by Proposition 2.8 we have

does not need to hold.
_a _ny B _a n
(MaA" % a] MyA™H45 b))l g0 < 1Mo A % o] MsATH45 ]y, ),

A A~
for
1 B—a 1
P n P’
ifpe (n7(27 ),oo) (of course, this holds also if 5 — a = 0). Moreover,
||M2A7%|a|”(pz7ql)7R" < llallp,q1)r7
for
1 a 1
p n  p
if pe (1,2). Next we define p3 € (2,00) via
1 1 1 1 —«
1_1 1 _ 1 f-a 1 a §8
b3 p1 P2 p n p n n

_ny B
||]\43A itz |b|H(p3,QQ) = ||b||(P4,lJ2)7
00) is satisfied because ps > 2) for ps € (1, 00) such that

Then
(the condition ps € (%j_ﬁ,
1_1 3-8
p3 P4 n’
i.e. n
11,560
2 Ps3 n 2’

_a _n B8
MQ(A 3 la] M3A 4+2|bl)||(p,q>,Rn

that is, p4 = 2. Together we have
My A~

_a —n4 8
[M2A™ % |a| MsA™5F 20|, o)
_a —ny 8
1M1 AT% ]|y q) | MsATEH2 o]l

<
P3,92)

<

< lallp.gr 11bll2.02)-



Proposition 2.11 [
Lemma 2.13 (Localized Sobolev Inequality). Let p1,p2 € (1,00), ¢ € [1,00] and s € [0,n) so that
1 1 s
P2 p1 N
For any zero-multiplier operator M there is a constant Cp, q .1 > 0 and v = vp, s > 0 such that for any a € S(R™),
A>1and B, CR"
HMA?EGH(PMZ),BT < Oplas(Ha”(PzﬂLBzm + Ai’y”aH(pz#Z),]R"y
Proof of Lemma 2.13.
W.lo.g. we assume A > 4; For all smaller A, the claim is just Sobolev’s inequality. We have
’nrMA7§CL| < |MA7%(7]ATG)‘ + |777'MA7%((1 - 77A7')@)|a
S0
[MA™2al[(p,,q),B, < Marall(py,q)mr + 17-MAT2((1 = nar)a) [l (p1,q) k" -

It remains to estimate the second term, which can be done by duality, cf. Proposition 2.3: For some ¢ € C§°(Ba,.),
”w”(p’l,q’),]R" <1,

[ MAT2 (1 — Nar)allp, .5,
=< /¢ MA™3(1—npr)a
< 1 gz (0] £1a)(©) de.

Now let p3 € (1,p]) be close enough to pj such that still

1 1 1 s s
Lol 1oz
P4 P3P n n

Then, for the ¢ from above

[ MA™2 (1 = nar)all(py,q), B,

—n+t
< Tz 2l re H120] Tal ] re
—n+t
=< X s 2l e (191 s,0),87 @l (pa.q), R
—nts s o
=< ] X\.|2%r”pg,R" r B H’L/)||(p'1»Q):R" lall(ps,q),R"
e n_mn
< SX\-|2gr||p{4,R” ri o 1l (ps.q) -

Because py < %, we have pi, <1— 2 and thus (—n + s)p} < —n. Hence,
4

S

o0
- o
(RIS RPN % SR /t( nts)pitn=l gy

r

Ap)(CHSIPiEn "
((anrmiee)

=

Q

_ (Ar)(—n+s)+n—ﬁ

7

= (Ar)* 7

n n

= (Ar)";l P3

We conclude that

n

an-A_%(l = Nar)all(py,q) R < Anrs llall (ps,q) 7 -
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Lemma 2.13 O

The following lemma is the Poincaré inequality. There are several ways to prove it, but in the general setting of
Lorentz spaces, we preferred the following.

Lemma 2.14 (Poincaré Inequality). For any B, C R™, p € (1,00), q € [1,00] there exists a constant Cpq > 0
such that

1l pq) 2 < Cspg 7% 1A fll ooy mns  for all f € C3°(By). (2.1)
Proof of Lemma 2.14.
Let
P if p>2,
p1:=<4 if p=2,
;% if p< 2,
_Jqg ifp>2
"= oo if p <2,
and
L ifp>2,
p2 = % if p=2,
P if p<2.
Then,
Hf”(p,q),R” = Hf”(pr):Br

=< T;_H ||A7%A%f||(1317q1)73r

n__

n_ n
< TP P AT (pyar) R

If po = p, i.e. if p < 2, this proves the claim. If p > 2, so g1 = q, let

P3 € (17p2)a
and py € (1,00) such that
1 1 1
- —=—— =
bs P3 P2

Then, for some A > 4 to be chosen later,

fll gy mn < 7272 |lnar AT fll gy g mn + 77770 (L= 047 ) AT fll(p,0) em
< re o (Ar)r2 T AT fllpooyre + 77 P [(1=n0ar) AT fll (g ,0) R
= Ar2 P V‘%HA%J[H(nqLRn +rr e ||(1 - nAT)A%f“(p?’Q)’R"'

For some ¢ € C§°(R™\Bay), |9 (py.,4) < 1 we have

n _3p
10 =188 flgmaan < [ H x5 g0 115101

=< (AT)_%M_PL

I

1Al ps . ¥l 040

n n

< (A?")ign+ﬁ res P Hf”(P,‘Z)vBT'

i~

Hence,
n._n n n _3 n L n
Hf”(p,q),R" < Ap2" P p2 ||A4f||(p,oo),R" + A a3t rr Pl ps P3P ”fH(p,q),Br,-

n_n n n _3 n
~ AvTw s ||A2f||(p,oo),R" + AT 11l p.q). 7
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As —%n + p% < 0 we can pick some A > 1 large enough, so that

—_— 1
1)z < Ca r> 1A% flpoo)zn + 51 .02

which implies the claim.

Lemma 2.14 [J

2.4 Compactness

The proof of the following lemma can be found in, e.g., [Sch10b].

Lemma 2.15 (Compactness). Let D C R™ be a smoothly bounded domain, s > 0. Assume that there is a constant
C >0 and f, € H*(R™), k € N, such that for any k € N the conditions supp fr, C D and || fx|| g < C hold. Then
there exists a subsequence f,, such that f, REaN f € H® weakly in H*, strongly in L*(R™), and pointwise almost
everywhere. Moreover, supp f C D.
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3 Lower Order Products: Proof of Lemma 1.4

In this section, we prove that ’ ’
H(u,v) = A% (uv) —ulA4v —vA*y

behaves in some sense like a product of lower order operators, as one can see immediately if n € 4N. As in [Sch10a]
we use elementary multiplier estimates derived in Section 3.1 in order to give in Section 3.2 the proof of Lemma 1.4.
For the latter we restrict our attention to dimensions n € 2N + 1 for the sake of decent size of presentation.

3.1 Multiplier Estimates

Similar to the multiplier estimates in [Sch10a], we will need the following estimates which are again basically just
consequences of the mean value theorem:

Proposition 3.1 (Yet Another Silly Estimate). Let A := min{|al, |b|} > 0. Then for any s > 0 there is a constant
Cs > 0 such that.

la| = = o] *| < € A=Y Ja— b,

If one replaces in Proposition 3.1 |-|~* by m(-)|-|”® for some zero-multiplier m, the same result is to be expected.
In order to prove this, first we have the following

Proposition 3.2 (Silly Zero-Multiplier Estimates). Let m(-) € C°°(R™\{0}) be a zero-homogeneous function.
Then there is a constant Cy, such that for any a # b € R"\{0}, denoting A := max{]|al, |b|}

la — bl

|m(a) —m(b)| < Cp, A

Proposition 3.3 (Multiplier-Estimates). For any zero-multiplier m € C°°(R™\{0}) and any s > 0 there exists a
constant Cp, s > 0 such that for any a # b € R"\{0} we have for A := min{lal, |b|}

la|~*m(a) — [b] °m(b)| < Cpus A5 |a —b|. (3.1)
If la| = |b] = A, for any e € (0,1), s € R

llal*m(a) = |b]°m(b)| < Crs A |a — bl (3.2)

3.2 Proving lower order behavior
In order to give the proof of Lemma 1.4, we need the following intermediate result.
Lemma 3.4. Let s € (0, %), M and N zero-multiplier operators and a,b € S(R™). Then,

n+1

i ’NA_ ©tig(z) — NA~
JRESHU) _—
z =yl
s+

< [IM1a= = bl (@) A a)(2) + [a7E (|IM]aE

n

P ria(y)|

dy

bl A™FF 5 o)) (x)

)

for some § € (O7 53— 3)

Proof of Lemma 3.4.
We have

n+1

. [NA- a(e) - NA-* Ha(y)
JRESHU)

1
n+3

dy
|z — vy

na— e €7 HA —n(y -y~ g
< [ [ma i) o) e

o — y["*
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We set - o
n(e =z —¢ 2T —n(y =y —¢ 2

1
n+3

k(x,y,6) ==

|z -yl

We decompose the space (z,y, &) € R3" into several subspaces depending on the relations of |y — &, |2 — y|, |z — £|:

1< Xl(wvyag) + XZ(xvyag) + X3(may7£) + X4(xa y,g) for mvyag € Rna
where
X1 = Xz—y|<2ly—¢| X|z—y|<2]a—¢]>
X2 '= Xjz—y|<2ly—€] X|z—y|>2]z—¢]>
X3 '= Xlz—y|>2]y—€| X|z—y|<2|z—€] X|a—€[<2]y—E]-
X4 ' = Xjz—y|>2]y—€| X|z—y|<2|z—€] X|a—€[>2]y—E]-
In fact, if we assumed |z — y| > 2|z — £| and |z — y| > 2]y — &|, then
1 1
ol < o — &+ ly — €] < 3o — vl + 3l — vl = |z ],

which is clearly impossible. Thus,

k(z,y,8)
< xau@,y,8) k(5. 8) + xa(x,y,8) k(@,y,8) + x3(2,y,8) k(z,y,£) + xal@,y,€) k(z,y,8)
= ki(2,y,8) + k22, ,8) + ks(2,y,€) + ka(z, 9, £).
As for ki, note that

lz —&x1 <z —ylxi + vy —&xa <3y —&xa < ... <9z — ¢|xa,

that is |z — £|x1 ~ |y — €|x1 for some uniform constants. Then, by Proposition 3.3 for e := 1 + 4, § € (0, 3)
ki(@,y, &) < Csla —y| ™" le — 7577,

and we choose 0 < § — s, i.e. small enough so that —% — s — 0 > —n. As for ko, we have that

o — g E Ty g E ot

ky(z,y,8) < P X2
gt
g
ey

As for k3, we argue in the same way as for ko

o - Ay g R

k’3(1'7y7£) < |1~_y|n+% X3
n 1
o g7
T gt
w g
-y

Consequently,
_n_g §
|z —¢ ="

kl(xaya€)+k2(xayag)+k3(x,y7£) = n—=o
|z -yl
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Thus, for i =1,2,3
//WA_%b(y)! ()] ki(z,y,€) dy d&

|z — élfﬁs ’
[MIA™2b|(y) la(é)| =5 P dy dg

~ ATERE R |a)(@) AT M| ().

It remains to consider the case of x4 # 0: We have

ka(r,y,6) < Jy—€ E T ey " i <y — €T E T a— g
Thus,
/ / IMA~5b(y)| a(€)] ka(z,y,€) dy dé

/ / IMA~50(y)| a(€)] Jy — €730 o — ™7 dy de

~ / IMA-2b(y)| A=+ 10|(y) o — o™ dy

A

~ ATE(|MAT iy ATEF T ]) (2)
Lemma 3.4 O
Now we are able to give the
Proof of Lemma 1.4.
We prove only the case where n — 1 is divisible by 4 and n > 5. Generally,
A () (o) = o)A u(e) + e [uly) L= g (33)
o —y|" "

Set K = |2] = 21 € N. Let v denote multi-indices v € (No)", and let M,, N, be certain zero-multiplier

operators such that

2K -1
A%<A_%a A_%U) = A% Z M"/Azhjlina N’YA‘LK*?AI\“{Ifn
[v[=1
+at(Ata AT
+A% <A4K47na A*%b)
(3.3) 2K 2] —n 4K —2|y|—n
= AzZMWAALGNvA d
lvI=1
n . A% _A-%
+A"1q b+cn/A4K4 b(y) 1a(x) n+l4 a(y) dy
|z —y[" 2
n . A—% CA-E
+a A_IbJrcn/A%a(y) ") n+;b(y) dy.
lo —y" 2
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Thus,
n n n n n 2E ! 2\7\ n 4K — 2\7\ n
AT(A™Ha ATH) —a ATFb-bATHa = AT Y MATTaN,A b
[v[=1
o —y""2
L. ATEb(x) — A
+en / AR gy B0@) Z A7) o
z—y|""?
=
= > Al e AT )
lvl=1
, A Ha(w) - AH
+cn/A‘Zb(y) a(z) ,Hfa(y) dy
[z —y|" >
! A~ Th(z) — ATh
b [ Atay) SIS T g,
z =yl
n_3
2
= > L, +IT+III
lvI=1
Note that
1y ()]
3.3 Jl41en .
(_<) ’ A2I +1- ‘ ’N A2 (x)‘
—1— 2\7\ —1— 2\7\
~ NyA N, ATT
/MAH » o) = Mo AZty) |
|z —y["7?
Because of 1 < |y < 252 we have altogether for some constants L € N, s;, € (0, %)
H(A’%a ATEb)(x)
< ZMkA Fa|(z) NeA™THF|b|(2)
]Nk “Hp(a) - NA— ()
M A~ d
/ RATF Jal(y T y
\MkA—¢+ Fafe) - A~ Fa(y)|
/NkA b (y P dy.
y 2

Now one estimates the integral terms with Lemma 3.4, and concludes.

Lemma 1.4 [
Remark 3.5. In particular, Proposition 2.11 is applicable, and we have for a := ATu, b:= Af%v,
1H (1, 0) | 2,1) - < AT ull2n [AT0[|2rn, (3.4)

. n n . . . k k
for% = qil+qi2' In fact, this holds whenever u, v, ATu, ATv € L*(R"™), via approvimation uy S v
in H?2 (R™), because then

k,l—oc0
| H (ug, vk) — H (u, vi)ll(2,1) o %0,

because of bilinearity of H(-,-), and as the pointwise limit of H(uy,vy) = H (u,v), we have that H(u,v) € L1 (R™)
and (3.4) holds. In the same way one can show that

1 (u, ) [l2 < [ATull2,000 80 1ATV]2p0.
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4 General estimates and inequalities

4.1 Estimates on commutator-operators with cut-off functions

Proposition 4.1. For any s,t € (0,n), and a zero-multiplier operator M

HMA*é A1 =) H < Cyy it
oo,R™ ’
Proof of Proposition 4.1.
This follows by scaling, once we prove that
prasfasa-mil_, 2 Juasfos] . <G
oco,R™ oco,R™

But this again follows from the fact that ‘A%m‘ € Lip,q)(R") for any p € (1,00), ¢ € (1,00), as shown in

Proposition 2.7: In particular,

A%m‘ € L%}(R"), and one concludes via Lemma 2.10.
Proposition 4.1 [

Proposition 4.2. For all p € (1,00), g € [1,00], there is a constant Cp 4 > 0 and v =, > 0 such that

1(A%nar) A™5@llggre = 1(AF(1 = nar)) A7F @l g 20 < Cpg A7l 00)
for all A > 1 and ¢ € C§°(B,), B, CC R".

Proof of Proposition 4.2.
We have,

A%“- - nAr) = 7A%nAr~
Let p € (1,00), pick p1,p2 € (2,00) such that

111
p P b2
1 1 1
2 po D
We set p3 € (1,p) such that
1 1 1
S =14 —.
2 ps D2
Then,
H(A%T]AT') Ai%@“(p,q),ﬂ%" < ||A%77A7'||(p17q)7R" “Ai%@”(m@o%w’
P.2.7 _n n
< (AT (16l (py o0y
< (Ar) TR T |, 00) ke
= ATERE ()RR 0 ey -
Now,

Proposition 4.2 [

Proposition 4.3. There isy > 0 and for any q € [1,00] there is a constant Cy > 0 such that for any ¢ € C§°(B,),
A>1, B, CCR"

IH (1 = nar), A E0) 2,020 = (1 = 18r), A7 E9) 2,90, < Cg A7 [l 2]l 2,00) 70
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Proof of Proposition 4.3.
We have

n

n P.2.3 n
IE( =) A 3 Q) |omme 20 sup / H((1 — ), A %) o,
»eCge (R™)
1l (g, qry STR™

For such a 9 using Lemma 1.4 and the fact that
H((1=nar), A”T9) = H(nar, A™T ) = H(ATT ATy, A7)

we have for certain s;, € (0, §) and t; € (0, si]

/H<<1 ), AR ) ¢

L
<Y [ A (M A A | Maa T o)) )
k=1

L
t n _n Sk _ Sp—tg
= Z/MMA*T’C!AZMMMA T ol ATyl
k=1
P.4.1 L ¢ n n Sk Sp—tg
< (Ar)" 75 AT F ol gy gy e A7 [l . 20

k=1

Here, (fixing s := sg, t := tg)

1 1 s—t 1
7:7—"_ S 771 )
P1 2 n

1 1 s—te 01
pa 2 n "2

Sk —

tg
= Yl ey rr < 19l Rm < 1.

and

1A~

andforpi 1—%6(%,1)

3 =
_n_ Sk 1_ 1 no__
1A=F % |l e < 10l g < Coa 75 Yol 2,000 80 2 737" [0l 2,000, 80-
Proposition 4.3 [
Proposition 4.2 and Proposition 4.3 imply in particular
Proposition 4.4. For all ¢ € C§°(B;), A > 1, q € [1,]
HAZ ((1 - 77Ar) A_TSD) H(27q)7Rn S CVq AT ||50||(2,oo),R">

and for any A > 1,
HAT (nAr A_ZSD) H(2,q),R" S Cq H@”(Q’q)’R”.

Proof of Proposition 4.4.
This follows from

AT ((1=nar) AT5¢) = H((1 —nar), A™T0) + (AT(1—nar)) AT +0,

and
A% (gar A™F9) = H(nar, A™F9) + (A% na,) A%+ nppee.

Proposition 4.4 [
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4.2 Localizing Effects of Locally Supported Functions
Proposition 4.5. For ¢ € C§°(A, 1), for anyl € Ny, if [l — k| > 2
_s max{l,k}(—n+s)+k(n—2—s)+I>
IMA~ 0l 9,400 < Cpog 2RO o e,

1 1
where - = -~ — 2 € (0,1).

Proof of Proposition 4.5.
For some ¢ € C§°(Ar1), |¥l(pr .q),rn < 1 we have to estimate

‘/MAﬁww <./H”“MHWI

(2max{l,k}r> s
—n+s n o
(2m ) T (M) el (27)7

2max{l,k}(—n+s)+k (n—p—

A

A

— +li
D ol
Proposition 4.5 [

Proposition 4.6. For any zero-multiplier operator M and any p € (1,00), q € [1,00] there is a constant Ciz,p.q
such that for any ¢ € C§°(By), A > 8, k € N the following holds,

n —(5-L)n \n
||MA4SDH(p7q)7AA7‘,k SCM,WJ@kA) (3-3) 1A% 0| (p,q)Rn-

Proof of Proposition 4.6.
We have to estimate for some ¢ € C3°(Aark), [|¥](pr gy rm <1

_3n
[rrie e <

<

2 A )_En lellirn

2FAr) wMMM@w@“ﬂﬂW%wmn

3

) 5

(2¥

(

3n noymn n n
bR E ) AT ol e (25A0)F 0] e
(2t )

’d\’—‘

1A% @]l (p,q) -

Proposition 4.6 [
Proposition 4.7. Let p € C°(B,), t € (0,%), A >8, and k € N. Then,

_t n 3n
||Z\4A 2’A4<l0“|(pl¢q)7AAr,k < CM;P;Q (QkA) 2" p2 ||A490|| (p2,9),

and
||MA7§|AZ‘P|”(1117«1)7BAT < CMpyg ||Az¢||(pz,q),R",
where 1 =L — L e(0,1).

D1 P2
Proof of Proposition 4.7.
We have
MA™z|AT H < HMA A% ‘H
H } <p| (P1s0) Ak Z 77/\ 4 (p1,9)sAArk
- HM“ I
Z (P1,9),ANr ke
+ HMA A4 }
Z nA 4 (P1,9)sAArk
+ HMA Al ‘
lzk:z nA 4 (p1,9),Anr.k
k+2

= ZIH—ZHI Z 111,

I=k+2
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As for I}, i.e. I =k, 1> 1, we have

|aracs

nl%rA%SDIH(PMQ)»AAT,k = ”nl%rA%(p”(P%Q)JR"

< 1A%l ay,,

P.4.6
<

1

(23— n
~  (2FA) (-5 IAT @ 2. -

For I1;, I11;, we have by the different support

S

|ara-s

_(3_1\, "
(zlA) <2 p2> 1A 5Pl (ps,q),4

2 max it P A T
nl%rAZQD‘H(Pl,Q),AAT,k = (2 {k’l}Ar) (QkAT) ! (ZZAT) = ”A“PH(pz,oo),A%,,.J

T () " @) )7 () A ey

The claim now follows since

& n n _3 n R
ZZZ(—HH)MHHg—aanE _ ZQkﬁH(pgn)
=k =k
~ Qk(—%n-i-%)
and
b k(—n+t)+k 24+l —Snl4ln b n_n
22 prTIpr 2 pr ZQk(—n+t)+kﬁ—l5

1=0 1=0
~ 2’“(_%"4'%),

Finally, we are able to have the following

Lemma 4.8. Let ¢ € C°(B,.), f € H%(R"), g € L>(R™). Then for all A > 50,

Proposition 4.7 [

IH(p, fgllizs < C ATl (IATfll2,5,,5, + AT IAT fll2pn) lgll@,00),Bann

+C AT Y 27k Aty

k=1

At f]

2,R" 2,R"

Proof of Lemma 4.8.
As always, we have

g“ (2,00), Ak, Ar-

IH(p, Hgllier < 1H@ )80 190 2i00).Banr + 3 MH @, ll@1) 4000 190210004500

k=1

=t I |lgll2o0)Bane + O ITk 19ll2.50). A0 0, -
k=1

As for 11y, by Lemma 1.4 we have to estimate terms of the following form for some ¢ € C3°(A,ar), ¥l (2,00),R"

IN
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1,5€(0,%),te(0,s]

/M1A7%¢ MQ |A4<p| M3

=: Uk,o-l-i/]\/hﬁ_y?ﬁ Ul%r MyA=2 | AT p| MygA~ 545 |A% f]
< Il
P IMATT Ul g ooy, IMATHAT| (a0, | [MaATEYS
=2
< Hk,o+l}_;anA-“ﬂH(w ooy, IMEATH ATl 2 oy 1A f2me
By Proposition 4.5 if |k — | > 2,
IMATT YN ga s oyay,, < 2GRS o g,

and else )
_s5—t
|MiA™= 1/f||(7n_22(ﬁ;_t),oo),,4%m < [[¥1l(2,00), 7 -

Moreover, by Proposition 4.7 if |I| > 2.

n 2t

IM2ATZ AR 2y 0.0, =< (2'8) " AT plope.

Consequently,

/MlA*%w MyA™% A% | MzA

k—1
=< IIk,O _|_A*nZ2k(*n+8*t)+k%+l"*2;5*t)7l774 HA% 2 Rn ||A%f||2,]R"
=2
n— 2(€
FAT S ek AT AR
l=k+1

FAT 2R AT o g [|AT fl2Rn

Q

IIio+ A" 28C3 70 AT oy e |AF fllo e
+27F AT AT gllgpn | AT fl2 ke

+27F AT [|AT gl g [|AT fl2mn

~ o+ 27" AT |ATpllorn AT fllorn.

It remains to estimate I}, o:

[ gol < M AT pllorn [|AT £l

t)7°° By&r

+[[ M1 A 77/1||( [ Ma2A |A490|||( e\ B~ IAT 2.
VEr

t)7oo)7B2AT 2t7

Again, because dist(supp ¢, B /z,.) = 2F Ay

1M A= )

B < (2°0) Wl 200) e

n— 2(9 DE

,2),R"
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||M1 7711)” ,00),Baar =< (Qk)irwa”(Q,oc),R"a

n 2(s t)?

and Proposition 4.7 implies again (using that Lorentz spaces are normable and thus infinite triangular inequalities
hold)

IMEATZ AT ol 2 2 vy, < Z(zz ) [a%l:

< VAT|AT .

As for I, L ] )
H((Pa f) = H(@ﬂ A7q (77A3rAzf)) + H(L,D, AN ((1 - ”7A3T)Azf))7

and by the arguments in Remark 3.5,
1H (@, A7 (nas, AT )l 2). 80 < AT @l mn (0232 AT flome

It remains to estimate
[ H(p, A7 % ((1 - 77A3T)Azf))||(2,1),32mo

Again, this is done using Proposition 1.4 and we have to control for some 9 € C§°(Baar), [|¥](2,00),rm < 1,

/MlA—ST’tw MyA™%|A%p| MpA~H+3

(1 — s, ) A% f|

2 (1 - 77A3T)A%f|

[ MA v daAH AT ey MaA T

+ [ (=) MAT Y MLATE AT o] MyATEE (1 - e )RS
< ¥l mn 870l pn (M54

Hana==y,

FE =) ATy,

HA%"OHQ,JRTL ||A%f||2,R"

(7= 2(9 t)’oo) R\ B 2
As before, one has

[ MsA™5F3|(1 - UASr)A%f}H(%,Q),BAQT <ATF AT ||A%fH2,R"’

and
oo~

< A% 191l (2,00),R7-

n 2( 00),R"\B,2,
So,
] < HA%SQH&R” (||77A37"A%f||2,R" +A7W}|A%f”27w)'

Lemma 4.8 [
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5 Picking a good Frame: Improved Control by Energy Minimizing

2,1
loc

In this section, we prove that we can replace Q € L?(so(N)) by an Qp € L;>_ for an appropriate choice of P.

5.1 Adaption of Hélein’s Energy Method
Let D C R™ be a smoothly bounded set. We define the energy functional

E(Q) = En(Q) = / QA% QT — 1)+ Q™). Q € HE (D, SO(N)).
Rn,

Here, similar to Definition 2.6, we have denoted for the identity matrix I € RNV*N

HE(D,SON)):={Q e L*D): Q—1€H%(D,R™™), supp(Q— 1) C D}.

We are going to prove the following two Lemmata which are adaptions of Hélein’s moving frame argument (see
[Hé102], also [Cho95]), and in their spirit similar to [Sch09, Lemma 2.2, Lemma 2.4].

Lemma 5.1 (Existence of a Minimizer). Let Q € L2(R",RY*N). Then there exists P € HI% (R™, SO(N)) such
that E(P) < E(Q) for any Q € H? (D,SO(N)). Moreover,

1A% (P = Dllogr <2 9]0

Lemma 5.2 (Euler-Lagrange Equations). A critical point P € HI% (D,SO(N)) of E(-) satisfies
/so(Qp) ATy = /so(H(gp,P —DPTQp) for all ¢ € C(D).

Here, Qp = PAT(PT —I) + PQPT and so(A) := (A — AT).
Proof of Lemma 5.1.

Obviously, @ = I is a feasible mapping for E(-). Hence, we can assume the existence of a minimizing sequence
Qr € H? (D,SO(N)) such that
B(Qu) < 12035

In particular
A (Qr — D)2,z < 2[|Qf2rn- (5.1)

We denote Ry, = Qi — I € H?. The mappings Ry are uniformly bounded in L>(R") because Q) € SO(N) a.e.
As D is a bounded domain and supp Ry, C D we have a uniform L?*(R")-bound of Rj which together with (5.1)
implies a uniform H 2 (R, R™*™)-bound for Rj,. Consequently, we can choose a subsequence (again denoted with
Ry) which converges weakly in H 2 (R™, R™*™) to some R € H3 (R?,R™*™),

Moreover, using the boundedness of D C R™ and Lemma 2.15, up to taking yet again a subsequence, we can

assume that Ry LNy strongly in L?(R™) and pointwise almost everywhere. Pointwise convergence implies that

P:=R+1I € SO(N) almost everywhere, and thus P € HI% (D,SO(N)).
Then

E@k) = /!A%(Qi‘f—PT)+Q(Q£—PT)+(A%PT+QPT)|2

- /\Ik + 11, + 111,
where
I, .= AT(QT — PT),
I, = QQF — PT),
IIT = AiPT + QPT.
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We have that I}, 2200 almost everywhere by the pointwise convergence of Q. On the other hand, as Q, P

are bounded in L and 2 € L?(R"), by Lebesgue’s dominated convergence theorem 17}, E2%0 0in L2 (R™). This
and the weak convergence of A% (QT — PT) — 0 in L?(R") imply that the mixed terms

/ I, I, / I, I11, / 1L, 11T 2222 0.

Rn Rn R™
Furthermore,
/|IH|2 = E(P).
Rn

Consequently, for k — oo
E(Qr) = [x|l3pn + B(P) + o(1).
Taking the limit £k — oo on both sides this implies

inf B(Q) > limsup || I ||2 g + E(P).
Q k—o0 ’

As E(P) > infg E(Q) this implies E(P) = infg E(Q) and Q — P IH—OO> 0 in H%(R”,Rmxm).
Lemma 5.1 [

Proof of Lemma 5.2.
Let ¢ € C§°(D), a € so(N). We distort P by

Q. =e**P=P+cpa P+oe) € HI% (D,SO(N)).

Then,
QT = PT —cp PT a+o(e),

and
AT(QL -1

= AT(PT —1)—ecA%(oPT) a+ o(e)

3

= AT(PT —1)—ecA%(p (PT - 1)) a—eA%p a+o(e)

o

(PT—1)—c (A%g) (PT—I)a—ep AT(PT —I) ao—e H(p, PT —I) o — eATp a+o(e)

w3

= A

= A%(PT—I)—E( %ap) PT o —ep AT(PT —T)a—¢e H(p, PT — 1) a+ o(e).
We compute

Q- AT(QF — 1)

= (P4+epaP) (A%(PTfI)fs(A%go) PT a—ep AT(PT —1)a—e H(p, PT — 1) @) +o(e)

P AT(PT —I)+ep(a PAT(PT — 1) - PA%(PT —I) ) —cASp a—c P H(p, PT —I) a+o(e),

and
Q-QQF = PQPT +ep (a PQPT — PQPT ) + o(e). (5.3)

Recall that we denote the term QAT (QT — I) + QQQT by Qg. Then we infer from (5.2) and (5.3)
Qo. =p +ep (@Qp—Qpa)—cAipa—e P H(p,PT —1I) a+o(e).
In order to compute |Qg, ? let us denote for A € RV*N B e RV*N

A:B:= AijBij;
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thus in particular |[A|> = A : A. Note, that for any matrix A € R¥*Y and any Matrix B € so(N),
A:BA=BTA:A=—-BA: A= —A: BA,
hence A: BA = A: AB = 0. Consequently,
Q0.° = 198> +o(e) — 26 Qp: (Afp a+ P H(p, PT — 1) a). (5.4)
Again we use a fact from Linear Algebra to continue: For any A € RV*Y and any B € so(N) we have
A:B=s0(A):B.

Hence, (5.4) becomes

Q0.1 = [9Qp]° +o0(e) — 2:(s0(Qp) AT+ so(H(p, P —I) PT Qp)) : a.

We integrate this,

E(Q:)— E(P)=o(e) — 2€/SO(QP) e A%thrso(H((p,P -1 pT Qp) : a.

R~

Dividing by e and taking the limit € — 0 we infer for a critical point P

0= /SO(QP) ca Afp+4so(H(p,P—1) PT Qp):a.

R

This holds for every a € so(N), so component-wise

/sa(ﬂp) Afp = —/so(H(go,P— I) PT Qp).

R R™

Lemma 5.2 [

5.2 Local integrability gain: Proof of Lemma 1.3

We want to show, that Fuler-Lagrange systems as in Lemma 5.2 imply Li;(l:—integrability7 because of the H(,)

appearing on the right-hand side. To this end, we are going to show in this section a localized version of Lemma 1.3,
more precisely we have

Lemma 5.3. There exists a constant C > 0 such that the following holds: Assume that f,g,h € L*(R"), A > 8,
and that for all ¢ € C§°(Bay)

[ato= [gne) (5.5)
R~ Rn

Then,
1flen,s < C (gl 2kn) ATl pn

+ C llgllzzn (1AFhll2p,s, + A AT Al2pn) + A7 fll2pe.

2,B,3, + A_ﬂyHg

Before giving the proof, let us state several intermediate results.

Proposition 5.4. There is v > 0 and C > 0 such that for any B, CR", ¢ € C§°(B,.), f € L*(R"), and A > 8

/ fo< / f AF i AE Q)+ C A [ fllaze [0l @oe) ze-

R™ R
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Proof of Proposition 5.4.
We have

/ FAE((1— ) A% )
Rn

2 [H((1=nar), ATE) 2 pn + I fllzpr IAT(L = nar) lare 1A T 0llape

< |If]
P.2.7 _n _n
< fllzrr [H(A = nar), A7 50) 2 + [[fll2n (Ar) ™% [lolla gn

< Ifl

ke [[H((1 = nar), A750)|l2mn + [ fllzrn (A7)7F 7% {l0]l(2,00),80

The result then follows by Proposition 4.3.
Proposition 5.4 [

Proposition 5.5. For any ¢ € C§°(B,), A > 8,

lg Home A~ 50| g < (92,82, + A7 llgll2zn) AT hll2gn (9]l (2,00 5
+Higlorr (1ATAl2,B,,, + AT [ATR]|2zn) [[@]l2,00) 8-

Proof of Proposition 5.5.
We have

g HheA™%0) = narg H(hne A %0) + (1= nar)g H(h, A F )
=: I+1II

We use Remark 3.5 in order to have

1l < lglle s, (1A% ANz 1A% (A7) 200 20
By Proposition 4.4,
AT (7 AT59) [l (2,00).87 < l€]l(2,00)5

and thus
[]l1,rn < gll2,B2ar 1A All2rn.

As for 117,
[Tl < Nlgll2en [[H (R, nr AT 50) |2 mm\ By, -

In order to estimate
| H (R, A5 0)[l2.mm\ By, »

by the lower order estimates in Lemma 1.4 and a usual duality approach we have to estimate for some 1) €
Ce®(R™\Bar), [|[9¥[l2,g» < 1, finitely many quantities like the following one, for some s € (0, %), t € (0, 5]

/(MIA—ST“@ (M2A—%yA%h|) (MsA=5 45| A% (A7 5 ¢)])
= /n%r (aa=7 ) (apaE[ATR]) (MzA™HH[AT (nAT )
+/(1—n%7~) (Ma=Fy) (MpaE[ATR]) (Msa~HH | (nA )
= A+ A,
As for Ay, by Holder’s inequality,

A < IMAT TG sa e g, MaATE| AT R 2n ) e [MaATHH AT (5,07 F))|

n—2st2t°

(2100 R"-

n—2t"
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By Sobolev inequality Proposition 2.8,

[ M1 A™ 7= 4| o ke = [Yll2re < 1.

2n
By the localized Sobolev inequality, Lemma 2.13,
Iy Mo A5 [ATR|l( 20 550 < AT ]

n—2t’

2.B,2, + A||AT Ry ke

Finally, by Proposition 4.4

n n n n n Pa4
IM3ATEH|AT (0, A7) |[[(2 00y m0 < NAT (1:A750) 2,000 < [[9l]2,00) 70

E

Consequently,
A1l < (1A% hll2,p,., + AT IATR]220) (@]l 00,20

It remains to estimate As, and we have again by Holder’s inequality,

P.2.8 n _ng n _n
[As] =< ([Wllope [ATAlpe [MsATEF|AR (5,47 F ) [l (2 o) mvmy
< ATh]orn [IMs AT AT (5, A7 E ) [l 2 0)
Next,

IMsA™5+0|A% (A7 % )|

2,00),R"\By

s

n

< IMEATE g [AT (0 AT ) 2 00y mey, + IMEATET (1=, )|AT (0 A7 @) |2 00) 208,

< IMATE o g |AT (A7 ) (2.00).BM\By, + 1A% (0 A5 0) | 2,000 R\ B 5,

= Api+ Asp.
As for Ay set F = ‘A% (nTA_%go) , then as above by Proposition 4.4
1E 02,0007 < [2ll (2,00 77 (5.6)
We have for some ¢ € C’(‘)X’(R”\B%r), [l o gn <1,

Aoy < / 5 Xpsar 9] % |nyg, F

< E e 19 e s P
_n 5

< A TE N oy (VAT) T 1P gy e

(5.6)

< AT 0l 2,000 me-

As for Ay o,

(

P46 5.6) —
AQ’Q =< A ||F||(2,oo),]R” =< A ||(,D||(2700)7Rn.

Proposition 5.5 [

Now we are able to give the
Proof of Lemma 5.3.
By Proposition 5.4 (using Proposition 2.3)

P.5.4 n _n _
Flevs <5 suwp / FAT (AT 0) A [ fllame
9’6080(37‘)
le\(gyw)ﬁlR"

5.5 _n _
@ s / g H(h,nar A~ 0) + A7 | fllzzn
P€ECHC(Br)
H‘Pl\(zyoo)élR"

The claim then follows from Proposition 5.5.
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Lemma 5.3 [
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6 Preparations for Dirichlet Growth Theorem

Let v € L2(R™,RY) be a solution of (1.1) in D C R", i.e.
/vi Atp= /Qilvl ¢ forall p € C§°(D). (6.1)
R» R»
Let P—1¢€ Ho% (D,R™*™) P € SO(m) almost everywhere. Set w := Pv. Then w € L*(R™) and moreover
Proposition 6.1. ¢ := Py for any ¢ € C§°(D) is a feasible test function for (6.1).

Proof of Proposition 6.1.
Observe that Py € L*(R™) N L>(R"), and

AT =PATp+oAT(P—1I)+ H(p,P—1I) e L*(R").

Thus, for any small ¢ > 0 (depending only on the support of ¢)

/UA%@—/QU@
= /UA%(@—U5*¢)+/QU(776*¢_¢)
= I, +1I..

By Lebesgue’s dominated convergence one sees that 17 200, As for I , pointwise almost everywhere,

A%(Qb * 1)) = A%QE * e
Indeed, for any ¢ € C§°(R™),

[at@emv = [@en)aty

= //@(I—y) ne(y) Aty(x) do dy

= [ [ %)@ ) @) via) do dy

- [@tg)en v
Since moreover, denoting M the Hardy-Littlewood Maximal function,

A% xn.| < M(ATP) € LA(R™),
again, Lebesgue’s dominated convergence implies 1 29 0.
Proposition 6.1 [

Having taken care of this, we start computing

/w A%:/A%(@P) u+/(—A%(¢P)+(A%¢) P) v.
J

R™ R™

As for the second part,

[ (8t eP) +a%0) Proatr-patp) v
R’n

- /(—A%(so(P—I)) L (ATg) (P—D)+ pAT(P— 1)~ pA% (P —1)) v
R’!L

[ e P-n-eaie-n)w.
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Consequently, using Proposition 6.1,

Juwate - (R/ AHpP) v+ [ (<Hp. P = Dji— oA} (P - D)) )

Rn n Rn
(6.1) . n ;
= eP;iQuv' + [ (=H(p, P —1)j; — AT (P —1)j;) v)
[Jorne] |
= /(PQ—A%(P—I))v@—/H(go,P—I)v
R™ R™
= / (PQPT — (A% (P —1))PT) w ¢ — /H(%P - NPT w
R™ Rn
= / (POQPT — (A% (P —1))P") w ¢ — /H(<p,P —)PT w.
R™ Rn

Now, we have
H(P—-I,PT -1

= AT(P-D(P"-1) - (AT(P-1)(P" 1) - (P-I)(AT(P" - 1))

n

N

= AT(2I—-P"—P)— (AP)(PT —1)—(P-1I)(A%PT)
= —ATPT - AP - (ATP)P" + ASP - PASPT + AT PT
= —((A%(P-1)P" + PAT(PT - 1)).

Then,

| =

(A%(P - 1))PT (A%(P-1)P" - %PA%(PT ~ D+ (AT (P-1)PT + %PA%(PT -1

N =
S~— [\D

= so(AT(P-1I)P") - %H(P —-1,PT -1
Thus, for any ¢ € C5°(D)
/w Aty = /SO(QP) w <,0+/ (;H(P —I,PT—I)p—H(p,P— I)PT> w.
R™ R® R»
6.1 Estimates on the left-hand side

We have
P.2.3
||w||(2,oo),B,‘ = sup /w g.

9€CH°(Br)
llgll(2,1y<1

For g € C§°(B,), A~g € LP for any p € (2,00] for A > 2
ATig=naATTg+ (1 —nar)A" g
Note, that A% is well-defined on both parts with estimates by Proposition 4.4, so
g =A% (np, A7 g) + AT (1 —mar)A"Fg),
and both parts are in L?(R"). Then,

/w g:/w AT (g, A7) +/w AT ((1—nar)A 7 g)

As for the second term, it is 'nicely’ controlled:
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Lemma 6.2. There are constants v > 0, C > 0 such that if ||g||2,1) < 1, suppg C By, A>3,

/w AT ((1=nar)A7%g) < C A7 w2000, Bun, +C AT Y27 w0l 2,000, 40000
keN

Proof of Lemma 6.2.
We have

/w A% ((1—nar)A % g)

- / naarw AT (1 na)A~%g) + / (1~ nany) w AT ((1— ) A~

n

Zg)

= I+1I
As for I, by Proposition 4.4,

| < [m2arw|l2,00), 87 A7 [lgll2,1),8n < AT [[m22rw] (2,00) k7 -

As for 11,
I = Z/né“m w A% ((1—na)A”g)
= Z/ngm T(1—nar) A g+ Z/né“m w H(1 = s, A g)
k=1
= Z/ﬂzm« A% (1 —nar)) A‘%g+2/n§m w H(=nar, A" %g)
k=1
= S (I + o).
k=1
As for I i,
Iy < (2°Ar) 2 lglly 195a, w (AT (1= nar)) [l

A%(l - 77Ar)||(2,1),JRn

k
M2nr Wll(2,00) &

(
< (207 gl@n e
(

< (2°A) 7 [In5a, wll2,00).rn AT DAL (2,1),Rn

P.2.7 _n
= (2kA) ’ ||n§Ar wH(Q,oo),]R"-

In order to estimate I1 2, we have consider (finitely many) terms of the following form for s € (0, §), t € (0, 5]

s o] MiA=F (M AH[A% (1 = ya,)| MyA~5+E]g))

< N (har )l ey IMIA™ T (MpA™H AR | MyA™H4E1g]) 1 01) 2, 00,

For some v € C§°(Ar,2ar), |¥]|(2,00) < 1 we have
||M1A*S%(M2A*%|A%<1 *TlAr)| MyA™H g1 [l 2y 40,
< /(MlA‘S ) (MaA5[AT (1= ny,)]) (MzA~HE]g))
- A0+Z/m ( ) (MaAH[AT (1= ny,)]) (MaA~HHg))

< |A| +Z | M A
=1

_t n _n_ s
sond, o [M2ATZ[ AT ||| _2n ar (IMATET2g][] (2 1) ar
14

2n
n—2s+2t’

P.4.7 s—t
2T A+ 2 AT

n
2512t
=1

0),A, A, ||M3
1
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As usual, if [ > 1,

_n
2

IM5A™EF2 gl 21y 4, < (2°4) 2 llglle,n)mn < (2'A)

Moreover, by Proposition 4.5,

2271" M AT 1/’||(ﬂ 2 0) A, A

a”

k
< 2—kn_|_Z2k(—n+s—t)+k(n—"'*2;+2‘—s+t)+l"'*2;+2‘—nz

=1

o0
T Z 2l(—n+s—t)+k(n— S e R Y
1=k

k
< 9kny ok(—5+s—t) 221 (—%—s+t)
1=1
2k7 Z 2—*1‘Ll
< 27k
For [ = 0 we argue as in the proof of Lemma 4.8:

|[4o] =< [IM1A™

< 27 VAT

T IMATT g .

nys
n—2st2t°° ) BVAr 2 +2t , OO 2AT B
(=22 00),B ).Ban, A 9ll(=1),5

We conclude that
(T2 <A77 2753 lwll(2,00), 4%

Lemma 6.2 [

6.2 Estimates on the right-hand side

Lemma 6.3 (Estimates on the right-hand side). Let w € L2?(R™) be a solution to (6.2), where P — I €
H3 (R™,R™™) P € SO(m) a.e., which is a minimizer of E(-) defined in Lemma 5.1. Then there exists constants
Cuw, v >0, Ag > 0 and for any A > Ag an R € (0,1) such that for any ¢ € C§°(B,), if B, C D, r € (0,R), and
1A% @l (2,1)rn <1

(o)
/w Aol < Cy A wll(2,00),85 + Culh ™7 D27 (2,000, 4001
k=1

n

Proof of Lemma 6.3.
Let 7 be the smallest of the various exponents of A~ and 27* appearing (see below). Pick first Ay > 0 such that
for all A > Ag ]

AT AT (P = D)l <1 (A1)

A |Qlzpn <1 (A2)
Next, for fixed A > Ag pick R € (0, 1) such that for all B, C R", r € (0, R)
IH(P —1,PT = Dll1),8,,, <A77 (R1)
IAZ(P ~D)2,5,,, <A77 (R2)
12pl2,5,5, <A™ (R3)
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Let ¢ € C§°(B,), [|AT¢|/(2,1),5, < 1. We denote the three parts to be estimated

1= [, we

R

II = /H(P—I,PT—I) o w
]Rn

I = /H(@,P — NPT w.
Rn

There is a constant C' depending only on the dimensions involved, such that

(R1) L.2.10 -
(I < A7 flefloorn [wll@o)B, < C AT [w](2,00),8,-

By Lemma 4.8,

(111 < C (|AT(P = Dl2,pya, + A7 NAT(P = Dllzre) 1wl 200,84,
+C AT Y2 AP~ Dllzge ([0 2,00), 40,10
k=1

(R2) 5 5 0 ok
< 20 A7 wlleoyma, T C AT D27 lwl| 2000, 4,0, -

k=1

As for I, by the choice of P and Lemma 5.2, we have
n 1
/so(Qp) Atp = 5/50(H(¢,P —DPTQp) for all p € C3°(D).

Lemma 5.3 implies

Is0(Qp)ll21).8, < (192pll2,8,5, + A7 71Qp|2,8")

+|Q2pll2rn (A% (P = D)ll2,B,4, + A7T|AT (P = I)|l2,rn)

+ATT (AT P2 + |2 2,8)
< CA T

Thus, ~ _
11 <C A [gllos [wll@,00),8. < CATF (w2005,

Now we set v := 7, and the claim is proven.

6.3 Controlled Local Behavior: Proof of Lemma 1.5

Lemma 6.2 and Lemma 6.3 imply>:

3Here we use also that

oo
A wll (2,000,845, + A7 D227 [l 2,000, 0,
k=1

oo
< A77VlogA [[wll(2,00),B,,, + A7 logA > ook lwll(2,00),4,5,.
=1

K

and note that A=Y log A < A™2 for sufficiently large A.

Lemma 6.3 [
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Lemma 6.4 (Estimates on the left-hand side). Let w € L2(R™) be a solution to (6.2), where P € Hf (D, R™*™),
P € SO(m) a.e., which is a minimizer of E(-) defined in Lemma 5.1. Then there exists Ag > 0,y > 0, Cyy, > 0
such that for any A > Ag there is an R € (0,1) such that if By, C D, r € (0, R)

[l (2.00).8, < Cuw A~ [0l 2100).Bx, + Coo A7) 27 [[w]] 2,00), 44,
k=1

In particular, for K := logs A € N for some A > Ag, ¢ := 277, ¢ := A7 the condition (A.1) of the Iteration
Lemma A.1 is satisfied, where

@(}\) = Hw||(2,oo),B>\A_1R
1/’0\) = Hw”(2700)7BAA*1R\B%>\A*1R.

Note that also

1
[e’e} [e%} 2
ZCI’”/J()\) = (Z |w||§,BM1R\B%M_1R> < |lwl|2.

k=1 k=1

As a consequence, we have shown Theorem 1.1; More precisely, we have

Theorem 6.5. Let v € L?(R™) be a solution to (1.1), i.e.
ATy = inD.

Then for certain constants A >0, R € (0,1), C > 0 depending all on v we have that for some o > 0
10ll(2,00).8, < C 7

whenever By, C D, and r € (0, R).

In particular, we have the following

Corollary 6.6. Let v € L?(R") be a solution to (1.1). Then for certain constants A > 0, R € (0,1), C > 0
depending all on v we have that whenever By, C D, and r € (0, R), for some a > 0

sup ¢~ |IxB,vll(2,00),8, < C-
BtCR"L
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7 Continuity Estimates: Proof of Theorem 1.2

In Theorem 6.5 we have shown, that v satisfies local Morrey space estimates in D. In this section, we will show
how regularity for A~ %v in the interior and on the boundary follows.

7.1 In the Interior

First of all, we note that local behavior of v essentially controls local Holder continuity of A~%v. More precisely,
Proposition 7.1. Let v € L2(R"), then for any A > 2, x,y € B,.(T)

n |z -y

AT u(z) — A7 To(y)| < Ar “1(XBa @) (1) = AT (XBy, @) 0) (W)

[[v

In particular, if A™% (xp,,@v) is Holder-continuous in B,(T), so is A5 v(x).

Proof of Proposition 7.1.

We have
A u(z) — A To(y)
< Z / ‘|§ — o 7F e~y ] [u(&)] € + |ATF (xpr @) () — AT (XBy @) )]

=O\e—z|e(2rAr,25+1 A7)
= ka + |A (XBa, @) (@) — ATE (XBAr(E))(y”'
If |€ — 7| € (2"Ar, 2" Ar) and = € B, (7),
|€ — x| > |€ — zo| — |zo — 2| > 2°Ar — A§2 281 Ay,
so if z,y € B,(T) and | — Z| € (2"Ar, 281 Ar),

Pi'l (2kA7’)7%71|:17 -yl

[

Hence,
-1
Iy < (25Ar) 7 Jo =yl vl 2,00 2ns

which implies that
ZI ||U||(2 c0),R" -

Proposition 7.1 [
The following is a consequence of [Ada75, Proposition 3.3.] and the corollary afterwards.

Proposition 7.2. For any « € (0,1) there exists 8 > 0 and a constant C, such that the following holds. If for

some K >0

sup sup t*[[v|l(2,00),B,(x) < K, (7.1)
z€R™ By (x)

then for any D CC R"™ there exists a constant Cp o such that
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For the convenience of the reader, we sketch (for n > 3) the

Proof of Proposition 7.2.

This can be done very similarly to the proof of Proposition 7.1: It suffices to show that A~%v belongs to a
Morrey-Campanato space, cf. [Gia83, Chapter III], that is

sup "¢ |A*%v - (A*%v)gr(lﬂ < K.
B, (x)
B/(x)
We have

/ ‘A_%v— (A_%U)Br(m)|

B, (z)
A T_n/ //"Zl—ﬁl_%—lzrf\_% [0(&)] d€ dz1 dz
B, (z) By (z) R"
<o [ e - ()] d e

B, (z) By(z) Bar(x)

doswp S [ a7 o))
z1,22€ By () b1
|§—z|e(2k,2k+1)

o0
= r "I+ sup r”ZIIk.
21,22€By.(z) h—1

As for I, by virtually the same arguments as in the proof of Proposition 7.1

(7.1)
Ih, < Cor 1|2 — 2| K <Cy r* K.

As for I},
7nI n (7<1) n—+ao K
r E=XT HU||(2700)7B47‘ =T .
Proposition 7.2 [

This and Corollary 6.6 imply the interior Holder continuity of Theorem 1.2.

7.2 On the Boundary

We adapt the famous technique by Hildebrandt and Kaul, [HK72], in order to obtain boundary regularity. A
crucial part of this is, that the BMO-Norm is small on small sets.

Lemma 7.3 (Local BMO-estimate). Let u € L2(R"), A%u € L?(R"). Set

M(A):== sup sup A" / lu(z) — (u)B;(z)‘ dz.
z€R™ Xe(0,))

B (x)
Here,
-1
(4) By (2) = | Bx(2)] u
B (x)
Then \
M) 2% 0

Proof of Lemma 7.3.
If n =1, one just checks that

1
2

M(N) < sup  sup ) / / M dz dzy |

2
z€R™ Xe(0,A |21 — 22|
B (z) Bx(z)
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which tends to zero as A — 0, cf. [Sch10b]. So let from now on n > 2. We adapt an approach in [Ada75,
Proposition 3.3]. Let A > 2 and decompose

= A7H (XBA)\(I)A%U’) + AE (XRn\BA)\(I)A%U/)

=: U]+ us.
Consequently,
|U'(Zl) - (u)B/\(z)| dz
B,\(I)
<2 [ jm@lde s [ la-art -1 a7t atue) a
=0 z1,22€ B ()
B (z) 2k AN |E—z|<2FHTAN

=: 2]+Z)\” sup 1.
k=0

z1,22€Bx ()

As for I we have,

[ m@ras < [ [ e |atug)] de ds
B (x) By (z) |E—z|<AX
~ (ANF / A% u(e)] de
BA,\(QI)
< A"\ ||A%’U,||27BA>\(;C).

As for I, by Proposition 3.1,
I < (25AN) 7 2 — 2] (28AN) P AT ufl e
< 27F AT AT ullg g

Hence,
2Ban(a) T AT [ATullg .

An / (1) — (W) 5 (o] dor < A" |AT ]
B (z)

In particular,
M(A) < A" sup 1A% ullzp,, @) + A" AT ul|zrn.

For any € > 0 we choose then A > 2 such that A™! A% uljorn < 5. Afterwards we pick Ao > 0 such that

| ™

Az sup HA%UHQ,BA,\O(I)S
zER™

Then, for any A € (0, A\g),
M(A) <e.

Lemma 7.3 [

Then, we have the following theorem, which implies the boundary regularity claimed in Theorem 1.2.

Theorem 7.4. Let u € L?>(R"), A%u € L*(R"). Assume that D CC R", 9D € C* and that for some A > 1,
K>0 N
lu(z) —u(y)] < K (|$T—Qy| + |z — y|a> for almost all z,y € B, where By, C D. (7.2)
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If there exists v > 0 such that
we C°(B,(D)\D), (7.3)

then u € C°(B, (D)) N C%*(B).

Proof of Theorem 7.4.

Let € > 0 be given, and let 6 € (0,1), 1 € (0, A~1) to be chosen later depending on e. Take M()) from Lemma 7.3.

Because of u € L2(R"), Afu € L*(R") we have that M()) A0,

Since 9D is a closed, smooth manifold we assume w.l.o.g. that v > 0 is small enough so that there exists
the nearest-point projection II € C*°(B,(0D),dD), cf. [Sim96]. Denote the mirroring function at dD by ¢ :
B.(0D)N D — B,(D)\D,

Y(x) = 2I(z) — x.

FixZ € D, z € 9D, and assume that [T — 2| < § < %’y. Set 7 :=II(T) € dD. As II is well defined around T this
implies as well 7 := |T — 7| < § and since II is the (unique) nearest point projection into the boundary 9D, we
know that B.(Z) C D. Denote o := ur. Then,

[ @@ < [ Ju) - sl et [ u@@) - @] ds

Bs(Z) B, (T) B, (Z)
< T"M(27)+ / ‘u(x) — (U)B,@)‘ dx
B, (¢p=1(%))
< T"M(27).

Here we used the following computation of the behavior of the transformation  — (z): For z € R"

d
dip,[2] == %|t:0w(x +tz) = 2dIL,[2] — .

One can show then (again, cf. [Sim96]) that dII,[-] is an orthogonal projection of R™ onto T, 0D, thus if we take
an orthonormal basis o1,..., 0, € R™ of R"™ where o, 1. T,0D, we have that

d¢w[0i]=20i—0i:0i iflSZ'Sn—l
and
dpylon) =0—0, = —0, f1<i<n-—1.
Thus,
lu(z) — u(¥(z))] < 7" M(27).
B, (7)

By a contradiction argument this implies that there exists a set of positive measure E, C B,(T) such that for any
7 € E,.

fu(@) = u(w @] < ()" M2r).
This and (7.2) for r := A~!7 imply (using that B, (Z) C D)

0@ —u(@)| < (@) - u@)] + |u@) - ulEE)] + @) - um)
< (02) =+ (5)" M) + @) - u@)l

Recalling that o := u7 we have shown
[u(@) — u(@)] < Caxa n(1+p* " M(27)) + Ju(¥(z")) — u(@)].
Picking p < 1 depending only on A, K and « such that

Cpx p* <

)

W~ | ™
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and then 0 < 1 only depending on p and M such that
pmM(T) < ptTmM(S) <1,
as well as for any 2’ € Bs (z) N D

u(¥(2")) —u(@)| <

)

| ™

we have shown,
[u(F) — u(@)| < <.

As zZ € DN Bs(y), this implies the claim, as § was chosen uniformly for Z and z.

Theorem 7.4 [
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A lteration Arguments

We give the proof of the iteration argument which is used in [DLR10], [DL10]. Note, that an argument as in
[DLRO09] is not viable for our setting here, cf. Remark 2.4.

Lemma A.1. Let g€ (0,1), K € N, € > 0 and assume (say)

1 1 1
e+ 42K e g +e(1+ —+4 2K — ) < =. (A1)
1—g¢q 1—g¢q 4

Let moreover @ : (0,00) — (0,00) be monotone rising, v : (0,00) — (0,00) such that for all A € (0, 00)
P(A) < @(N). (A.2)
Assume that for all X € (0,1]
P(275N) <e (N +€§:qk P(2%N). (A.3)

If there is G < oo so that for all X € (0,1)

Then, for all A € (0,1),
B(\) < 32 A7E (d(00) + G).

Proof of Lemma A.1.
Let 1 €N, I > 2. We claim that for all j € {0,..., |5} |}

B2 k) < (i)]q)(Q—K(l—zj)) n (i)y ki;oqk w(Q_K(l—Qj-&-l)-&-k’), (A4)

This is true for j = 0 by the monotonicity of ®. Assume now (A.4) to be true for some j, then in order to show
(A.4) also for j + 1, we estimate

o275
e (i>j¢,(2—f<(z—2j>) N (1>j iqk (202 +)
(ASB) (i>]<e <I><2—K(l 2j— 1)+5Zq ¢( K(1-2j— 1)+k)> ( ) Zq ¢( K(1—2j+1) +k)
_ <i>j€q)(21((12j1)) < ) qud)( K(l—2j71)+k)
1 T k —K(1—2j—1)+k—2K 1 IS k —K(1—2j—1)+k—2K
(5) Xl )+ (3) X vl )
/ k=2K k=0
(A_.2) (i>36@(2x(12(1‘+1 ) ( > qu¢< K(1—2j— 1+k)
+<i)J 2qu ( K(1—2j— 1)+k)+(i> Z ¢ <I>( K(1—2j—1)+h— 2K)
_ (i>j€ @(Q_K(I—Q(j-i-l))) n (i)j(€+qu) l;)qkw(Q—K(l—2(j+1)+1)+k)

[\ 2E1
+<) Z ¢ @(Q—K(z—2j—1)+k—21<)
4

k=0
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A (1 7 o ((9-K(1-2(+1)) 1\’ 2K\ Nk 9= K(I-2(+1)+1)+k
= () =2( )+ (3) Eta >ZW( )
1\/ 2K . j 2K—-1 oo
+<4> R Z ¢ (I)(2—K(l—2(3+1))+k—2K) ( ) Z qu-H ,(/}(Q—K(l 2j—1)+k+i— )
k=0 k=0 =0

1 I —K(l-2(5+1 1 J 2K k —K({(-2(7+1D)+1)+k
(4)5¢(2 @26+ 4 D et ) gy (2Ke-2 )

IN

4 k=0
J 0 J o
LY < (Ee) ot (Y et
/ k=0 ) 1=0
1)J ( 1 ) _K(1—2(j+1)) <1)] 2K Nk —K(1—2(j+1)+1)+k
= —Jell4+—) ®(2 g + (2] (e+d*)Y g2 KU20HDEDE
<4 . 1—gq ( ) 4 kz::(] ( )
] oo
+<411> C oK g w(QfK(l72j71)+i7K)
/ —0
| (

7 [e'e]
i) (5 n qu) quw<2—K(l—2(]’+l)+1)+k)
k=0

4

1=

i )

4
(A2) /1Y’ 1 , 1 ,
< L 14— ¢(2—K(1—2(]+1))) L 2K k (—K(l—2(]+1)+1)+k)
< (4) g( +1q) +{3 (5+q +e2Kq") Z (2

1

4

J — B
) c 2K Zq @(Q—K(l 2(j+1))+i—2K
J

) c 9K qKZqz 7/’(2 K(=2(+D+1)+i) 4 () 2K q w(2—K(l 2(j+1)+1)+i— K)
/ =

=0

1y’ 1 —K(l—2(j+1)) 2K kg (o K(—2(+1)41) +k
(4) 5(1—1— - ) <I>(2 €+q —|—€2Kq Zq w(Z )

q k=0

1\’ 1 K(-2(j+1
+( = eﬂ(—@(z J+>>)
4 1—g¢q
which finally gives
o) < (1) (14t ok ) a(awo-0)
- 4 ' 1—g¢q 1—g¢q

1 J > .
+<4) (€+q2K+52KqK) qu¢<27l((l72(]+1)+1)+k)
k=0

(AS.I) (i>j+'1(p(2[((12(j+1))>
+<i>J qu¢< —K(1-2(j+1) +1)+k)

Consequently, the claim is proven. In particular, if A € (27KU+1D 2=k for some I € N,

IN

5] .
D)) < () (B(c0) + G) < 32 ATr (B(00) + G)

Lemma A.1 [
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