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1. The argument on page 329 at the bottom needs fixing. Thanks are due to

Masaharu Kaneda for pointing this out and insisting. Let us reprove Propo-
sition 3.2.6. First we treat the case that F = in!B/B is the skyscraper at the
one-point cell. In this case the claim follows from the fact that in!i!nE → E
induces an injection on hypercohomology, which follows from the degene-
ration of the spectral sequence computing H•E explained in the proof of
3.2.6. Then, for the general case, it will be sufficient to check the commuta-
tivity of the following diagrams, for A ∈ D(G/Ps) and F ∈ D(G/B) :

HomD(π
∗A,F)

o
��

// Hom(H•π∗A,H•F)

��
HomD(A, π∗F) // Hom(H•A,H•π∗F)

for the map on the right coming from A → π∗π
∗A, and

HomD(F , π!A) //

o
��

HomC(H•F ,H•π!A)

o
��

HomD(π!F ,A) // HomCs(H•π!F ,H•A)

Here the point is to construct dually to Proposition 4.1.1 a canonical isomor-
phism HomCs(C,H•A)

∼→ H•π!A and show that the resulting diagram will
commute. With these diagrams, a non-injective case in 3.2.6 would lead to
a noninjective case with F the skyscraper, which we have already shown to
be impossible.

2. I add some details concerning the proof of Corollary 1.0.3. First, it is im-
portant to be aware of 3.3.4 and the following lines to follow the argument,
as these lines say, that pulling back a non-semisimple perverse sheaf from
a partial flag variety to the full flag variety and shiftig the degree to obtain
a perverse sheaf again, the perverse sheaf obtained will be non-semisimple
as well. The point is now that, if Lusztig’s conjecture is ok, then the pro-
jectives of the modular O have the same Verma flag multiplicities as they
do for the classical non-modular O, given by KL-polynomials for the fi-
nite Weyl group. However, if the decomposition theorem would not be ok
at some step of the inductive construction of these special indecomposable

1



complexes now called parity sheaves, and we take the first such step, these
projectives would turn out bigger for the very parameter this step of their
inductive construction leads to.
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