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Abstract. We give a self-contained and elementary proof for
boundedness, existence, and uniqueness of solutions to dynamic
programming principles (DPP) for biased tug-of-war games with
running costs. The domain we work in is very general, and contains
metric spaces as a special case. Technically, we introduce game-
trees and show that a discretized flow converges uniformly, from
which we obtain not only the existence, but also the uniqueness.

1. Introduction

Let (X, d) be a metric space of finite diameter, and let Y ( X be any
nonempty, proper subset. With Bε(x) we denote the balls centered at x
with d-radius ε. For simplicity, let us assume for the introduction that
these are the open balls; Later we see that all the results presented here
also hold for closed balls, and we even can treat much more general sets
B(x), cf. Definition 1.5.

Given running costs f = 1
2
ε2f̃ : Y → R and boundary values F :

X\Y → R, for µ ∈ (0, 1), and ε > 0, we are interested in the analysis of
solutions u : X → R to the following Dynamic Programming Principle
(DPP)

(1.1)

u(x) = µ sup
Bε(x)

u+ (1− µ) inf
Bε(x)

u+ 1
2
ε2f̃(x) if x ∈ Y ,

u(x) = F (x) if x ∈ X\Y .

In PDE-terms, the set Y plays the role of a domain, and X\Y plays
the role of the boundary of Y .
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If one, e.g., thinks of Y as a domain in some euclidean space X = Rn,
then as shown for f ≡ 0 in [9] with the right choice of µ, this can be
seen as a discretization of the PDE

(1.2) ∆∞u+ β|∇u| = f̃(x),

which was our main motivation for considering this particular DPP,
see also [6].

We show that if infY f > 0, supX |F |+ supX |f | <∞, then there exists
a unique solution u : X → R to (1.1).

In fact, we prove that the solution u to (1.1) is the uniform limit of
the sequence uk : X → R, which is obtained by the following iteration
starting from an arbitrary u0 : X → R with supX |u0| <∞:

(1.3)

uk+1(x) = µ sup
Bε(x)

uk + (1− µ) inf
Bε(x)

uk + f(x) if x ∈ Y ,

uk+1(x) = F (x) if x ∈ X\Y .

In some sense, (1.3) can be interpreted as a discrete version of the
following flow for u : [0,∞)×X → R

ut = ∆∞u+ β|∇u| − f̃(x) in Y × (0,∞)

u = F in X\Y × (0,∞)

u(0, ·) = u0(·) in Y .

Our results therefore imply that the discretized flow starting from any
u0 : X → R converges to a solution of the discrete version of (1.2).

A flow-approach was also applied to a stationary Neumann boundary
problem in [1]. The authors considered a long-time limit of the value
function associated with a time-dependent tug-of-war game on graphs
and smooth domains. We however treat a distinct problem with the
iteration method, very different from their probability approach.

The iteration (1.3) is inspired by the recent article [7], where the au-
thors considered the following DPP for α ∈ (0, 1]

u(x) = (1− α)

(
1

2
sup
Bε(x)

u+
1

2
inf
Bε(x)

u

)
+ α

∫
Bε(x)

u.

They showed uniform convergence for the iteration starting from Borel
measurable functions u0. Nevertheless, their arguments rely crucially
on the assumption α > 0. Since we deal with the case of α = 0 and
positive running costs f , our techniques are different.

We also obtain results for the DPP-version of super- and subsolutions,
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Definition 1.1 (Super and Sub-Solutions to (1.1)). We say that u :
X → R is a supersolution ifu(x) ≥ µ sup

Bε(x)

u+ (1− µ) inf
Bε(x)

u+ f(x) if x ∈ Y ,

u(x) = F (x) if x ∈ X\Y ,

and a subsolution ifu(x) ≤ µ sup
Bε(x)

u+ (1− µ) inf
Bε(x)

u+ f(x) if x ∈ Y ,

u(x) = F (x) if x ∈ X\Y .

As usual, a function u is a solution if and only if it is both, a subsolution
and a supersolution.

Note that u ≡ ±∞ in Y is a subsolution and supersolution. All our
Theorems will exclude this case.

Also, one observes that if u0 in (1.3) is a subsolution, then pointwise
uk+1 ≥ uk for all k ∈ N0, and if u0 is a supersolution, then uk+1 ≤ uk
for all k ∈ N0.

Our first result is the uniform boundedness of solutions to (1.3), as well
for subsolutions as also for supersolutions:

Theorem I (Boundedness). For any Λ > 0, µ ∈ (0, 1), there exists
C = C(µ,Λ) > 0 such that the following holds: for any uk : X → R,
k ∈ N0, such that

(1.4) sup
X
u0 <∞,

and uk+1(x) ≤ µ sup
Bε(x)

uk + (1− µ) inf
Bε(x)

uk + Λ if x ∈ Y ,

uk+1(x) ≤ Λ if x ∈ X\Y ,

we have

lim sup
k→∞

sup
X
uk ≤ C.

In particular, any subsolution u : X → R with supX u <∞ satisfies

sup
X
u ≤ C,

and any supersolution ū : X → R with infX ū > −∞ satisfies

inf
X
ū ≥ −C.
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Figure 1.1. A binary tree T and a sequence (xt)t∈T .
The circles denote B(xt). Philosophically, the sequence
(xt) encodes the strategies of two players.

Theorem I is a special case of Theorem 3.1 in Section 3.

In [6] we show a similar boundedness result with different methods for
more general DPP’s, but only for sub- and supersolutions.

Theorem II (Uniform Convergence). Fix µ ∈ (0, 1), f, F : X → R,
such that

sup
X
|F |+ sup

X
|f | <∞,

and
inf
Y
f > 0.

Then there exists u : X → R, such that uk converges uniformly to u,
for any sequence uk : X → R as in (1.3) with

sup
X
|u0| <∞.

Technically, in order to prove Theorem II, we introduce the concept
of Game Trees, which encode the optimal game progression of two
players which want to maximize and minimize the value function u,
respectively. To our best knowledge this is a new approach.

Then, an estimate reminiscent of a comparison principle for game-trees,
Proposition 2.3, and an argument reminiscent of semi-group properties,
Lemma 4.1, are used. All the arguments are completely elementary and
eventually rely on iteration estimates for sequences and series.

There are two other known approaches to obtain existence of solutions
u : X → R to DPPs related to tug-of-war games: There is a stochas-
tic game argument, relying on Kolmogorov’s Theorem of probability
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measures on infinite dimensional spaces, cf. [9, 10]. See also the sto-
chastic game interpretation for the p-Laplacian in [11, 8]. As a second
approach for existence, in [6] we extend Perron’s method to the dis-
crete setting. Note, however, that our argument here is constructive
using a flow. In [5, 4], using also an iteration technique, they obtained
continuous solutions to a modified DPP with shrinking balls near the
boundary. For our situation, one cannot expect even semicontinuity,
as the two following examples show.

Example 1.2. Let X = R, Y = (0, 2), µ = 1
2
, ε = 1. Define F (x) = 0

on (−∞, 0], and F (x) = 1 on [2,∞).

For f ≡ 0 and f ≡ 1, there are respective functions u0, u1 : X → R
which are not semi-continuous and nevertheless satisfy

u(x) =


1
2

sup
(x−1,x+1)

u+ 1
2

inf
(x−1,x+1)

u+ f in (0, 2),

u = 0 in (−∞, 0],

u = 12 in [2,∞).

• For f ≡ 0, we take

u0(x) =


4 x ∈ (0, 1),

6 x = 1,

8 x ∈ (1, 2),

• if f ≡ 1, we take

u1(x) =


6 x ∈ (0, 1),

9 x = 1,

10 x ∈ (1, 2).

Generally, obtaining uniqueness is more difficult than obtaining exis-
tence, but here it follows from uniform convergence.

Corollary 1.3 (Uniqueness). For any F : X → R, f : X → R satis-
fying

sup
X
|F |+ sup

X
|f | <∞,

and

inf
Y
f > 0,

there is exactly one solution to (1.1).
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Proof. Let u be the solution from Theorem II, and let ũ be any other
solution. Starting the iteration (1.3) with u0 := ũ, and thus uk = ũ,
we obtain from Theorem II

0 = lim
k→∞

sup
X
|u− uk| = sup

X
|u− ũ|.

�

In [6] we obtain a comparison principle for more general DPPs, for strict
super -and subsolutions. Generally we remarked there, that uniqueness
is equivalent to a comparison principle for all super- and subsolutions,
so it is not surprising that we have

Corollary 1.4 (Comparison Principle). Given F : X → R, f : X → R
satisfying

sup
X
|F |+ sup

X
|f | <∞,

and

inf
Y
f > 0,

let v be a subsolution, and v̄ be a supersolution to (1.1) in the sense of
Definition 1.1 and supX |v|+ supX |v̄| <∞. Then, pointwise v ≤ v̄.

Proof. Start the iteration (1.3) vk, v̄k from v and v̄, respectively. Then
vk ≤ vk+1 and v̄k ≥ v̄k+1. In particular,

v̄(x) ≥ lim sup
k→∞

v̄k(x),

and

v(x) ≤ lim inf
k→∞

vk(x).

On the other hand, by Theorem II, there exists a solution u : X → R
and

v(x) ≤ lim
k→∞

vk(x) = u(x) = lim
k→∞

v̄k(x) ≤ v̄(x).

�

For the tug-of-war DPP without running costs [2] showed a comparison
principle under continuity assumptions. In our case, we do not assume
any regularity at all, and as Example 1.2 shows, one cannot hope for
any regularity even for solutions.

Our arguments and theorems hold true on more general spaces than
described above, indeed we are going to show them for the following
setting (where B(x) replaces the role of Bε(x)).



GAME TREE APPROACH 7

Figure 1.2. One possible choice of B(x) connecting x0
to xd

Definition 1.5 (Admissible Setups). Let X be a set, and Y ⊂ X.
Moreover associate to any x ∈ Y a set B(x) ⊂ X. We say that the
collection

(X, Y, {B(x), x ∈ Y })

is admissible, if the following holds

• X, X\Y , Y and B(x) are nonempty for all x ∈ Y ,
• There exists a finite integer, which we shall call the diameter of
X and denote by diamX ∈ N, such that for any x ∈ Y there
exists d = d(x) < diamX and a chain of (xi)

d
i=0 ∈ X, such that

x0 = x and xd ∈ X\Y , and xi ∈ B(xi−1) for all i ∈ {1, . . . , d}.

Remark 1.6. Note that in particular we do not need symmetry-
conditions such as x ∈ B(y)⇒ y ∈ B(x).

Also, it is a straight-forward generalization of our arguments to use two
different families of “balls” B(x), one for the sup-term and another for
the inf-term, which could be completely different. For the sake of
simplicity of notation, we leave this as an exercise.

Acknowledgment. We would like to thank Juan Manfredi, Marta
Lewicka, Yoshikazu Giga for their interest in our results and helpful
comments on the draft. The graphics have been done using GeoGebra1.

1www.geogebra.org
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2. Iteration Estimates and Trees

In this section we first prove some estimates on sequences and series,
and then introduce some terminology on the trees we are using. The
arguments in this section are quite elementary, albeit not obvious.

The main theme of this section could be described as adapting the fol-
lowing well-known iteration argument, cf., e.g., [3, Chapter III, Lemma
2.1.], to our needs.

Proposition 2.1. Let (ak)k∈N be a non-negative sequence with the rule
that for some θ ∈ (0, 1), Λ > 0 we have

ak+1 ≤ θ ak + Λ.

Then, for a constant C depending only on θ and Λ,

ak ≤ Ca0 + C,

and

lim sup
k→∞

ak ≤ C.

2.1. Iteration on Systems. Our first proposition can be described
as a version of Proposition 2.1 for systems of sequences.

Proposition 2.2. For any d ∈ N, any Λ > 0 and any µ ∈ (0, 1)
there exists a constant C = C(d,Λ, µ) > 0 such that for any sequence
(akα)α=0,...,d;k∈N ⊂ R+ satisfying

(2.1) ak+1
α ≤

{
Λ if α = 0,

µakd + (1− µ)akα−1 + Λ if α = 1, . . . , d.

we have

max
α

lim sup
k→∞

akα ≤ C.

Proof. We are going to show for d ≥ 2 that for a certain choice of
λα > 0, setting

bk :=
d∑

α=1

λαa
k
α,

there is θ ∈ (0, 1) such that

(2.2) bk+1 ≤ θbk + C0.
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This implies the claim, since by Proposition 2.1 from the above we
obtain for a constant C1 depending on θ and C0,

sup
k
bk ≤ C1(1 + b0) <∞.

In particular, lim supk→∞ b
k <∞, and thus

lim sup
k→∞

bk ≤ θ lim sup
k→∞

bk + C0

implies that

lim sup
k→∞

bk ≤ C1

1− θ
,

and thus

max
α

lim sup
k→∞

akα ≤
C1

(1− θ) minα{λα}
=: C.

If d = 1, we have bk = akd, and the iteration

ak+1
d ≤ µakd + (2− µ)Λ if α = 1, . . . , d,

which allows for the same argument as above.

It remains to pick for d ≥ 2 some λα such that (2.2) holds.

We have from (2.1)

bk+1 =
d∑

α=1

λα a
k
α

≤
d∑

α=1

λα
(
µakd + (1− µ)akα−1

)
+ λ0Λ

≤ µ

d∑
α=1

λα a
k
d +

d−1∑
α=1

λα+1(1− µ)akα + λ1(1− µ)Λ +
d∑

α=1

λαΛ

≤ θbk + C Λ,

where

θ := max
α=1,...,d−1

{
µ

(
1 +

d−1∑
β=1

λβ
λd

)
, (1− µ)

λα+1

λα

}
.

We need to show that θ < 1: Recall that d ≥ 2, and thus there is τ > 1
satisfying

1 < τ d−1 <

∑∞
β=0(1− µ)β∑d−2
β=0(1− µ)β

=

(
µ

d−2∑
β=0

(1− µ)β

)−1
.
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Now we can pick our λα:

λα = (τ(1− µ))d−α α = 1, . . . , d.

For this choice, certainly

(1− µ)
λα+1

λα
=

1

τ
< 1 for α = 1, . . . , d− 1.

On the other hand, by the choice of τ ,

µ

µ− 1

d−1∑
α=1

(τ(1− µ))d−α =µ
d−1∑
α=1

τ d−α (1− µ)d−α−1

≤τ d−1 µ
d−2∑
β=0

(1− µ)β < 1.

This implies that θ < 1 – which was all that remained to show. �

2.2. Trees, Sequences, and Iteration. For the proof of Theorem II
we use the language of sequences in binary trees: Let T be the set of all
binary trees of finite length. A tree is a rooted, connected, undirected,
cycle free graph G = (T,E, 0), where T is a finite set of vertices, 0 ∈ T
(sometimes t0) is the root, E ⊂ T × T is a symmetric relation which
describes the edges of G.

Since there are no cycles in the graph, the depth, or degree, of a vertex
t, d(t), defined as the number of vertices needed to connect t with 0
(d(0) = 0) is well-defined. With d(T ) we denote the maximal depth in
the tree T .

The child of a node t ∈ T are all vertices t̃ ∈ T with d(t̃) > d(t) and
(t̃, t) ∈ E. We say that t is a leaf of T , t ∈ leaf(T ), if it has no children.
The parent of a vertex t ∈ T , denoted with par(t), is the unique vertex
t̃ ∈ T such that t is a child of t̃.

We are interested in strictly binary trees, that is trees whose vertices
t have no or exactly two children t̃1, t̃2. Moreover, T has to be such
that for any vertex t with children t̃1, t̃2 there is a left child, which
we denote with t0, and a right child, which we denote with t1, and
say t0 < t1. Thus any t ∈ T can be uniquely described by a sequence
t ∈ {0, 1}d(t)+1 with first entry 0: See Figure 1.1. The set of these kind
of trees shall be called strictly binary trees, and denoted by T2. All
our trees belong to T2 from now on.

We also introduce a total ordering of a tree, and say that t̃ < t if
d(t̃) < d(t), or if d(t̃) = d(t) and t̃ is to the left of t, see Figure 2.3.
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Figure 2.3. The total ordering of trees

It will be important for us to know how many left turns l(t) and how
many right turns r(t) it needs to reach a vertex t ∈ T from the root.
Representing t by a sequence t ∈ {0, 1}d(t)+1, we have

l(t) = #{0 ∈ t} − 1, r(t) = #{1 ∈ t} = d(t)− l(t).

We will later use T ∈ T2 to index sequences (xt)t∈T ⊂ X, again see
Figure 1.1.

We will need the following estimate, which essentially states that if in
a tree T ∈ T2 we have a certain relation between all interior nodes and
the leafs, then there are relatively few leaves of maximal depth (i.e. in
some sense the tree is sparse):

Proposition 2.3. Given µ ∈ (0, 1), C > 0, for any δ > 0 for K =
d2C
δ
e+ 2 we have the following:

If T ∈ T2 satisfies

(2.3)
∑

t6∈leafT

µl(t)(1− µ)r(t) ≤ C + C
∑

t∈leafT

µl(t)(1− µ)r(t),

then

(2.4) d(T ) ≥ K ⇒
∑

d(t)=d(T )

µl(t)(1− µ)r(t) ≤ δ.

Proof. Fix µ, C, δ and T .

Let us abbreviate

ai :=
∑

t:d(t)=i

µl(t)(1− µ)r(t),
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and

bi :=
∑

t:d(t)=i,t∈leafT

µl(t)(1− µ)r(t),

where ai, bi = 0 if there is no respective node, and in particular ai, bi = 0
for i > d(T ).

First, let us make the following general remarks about T ∈ T2: Since T
is strictly binary, observe that nodes d(t) = i, for i ∈ N, come always in
pairs. In other words, for any t ∈ T , the fact that t0 ∈ T is equivalent
to the fact that t1 ∈ T . In particular, for any i ≥ 1:∑

t:d(t)=i

µl(t)(1− µ)r(t)

=
∑

t:d(t)=i,t=t̃0

µl(t)(1− µ)r(t) +
∑

t:d(t)=i,t=t̃1

µl(t)(1− µ)r(t)

=
∑

t:d(t)=i,t=t̃0

µl(t̃)+1(1− µ)r(t̃) +
∑

t:d(t)=i,t=t̃1

µl(t̃)(1− µ)r(t̃)+1

=
∑

t̃:d(t̃)=i−1,t̃0∈T

(
µl(t̃)+1(1− µ)r(t̃) + µl(t̃)(1− µ)r(t̃)+1

)
=

∑
t̃:d(t̃)=i−1,t̃0∈T

µl(t̃)(1− µ)r(t̃)

=
∑

t̃:d(t̃)=i−1

µl(t̃)(1− µ)r(t̃) −
∑

t̃∈leafT,d(t̃)=i−1

µl(t̃)(1− µ)r(t̃),

that is

(2.5) ai+1 = ai − bi for i ≥ 0,

and in particular,

ai+1 ≤ ai for i ≥ 0.

Thus, the assumption

(2.6)
∑

d(t)=d(T )

µl(t)(1− µ)r(t) > δ,

implies

(2.7) ai > δ ∀i ≤ d(T ).
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Applying (2.5) in (2.3) we obtain

d(T )∑
i=0

(ai − bi) ≤ C + C
d(T )∑
i=0

bi

⇔
d(T )∑
i=0

ai+1 ≤ C + C
d(T )∑
i=0

(ai − ai+1)

⇔ (C + 1)
d(T )∑
i=0

ai+1 ≤ C + C
d(T )∑
i=0

ai

⇔
d(T )∑
i=1

ai ≤ C
C+1

+ C
C+1

d(T )∑
i=0

ai

⇔ 1
C+1

d(T )∑
i=1

ai ≤ C
C+1

+ C
C+1

a0

⇒
d(T )∑
i=1

ai ≤ C + C a0 ≤ 2C

Plugging (2.7) in this, we have shown that (2.3) together with (2.6)
leads to

δ(d(T )− 1) ≤ 2C.

This is impossible, if d(T ) ≥ K = d2C
δ
e+ 2. That is, if d(T ) ≥ K, the

opposite of (2.6) is true, which is the claim (2.4). �

3. Boundedness: Proof of Theorem I

In this section we are going to show the following generalized version
of Theorem I

Theorem 3.1 (Boundedness). Let (X, Y, {B(x)}) be as in Defini-
tion 1.5. For any Λ > 0, µ ∈ (0, 1), there exists a constant C =
C(µ,Λ, diamX) > 0 such that the following holds:

(i) for any uk : X → R, k ∈ N0, and such that

sup
X
u0 <∞,

and

(3.1)

{
uk+1(x) ≤ µ sup

X
uk + (1− µ) inf

B(x)
uk + Λ if x ∈ Y ,

uk+1(x) ≤ Λ if x ∈ X\Y ,
we have

lim sup
k→∞

sup
X
uk ≤ C.
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(ii) In particular, u : X → R satisfying supX u < ∞ which is a
subsolution, i.e.,{
u(x) ≤ µ sup

X
u+ (1− µ) inf

B(x)
u+ Λ if x ∈ Y ,

u(x) ≤ Λ if x ∈ X\Y ,

actually satisfies

sup
X
u ≤ C,

(iii) and any u : X → R satisfying infX u > −∞ which is a super-
solution, i.e.,u(x) ≥ µ sup

B(x)

u+ (1− µ) inf
X
u− Λ if x ∈ Y ,

u(x) ≥ −Λ if x ∈ X\Y ,

actually satisfies

inf
X
u ≥ −C.

Remark 3.2. It is obvious that for µ = 0 the claims (i) and (ii) still
hold. The claim (iii) also holds by switching µ and (1− µ).

Proof. Assuming (i), the claim of (ii) follows by setting uk = u. The
claim (iii) follows from (ii) by replacing u by −u, and swapping µ and
(1− µ).

It remains to show (i). We can assume that w.l.o.g. uk ≥ 0; If not, we
just replace uk by (uk)+ = max{uk, 0}.

Set d := diamX. We slice our X into subsets Xα, for α ∈ {0, 1, . . . , d},
which contain all the points which need at most α steps to connect to
the boundary via the balls B(x). More precisely, X0 := X\Y , Xd = X
and for α ≥ 1,

Xα :=

 x ∈ Y : for α̃ ≤ α there are x0, x1, . . . , xα̃ ∈ X, such that
x0 = x, xα̃ ∈ X\Y,
and xi ∈ B(xi−1) for 1 ≤ i ≤ α̃

 .

Denoting

akα := sup
Xα

uk ∈ [0,∞)

we then obtain the following from (3.1)

ak+1
α ≤

{
Λ if α = 0,

µakd + (1− µ)akα−1 + Λ if α = 1, . . . , d.
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From the game’s point of view, this is essentially assuming that the
player who tries to minimize the value function employs the possibly
suboptimal strategy of always moving towards the boundary X\Y .

From Proposition 2.2, we have for a constant C > 0 depending on Λ,
and diameter d = diamX and µ, such that

lim sup
k→∞

sup
X
uk ≤ max

α=0,...,d
lim sup
k→∞

akα < C.

�

4. Uniform Convergence and Trees: Proof of Theorem II

The main step in proving Theorem II is the following Lemma, which
compares uk to a function vk which does not depend on u0.

Lemma 4.1. Given µ ∈ (0, 1), f : Y → R, F : X\Y → R with

sup
X
|F |+ sup

X
|f | <∞,

and
inf
Y
f > 0.

For any i ∈ N there is a function vi : X → R such that the following
holds:

Assume that uk : X → R for k ∈ N0 satisfies

(4.1) uk+1(x) =

f(x) + µ sup
B(x)

uk + (1− µ) inf
B(x)

uk if x ∈ Y ,

F (x) if x ∈ X\Y ,
and

sup
X
u0 <∞.

Then for any δ > 0 there exists L ∈ N such that

sup
k,i∈N0

sup
x∈X
|uL+k(x)− vL+i(x)| ≤ δ.

This Lemma implies Theorem II:

Proof of Theorem II. First, start the iteration (4.1) with u0 := infX F .
Note that we have pointwise monotonicity uk+1(x) ≥ uk(x) for all
k ∈ N, but

sup
k∈N

sup
X
|uk| <∞,

by Theorem 3.1.
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So there exists a pointwise limit u(x) := supk uk(x) : X → R. Note
that for all we know so far, u might only be a subsolution. Lemma 4.1
tells us, that limk→∞ u = u as a uniform limit: Indeed, fix δ > 0, and
let L be from Lemma 4.1 so that

sup
k,i∈N0

sup
x∈X
|uL+k(x)− vL+i(x)| ≤ δ

2
.

Fix now x ∈ X, then there exists K = K(x) ∈ N such that for any
k ≥ 0,

|uK+k(x)− u(x)| ≤ δ

2
.

In particular,

|u(x)− vL+i(x)| ≤ |uK+L(x)− u(x)|+ |uL+K(x)− vL+i(x)| ≤ δ,

which since it holds for all x ∈ X implies

sup
i∈N0

sup
X
|u(x)− vL+i(x)| ≤ δ.

Especially, for any δ > 0 there is L ∈ N such that

sup
k≥L

sup
X
|u(x)−uk(x)| ≤ sup

k≥L
sup
X
|u(x)−vL(x)|+sup

k≥L
sup
X
|vL(x)−uk(x)| ≤ 2δ,

and we have uniform convergence.

Let now ũk be any other iteration starting from another ũ0 with
supX u0 < ∞. Again by Lemma 4.1, for the same vi’s there exists
another constant L̃ = L̃(δ, ũ0) ∈ N such that

sup
X

sup
k≥L̃
|u(x)−ũk(x)| ≤ sup

X
|u(x)−vL̃+L(x)|+sup

X
sup
k≥L̃
|ũk(x)−vL̃+L(x)| ≤ 2δ.

Thus, starting the iteration from any ũ0 we have uniform convergence
to u, and Theorem II is proven. �

It remains to prove Lemma 4.1.

Proof of Lemma 4.1. Recall from Section 2.2 the definition of strictly
binary trees T ∈ T2 , and sequences (xt)t∈T , cf. also Figure 1.1. Using
Theorem 3.1, we can fix Λ > 0, such that

sup
X
|F |+ sup

X
|f |+ sup

X
sup
k
|uk| ≤ Λ,

and λ > 0 such that
inf
Y
f > λ.

For formal reasons it makes sense to set B(x) = {x} if x ∈ X\Y and
f ≡ 0 on X\Y .
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Figure 4.4. A possible run for the depth L = 3

Before going into the details, let us describe the general idea:

Outline of the proof. For fixed k ∈ N, L ∈ N, x = x0 ∈ Y , given uk,
we can compute uL+k from the point of view of a game. We introduce
Player I, the player that tries to maximize uL+k, and Player II, the
player that tries to minimize uL+k. Starting from x0, Player I chooses
his favorite point x00, such that

uL−1+k(x00) ≈ sup
B(x0)

uL−1+k,

and Player II picks his point x01 ∈ B(x0) such that

uL−1+k(x01) ≈ inf
B(x0)

uL−1+k.

That is to say,

uL+k(x0) ≈ µuL−1+k(x00) + (1− µ)uL−1+k(x01) + f(x0).

If L ≥ 1, we have to go on: If x00 lies in the “boundary“ X\Y , the
game stops in this branch. If x00 is in the “interior” Y , then again both
Players choose their favorite point x000 and x001 such that

uL−2+k(x000) ≈ sup
B(x00)

uL−2+k, and uL−2+k(x001) ≈ inf
B(x00)

uL−2+k.

The same we do for x01 – if it is in the boundary X\Y , we stop, if it is
in the interior Y , we pick x010 and x011.

Let us look at some examples: in the case where x00 and x01 are both
in the boundary X\Y , we have

uL+k(x0) ≈ µF (x00) + (1− µ)F (x01) + f(x0),
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in the case where x00 and x01 are both in the interior Y , we have

uL+k(x0) ≈ µ (µuL−2+k(x000) + (1− µ)uL−2+k(x001) + f(x00))

+ (1− µ) (µuL−2+k(x010) + (1− µ)uL−2+k(x011) + f(x01))

+ f(x0)

≈ µ2uL−2+k(x000)

+ µ(1− µ)uL−2+k(x001) + (1− µ)µuL−2+k(x010)

+ (1− µ)2uL−2+k(x011)

+ µf(x00) + (1− µ)f(x01) + f(x0),

and in the case where x00 is in the interior Y and x01 is in the boundary
X\Y ,

uL+k(x0) ≈ µ (µuL−2+k(x000) + (1− µ)uL−2+k(x001) + f(x00))

+ (1− µ)F (x01)

+ f(x0)

≈ µ2uL−2+k(x000)

+ µ(1− µ)uL−2+k(x001) + (1− µ)F (x01)

+ µf(x00) + f(x0),

We iterate this argument L times. We obtain a formula computing
uk+L(x) from uk, a tree T ∗ ∈ T2 of depth at most L, and a sequence
indexed by this tree (xt)t∈T ∗ , and we obtain an expression

uL+k(x) ≈ w(x, T ∗, (xt)t∈T ∗ , uk).

Our main observation is the following. All these “optimal” trees T ∗

have a specific structure: They satisfy the estimate (4.4), and hence
the assumptions of Proposition 2.3. On may see this as a kind of
comparison principle for game-trees, although we shall not pursue this
notion further. Proposition 2.3 implies that there are actually relatively
few leafs of maximal depth L in T ∗. But whenever a game progression
(xt)t∈T ∗ does not end with a leaf of maximal depth, this means that in
this branch xt hits the boundary X\Y , where the value of uk is given
by F . In other words, in the formula expressing uL+k(x) in terms of uk,
most of the terms actually are depending only on the boundary values
F and the running costs f , and not on uk, i.e., we have

uk+L(x) ≈ w(x, T ∗, (xt)t∈T ∗ , uk) = V (F, f, x) + E(uk, x),

where E(uk, x) is small. That amounts to saying that |uk+L(x) −
V (F, f, x, L)| is small, as desired.
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Rigorous Argument. Given a point x ∈ X, L ∈ N, we call BL(x)
the long admissible strategies of at most L steps: Let TL ∈ T2 be the
full tree of depth L.

BL(x) :=

{
(xt)t∈TL : (i) x0 = x,

(ii) xt ∈ B(xpar(t)) if t 6= 0

}
.

We call AL(x) the short admissible strategies of at most L steps:

AL(x) :=


(T, (xt)t∈T ) : (i) T ∈ T2, d(T ) ≤ L, x0 = x,

(ii) t 6∈ leaf(T ) ⇒ xt 6∈ X\Y ,
and xt0, xt1 ∈ B(xt),

(iii) t ∈ leaf(T ) and d(t) < L
⇒ xt ∈ X\Y

 .

Condition (ii) describes that when some xt has children xt0, xt1, these
have to be in B(xt), and xt itself cannot be in the “boundary” X\Y .
The latter means that the game stops if one of the players reaches the
boundary.

Condition (iii) tells us that the only way to end a game in less than L
steps, is for one of the players to move his point xt to the boundary
X\Y .

We write

A(x) =
⋃
L∈N

AL(x).

Every long strategy (xt)t∈TL ∈ BL(x) can be reduced to a unique short
strategy (T ∗, (xt)t∈T ∗) ∈ AL(x), a process which we depicted in Fig-
ure 4.4 and Figure 4.5: Recall that B(x) = {x} whenever x ∈ X\Y .
Given (xt)t∈TL ∈ BL(x), whenever there is xt ∈ X\Y , then for all
successors t̃ of t, we have xt̃ = xt. So starting from TL, we erase
all successors for all nodes t, where xt ∈ X\Y . The resulting tree,
we call T ∗, and the resulting sequence (xt)t∈T ∗ . This reduction is re-
versible, and any (T ∗, (xt)t∈T ∗) ∈ AL(x) can be associated to exactly
one (xt) ∈ BL(x).
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Figure 4.5. The reduction of the tree in Figure 4.4 to
T ∗, (xt)t∈T ∗ in A3, where x0000, x0001 are cut away

For any x ∈ Y , any tree T ∈ T2 and sequence (xt)t∈T ∈ A(x) and for
any mapping v : X → R we set

w(x, T, (xt)t∈T , v) :=f(x) +
∑

t6∈leafT

µl(t)(1− µ)r(t) f(xt)

+
∑

t∈leafT,xt∈X\Y

µl(t)(1− µ)r(t) F (xt)

+
∑

t∈leafT,xt∈Y

µl(t)(1− µ)r(t) v(xt).

If x ∈ X\Y we set w(x, T, (xt)t∈T , v) := F (x). Also note

w(x, T, (xt)t∈T , v) ≥λ+ λ
∑

t6∈leafT

µl(t)(1− µ)r(t)

−
∑

t∈leafT

µl(t)(1− µ)r(t) (Λ + sup
X
|v|).

The operator w should be seen as the L-th iteration of (4.1) starting
from v. We are going to write this as follows, where we recall the
construction of T ∗ from above:

(4.2) uk+L(x) = infsup
(xt)t∈TL∈BL(x)

w(x, T ∗, (xt)t∈T ∗ , uk).

In order to describe what the right-hand side means, recall the total
ordering of the full tree TL ∈ T2, starting from the root t0, and then
moving in every layer from left to right. Ordering the tree like this, let
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us call the kth vertex to be tk, 0 ≤ k ≤ L := 2L+1 − 2. Then

infsup
(xt)t∈TL∈BL(x)

w(x, T ∗, (xt)t∈T ∗ , v) =

[tL]

EXT
xtL∈B(xpar(tL))

[tL−1]

EXT
xtL−1

∈B(xpar(tL−1)
)
. . .

[t2]

EXT
xt2∈B(xt0 )

[t1]

EXT
xt1∈B(xt0 )

w(x, T ∗, (xt)t∈T ∗ , v),

where EXT has to be replaced by sup or inf according to whether the
tree vertex tk is a left child or a right child of some vertex t̃.

[tk]

EXT
xtk∈B(xpar(tk))

=


sup

xtk∈B(xpar(tk))

if tk = t̃0,

inf
xtk∈B(xpar(tk))

if tk = t̃1.

Having defined the right-hand side of (4.2), let us prove it:

It is certainly true for L = 1, since by the iteration (4.1), for x = x0 ∈
Y ,

uk+1(x) = f(x) + µ sup
x00∈B(x0)

uk(x00) + (1− µ) inf
x01B(x)

uk(x01)

= sup
x00∈B(x0)

inf
x01∈B(x0)

(f(x) + µuk(x00) + (1− µ)uk(x01))

= sup
x00∈B(x0)

inf
x01∈B(x0)

w(x, T, (xt)t∈T , uk).

for T = T ∗ = T2, which is the only possible tree in A2(x), if x ∈ Y .

Now assume (4.2) holds for step-sizes of L− 1, then

uk+L(x) = infsup
(xt)t∈TL−1

∈BL−1(x)

w(x, T ∗, (xt)t∈T ∗ , uk+1).

Considering the definition of w, we need only to consider uk+1(xt) for
t such that d(t) = T , and xt ∈ Y . For these we use the iteration

uk+1(xt) = sup
xt0∈B(xt)

inf
xt1∈B(xt)

(f(xt) + µuk(xt0) + (1− µ)uk(xt1)) ,

and obtain a new, extended tree T̃ ∗ of length at most L, and a extended
sequence (xt)t∈T̃ ∗ ∈ AL(x), and the resulting formula proves (4.2) for
L.

For any choice of (T ∗, (xt)t∈T ∗) ∈ AL(x), such that

(4.3) |w(x, T ∗, (xt)t∈T ∗ , uk)− infsup
(xt)∈BL(x)

w(x, T ∗, (xt)t∈T ∗ , uk)| ≤ 1,



22 QING LIU AND ARMIN SCHIKORRA

we then have that

Λ + 1 ≥ uk+L(x) + 1 ≥ λ+

d(T )∑
l=1

∑
t6∈leafT, d(t)=l

µl(t)(1− µ)r(t) λ

−
∑

t∈leafT

µl(t)(1− µ)r(t) (2Λ),

that is for any (T ∗, (xt)t∈T ∗) ∈ AL(x) such that (4.3) holds, we have

(4.4)
∑

t6∈leafT ∗
µl(t)(1− µ)r(t) ≤ C + C

∑
t∈leafT ∗

µl(t)(1− µ)r(t),

for some uniform C = C(Λ, λ).

That is, if we set the short, good, admissible strategies to be ÃL,C(x),

ÃL,C(x) := {(T ∗, (xt)t∈T ∗) ∈ AL(x), T ∗ satisfies (4.4)},
we have a more precise description of uk+L than that of (4.2). Namely,

(4.5) uk+L(x) = infsup
(xt)T ,T∈ÃL,C(x)

w(x, T, (xt)t∈T , uk).

One has to be a little bit careful about the meaning of infsup in this
case: For a sequence (xt)t∈T , and a vertex t ∈ T , we collect the history
(xhist,t) = (xt̃)t<t̃ to be all the elements xt̃ for t̃ < t. Then

infsup
(xt)T ,T∈ÃL,C(x)

w(x, T ∗, (xt)t∈T ∗ , v) =

[tL]

EXT
xtL∈B(xpar(tL),(xhist,tL ))

. . .
[t1]

EXT
xt1∈B(xt0 ,(xhist,t1 ))

w(x, T ∗, (xt)t∈T ∗ , v),

where the “balls” B(xtpar(tk) , (xhist,tk)) allow only such elements y ∈
B(xtpar(tk)), such that picking y as xtk there still exists at least one se-

quence (x̃t)t∈TL ∈ BL(x) such that x̃t = xt for t ≤ tk, and the reduction
T ∗ from that sequence (x̃t)T satisfies (4.4). That is to say: Starting
from a point xt ∈ Y , both Players are allowed to take only those points
xt0 and xt1 in B(xt) such that there is at least one possible way to
progress the game with a resulting tree T ∗ that is satisfying (4.4).

Now we can set,

vL(x) = infsup
(xt)T ,T∈ÃL,C(x)

w(x, T, (xt)t∈T , 0),

and observe that by (4.5),

|uk+L(x)−vL(x)| ≤ sup
(xt),T∈ÃL,C(x)

|w(x, T, (xt)t∈T , uk)−w(x, T, (xt)t∈T , 0)|.
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Moreover,

|w(x, T, (xt)t∈T , uk)− w(x, T, (xt)t∈T , 0)|

≤
∑

t∈leafT,xt∈Y

µl(t)(1− µ)r(t) |uk(xt)|

≤ Λ
∑

t∈leafT,xt∈Y

µl(t)(1− µ)r(t)

= Λ
∑

t∈leafT,d(t)=d(T )=L

µl(t)(1− µ)r(t).

By Proposition 2.3 there exists L0 > 0 (depending only on the constants
involved), such that the latter is smaller than δ

2
for any kind of tree of

length greater or equal to L0 satisfying (4.4).

Thus we have shown

(4.6) sup
k

sup
x∈X
|uk+L(x)− vL(x)| ≤ δ

2
for any L ≥ L0.

On the other hand, note that vi is the solution to (4.1) starting from
v0 = 0. In particular, supi supX |vi| < ∞ by Theorem 3.1. Repeating
the argument from above, we obtain the existence of K0 > 0 such that

(4.7) sup
i

sup
x∈X
|vK+i(x)− vK(x)| ≤ δ

2
for all K ≥ K0.

Combining (4.6) and (4.7), we arrive at

sup
k,i

sup
X
|uk+L+K − vL+K+i| ≤ δ.

�
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