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Abstract
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1 Realization of Hecke algebras via bimod-

ules

Notation 1.1. Given a svelte additive categaryA denote its split Grothendieck-
group, thus the free abelian group over the objects with relations M =
M ′ + M ′′ whenever we have M ∼= M ′ ⊕ M ′′. Given a object M let 〈M〉
denote its class in 〈A〉.
Notation 1.2. Given a Z-graded ring A let A -modf

Z denote the category of
all finitely generated Z-graded A-modules. We write M [n] for the object M
with its Z-grading shifted by n, in formulas (M [n])i = Mi+n.

Remark 1.3. Given a field k and a finitely generated commutative nonnega-
tively Z-graded k-algebra A with A0 = k the endomorphism ring of a finitely
Z-graded A-module is always of finite dimension. The endomorphism ring
of an indecomposable such module has no indempotents except zero and
one and thus is indecomposable as a right module over itself. But it is
also the endomorphism ring of this indecomposable right module of finite
length and is thus local. Hence we have in A -modf

Z the Krull-Schmid the-
orem with the same proof as in [Pie82] 5.4 and the isomorphy classes of
indecomposable objects form a basis of 〈A -modf

Z〉, so in particular we have
〈N〉 = 〈M〉 ⇔ N ∼= M.

Notation 1.4. Let (W ,S) be a Coxeter system with a finite number of gener-
ators, |S| <∞. Let l :W → N be its length function and ≤ the Bruhat order
on W . In particular x < y means x ≤ y, x 6= y. On the free Z[v, v−1]-mdule

H = H(W ,S) =
⊕
x∈W

Z[v, v−1]Tx

over W there is exactly one structure of associative Z[v, v−1]-algebra with
TxTy = Txy if l(x) + l(y) = l(xy) and T 2

s = v−2Te + (v−2 − 1)Ts for all
s ∈ S, see [Bou81], IV, §2, Exercice 23. This associative algebra H is called
the Hecke algebra of (W ,S). It is unitary with unit Te, we abreviate often
Te = 1. In fact it might be more natural to use q = v−2, and the first sections
of this article would gain clarity thereby. In the later sections however it is
essential for a transparent exposition to have a root of q at our disposal.
wichtig, eine Wurzel von q zur Verf”ugung zu haben. The Hecke algebra can
also be described as the assocative unitary Z[v, v−1] algebra with generators
{Ts}s∈S , the quadratic relations T 2

s = v−2Te + (v−2 − 1)Ts and the so-called
braid relations TsTt . . . Ts = TtTs . . . Tt resp. TsTtTs . . . Tt = TtTsTt . . . Ts in
case st . . . s = ts . . . t resp. sts . . . t = tst . . . s for s, t ∈ S.
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Definition 1.5. Let (W ,S) be a Coxeter system. Let T ⊂ W denote the set
of all “reflections”, i.e. all elements ofW , which are conjugate to elements of
S. By a reflection faithful representation of our Coxeter system we mean a
representation W ↪→ GL(V ) in a finite dimensional vector space over a field
k of characteristic char k 6= 2 with the following properties:

1. Our representation is faithful.

2. For x ∈ W we have dim(V/V x) = 1 ⇔ x ∈ T . Thus exactly the
reflections from W have a fixed point set of codimension one in V.

Remark 1.6. Given a reflection faithful representation the elements of T are
precisely those elements of W , which act as reflections on V , thus which
decompose in V in a onedimensional eigenspace of eigenvalue −1 and a hy-
perplane of invariand vectors. Indeed x ∈ T cannot act unipotently, since
an automorphism of order two of a vector space over a field of charcteristic
6= 2 is diagonalizable and our condition excludes that x acts as the iden-
tity. Furthermore reflections from W can be distinguished as well by their
eigenspaces of eigenvalue (−1) as well as by their reflecting hyperplanes, so
that for t, r ∈ T we have

V t = V r ⇔ V −t = V −r ⇔ t = r.

For example in case G = V −t = V −r, we consider the short exact sequence
G ↪→ V � V/G. Since both t and r act as the identity on V/G and since
taking the adjoint map doesn’t change the dimension of the eigenspaces we
see that tr fixes a hyperplane. But since tr has determinant 1 it must by
condition 2 act as the identity on V and thus by condition 2 is the identity of
W . We show in the next section, that the representation of a Coxeter group
generalizing the representation of an affine Weyl group on the Cartan of a
Kac-Moody algebra is always reflection faithful.

Definition 1.7. A representation ofW , in which reflections act as reflections
and where different reflections have different (−1)-eigenspaces will be called
reflection vector faithful.

Example 1.8. The geometric representation of an infinite dieder group is
reflection vector faithful. However it is not faithful, since all elements expect
the neutral element have a fixed point set of codimension one, not only the
reflections.

Notation 1.9. Let now for the sake of simplicity of notation k be an infinite
field and let R = R(V ) donote the k-algebra of all regular functions on the
space V underlying a reflection vector faithful representation. We equip R
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with a Z-grading R =
⊕

i∈Z Ri such, that we have R2 = V ∗ and Ri = 0
for uneven i. Again it would be more natural here to work with the usual
grading, but in the long run we need these conventions. Let

R = RV ⊂ R -modZ- R

denote the categary of all Z-graded R-bimodules, which are finitely generated
from the right as well as from the left, and where the action of k from the
right and the left is the same. Tensoring ⊗R makes

〈R〉

into a ring. For s ∈ S let Rs ⊂ R denote the subring of all s-invariants.

Theorem 1.10. Let V be a reflection vector faithful representation of the
Coxeter system (W ,S) over an infinite field. Let H be the Hecke algebra
and R the ring of polynomial functions on V. There is exactely one ring
homomorphism

E : H → 〈R〉
such that we have E(v) = 〈R[1]〉 and E(Ts + 1) = 〈R⊗Rs R〉 ∀s ∈ S.

Remark 1.11. This theorem is a variant of theorem 1 from [Soe92]. I prefer
the proof given here, since it does not assume any knowledge of Demazure
operators.

Proof. Unicity is evident, since H is generated by Ts + 1 as an algebra over
Z[v, v−1]. Existence needs only to be proven in case of a dieder group, since
H can be described by relations involving each time only two generators. The
dieder case will be discussed in section 4.

Definition 1.12. We consicer in the Hecke algebra the elements T̃x = vl(x)Tx.
By [KL79] there is exactly one involution d : H → H with d(v) = v−1 and
d(Tx) = (Tx−1)−1 and for x ∈ W there is a unique C ′

x ∈ H with d(C ′
x) = C ′

x

and
C ′

x ∈ T̃x +
∑

y

vZ[v]T̃y

These elements form the so-called Kazhdan-Lusztig-basis of the Hecke alge-
bra from [KL79].

Conjecture 1.13. Let V be a reflection faithful representation of W over an
infinite field ans let R be the ring of regular functions on V. Then there is, at
least in case k = C, an indecomposable Z-graded R-bimodule Bx ∈ R such
that

E(C ′
x) = 〈Bx〉.
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Remark 1.14. In case k = C and W a finite Weyl group this is shown in
[Soe92]. ForW a finite Weyl group and char k at least the Coxeter number it
is proven in [Soe00], that this conjecture is equivalent to a part of Lusztig’s
conjecture concerning characters of irreducible representations of algebaric
groups over k. For the case of the action of a Weyl group on the Cartan of
an affine Kac-Moody algebra the conjecture is established in [Här99]. In 5.3
we construct a left inverse to E , whose explicite description shows, how the
preceding conjecture implies the positivity of all coefficients of all Kazhdan-
Lusztig polynomials.

Remark 1.15. In 6.16 we show, that the “indecomposable bimodules in the
image of E” can at least be parametrized by W . Furthermore we determine
in 5.15 the dimension of the Hom-spaces between any two “bimodules im
the image of E” and show in which way our formulas are compatible with
conjecture 1.13.

Remark 1.16. Still open is in particular the case of universal Coxeter groups
(here the KL-polynomials were described by [Dye88]) and the case op general
finite Coxeter groups, which should be accessible by computer.

Remark 1.17. Related investigations are in [BM01] and in partially unpub-
lished work of Dyer [Dye94] and in unpublished work of Peter Fiebig.

2 A reflection faithful representation

Proposition 2.1. Given a finite set S and a Coxete rmatrix of type S of
the formbe a finite dimensional real vector space and let be given linearly in-
dependent vectors (es)s∈S in V and linearly independent linear forms (e∨s )s∈S
on V such that we have

〈et, e
∨
s 〉 = −2 cos(π/ms,t) ∀s, t ∈ S.

If we assume as in [Kac90] that the dimension of V is smallest possible, then
the formula ρ(s)(v) = v−〈v, e∨s 〉es defines a reflection faithful representation
ρ :W → GL(V ) of our Coxeter group.

Proof. That we get in this way a repesentation, i.e. that the braid relations
are satisfied can be deduced from the fact that for any pair s, t of simple
reflections with st of finite order our space decomposes as the intersection
of the kernels of e∨s and e∨t , which is not moved by s and t at all, and the
space generated by es and et, where s and t act as generators of the usual
dieder group. In general the subspace E ⊂ V spanned by the es is a subrep-
resentation isomorphic to the “natural representation” of [Bou81], V.4.3 and
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is in particular faithful. Furthermore W acts trivially on the simultaneous
kernel K of all e∨s and the natural action on (V/K)∗ is isomorphic again to
the natural representation, which means that the action on (V/K) is isomor-
phic to the contragredient representation E∗ of [Bou81], V.4.4. In view of our
minimality assumption on the dimension of V we certainly have K ⊂ E and
thus a filtration by subrepresentations

0 ⊂ K ⊂ E ⊂ V.

The pairing (es, et) = 1
2
〈es, e

∨
t 〉 now defines an invariant symetric form on E

and a nondegenerate invariant symmetric form on E/K. Now let x ∈ W be
an element, whose fix point set V x ⊂ V is a hyperplane. We have to show
x ∈ T . Let X ∈ End V denote the image of x. We have either det X = 1 or
det X = −1 and start treating the case det X = 1. If we choose a complement
Rc of the hyperplane V x, then our endomorphism X necessarily has the form
X(v+αc) = v+αv0 +αc for some fixed v0 ∈ V x. Certainly we have V x ⊃ K.
Since our group acts faithfully on E we can choose c ∈ E and deduce v0 ∈ E.
Since E∗ ∼= V/K is a faithful representation as well, we get v0 6∈ K. Now
we use our invariant bilinear form on E and deduce (v + αc, v + αc) =
(v + αv0 + αc, v + αv0 + αc) alias 2α(v, v0) + α2(2(c, v0) + (v0, v0)) = 0 for all
v ∈ E and α ∈ R. This gives us (v, v0) = 0 for all v ∈ E contrdicting v0 6∈ K.
Thus the case det X = 1 is not possible and we can assume det X = −1.
Then necessarily x acts as a reflection on V and also on V/K ∼= E∗. Since
W acts faithfully and transitively on the alcoves of the Tits cone, the fix
point set of x cannot meet any alcove in the Tits cone. If we consider the
fundamental dominant alcove of the Tits cone C ⊂ E∗ and its image under
x, we find that C and xC are separated only by finite number of reflecting
hyperplanes V z for some z ∈ T . On the other hand a certain nonempty open
part of the refection plane of x in E∗ consits of points on segments joining
points of C with points of xC, consider for example the image of C under
the projection (id +x)/2. This open part then has to be covered by our finite
number of reflecting hyperplans, and this is impossible unless the reflecting
hyperplane of x coincides with the reflecting hyperplane of some z ∈ T . But
then we form zx and come back to the impossible case det = 1 least we have
x = z.

3 Further notations and formulas

Notation 3.1. Given any finite dimensional representation V of a group W
we consider for any x ∈ W the (reversed) graph

Gr(x) = {(xλ, λ) | λ ∈ V } ⊂ V × V
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and form for any finite subset A ⊂ W in V × V the Zariski closed subset

Gr(A) =
⋃
x∈A

Gr(x).

Remark 3.2. For any y, z ∈ W we get obviously an isomorphic

Gr(y) ∩Gr(z)
∼→ V yz−1

by the projection on the first coordinate and we have

(Gr(y) + Gr(z)) ∩ (V × 0) = im(yz−1 − id)× 0.

Notation 3.3. Let now k be an infinite field and let as before denote R the
k-algebra of all regular functions on V. We always abreviate ⊗k = ⊗. If we
identify R⊗R with the regular functions on V ×V via the rule (f⊗g)(λ, µ) =
f(λ)g(µ), the regular functions on Gr(A) as a quotient of R⊗R from naturally
a Z-graded R-bimodul. This Z-graded R-bimodul we denote

R(A) = R(Gr(A)) ∈ R -modZ- R

and it is easy to check that it is finitely generated as a left module and
as a right module over R. For A = {x1, . . . , xn} we also put Gr(A) =
Gr(x1, . . . , xn) and R(A) = R(x1, . . . , xn) or even shorter R(x) = Rx, R(x, y) =
Rx,y. In the case A = {y | y ≤ x} we put R(A) = R(≤ x). For the right
action of W on R we use exponential notation Sry(λ) = r(yλ) ∀y ∈ W ,
λ ∈ V, r ∈ R. If 1y ∈ Ry denotes the constant function 1 on Gr(y) alias the
image of 1 ⊗ 1 in Ry, we have r1y = 1yr

y. The notations are chosen to get
R(x)⊗R R(y) ∼= R(xy) for all x, y ∈ W .

4 The case of a dieder group

Remark 4.1. IfW is a dieder group, by [Hum90, 7.12(a)] the elementes of the
selfdual basis are of the form C ′

x = vl(x)
∑

y≤x Ty. We prove this as Remark
4.4.

Theorem 4.2. Let (W ,S) be a Coxeter system with twoe generators |S| = 2
and let V be a reflection vector faithful representation over an infinite field.
Then the homomorphism of additive groups

E : H → 〈R〉
vnC ′

x 7→ 〈R(≤ x)〉[n + l(x)]

is a ring homomorphism.
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Remark 4.3. For any reflection s : V → V the obvious map R⊗R � R(e, s)
induces an isomorphism R ⊗Rs R

∼→ R(e, s). To see this, Remark, that this
map certainly is a surjection and compare the dimensions of homogeneous
parts, where one may use the eigenspace decomposition R = Rs ⊕ Rsα for
α ∈ V ∗ an equation of the reflection plane of s and a short exact sequence
Rs[−2] ↪→ R(e, s) � Re. Thus the theorem indeed gives the existence in The-
orem 1.10. the proof biven here extends arguments of I. Herrmann [Her99].

Proof. Certainly it suffices, to show for all simple reflections s and all x ∈ W
the equation

E

(
(Ts + 1)

∑
y≤x

Ty

)
= E(Ts + 1) E

(∑
y≤x

Ty

)
.

If we put A = {y ∈ W | y ≤ x}, then A ∪ sA and A ∩ sA are both of the
form {y ∈ W | y ≤ z} for suitable z in our dieder group W , unless we are in
the second case and the intersection is empty. An explicite computation in
the Hecke algebra now shows

(Ts + 1)
∑
y∈A

Ty =
∑

y∈A∪sA

Ty + v−2
∑

y∈A∩sA

Ty.

If we insert this results on the left hand side, our equation transforms into
claiming an isomorphism of graded bimodules

R(A ∪ sA)⊕R(A ∩ sA)[−2] ∼= R⊗Rs R⊗R R(A),

whic will be shown after a preliminary Lemma as Proposition 4.6.

Remark 4.4. To prove the formulas claimed in 4.1 for the C ′
x in the dieder

case we only have to show the γx = vl(x)
∑

y≤x Ty are selfdual. For any simple
reflection s with sx > x however we can rewrite one of the equations of our
proof to read

v(Ts + 1)γx =

{
γsx + γz with z < x in case l(x) > 1;
γsx in case l(x) ≤ 1,

and thus the selfduality of v(Ts + 1) implies inductively the selfduality of all
γx.

Lemma 4.5. Let V be a finite dimensional representation of a group W
over an infinite field k of charakteristc 6= 2. Let A ⊂ W be a finite subset
and s ∈ W an element with sA = A, acting on V as a reflection. Then we
have:
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1. There is an isomorphism of graded bimodules

R⊗Rs R(A) ∼= R(A)⊕R(A)[−2].

2. For R(A)+ ⊂ R(A) the invariants under the action of s× id multipli-
cation induces an isomorphism

R⊗Rs R(A)+ ∼→ R(A).

Proof. Let first W be an arbitray finite dimensional vector space over k. Any
reflection t : W → W defines an involution t : R(W ) → R(W ), and if we
choose an equation β ∈ W ∗ of the reflecting hyperplane W t, we can consider

∂t = ∂β
t : R(W )→ R(W ), f 7→ f − tf

2β
.

If now X ⊂ W is a Zariski closed t-stable subset, then t induces an in-
volution on R(X) and we get an eigenspace decomposition of the form
R(X) = R(X)+ ⊕ R(X)−. If no irreducible component of X is contained
in W t, our operator ∂t stabilizes the kernel of the sujection R(W ) � R(X)
and thus induces a map ∂t : R(X) → R(X). It is easy to see that ∂t and
multiplication by β are mutually inverse isomorphisms R(X)+ ∼= R(X)−[2]
of Z-graded Rt-modules.

Now let us take W = V × V and t = s× id for our refection s ∈ W . We
apply our results to X = Gr(A) and get a decomposition R(A) = R(A)+ ⊕
R(A)− as well as an isomorphism R(A)+ ∼= R(A)−[2] by multiplication with
α⊗1 = β for α ∈ V ∗ an equation of the reflecting hyperplane of s. With R =
Rs⊕αRs we get part 2, and with our decompositon R(A) = R(A)+⊕R(A)−

and part 2 we also get part 1.

Proposition 4.6. Let (W ,S) be a Coxeter system with two generators |S| =
2 and let V be a reflection faithful representation of W over an infinite field.
Let s ∈ S and x ∈ W be given and let A = {y ∈ W | y ≤ x} denote the set
of all elements below x. Then in R-ModZ-R we have an isomorphism

R⊗Rs R(A) ∼= R(A ∪ sA)⊕R(A ∩ sA)[−2].

Proof. The case A = sA is already done by the preceding Lemma. In case
A = {e} our proposition just claims the isomorphism R(≤ s) ∼= R ⊗Rs R
of 4.3. Thus only the case A 6= {e}, A 6= sA remains to be treated, thus
A = {y ∈ W | y ≤ x} with x 6= e and sx > x. By explicite calculation we
find A − sA = {x, rx} for some reflection r ∈ T different from s. By our
assumptions the (−1)-eigenspaces of reflections of W are pairwise different
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and span a twodimensional subrepresentation U ⊂ V . By 3.2 there exists a
form β ∈ V ∗ × V ∗, which vanishes on Gr(x) + Gr(rx) but not on U × 0. We
consider the submodules generated by the cosets β and 1 of β und 1 in R(A)
over Rs ⊗R, call them M, N and claim

1. M ∼= R(A ∩ sA)+[−2] in Rs -modZ- R;

2. N ∼= R(A ∪ sA)+ in Rs -modZ- R;

3. R(A) = M ⊕N,

where the upper index + means (s× id) invariants. Once this is shown, the
proposition follows from the preceding lemma 4.5. Thus we only need to show
our three claims.

1. To show the first claim we Remark, that for three pairwise different ele-
ments x, y, z ∈ W , whose lengths do not all have the same parity, we always
have

Gr(x) + Gr(y) + Gr(z) ⊃ U × 0.

To show this we may without restriction assume z = e and x, y ∈ T . By
section 3 we have (Gr(x) + Gr(e)) ∩ (U × 0) = V −x × 0 and the some for
y. Since we assumed our representation reflection vector faithful, we have
V −x 6= V −y and therefore the inclusion. For y 6∈ {x, rx} we thus have Gr(y)+
Gr(x) + Gr(rx) ⊃ U × 0, in particular our function β does not vanish on
Gr(y) for y ∈ A ∩ sA. Thus an element of R(A) annihilates β iff it vanish
on Gr(A ∩ sA). We deduce that multiplication by β defines an isomorphism
R(A ∩ sA)[−2]

∼→ R(A)β. But the image of Rs ⊗ R in R(A ∩ sA) consists
precisely on the (s × id) invariants, thus our isomorphism restricts to an
isomorphism R(A ∩ sA)+[−2]

∼→M.

2. The Rs ⊗ R-submodule generated by 1 in R(A ∪ sA) is certainly just
R(A ∪ sA)+ and the restriction onto Gr(A) gives an injection

R(A ∪ sA)+ ↪→ R(A).

This proves the second claim.

3. We first show R(A) = M + N . If α ∈ V ∗ denotes an equation of the
reflecting plane V s, then we have R = Rs⊕αRs, thus R⊗R is generated as
an Rs ⊗ R-modul by 1⊗ 1 und α⊗ 1. It follows that it is also generated by
1 ⊗ 1 and an arbitray not (s × id) invariants β ∈ V ∗ × V ∗. Our β however
cannot be invariant under (s × id), because otherwise ist would vanish on
Gr(sx) and thus by the inclusion of the proof of claim 1 on all of U × 0. This
shows R(A) = M +N . We only need in addition M∩N = 0. This can be seen
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as follows: For y ∈ A ∩ sA the restriction on Gr(y, sy) = Gr(y) ∪ Gr(sy) of
any element of N is invariant under s× id. Thus it suffices to show, that the
restriction of an element of M on such a Gr(y, sy) can only be invariant under
s× id, if it vanishes on Gr(y, sy). It will be sufficient for that to show, that
the restriction of β to Gr(y, sy) is not invariant under s× id or also, that the
restriction of β to Gr(y)+Gr(sy) is not invariant under s× id . But the s× id
invariant forms on Gr(y) + Gr(sy) have to vanish on the subspace V −s × 0
and (Gr(x) + Gr(rx)) meets U × 0 in the different subspace V −r × 0.

5 Back from bimodules to the Hecke algebra

Notation 5.1. We work from now on always with a fixed reflection faithful
representation of a Coxeter system over an infinite field and want in this
section give an explicite left inverse for our ring homomorphism E : H → 〈R〉.
We start with some notations. Given B, B′ ∈ R we set

Hom(B, B′) = HomR⊗R(B, B′) ∈ R.

It is understood, that the left resp. right action on R on our Hom-space
comes from the left resp. right action on B or equivalently on B′, in formulas
(rf)(b) = f(rb) = r(f(b)), (fr)(b) = f(br) = (f(b))r, ∀r ∈ R, b ∈ B,
f ∈ Hom(B, B′).

Notation 5.2. Given a finite dimensional Z-graded vector space V =
⊕

Vi

we define its graded dimension by

dimV =
∑

(dim Vi)v
−i ∈ Z[v, v−1]

and for a finitely generated Z-graded right R-module M we define its graded
rank by the rule

rkM = dim(M/MR>0) ∈ Z[v, v−1].

We thus have dim(V [1]) = v(dimV ) and rk(M [1]) = v(rkM). Certainly our
graded rank is only a reasonable notation for free modules, an we will only
use it for such. By rkM we denote the image of rkM under the substitution
v 7→ v−1. The following theorem motivates this whole section.

Theorem 5.3. Our map E : H → 〈R〉 has as a left inverse the map 〈R〉 → H
given by the rule

〈B〉 7→
∑
x∈W

rk Hom(B, Rx) Tx.
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Proof. This theorem is a direct consequence of 5.7 and 5.16, which we will
prove in the sequal without using it.

Definition 5.4. For any R-bimodule B and any subset A ⊂ W we define
the subbimodule

ΓAB = {b ∈ B | supp b ⊂ Gr(A)}

of all elements with support in Gr(A). We put Γ≥iB = Γ{x∈W|l(x)≥i}B and
define the category

F∆ ⊂ R

as the full subcategory of all graded bimodules B ∈ R such that B has
its support in a set of the form Gr(A) for some finite A ⊂ W and tht the
quotient Γ≥iB/Γ≥i+1B is for all i isomorphic to a finite direct sum of graded
bimodules of the form Rx[ν] with l(x) = i and ν ∈ Z.

Remark 5.5. Certainly B 7→ Γ≥iB/Γ≥i+1B is additive in B, thus F∆ is stable
under forming direct sums and because of Krull-Schmid 1.3 also stable under
forming direct summands.

Notation 5.6. It turns out to be convenient to introduce the graded bimodules

∆x = Rx[−l(x)]

and to work in the Hecke algebra with T̃x = vl(x)Tx. for the multiplicity of a
summand ∆x[ν] in one and every decomposition of Γ≥iB/Γ≥i+1B for i = l(x)
we introduce the notation (B : ∆x[ν]). Also we introduce the abreviation
R[1]⊗Rs M = θsM.

Proposition 5.7. Let s ∈ S be a simple reflection.

1. With B also R⊗Rs B belongs to F∆.

2. If we define the maps h∆ : F∆ → H by the rule B 7→
∑

x,ν(B :

∆x[ν])vνT̃x, for all s ∈ S we get two commutative diagrams

F∆ −−−→ H

θs

y y(T̃s+v)·

F∆ −−−→ H

F∆ −−−→ H

[1]

y yv·

F∆ −−−→ H

3. Our map E factors via a map E : H → 〈F∆〉 and our h∆ : 〈F∆〉 → H
is left inverse to this E

Proof. The proof of this proposition needs

12



Lemma 5.8. Let W be a finite dimensional vector space and U, V ⊂ W
two affine subspaces. Then Ext1

R(W )(R(U), R(V )) is nonzero only if we have
V ∩ U = V or if V ∩ U is of codimension one in V . In the later case
Ext1

R(W )(R(U), R(V )) is a free R(U ∩ V )-modul of rank one, generated by
the class of an arbitray short exact sequence of the form

R(V )[−2]
α
↪→ R(U ∪ V ) � R(U)

for α ∈ W ∗ with α|U = 0, α|V 6= 0.

Proof. If F and G are free modules of finite rank over the k-algebras A and
B and if M or N are arbitray modules over A and B, then we obviously (see
[Bou70], I §4 and II §11) have

HomA(F, M)⊗ HomB(G, N)
∼→ HomA⊗B(F ⊗G, M ⊗N).

If our algebras are noetherian and M ′ resp. N ′ are finitely generated over A
resp. B, we find resolutions F • � M ′ resp. G• � N ′ with F i resp. Gj free of
finite rank over A resp. B. Then F •⊗G• will be a free resolution of M ′⊗N ′

and we deduce

Extn
A⊗B(M ′ ⊗N ′, M ⊗N) = Hn HomA⊗B(F • ⊗G•, M ⊗N)

= Hn(HomA(F •, M)⊗ HomB(G•, N))

=
⊕

i+j=n Exti
A(M ′, M)⊗ Extj

B(N ′, N)

Thus we can restrict in our Lemma to the case with dimk W = 1, and those
can easily be done in an explicit way. More precisely we may without restric-
tion assume U and V linear and find a decomposition by W = S⊕U ′⊕V ′⊕W ′

mit U = S ⊕ U ′ and V = S ⊕ V ′. If we denote the dimension by dim W =
s + u + v + w, we will get Ext•R(W )(R(U), R(V )) ∼= Ext•k[X](k[X], k[X])s ⊗
Ext•k[X](k[X], k)u ⊗ Ext•k[X](k, k[X])v ⊗ Ext•k[X](k, k)w. Thus Ext1 is possible

only for v ≤ 1 and in case v = 1 we get Ext1 = k[X]s.

Now we prove the proposition. Let s ∈ S be our fixed simple reflection.
Certainly we can refine our filtration Γ≥i of B by certain Γ≥jB with j ∈ Z +
0, 5 such that for all i ∈ Z the quotients Γ≥iB/Γ≥i+0,5B resp. Γ≥i−0,5B/Γ≥iB
are sums of R(x)[ν] with x > sx resp. x < sx. With these choices the
parameters x, y of two possible subquotients of Γ≥i−0,5B/Γ≥i+0,5B only differ
by a reflection in case y = sx: Indeed for an arbitray reflection t we always
have tx > x or tx < x, and sy > y < x > sx implies y ≤ sx after a
result of Deodhar, the so-called property Z of Coxeter groups. However all
extensions in Ext1

R⊗R(Rx, Rsx) die after restriction to Rs ⊗ R. Indeed the
restriction Rx,sx � Rx splits over Rs ⊗ R, since in the notiations of 4.5 it
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gives an isomorphism R+
x,sx

∼→ Rx. By 5.8 thus the restriction onto Rs ⊗ R
of Γ≥i−0,5B/Γ≥i+0,5B is isomorphic to a direct sum of copies of certain Rx[ν]
with x > sx and l(x) = i, and these occur with multiplicity (B : Rx[ν])+(B :
Rsx[ν]). If we now tensor with R⊗Rs and remember the short exact sequences
Rx[−2] ↪→ R ⊗Rs Rx � Rsx, we get the first claim and (always assuming
x > sx) the formulas

(R⊗Rs B : Rx[ν]) = (B : Rx[ν + 2]) + (B : Rsx[ν + 2])
(R⊗Rs B : Rsx[ν]) = (B : Rx[ν]) + (B : Rsx[ν])

This we can rewrite to

(θsB : ∆x[ν]) = (B : ∆x[ν + 1]) + (B : ∆sx[ν])
(R[1]⊗Rs B : ∆sx[ν]) = (B : ∆x[ν]) + (B : ∆sx[ν − 1])

If we now only for this proof write an element H ∈ H in the form H =∑
x,ν(H : vνT̃x) vνT̃x, then in the Hecke algebra we get simalarily

((T̃s + v)H : vνT̃x) = (H : vν+1T̃x) + (H : vνT̃sx)

((T̃s + v)H : vνT̃sx) = (H : vνT̃x) + (H : vν−1T̃sx)

This shows the second claim. To prove the last claim, we Remark first, that
we may consider 〈R〉 via the ring homomorphism E of 1.10 also as a left
Hmodul. The first part of the proposition then means, that 〈F∆〉 ⊂ 〈R〉 is
an H-submodul ist and the second part, that the map h∆ : 〈F∆〉 → H is
a homomorphism of H-modules. Since E(1) = 〈Re〉 belongs to F∆, the map
E factorizes over 〈F∆〉, and since h∆ ◦ E : H → H is a homomorphism of
H-modules mapping one to one, this composition has to be the identity.

To show theorem 5.3 we als need a “dual” approach. More precisely we
consider the filtration of our bimodules by the Γ≤iB = Γ{x∈W|l(x)≤i}B and
define the category

F∇ ⊂ R

as the full subcategory of all graded bimodules B ∈ R such, that the support
is in Gr(A) for some finite A ⊂ W and that the quotients are for all i
isomorphic to finite direct sum of graded bimodules of the form Rx[ν] with
l(x) = i and ν ∈ Z. In this context it is convenient and natural, to introduce

∇x = Rx[l(x)].

For the multiplicitz of∇x[ν] in a direct sum decomposition of Γ≤l(x)B/Γ≤l(x)−1B
we use the notation (B : ∇x[ν]).

14



Remark that the multiplicities (B : ∇x[ν]) and (B : ∆x[ν]) concern sub-
quotients for different filtrations. Even for B ∈ F∆ ∩ F∇ the multiplicities
(B : ∆x[l(x) + ν]) and (B : ∇x[−l(x) + ν]) are thus different in general.
Analogously we have now

Proposition 5.9. Let s ∈ S be a simple reflection.

1. With B also R⊗Rs B belongs to F∇.

2. When we define th map h∇ : F∇ → H by the rule B 7→
∑

x,µ(B :

∇x[µ]) v−µT̃x, then for all s ∈ S the following diagrams are commuta-
tive

F∇ −−−→ H

θs

y y(T̃s+v)·

F∇ −−−→ H

F∇ −−−→ H

[1]

y yv−1·

F∇ −−−→ H

3. The composition d ◦ h∇ is a left inverse of E : H → 〈F∇〉.

Proof. We consider the functor

D = Hom−R( , R) : R→ R -modZ- R,

where we provide our space of homomorphisms of right R-modules with the
obvious Z-grading and let the right resp. left action on DB be defined via
the right resp. left action on the bimodule B, in formulas (rf)(b) = f(rb)
and (fr)(b) = f(br) for all b ∈ B, r ∈ R, f ∈ DB. I want to avoid a
general discussion whether an object of R lands in R again under D. In any
case we have DRx

∼= Rx and D(M [ν]) = (DM)[−ν], our functor induces an
equivalence of categories D : F∇

∼→ Fopp
∆ and evidently we have h∇ = h∆◦D.

Thus we only need to establish for all M ∈ F∇ an isomorphism θsDM ∼=
DθsM. For that we first show:

Proposition 5.10. 1. The functors from Rs -modZ to R -modZ with M 7→
R[2]⊗Rs M and M 7→ HomRs(R,M) are naturally equivalent.

2. The functor R[1]⊗Rs : R -modZ → R -modZ is selfadjoint.

Proof. Since R is free of finite rank over Rs, our Hom−functor can can also
be written in the form

HomRs(R,−) = HomRs(R,Rs)⊗Rs −.

Now more precisely R is free over Rs with basis 1, α for α an equation of the
reflecting hyperplane s(α) = −α. The dual basis of HomRs(R,Rs) over Rs
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will be denoted 1∗, α∗. The multiplication by α ∈ R is given in this basis by
αα∗ = 1∗, α1∗ = α2α∗. The choice of α therefore defines an isomorphism of
R-moduls

R[2]
∼→ HomRs(R,Rs), 1 7→ α∗, α 7→ 1∗,

and the first claim is established. The second claim follows, since our two
functors from the first claim are up to a change of grading just the two
adjoints of the restriction of Rs.

Thus we indeed get isomorphisms

θs(DM) ∼= R[1]⊗Rs DM
∼= HomRs(R[1], Hom−R(M, R))
∼= Hom−R(θsM, R)
∼= D(θsM)

The third part of Proposition 5.9 now follows, since we have d(T̃s+v) = T̃s+v
and thus the composition d ◦ h∇ ◦ E : H → H is a homomorphism of H-
leftmodules with 1 7→ 1.

Definition 5.11. We now define the category B ⊂ R as the category of all
graded bimodules B ∈ R, whose class 〈B〉 lies in the image of our morphism
E : H → 〈R〉, and call the objects of B our special bimodules.

Remark 5.12. Certainly B is stable under direct sums and shifts of grading.
Much later in 6.16 we will be able to show that B is stable under direct
summands. To obtain a criterium for when a bimodul B belongs to B, we
consider for an arbitrary finite sequence s = (r, . . . , t) of simple reflections
in the Hecke algebra the element b(s) = (Tr + 1) . . . (Tt + 1) and form the
bimodule

B(s) = R⊗Rr . . . R⊗Rt R.

Lemma 5.13. A graded bimodule B ∈ R is special iff there exist objects
C, D ∈ R, which each are finite direct sums of objects of the form B(s)[n]
and such, that we have

B ⊕ C ∼= D

Proof. Since 〈B(s)[n]〉 = E(vnb(s)) the B(s)[n] are special. This shows our
criterium to be sufficient. Since the vnb(s) generate H as an abelian group,
it is necessary.

Remark 5.14. In particular E : H → 〈R〉 factorizes over the split Grothendieck
group 〈B〉 of the additive category B and 5.7 with 5.9 imply B ⊂ F∆ ∩ F∇.
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Theorem 5.15. For M ∈ F∆, N ∈ B and also for M ∈ B, N ∈ F∇ the
space Hom(M, N) is graded free as a right R-module with rank

rk Hom(M, N) =
∑
x,ν,µ

(M : ∆x[ν])(N : ∇x[µ])vµ−ν .

Proof. We only treat the case M ∈ F∆, N ∈ B, the other case is similar. Let
i : H → H denote the antiinvolution i(v) = v, i(T̃x) = T̃x−1 . We consider the
symmetric Z[v, v−1]-bilinear pairing 〈 , 〉 : H×H → Z[v, v−1], which to each
pair (F, G) associates the coefficient of T̃e = Te in the representation of i(F )G
as a linear combination of the T or equivalently the T̃ . It can be described
explicitly by 〈T̃x, T̃y〉 = δxy, see [Lus85],§1.4. The looked-for formula thus
gets the form

rk Hom(M, N) = 〈h∆M, h∇N〉.

By 5.13 we can restrict to the case N = B(s). With 5.10 we can see, that
our formula is correct for the pair (R ⊗Rs M, N) iff it is correct for the pair
(M, R⊗Rs N). Without any difficulties we also see, that our formula is correct
for (M [1], N) if and only if it is correct for (M, N [−1]). Using this we can
even restrict to the case N = Re which is obvious.

Korollar 5.16. Let B ∈ B be a special bimodule. Then we have

h∆(B) =
∑

x∈W rk Hom(B, Rx) Tx,

h∇(B) =
∑

x∈W rk Hom(Rx, B) Tx.

Proof. By the preceding 5.15 we have

rk Hom(B, Rx) = rk Hom(B,∇x[−l(x)])
=

∑
ν(B : ∆x[ν])v−l(x)−ν

rk Hom(Rx, B) = rk Hom(∆x[l(x)], B)
=

∑
µ(B : ∇x[µ])v−l(x)+µ

and the corollary follows from the definitions.

6 Classification of indecomposable special bi-

modules

Notation 6.1. We work with a reflection faithful representation over an in-
finite field. For B ∈ B and y ∈ W we abbreviate Γ≤yB/Γ<yB = Γ≤y B, and
also Γ≥yB/Γ>yB = Γ≥y B and B/Γ6=yB = ΓyB.
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Remark 6.2. Given a bimodule with a finite filtration by subbimodules with
subquotient Rx the support of any section s ∈ B is an union of graphs
of elements of our Coxete group. To show this we may without restric-
tion assume supp s irreducible. But any nonzero element s ∈ B gives a
nonzero element s̄ in a suitable subquotient of the ∆-flag and we deduce
first supp s ⊃ supp s̄ = Gr(x) for suitable x ∈ W and then by the irreducibil-
ity of supp s even supp s = Gr(x). In particular we have ΓyB∩Γ6=yB = 0 and
the embeddings ΓyB ↪→ Γ≤y B and Γ≥y B ↪→ ΓyB. Under the same assump-
tions on B also the multiplication from the right with a nonzero element
p ∈ R doesn’t change the support. We thus have (ΓAB)p = ΓA(Bp) and
then (Γ≥y B)p ∼= Γ≥y (Bp) and the like. We use these identifications to omit all
brackets in this kind of expression.

Lemma 6.3. Let B ∈ F∇ be given and let y0, y1, y2, . . . be an enumeration of
the elements of W such that elements bigger in the Bruhat order have always
a bigger index. Let C(k) = {y0, . . . , yk} denote the set of k elements of our
list and let yk = y. Then the obvious map induces an isomorphism

Γ≤yB/Γ<yB
∼→ ΓC(k)B/ΓC(k−1)B,

both sides are direct sums of objects of the form ∇y[ν], and a ∇y[ν] appears
in this quotient with multiplicity (B : ∇y[ν]) as a direct summand. Analogous
results hold for F∆.

Proof. If z0, z1, z2, . . . is an enumeration of the elements of W such, that the
sequence l(z0), l(z1), l(z2), . . . of the lengths is increasing, and if we put A(j) =
{z0, z1, . . . , zj}, then the ΓA(j)B are a refinement of our filtration Γ≤iB and
ΓA(j)B/ΓA(j−1)B is a sum of (B : ∇zj

[ν]) copies of certain ∇zj
[ν]. Between

any two enumerations of elements of W such, that Bruhat-bigger elements
come later, we always can go back and forth in a finite number of steps
each of which just exchanges two neighbouring incomparable elements. Since
incomparable elements connot differ by a reflection, in any of these steps there
is not Ext1 between the corresponding subquotients, thus the filtration before
and after each of these steps lead to the same subquotients. The subquotient
ΓC(k)B/ΓC(k−1)B with yk = zj thus is isomorphic to ΓA(j)B/ΓA(j−1)B, and
thus Γ≤yB/Γ<yB is a sum of translated copies of ∇y, and ∇y[ν] appear
(B : ∇y[ν]) times.

Proposition 6.4. Given B ∈ B and y ∈ W our Γ≤y B, Γ≥y B and ΓyB and
ΓyB are graded free right R-modules, on which the R ⊗ R-action factors
through Ry.
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Proof. For the first two modules of our list this easily follows from 6.3. For
the last we then deduce from the embedding ΓyB ↪→ Γ≤y B from 6.2, that
the action of R ⊗ R factors over Ry, so that the evaluation at 1y gives an
isomorphism Hom(Ry, B)

∼→ ΓyB, which by 5.15 shows ΓyB is free. The claim
concerning ΓyB finally for y = e follows from B ∈ F∆. In general we Remark,
the by definition of the category B and 5.7 we even get B ⊗R Rz ∈ F∆ for
all z ∈ W . If we apply this to z = y−1, we get the general case.

Notation 6.5. Let T ⊂ W the set of all reflections, and for t ∈ T let αt ∈ V ∗

be an equation of the reflecting hyperplane ker αt = V t. The αt are unique
up to scalar, we fix them for the rest of this section arbitrarily. For y ∈ W
we now consider in R the element

py =
∏

t∈T, yt<y

αt.

Satz 6.6. Let y ∈ W and B ∈ B. Then the obvious morphisms ΓyB → Γ≤y B
and Γ≥y B → ΓyB induce isomorphisms

ΓyB
∼→ Γ≤y Bpy,

Γ≥y B
∼→ ΓyBpy.

Remark 6.7. The proof will only be given following 6.10. In [Soe92] it is shown
in case |W| < ∞ that there exists cy ∈ R ⊗ R of degree 2l(y), vanishing
on Gr(x) for x < y, but not vanishing on Gr(y) itself. Then necessarily cy

coincides on Gr(y) up to a scalar with 1⊗ py and we get an up to this scalar
commutative diagram of isomorphisms

Γ≤y B
cy→ ΓyB

·py ↓ ‖
Γ≤y Bpy ← ΓyB

descriping the inverse of the first isomorphism claimed in the theorem some-
what more explicitely. Similarly we also get an up to this scalar commutative
diagram with isomorphisms in the leftmost square

Γ6=yB ↪→ B � ΓyB
∼→ ΓyBpy

↓ ↓ ↓ ↓
Γ6≤yB ↪→ Γ6<yB � coker ∼= Γ≥y B

where all verticals up to the rightmost vertical are multiplications by cy,
the right upper horizontal is multiplication with py and for the last lower
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horizontal we use an analogon of 6.3 to get a short exact sequence Γ6≤yB ↪→
Γ6<yB � Γ≥y B. In this way the inverse of the second isomorphism claimed in
the theorem can be described somewhat more explicitely.

Remark 6.8. I would like to know, whether for every y of an infinite Coxeter
group the function cy : Gr(≤ y)→ C is regular, which vanishes on Gr(x) for
x < y and on Gr(y) is given by 1⊗ py.

Notation 6.9. For a reflection t ∈ W let R(t) denote the localization of R
at all homogenous function on V , which do not vanish identically on the
reflecting hyperplane V t.

Lemma 6.10. For any special bimodule B ∈ B its localization B ⊗R R(t)

in R -modZ- R(t) is isomorphic to a direct summand in a finite direct sum of
copies of Ry,yt ⊗R R(t) and Ry ⊗R R(t) for y ∈ W mit y < yt.

Remark 6.11. The screwed-up formulation helps to avoid a discussion of
Krull-Schmid in this context.

Proof. We prove this by induction using the inductive definition of the objects
of B. It is sufficient to show that for any simple reflection s ∈ S both R-R(t)-
bimodules R⊗Rs Ry ⊗R R(t) and R⊗Rs Ry,yt ⊗R R(t) admit a decomposition
into bimodules of the same type. But Ry ⊗R R(t) and Rx ⊗R R(t) can only
extend in R -modZ- R(t), if we have y = xt. Indeed after 5.8 in R -modZ- R
there are only extensions if we have y = xr for a reflection r, and these
extensions die under multiplication from the right with any equation of the
reflecting hyperplane of r.

To finish the first case we thus only have to show, that sy 6= yt implies
syt > sy. This however follows from Deodhar’s property Z or alternatively
from the geometrix insight, that neighbouring alcoves are separated just by
one wall. In the second case there is nothing to do in case sy = yt, in this
case we even have R⊗Rs Ry,yt

∼= Ry,yt ⊕Ry,yt[−2] by 4.5.
If finally we have sy 6= yt, the short exact sequence of bimodules R[−2] ↪→

R⊗Rs R � Rs leads to a short exact sequence

Ry,yt[−2] ↪→ R⊗Rs Ry,yt � Rsy,syt

and this sequences has to split after applying ⊗RR(t), since all extensions
between the bimodules Ry, Ryt as submodules and Rsy, Rsyt as quotients
split after we apply ⊗RR(t).

Proof of 6.6. The cokernel of ΓyB ↪→ Γ≤yB contains no elements with sup-
port Gr(y). Thus the restriction gives an embedding

Hom(Γ≤y B, Ry) = Hom(Γ≤yB, Ry) ↪→ Hom(ΓyB, Ry).
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We first show, that this embedding even lands in Hom(ΓyB, Rypy). Indeed,
if for a reflection t ∈ T with yt < y we pass by ⊗RR(t) to the localizations
and decompose B as in lemma 6.10, then only the summands of the form
Ry,yt ⊗R R(t) contribute to the two Hom-spaces we want to compare and we
deduce, that our embedding lands in Hom(ΓyB, Ryαt ⊗R R(t)), since this is
true when we replace B by Ry,yt. Since this holds for all t with yt < y, and
since the intersection of all these Ryαt ⊗R R(t) with Ry is just Rypy, we get
the looked-for factorization

Hom(Γ≤y B, Ry) = Hom(Γ≤yB, Ry) ↪→ Hom(ΓyB, Rypy).

Since Γ≤y B is by 6.4 a free Ry-module, we further see, that the embedding
ΓyB ↪→ Γ≤y B lands in Γ≤y Bpy. Now we show by comparing dimensions, that
this embedding is in fact an isomorphism. By Lemma 6.3 we get already

rkΓ≤y B =
∑

(B : ∇y[ν])vν+l(y).

On the other hand by 6.2 the action of R⊗R on ΓyB factorizes over Ry and
we thus get ΓyB = Hom(Ry, B) = Hom(∆y[l(y)], B). This however is by 5.15
a free right R-module of rank rkΓyB =

∑
(B : ∇y[µ])vµ−l(y). But since py

lives in degree 2l(y), this coincides with the rank of Γ≤y Bpy and we get the
first isomorphism of our theorem.

To deduce the second isomorphism we Remark, that dually the cokernel
of the embedding Γ≥yB ↪→ B contains no elements with support in Gr(y).
Thus the restriction induces an embedding

Hom(B, Ry) ↪→ Hom(Γ≥yB, Ry) = Hom(Γ≥y B, Ry).

We first show now as before with Lemma 6.10 on the local structure of
the bimodules from B, that this embedding even lands in the subspace
Hom(Γ≥yB, Rypy). Then comparing the dimensions of the homogeneous parts
we see that this embedding is in fact an isomorphism

Hom(B, Ry)
∼→ Hom(Γ≥y B, Rypy).

From there we get either comparing dimensions or dualizing with 6.4 the
second claim of the theorem.

comment 6.12.

Remark 6.13. F”ur A ⊂ W eine Teilmenge und M einen R-Bimodul set-
zen wir ganz allgemein ΓAM = M/ΓW−AM. F”ur M torsionsfrei als R-
Rechtsmodul sind auch die ΓAM torionsfreie R-Rechtsmoduln, in der Tat
gilt dann n”amlich

ΓW−AM = M ∩ ΓW−A(M ⊗R Quot R)
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Remark 6.14. We will soon be able to show that B is stable under the for-
mation of direct summands. However as long as we don’t know this yet, we
set addB to be the category of all Z-graded R-bimodules occuring as direct
summands of special bimodules. Now we generalize 5.15 to addB and show:

Lemma 6.15. For M ∈ F∆, N ∈ addB and also for M ∈ addB, N ∈ F∇
the space Hom(M, N) is graded free as a right R-module and has the rank

rk Hom(M, N) =
∑
x,ν,µ

(M : ∆x[ν])(N : ∇x[µ])vµ−ν .

Proof. We start with the first case. To begin with we Remark that the iso-
morphism ΓyN

∼→ Γ≤y Npy of Satz 6.6 also holds for all N ∈ addB. From
there we get the claim for M = ∆y and N ∈ addB, since we have

rk Hom(∆y, N) = rkΓyN [l(y)]

=
∑

µ(ΓyN [l(y)] : ∇y[µ])vµ+l(y)

=
∑

µ(Γ≤y N [−l(y)] : ∇y[µ])vµ+l(y)

=
∑

µ(N : ∇y[µ])vµ.

In the general case we argue by induction on the length of a ∆-flag of M.
Indeed let x ∈ W be an element of maximal length with (M : ∆x[ν]) 6= 0 for
some ν ∈ Z. By maximality of x we have a short exact sequence

ΓxM ↪→M � coker

with ΓxM and coker in F∆ and

(M : ∆y[ν]) = (ΓxM : ∆y[ν]) + (coker : ∆y[ν])

for all y ∈ W and ν ∈ Z. Certainly on the right side of this equation the first
summand is zero in case y 6= x and the second in case y = x. But in any case
our dimension formulas 5.15 given for all N ∈ B a short exact sequence

Hom(coker, N) ↪→ Hom(M, N) � Hom(ΓxM, N).

This sequences then has to be exact for all N ∈ addB as well and thus induc-
tion on the length of a ∆-flag of M reversly shows the dimension formulas
claimed for all N ∈ addB.

The second case is treated analogously. That 6.6 also holds for all B ∈
addB gives the cases N = ∇y. In general we argue on the length of a ∇-flag
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of N, take an element x of maximal length with (N : ∇x[ν]) 6= 0 for at least
one ν ∈ Z, get by maximality of x a short exact sequence

ker ↪→ N � ΓxN

with ΓxN and ker in F∇ and

(N : ∇y[ν]) = (ker : ∇y[ν]) + (ΓxN : ∇y[ν])

for all y ∈ W and ν ∈ Z, and again our dimension formulas 6.15 for all
M ∈ B a short exact sequence

Hom(M, ker) ↪→ Hom(M, N) � Hom(M, ΓxN),

which has to be exact for all M ∈ addB and permits the looked-for inductive
argument.

Satz 6.16. 1. For all x ∈ W there is up to isomorphism a unique in-
decomposable special bimodule Bx ∈ B with suopport in Gr(≤ x) and
(Bx : ∆x[ν]) = 1 for ν = 0 and zero for ν 6= 0.

2. The map (x, ν) 7→ Bx[ν] defines a bijection

W × Z ∼→
{

indecomposable objects of B,
up to isomorphism

}
3. The bimodules Bx are selfdual, in formulas DBx

∼= Bx.

4. The category B is stable under the formation of direct summands, in
formulas B = addB.

Proof. We first show the first three points for addB instead of B. Let x =
st . . . r be a reduced word. In R ⊗Rs R ⊗Rt . . . R ⊗Rr R[l(x)], which by 5.7
up to indecomposability possesses all properties we ask of Bx, we choose
the indecomposable summand Bx with (Bx : ∆x) = 1 and thus already get
a possible Bx ∈ addB, which even has to be selfdual as the unique direct
summand of a selfdual bimodule, whose support contains Gr(x).

Now it only remains to show that except these Bx and their translates
Bx[ν] there are no indecomposables in addB. But let M ∈ addB and let
x ∈ W be an element of maximal length (M : ∆x[ν]) 6= 0 for some ν ∈ Z.
We show that Bx[ν] is a direct summand of M. By maximality of x first by
6.15 or more precisely its proof the obvious maps give surjections

Hom(M, Bx) � Hom(ΓxM, Bx) = Hom(ΓxM, ΓxBx),

Hom(Bx, M) � Hom(Bx, Γ
xM) = Hom(ΓxBx, Γ

xM).
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The we Remark, that by maximality of x with 6.3 we even get Γ≤x M
∼→ ΓxM ,

so that by 6.6 the embedding ΓxM ↪→ ΓxM gives isomorphisms

i : ΓxM
∼→ ΓxMpx and i : ΓxBx

∼→ ΓxBxpx

. Given m ∈ ΓxM homogeneous we now find f ∈ Hom(ΓxBx, Γ
xM) homoge-

neous with f(b) = m for b ∈ ΓxBx a homogeneous generator. If we choose m
even so, that it is part of a homogeneous basis of the graded free R-module
ΓxM , then we also get g ∈ Hom(ΓxM, ΓxBx) with g(i−1(mpx)) = i−1(bpx).
For homogeneous lifts f̃ : Bx → M and g̃ : M → Bx of f and g we deduce,
that g̃ ◦ f̃ : Bx → Bx induces the identity on ΓxBx. Thus g̃ ◦ f̃ can not be
nilpotent, thus it is an isomorphism sicne Bx is indecomposable. Finally by
induction on the length of x, that all Bx already belong to B: Indeed our
long tensor product from above decomposes into a summand Bx along with
other summands, which by their support necessarily are of the form By[ν]
with l(y) < l(x). This shows the other claim.

Remark 6.17. If we find B ∈ B with 〈B〉 = E(C ′
x), then we can deduce B ∼=

Bx and thus 〈Bx〉 = E(C ′
x). Indeed such a B is necessarily indecomposable,

because calculating the dimension of the homogeneous components of its
endomorphism ring we get nothing in negative degrees and but the ground
field in degree zero.

Remark 6.18. For all x ∈ W at least h∆(Bx) = h∇(Bx) is a selfdual element
of H of the form C ′

x +
∑

y<x hyC
′
y for suitable selfdual hy ∈ Z[v, v−1]. Let

indeed x = st . . . r be a reduced word. Then

R⊗Rs R⊗Rt . . . R⊗Rr R[l(x)]

is selfdual and thus decomposes into Bx along with summands of the form
By and By[ν] ⊕ By[−ν] for y < x. We deduce h∆(Bx) = h∇(Bx) is selfdual
by induction on the Bruhat order, and then we obviously get

h∆(Bx) = h∇(Bx) = C ′
x +

∑
y<x

hyC
′
y

for suitable selfdual hy ∈ Z[v, v−1]. However I cannot show that these hy have
nonnegative coefficients.

7 Discussion of the main conjecture

A natural approach towards the proofs of conjecture 1.13 seems to me induc-
tion on the length of x. Here I formulate some variants of this approach as
an omnibus Lemma. Let Hom(B, B′) denote the (R⊗R)-homomorphism of
Z-degree zero between two Z-graded R-bimodules B, B′.
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Lemma 7.1. Let x ∈ W and s ∈ S be given with sx > x. We further assume
that 〈By〉 = E(C ′

y) for all y ∈ W with l(y) ≤ l(x). Then the following are
equivalent:

1. We have 〈Bsx〉 = E(C ′
sx);

2. For all y with l(y) ≤ l(x) the composition of morphisms Hom(By, θsBx)×
Hom(θsBx, By) → EndBy = k defines a nondegenerate pairing of k-
vectorspaces.

3. For all y with l(y) ≤ l(x) the map ΓyθsBx ↪→ ΓyθsBx defines an inclu-
sion (ΓyθsBx)l(y) ↪→ ΓyθsBxpy ⊗R k.

4. For all y with l(y) ≤ l(x) definiert die offensichtliche Abbildung eine
Inklusion (ΓyθsBx)l(y) ↪→ Γ≥y θsBx ⊗R k.

5. For all y with l(y) ≤ l(x) the obvious map defines an inclusion (Γ≤y θsBx)−l(y) ↪→
ΓyθsBx ⊗R k.

Proof. 1⇒ 2 : Left to the reader. 2⇒ 1 : In the notation of [Soe97] we can
write

C ′
sC

′
x = C ′

sx +
∑
y<sx

myC
′
y

for certain my ∈ Z and we have E(C ′
sC

′
x) = 〈θsBx〉. By 5.15 and the induction

hypothesis we thus get

dim Hom(By, θsBx) = my = dim Hom(θsBx, By).

If our pairing is not degenerate, we can for every y split off just my copies of
By from θsBx and thus get B ∈ B with 〈B〉 = E(C ′

sx). By Remark 6.17 we
then have B ∼= Bsx.

3 ⇔ 2 : Comparing dimensions we see, that on the homomorphisms of
degree zero the obvious maps are isomorphisms

Hom(By, θsBx)
∼→ Hom(∆y, θsBx)

Hom(θsBx, By)
∼→ Hom(θsBx,∇y).

By 6.6 we know, that the composition of morphisms of degree zero ∆y →
By → ∇y is up to a scalar right multiplication by py and that for all B ∈ B
any composition ∆y → B → ∇y lands in ∇ypy. Thus we can rewrite our
pairing of part 2 as a pairing

Hom(∆y, θsBx)× Hom(θsBx,∇y)→ pyk ⊂ Hom(∆y,∇y).
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But now such a pairing between two spaces is nothing else but a map from
one to the

Hom(∆y, θsBx) = (ΓyθsBx)l(y)

Hom(θsBx,∇y) = Hom(ΓyθsBx,∇y)
= Hom(ΓyθsBx, k[l(y)])
= Hom((ΓyθsBx)⊗R k, k[l(y)])

Hom(θsBx,∇y)
∗ = ((ΓyθsBx)⊗R k)l(y)

and thus get 3⇔ 2. the variants 4 and 5 are reformulations of 3 using 6.6.

Remark 7.2. It seems natural, to investigate the embeddings

ΓyBx ↪→ ΓyBx

more closely. If we define a surjection R � k[T ] as the restriction on the line
kρ, then I expect, that the cokernel of (ΓyBx)⊗R k[T ] ↪→ (ΓyBx)⊗R k[T ] is a
direct sum of copies of (k[T ]/(T i+1))[i], where we have again set deg T = 2.
This should even hold more generally for all lines, which are not contained
in a reflecting hyperplane.
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