The Lusztig Conjecture

Wolfgang Soergel

Mathematisches Insitut Universität Freiburg

28. März 2013

The Lusztig Conjecture on on irreducible characters of algebraic groups

- Dimensions of irreducible representations of a given connected affine algebraic group?
- ▶ Dimensions of its weight spaces for a maximal torus?

- Dimensions of irreducible representations of a given connected affine algebraic group?
- Dimensions of its weight spaces for a maximal torus?
- Characteristic Zero: Weyl character formula

- Dimensions of irreducible representations of a given connected affine algebraic group?
- Dimensions of its weight spaces for a maximal torus?
- Characteristic Zero: Weyl character formula
- Characteristic positive: Steinberg tensor product formula and Lusztig conjecture

- Dimensions of irreducible representations of a given connected affine algebraic group?
- Dimensions of its weight spaces for a maximal torus?
- Characteristic Zero: Weyl character formula
- Characteristic positive: Steinberg tensor product formula and Lusztig conjecture

char k = 0:

$$\left\{ \begin{array}{c} \text{irreducible representations} \\ \text{of SL}(2;k) \end{array} \right\} \stackrel{\sim}{\leftrightarrow} \qquad \mathbb{N} \\ \begin{matrix} L & \mapsto (\dim L) - 1 \\ k[X,Y]^{(n)} & \longleftrightarrow & n \end{matrix}$$

In case char k = p > 0 the $k[X, Y]^{(n)}$ are rarely irreducible, for example $kX^p + kY^p \subsetneq k[X, Y]^{(p)}$ is a subrepresentation.

char k = 0:

$$\left\{ \begin{array}{c} \text{irreducible representations} \\ \text{of SL}(2;k) \end{array} \right\} \stackrel{\sim}{\leftrightarrow} \quad \mathbb{N} \\ \underset{k[X,Y]^{(n)}}{\qquad} \mapsto \left(\dim L\right) - 1 \\ \stackrel{\sim}{\leftarrow} \quad n \end{array}$$

In case char k = p > 0 the $k[X, Y]^{(n)}$ are rarely irreducible, for example $kX^p + kY^p \subsetneq k[X, Y]^{(p)}$ is a subrepresentation.

Arbitrary characteristic:

But what are the dimensions of those socles? And what happens for more general groups?

Arbitrary characteristic:

$$\left\{ \begin{array}{c} \text{irreducible representations} \\ \text{of SL}(2;k) \end{array} \right\} \stackrel{\sim}{\leftrightarrow} \qquad \mathbb{N}$$

$$\operatorname{soc} k[X,Y]^{(n)} \qquad \longleftrightarrow \qquad n$$

But what are the dimensions of those socles? And what happens for more general groups?

For affine algebraic groups $G \supset B$ the restriction admits a right adjoint, induction

$$G\operatorname{\mathsf{-Mod}} \overset{\operatorname{\mathsf{res}}}{\underset{\operatorname{\mathsf{ind}}}{\longleftarrow}} B\operatorname{\mathsf{-Mod}}$$

$$\operatorname{ind}_{B}^{G}V = \{f : G \to V \mid f \text{ algebraic } B\text{-equivariant}\}\$$

$$= \{ \text{ algebraic sections in } G \times_{B} V \twoheadrightarrow G/B \}$$

 $ightharpoonup k=ar{k}$ algebraically closed field

- $ightharpoonup k = \bar{k}$ algebraically closed field
- ▶ $G \supset B$ connected affine algebraic group over k with a Borel, for example $G = GL(r; k) \supset B$ upper triangular matrices

- ightharpoonup k=ar k algebraically closed field
- ▶ $G \supset B$ connected affine algebraic group over k with a Borel, for example $G = GL(r; k) \supset B$ upper triangular matrices
- $\mathfrak{X} = \mathfrak{X}(B) := \{ \lambda : B \to k^{\times} \mid \lambda \text{ homomorphism} \}$ the weight lattice

- ightharpoonup k=ar k algebraically closed field
- ▶ $G \supset B$ connected affine algebraic group over k with a Borel, for example $G = GL(r; k) \supset B$ upper triangular matrices
- $\mathfrak{X} = \mathfrak{X}(B) := \{\lambda : B \to k^{\times} \mid \lambda \text{ homomorphism}\}\$ the weight lattice
- ▶ $\nabla(\lambda) := \operatorname{ind}_B^G k_{\lambda}$ induced representation of $\lambda \in \mathfrak{X}$

- $ightharpoonup k = \bar{k}$ algebraically closed field
- ▶ $G \supset B$ connected affine algebraic group over k with a Borel, for example $G = GL(r; k) \supset B$ upper triangular matrices
- $\mathfrak{X} = \mathfrak{X}(B) := \{\lambda : B \to k^{\times} \mid \lambda \text{ homomorphism}\}$ the weight lattice
- ▶ $\nabla(\lambda) := \operatorname{ind}_B^G k_\lambda$ induced representation of $\lambda \in \mathfrak{X}$
- $\mathfrak{X}^+ := \{\lambda \in \mathfrak{X} \mid \nabla(\lambda) \neq 0\}$ dominant weights

- ightharpoonup k=ar k algebraically closed field
- ▶ $G \supset B$ connected affine algebraic group over k with a Borel, for example $G = GL(r; k) \supset B$ upper triangular matrices
- $\mathfrak{X} = \mathfrak{X}(B) := \{\lambda : B \to k^{\times} \mid \lambda \text{ homomorphism}\}$ the weight lattice
- ▶ $\nabla(\lambda) := \operatorname{ind}_B^G k_\lambda$ induced representation of $\lambda \in \mathfrak{X}$
- ▶ $\mathfrak{X}^+ := \{\lambda \in \mathfrak{X} \mid \nabla(\lambda) \neq 0\}$ dominant weights

Example G = Sp(4; k)

\cdot $\stackrel{\cdot}{\mathfrak{X}}$ weight lattice

\mathfrak{X}^+ dominant weights-

 $\begin{array}{ccc} \mathfrak{X}^+ \stackrel{\sim}{\to} \{ \text{irreducible representations of } \textbf{\textit{G}} \} \\ \lambda & \mapsto & \textit{L}(\lambda) := \operatorname{soc} \nabla(\lambda) \\ & & \text{simple module with highest weight } \lambda \\ \end{array}$

\mathfrak{X}^+ dominant weights.

$$\begin{array}{ccc} \mathfrak{X}^+ \stackrel{\sim}{\to} \{ \text{irreducible representations of } \textbf{\textit{G}} \} \\ \lambda & \mapsto & \textit{L}(\lambda) := \operatorname{soc} \nabla(\lambda) \\ & & \text{simple module with highest weight } \lambda \\ \end{array}$$

 $\nabla(\lambda)$ described by the Weyl character formula

 \mathfrak{X}^+ dominant weights-

$$\begin{array}{ccc} \mathfrak{X}^+ \stackrel{\sim}{\to} \{ \text{irreducible representations of } G \} \\ \lambda & \mapsto & \textit{L}(\lambda) := \operatorname{soc} \nabla(\lambda) \\ & \text{simple module with highest weight } \lambda \\ \end{array}$$

 $\nabla(\lambda)$ described by the Weyl character formula For char k=0 we have $L(\lambda)=\nabla(\lambda)$ \mathfrak{X}^+ dominant weights

$$\begin{array}{ccc} \mathfrak{X}^+ \stackrel{\sim}{\to} \{ \text{irreducible representations of } \textbf{\textit{G}} \} \\ \lambda & \mapsto & \textit{L}(\lambda) := \operatorname{soc} \nabla(\lambda) \\ & & \text{simple module with highest weight } \lambda \\ \end{array}$$

 $\nabla(\lambda)$ described by the Weyl character formula For char k=0 we have $L(\lambda)=\nabla(\lambda)$

- \triangleright $B = \left\{ \begin{pmatrix} * & 0 \\ * & * \end{pmatrix} \right\}$ ist Borel
- \blacktriangleright $\mathfrak{X} = \mathbb{Z}\varepsilon$ with $\varepsilon : B \to k^{\times}$ given by $\binom{t \ 0}{*} \mapsto t$

- ▶ $B = \left\{ \begin{pmatrix} * & 0 \\ * & * \end{pmatrix} \right\}$ ist Borel
- $\mathfrak{X} = \mathbb{Z}\varepsilon$ with $\varepsilon : B \to k^{\times}$ given by $\binom{t \ 0}{*} \mapsto t$

▶
$$L(n\varepsilon) = \nabla(n\varepsilon)$$
 if $n < p$

- ▶ $B = \left\{ \begin{pmatrix} * & 0 \\ * & * \end{pmatrix} \right\}$ ist Borel
- $\mathfrak{X} = \mathbb{Z}\varepsilon$ with $\varepsilon : B \to k^{\times}$ given by $\binom{t \ 0}{* \ *} \mapsto t$

- ▶ $L(n\varepsilon) = \nabla(n\varepsilon)$ if n < p
- ► $L(p\varepsilon) \subsetneq \nabla(p\varepsilon)$ alias $kX^p + kY^p \subsetneq k[X, Y]^{(p)}$

- $B = \left\{ \begin{pmatrix} * & 0 \\ * & * \end{pmatrix} \right\} \text{ ist Borel}$
- $\mathfrak{X} = \mathbb{Z}\varepsilon$ with $\varepsilon : B \to k^{\times}$ given by $\binom{t \ 0}{t} \mapsto t$

- ▶ $L(n\varepsilon) = \nabla(n\varepsilon)$ if n < p
- ▶ $L(p\varepsilon) \subsetneq \nabla(p\varepsilon)$ alias $kX^p + kY^p \subsetneq k[X, Y]^{(p)}$
- ▶ $L(p\varepsilon) = L(\varepsilon)^{[1]}$ Frobenius-Twist of $L(\varepsilon)$

- $B = \left\{ \begin{pmatrix} * & 0 \\ * & * \end{pmatrix} \right\} \text{ ist Borel}$
- ▶ $\mathfrak{X} = \mathbb{Z}\varepsilon$ with $\varepsilon : B \to k^{\times}$ given by $\binom{t \ 0}{* \ *} \mapsto t$

- ► $L(n\varepsilon) = \nabla(n\varepsilon)$ if n < p
- ▶ $L(p\varepsilon) \subsetneq \nabla(p\varepsilon)$ alias $kX^p + kY^p \subsetneq k[X, Y]^{(p)}$
- ▶ $L(p\varepsilon) = L(\varepsilon)^{[1]}$ Frobenius-Twist of $L(\varepsilon)$
- description of all irreduzible characters by Steinberg tensor product theorem

- $B = \left\{ \begin{pmatrix} * & 0 \\ * & * \end{pmatrix} \right\} \text{ ist Borel}$
- ▶ $\mathfrak{X} = \mathbb{Z}\varepsilon$ with $\varepsilon : B \to k^{\times}$ given by $\binom{t \ 0}{* \ *} \mapsto t$

- ▶ $L(n\varepsilon) = \nabla(n\varepsilon)$ if n < p
- ▶ $L(p\varepsilon) \subsetneq \nabla(p\varepsilon)$ alias $kX^p + kY^p \subsetneq k[X, Y]^{(p)}$
- ▶ $L(p\varepsilon) = L(\varepsilon)^{[1]}$ Frobenius-Twist of $L(\varepsilon)$
- description of all irreduzible characters by Steinberg tensor product theorem

Steinberg tensor product theorem:

 $G\supset B$ and $\mathfrak{X}\supset\mathfrak{X}^+$ general again. For $\lambda\in\mathfrak{X}^+$ consider the p-adic expansion

$$\lambda = \boldsymbol{p}^d \lambda_d + \ldots + \boldsymbol{p}^2 \lambda_2 + \boldsymbol{p} \lambda_1 + \lambda_0$$

with digits λ_i in the fundamental box, given by **Box**:= $\{\mu \in \mathfrak{X}^+ \mid \langle \mu, \alpha^{\vee} \rangle$

Then we have

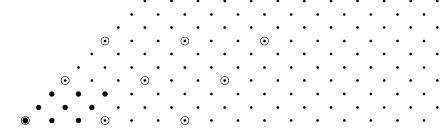
$$L(\lambda) \cong L(\lambda_d)^{[d]} \otimes \ldots \otimes L(\lambda_2)^{[2]} \otimes L(\lambda_1)^{[1]} \otimes L(\lambda_0)$$

Here $L^{[i]}$ is the twist of L by the i-th power of the Frobenius automorphism of GL(L).

The 9 elements of box in case p = 3 and G = Sp(4; k)

$$L(\lambda) \cong L(\lambda_d)^{[d]} \otimes \ldots \otimes L(\lambda_2)^{[2]} \otimes L(\lambda_1)^{[1]} \otimes L(\lambda_0)$$

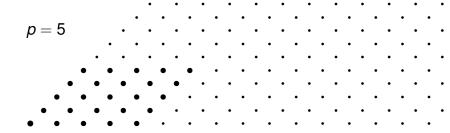
But what are the characters, even the dimensions of the $L(\lambda)$ for $\lambda \in \text{Box}$? Lusztig conjecture from p = 5 on.



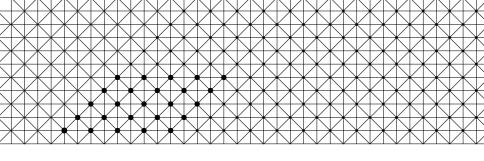
The 9 elements of box in case p = 3 and G = Sp(4; k) along with the $p\lambda_1$ for $\lambda_1 \in Box$

$$L(\lambda) \cong L(\lambda_d)^{[d]} \otimes \ldots \otimes L(\lambda_2)^{[2]} \otimes L(\lambda_1)^{[1]} \otimes L(\lambda_0)$$

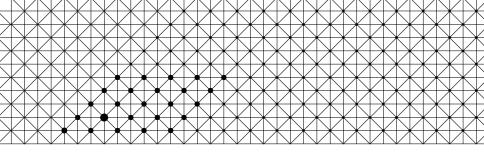
But what are the characters, even the dimensions of the $L(\lambda)$ for $\lambda \in Box$? Lusztig conjecture from p = 5 on.



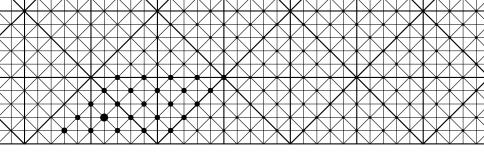
Consider affine Weyl group $W = W \ltimes \langle R \rangle$



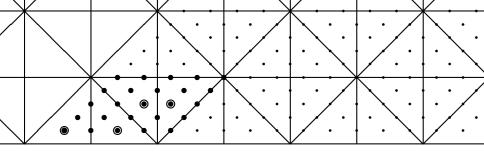
Consider affine Weyl group $W = W \ltimes \langle R \rangle$ ρ half the sum of positive roots



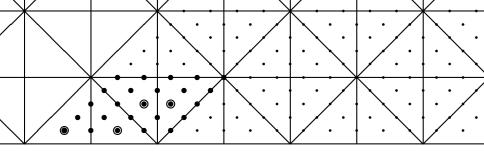
Consider affine Weyl group $W = W \ltimes \langle R \rangle$ ρ half the sum of positive roots New W-action $x \cdot_{\rho} \lambda := pxp^{-1}(\lambda + \rho) - \rho$



Consider affine Weyl group $\mathcal{W} = W \ltimes \langle R \rangle$ ρ half the sum of positive roots New \mathcal{W} -action $x \cdot_{p} \lambda := pxp^{-1}(\lambda + \rho) - \rho$ The weights $x \cdot_{p} 0$ from the box



Consider affine Weyl group $\mathcal{W} = W \ltimes \langle R \rangle$ ρ half the sum of positive roots New \mathcal{W} -action $x \cdot_{p} \lambda := pxp^{-1}(\lambda + \rho) - \rho$ The weights $x \cdot_{p} 0$ from the box

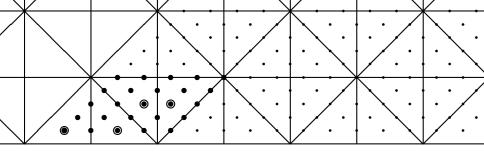


Lusztig conjecture

For $x \in \mathcal{W}$ with $x \cdot_p 0 \in Box$ and p so big, that $z \cdot_p 0 = 0 \Rightarrow z = 1$ we should have:

$$[L(x \cdot_{\rho} 0)] = \sum_{y} (-1)^{l(x)+l(y)} P_{w_{\circ}y,w_{\circ}x}(1) [\nabla(y \cdot_{\rho} 0)]$$

Translation principle: These $[L(x \cdot_{\rho} 0)]$ give all $[L(\lambda)]$ for $\lambda \in Box$

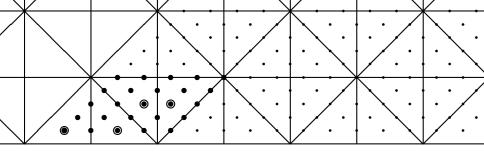


Lusztig conjecture

For $x \in \mathcal{W}$ with $x \cdot_p 0 \in Box$ and p so big, that $z \cdot_p 0 = 0 \Rightarrow z = 1$ we should have:

$$[L(x \cdot_{\rho} 0)] = \sum_{y} (-1)^{l(x)+l(y)} P_{w_{\circ}y,w_{\circ}x}(1) [\nabla(y \cdot_{\rho} 0)]$$

Translation principle: These $[L(x \cdot_p 0)]$ give all $[L(\lambda)]$ for $\lambda \in Box$ But what are the Kazhdan-Lusztig polynomials $P_{w_o y, w_o x}$?

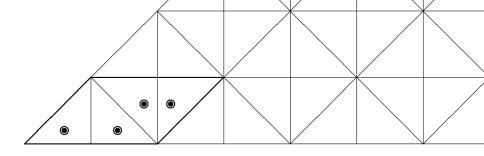


Lusztig conjecture

For $x \in \mathcal{W}$ with $x \cdot_p 0 \in Box$ and p so big, that $z \cdot_p 0 = 0 \Rightarrow z = 1$ we should have:

$$[L(x \cdot_{\rho} 0)] = \sum_{y} (-1)^{l(x)+l(y)} P_{w_{\circ}y,w_{\circ}x}(1) [\nabla(y \cdot_{\rho} 0)]$$

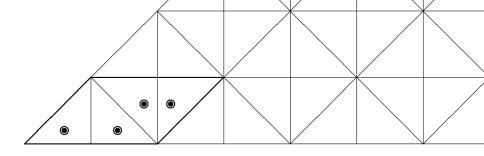
Translation principle: These $[L(x \cdot_p 0)]$ give all $[L(\lambda)]$ for $\lambda \in Box$ But what are the Kazhdan-Lusztig polynomials $P_{w_o y, w_o x}$?



For A, B the alcoves of $x \cdot_p 0$, $y \cdot_p 0$ put $L_A := L(x \cdot_p 0)$, $\nabla_B := \nabla (y \cdot_p 0)$ and $m_{B,A} := P_{w_0 y, w_0 x}$

Lusztig conjecture: For *A* in the fundamental box should have

$$[L_A] = \sum_B (-1)^{d(A,B)} m_{B,A}(1) [\nabla_B]$$

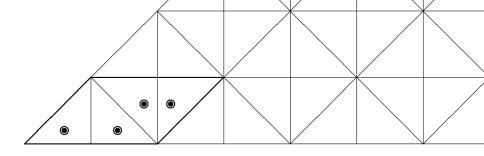


For A, B the alcoves of $x \cdot_p 0$, $y \cdot_p 0$ put $L_A := L(x \cdot_p 0)$, $\nabla_B := \nabla (y \cdot_p 0)$ and $m_{B,A} := P_{w_0 y, w_0 x}$

Lusztig conjecture: For A in the fundamental box should have

$$[L_A] = \sum_B (-1)^{d(A,B)} m_{B,A}(1) [\nabla_B]$$

d(A, B) number of reflecting hyperplanes separating A from B

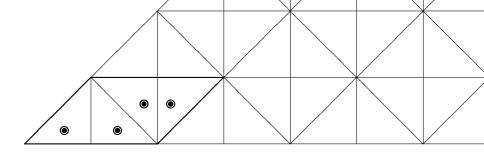


For A, B the alcoves of $x \cdot_p 0$, $y \cdot_p 0$ put $L_A := L(x \cdot_p 0)$, $\nabla_B := \nabla(y \cdot_p 0)$ and $m_{B,A} := P_{w_0 y, w_0 x}$

Lusztig conjecture: For *A* in the fundamental box should have

$$[L_A] = \sum_B (-1)^{d(A,B)} m_{B,A}(1) [\nabla_B]$$

d(A, B) number of reflecting hyperplanes separating A from B But what are the Kazhdan-Lusztig polynomials $m_{B,A} \in \mathbb{Z}[v, v^{-1}]$?

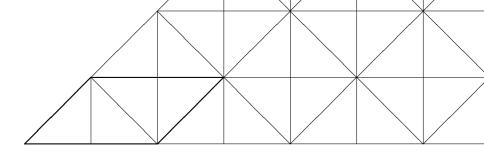


For A, B the alcoves of $x \cdot_p 0$, $y \cdot_p 0$ put $L_A := L(x \cdot_p 0)$, $\nabla_B := \nabla(y \cdot_p 0)$ and $m_{B,A} := P_{w_0 y, w_0 x}$

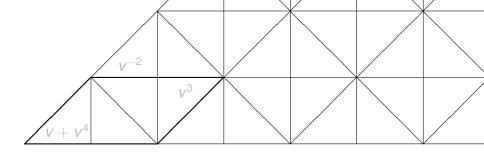
Lusztig conjecture: For *A* in the fundamental box should have

$$[L_A] = \sum_B (-1)^{d(A,B)} m_{B,A}(1) [\nabla_B]$$

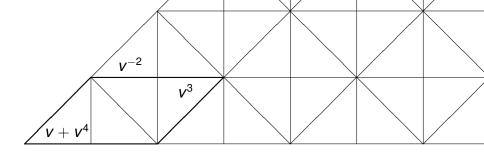
d(A, B) number of reflecting hyperplanes separating A from B But what are the Kazhdan-Lusztig polynomials $m_{B,A} \in \mathbb{Z}[v, v^{-1}]$?



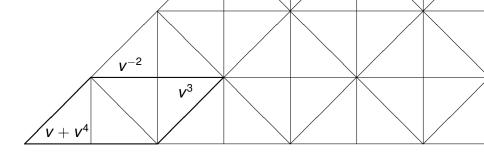
• Consider the free module $\mathcal{M} := \mathbb{Z}[v, v^{-1}]\mathcal{A}^+$ over the set \mathcal{A}^+ of all alcoves in the dominant chamber



- Consider the free module $\mathcal{M} := \mathbb{Z}[v, v^{-1}]\mathcal{A}^+$ over the set \mathcal{A}^+ of all alcoves in the dominant chamber
- Notation: Write coefficients in their alcoves

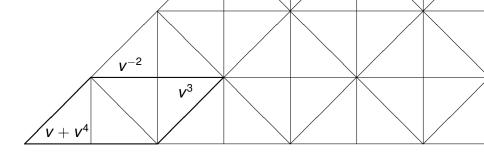


- Consider the free module $\mathcal{M} := \mathbb{Z}[v, v^{-1}]\mathcal{A}^+$ over the set \mathcal{A}^+ of all alcoves in the dominant chamber
- Notation: Write coefficients in their alcoves
- ullet Elements of $\mathbb{Z}[v,v^{-1}]\mathcal{A}^+$ called "Patterns"



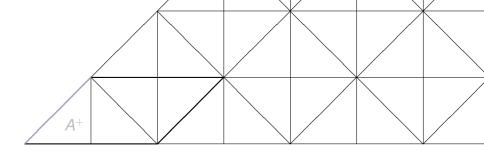
- Consider the free module $\mathcal{M} := \mathbb{Z}[v, v^{-1}]\mathcal{A}^+$ over the set \mathcal{A}^+ of all alcoves in the dominant chamber
- Notation: Write coefficients in their alcoves
- Elements of $\mathbb{Z}[v, v^{-1}]A^+$ called "Patterns"
- Define distinguished patterns

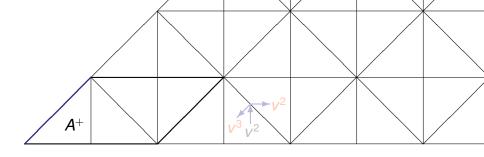
$$\underline{M}_A = \sum_B m_{B,A} B \in A + v \mathbb{Z}[v] A^+$$



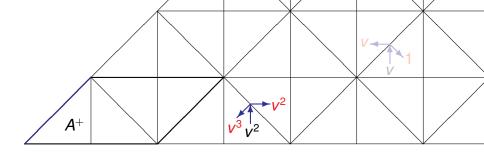
- Consider the free module $\mathcal{M} := \mathbb{Z}[v, v^{-1}]\mathcal{A}^+$ over the set \mathcal{A}^+ of all alcoves in the dominant chamber
- Notation: Write coefficients in their alcoves
- Elements of $\mathbb{Z}[v, v^{-1}]\mathcal{A}^+$ called "Patterns"
- Define distinguished patterns

$$\underline{M}_{A} = \sum_{B} m_{B,A} B \in A + v \mathbb{Z}[v] A^{+}$$



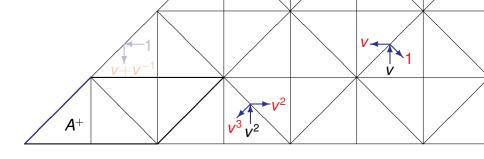


$$[s]: A \mapsto As + vA$$
 in case $As > A$ and $As \in A^+$;



 $[s]: A \mapsto As + vA$ in case As > A and $As \in A^+$;

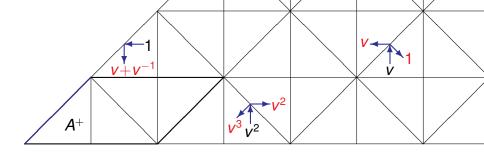
 $[s]: A \mapsto As + v^{-1}A$ in case As < A and $As \in A^+$;



$$[s]: A \mapsto As + vA$$
 in case $As > A$ and $As \in A^+$;

[s]:
$$A \mapsto As + v^{-1}A$$
 in case $As < A$ and $As \in A^+$;

$$[s]: A \mapsto (v + v^{-1})A$$
 in case $As \notin A^+$;

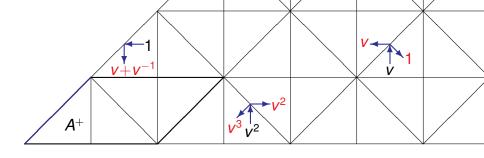


$$[s]: A \mapsto As + vA$$
 in case $As > A$ and $As \in A^+$;

$$[s]: A \mapsto As + v^{-1}A$$
 in case $As < A$ and $As \in A^+$;

$$[s]: A \mapsto (v + v^{-1})A$$
 in case $As \notin A^+$;

• Let $\mathcal{M}^{\operatorname{sd}} \subset \mathcal{M}$ be the smallest subgroup containing A^+ and is stable under all the [s]

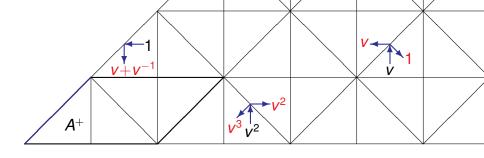


$$[s]: A \mapsto As + vA$$
 in case $As > A$ and $As \in A^+$;

$$[s]: A \mapsto As + v^{-1}A$$
 in case $As < A$ and $As \in A^+$;

$$[s]: A \mapsto (v + v^{-1})A$$
 in case $As \notin A^+$;

- Let $\mathcal{M}^{\operatorname{sd}} \subset \mathcal{M}$ be the smallest subgroup containing A^+ and is stable under all the [s]
- $\underline{M}_A \in (A + v\mathbb{Z}[v]\mathcal{A}^+) \cap \mathcal{M}^{\mathsf{sd}}$ uniquely determined for $A \in \mathcal{A}^+$

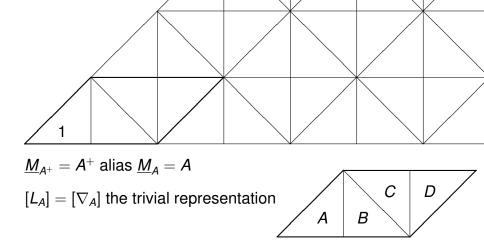


$$[s]: A \mapsto As + vA$$
 in case $As > A$ and $As \in A^+$;

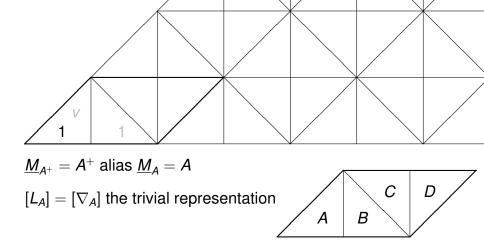
$$[s]: A \mapsto As + v^{-1}A$$
 in case $As < A$ and $As \in A^+$;

$$[s]: A \mapsto (v + v^{-1})A$$
 in case $As \notin A^+$;

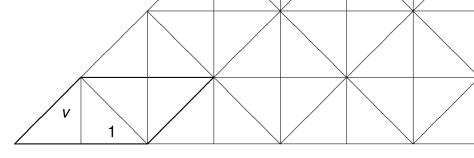
- Let $\mathcal{M}^{\operatorname{sd}} \subset \mathcal{M}$ be the smallest subgroup containing A^+ and is stable under all the [s]
- $\underline{M}_{A} \in (A + v\mathbb{Z}[v]A^{+}) \cap \mathcal{M}^{\mathsf{sd}}$ uniquely determined for $A \in \mathcal{A}^{+}$

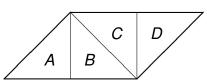


- Let $\mathcal{M}^{\operatorname{sd}} \subset \mathcal{M}$ be the smallest subgroup containing A^+ and is stable under all the [s]
- $\underline{M}_A \in (A + v\mathbb{Z}[v]\mathcal{A}^+) \cap \mathcal{M}^{\mathsf{sd}}$ uniquely determined for $A \in \mathcal{A}^+$

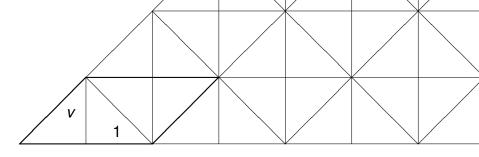


- Let $\mathcal{M}^{\operatorname{sd}} \subset \mathcal{M}$ be the smallest subgroup containing A^+ and is stable under all the [s]
- $\underline{M}_A \in (A + v\mathbb{Z}[v]\mathcal{A}^+) \cap \mathcal{M}^{\mathsf{sd}}$ uniquely determined for $A \in \mathcal{A}^+$

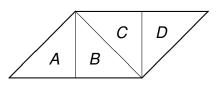




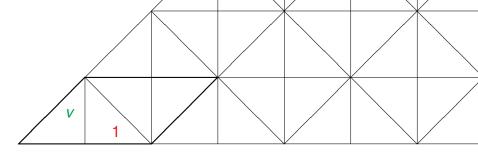
- Let $\mathcal{M}^{\operatorname{sd}} \subset \mathcal{M}$ be the smallest subgroup containing A^+ and is stable under all the [s]
- ullet $\underline{M}_{\mathcal{A}} \in (\mathcal{A} + \mathcal{V}\mathbb{Z}[\mathcal{V}]\mathcal{A}^+) \cap \mathcal{M}^{\mathsf{sd}}$ uniquely determined for $\mathcal{A} \in \mathcal{A}^+$

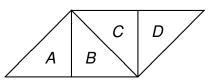


$$\underline{M}_B = B + vA$$
 $[L_B] = [\nabla_B] - [\nabla_A]$

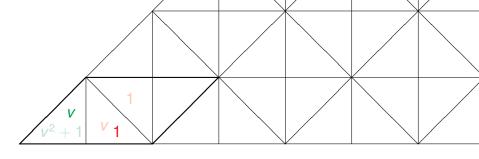


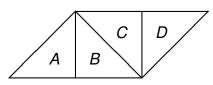
- Let $\mathcal{M}^{\operatorname{sd}} \subset \mathcal{M}$ be the smallest subgroup containing A^+ and is stable under all the [s]
- $\underline{M}_A \in (A + v\mathbb{Z}[v]\mathcal{A}^+) \cap \mathcal{M}^{\mathsf{sd}}$ uniquely determined for $A \in \mathcal{A}^+$



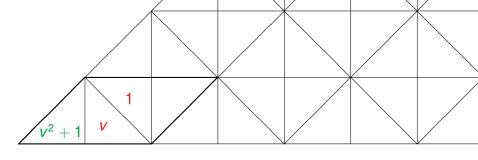


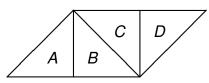
- Let $\mathcal{M}^{\operatorname{sd}} \subset \mathcal{M}$ be the smallest subgroup containing A^+ and is stable under all the [s]
- $\underline{M}_A \in (A + v\mathbb{Z}[v]\mathcal{A}^+) \cap \mathcal{M}^{\mathsf{sd}}$ uniquely determined for $A \in \mathcal{A}^+$



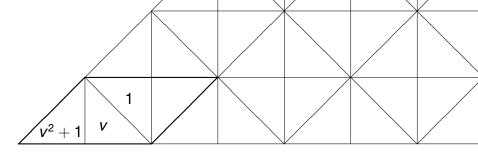


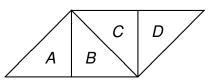
- Let $\mathcal{M}^{\operatorname{sd}} \subset \mathcal{M}$ be the smallest subgroup containing A^+ and is stable under all the [s]
- $\underline{M}_A \in (A + v\mathbb{Z}[v]\mathcal{A}^+) \cap \mathcal{M}^{\mathsf{sd}}$ uniquely determined for $A \in \mathcal{A}^+$



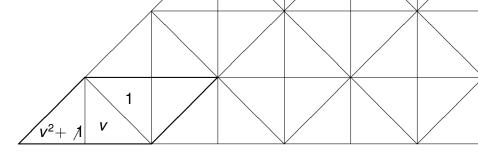


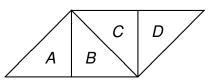
- Let $\mathcal{M}^{\operatorname{sd}} \subset \mathcal{M}$ be the smallest subgroup containing A^+ and is stable under all the [s]
- ullet $\underline{M}_{\mathcal{A}} \in (\mathcal{A} + \mathcal{V}\mathbb{Z}[\mathcal{V}]\mathcal{A}^+) \cap \mathcal{M}^{\mathsf{sd}}$ uniquely determined for $\mathcal{A} \in \mathcal{A}^+$



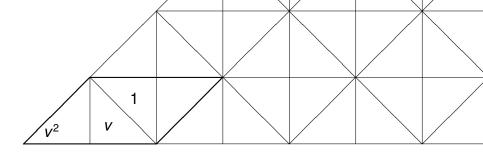


- Let $\mathcal{M}^{\operatorname{sd}} \subset \mathcal{M}$ be the smallest subgroup containing A^+ and is stable under all the [s]
- $\underline{M}_A \in (A + v\mathbb{Z}[v]A^+) \cap \mathcal{M}^{\text{sd}}$ uniquely determined for $A \in A^+$



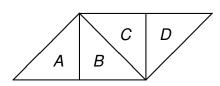


- Let $\mathcal{M}^{\operatorname{sd}} \subset \mathcal{M}$ be the smallest subgroup containing A^+ and is stable under all the [s]
- $\underline{M}_A \in (A + v\mathbb{Z}[v]\mathcal{A}^+) \cap \mathcal{M}^{\mathsf{sd}}$ uniquely determined for $A \in \mathcal{A}^+$

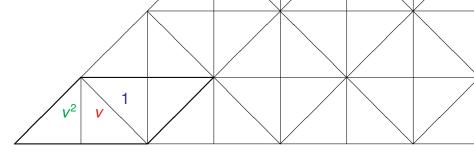


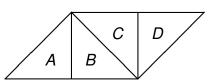
$$\underline{M}_C = C + vB + v^2 A$$

$$[L_C] = [\nabla_C] - [\nabla_B] + [\nabla_A]$$

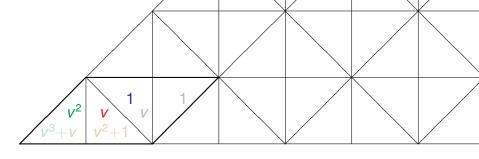


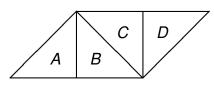
- Let $\mathcal{M}^{\operatorname{sd}} \subset \mathcal{M}$ be the smallest subgroup containing A^+ and is stable under all the [s]
- $\underline{M}_A \in (A + v\mathbb{Z}[v]\mathcal{A}^+) \cap \mathcal{M}^{\mathsf{sd}}$ uniquely determined for $A \in \mathcal{A}^+$



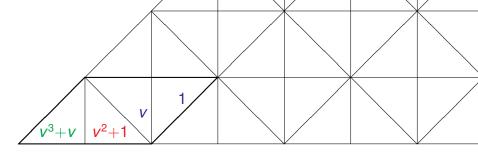


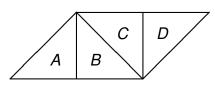
- Let $\mathcal{M}^{\operatorname{sd}} \subset \mathcal{M}$ be the smallest subgroup containing A^+ and is stable under all the [s]
- ullet $\underline{M}_{\mathcal{A}} \in (\mathcal{A} + \mathcal{V}\mathbb{Z}[\mathcal{V}]\mathcal{A}^+) \cap \mathcal{M}^{\mathsf{sd}}$ uniquely determined for $\mathcal{A} \in \mathcal{A}^+$



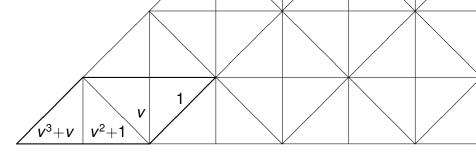


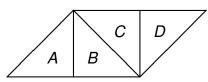
- Let $\mathcal{M}^{\operatorname{sd}} \subset \mathcal{M}$ be the smallest subgroup containing A^+ and is stable under all the [s]
- $\underline{M}_A \in (A + v\mathbb{Z}[v]\mathcal{A}^+) \cap \mathcal{M}^{\mathsf{sd}}$ uniquely determined for $A \in \mathcal{A}^+$



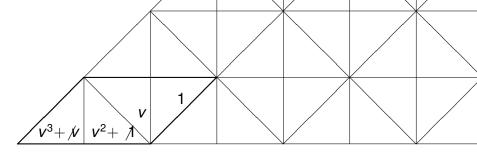


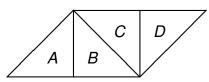
- Let $\mathcal{M}^{\operatorname{sd}} \subset \mathcal{M}$ be the smallest subgroup containing A^+ and is stable under all the [s]
- ullet $\underline{M}_{A}\in (A+v\mathbb{Z}[v]\mathcal{A}^{+})\cap \mathcal{M}^{\mathsf{sd}}$ uniquely determined for $A\in \mathcal{A}^{+}$



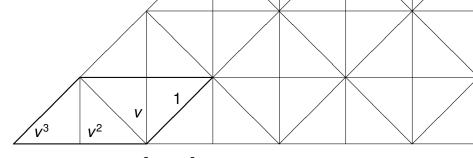


- Let $\mathcal{M}^{\operatorname{sd}} \subset \mathcal{M}$ be the smallest subgroup containing A^+ and is stable under all the [s]
- $\underline{M}_A \in (A + v\mathbb{Z}[v]\mathcal{A}^+) \cap \mathcal{M}^{\mathsf{sd}}$ uniquely determined for $A \in \mathcal{A}^+$



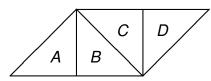


- Let $\mathcal{M}^{\operatorname{sd}} \subset \mathcal{M}$ be the smallest subgroup containing A^+ and is stable under all the [s]
- $\underline{M}_A \in (A + v\mathbb{Z}[v]\mathcal{A}^+) \cap \mathcal{M}^{\mathsf{sd}}$ uniquely determined for $A \in \mathcal{A}^+$

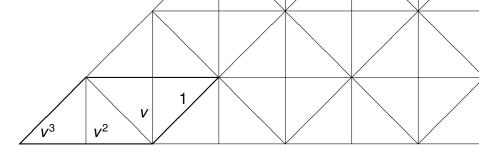


$$\underline{M}_D = D + vC + v^2B + v^3A$$

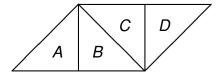
$$[L_D] = [\nabla_D] - [\nabla_C] + [\nabla_B] - [\nabla_A]$$



- Let $\mathcal{M}^{\operatorname{sd}} \subset \mathcal{M}$ be the smallest subgroup containing A^+ and is stable under all the [s]
- $\underline{M}_A \in (A + v\mathbb{Z}[v]\mathcal{A}^+) \cap \mathcal{M}^{\mathsf{sd}}$ uniquely determined for $A \in \mathcal{A}^+$

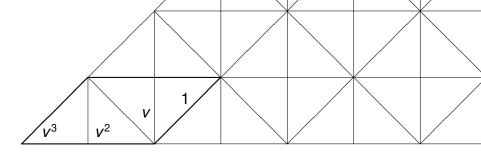


$$\underline{M}_D = D + vC + v^2B + v^3A$$
$$[L_D] = [\nabla_D] - [\nabla_C] + [\nabla_B] - [\nabla_A]$$

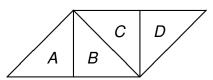


THANK YOU!

- Let $\mathcal{M}^{\operatorname{sd}} \subset \mathcal{M}$ be the smallest subgroup containing A^+ and is stable under all the [s]
- $\underline{M}_A \in (A + v\mathbb{Z}[v]\mathcal{A}^+) \cap \mathcal{M}^{\mathsf{sd}}$ uniquely determined for $A \in \mathcal{A}^+$



$$\underline{M}_D = D + vC + v^2B + v^3A$$
$$[L_D] = [\nabla_D] - [\nabla_C] + [\nabla_B] - [\nabla_A]$$



THANK YOU!

- Let $\mathcal{M}^{\operatorname{sd}} \subset \mathcal{M}$ be the smallest subgroup containing A^+ and is stable under all the [s]
- $\underline{M}_A \in (A + v\mathbb{Z}[v]\mathcal{A}^+) \cap \mathcal{M}^{\mathsf{sd}}$ uniquely determined for $A \in \mathcal{A}^+$

