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Abstract. There are two natural choices for a volume form on the
algebraic group Gln/Q: the first is the integral form (unique up to sign),
the other is the product of the primitive classes in algebraic de Rham
cohomology. We work out the explicit comparision factor between the
two.

1. Introduction

Consider the group Gln and its Lie algebra gln. Both are defined over Z.
The isomorphism

H i(gln, Q) → H i
dR(Gln, Q)

([Ho] Lemma 4.1) can be used to define an integral structure in algebraic de
Rham cohomology as the image of integral Lie algebra cohomology.

Definition 1.1. Let
ρdR

Z ∈ Hn2

dR(Gln, Q)

be the image of a generator of

Hn2
(gln, Z) =

n2∧
gl∗n

where gl∗n is the Z-dual of the integral Lie algebra gln.

Note that ρdR
Z is only well-defined up to sign.

Let pdR
i ∈ H2i−1

dR (Gln, Q) be the primitive element normalized as suspen-
sion of the universal Chern class cdR

i ∈ H2i(BGln, Q).

Definition 1.2. We call

ωdR = pdR
1 ∧ · · · ∧ pdR

n ∈ Hn2

dR(Gln, Q)

the Borel element.

The Borel element occurs in his definition of a regulator on higher alge-
braic K-theory of number fields. In [Bo2] he relates it to special values of
Dedekind ζ-functions of number fields, at least up to a rational factor.

The purpose of this note is to verify the following comparison result:
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Proposition 1.3.

ωdR = ±

 n∏
j=1

(j − 1)!

 ρdR
Z

Our strategy is to use the comparison isomorphism between de Rham co-
homology and singular cohomology, which is compatible with Leray spectral
sequences, products and Chern classes. The structure of singular cohomol-
ogy of Gln(C) with integral coefficients is well-known and in particular the
product of the primitive classes is an integral generator of Hn2

sing(Gln(C), Z).
It remains to compare it with ρdR

Z . This is done by integrating the differen-
tial form ρdR

Z over a fundamental cycle, i.e., over U(n).
The interest for this result comes from an ongoing joint project of the first

author and G. Kings relating the unkown rational factor in Borel’s work to
the Bloch-Kato conjecture for Dedekind-ζ-functions.
Acknowledgements: We would like to thank A. Glang, S. Goette, G. Kings
and M. Wendt for discussions and H. Klawitter for a numerical check in low
degrees.

2. Singular cohomology

Definition 2.1. Let EGln be the simplicial scheme with EnGln = Glkn
with boundary maps given by projections and degeneracies by diagonals. It
carries a natural diagonal operation of Gln. The classifying space BGln is
the quotient of EGln by this action.

We view Gln(C) etc. as topological spaces with the analytic topology.
Let U(n) be the unitary group as real Lie group.

Proposition 2.2 (Borel). Let csing
j ∈ H2j

sing(BGln(C), Q) be the universal
j-th Chern class in singular cohomology. Let

sj : H2j
sing(BGln(C), Z) → H2j−1

sing (Gln(C), Z)

be the suspension map. Let psing
j = sj(c

sing
j ). Then:

(1)
H∗

sing(BGln(C), Z) = Z[csing
1 , csing

2 , . . . , csing
n ]

as graded algebras.
(2) With Pn =

⊕n
j=1 Zpsing

j we have

H∗
sing(Gln(C), Z) =

∗∧
Z

Pn

as graded Hopf-algebras.

Proof. Let Si be the i-sphere. Integral cohomology of the group is computed
as

H∗(S2n+1 × S2n−1 × · · · × S1, Z)
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in [Bo1] Proposition 9.1. This means it is an exterior algebra on genera-
tors y1, . . . , yn. By loc. cit. Proposition 19.1 (b) H∗

sing(BGln(C), Z) is a
polynomial algebra on the same generators.

Let T be the diagonal torus of Gln(C) and W the Weyl group (i.e. the
symmetric group). Then we have ([Hu] Ch. 18, Theorem 3.2)

H∗
sing(BGln(C), Z) = H∗

sing(BT (C), Z)W = Z[csing
1 , . . . , csing

n ]

This implies that yi can be identified with the universal Chern class csing
i . �

Remark 2.3. This is the statement in the form usually used in algebraic
topology. From the point of view of complex or algebraic geometry it would
be more natural to view cj as an element of H2j

sing(BGln(C), (2πi)jZ). There
is a hidden choice of i or orientation on C behind the translation from one
point of view to the other.

Corollary 2.4. The product

ωsing = psing
1 ∧ . . . psing

n

is a generator of Hn2

sing(Gln(C), Z). It is the dual of the fundamental class of

[U(n)] ∈ Hsing
n2 (U(n), Z) ∼= Hsing

n2 (Gln(C), Z)

Proof. The first statement is contained in the proposition. U(n) ⊂ Gln(C)
is a homotopy equivalence. U(n) is compact, orientable and connected,
hence Hsing

n2 (U(n), Z) is generated by the manifold U(n) itself ([GH] Theorem
22.24). �

3. De Rham cohomology

Definition 3.1. Let X be a smooth algebraic variety over Q. Its algebraic
de Rham cohomology is defined as

Hj
dR(X) = Hj(X, Ω∗X)

the hypercohomology of the algebraic de Rham complex.

Recall that there is a natural isomorphism of functors

σ : Hj
sing(X(C), Z)⊗Z C → Hj

dR(X)⊗Q C

It is induced by the inclusion ZX → CX of sheaves for the analytic topology
on X(C) and the quasi-isomorphism

CX → Ωan,∗
X

with the holomorphic de Rham complex (holomorphic Poincaré Lemma)
on the one hand and the comparison between algebraic and holomophic de
Rham cohomology on the other hand. In particular, σ is compatible with
products.
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Proposition 3.2. Let cdR
j ∈ H2j

dR(BGln) be the universal j-th Chern class
in algebraic de Rham cohomology. Let

sj : H2j
dR(BGln) → H2j−1

dR (Gln)

be the suspension map. Let pdR
j = sj(cdR

j ). Then:

(1)

H∗
dR(BGln) = Q[cdR

1 , cdR
2 , . . . , cdR

n ]

as graded algebras.
(2) With Pn =

⊕n
j=1 QpdR

j we have

H∗
dR(Gln) =

∧
Q∗Pn

as graded Hopf-algebras.

Proof. There are different arguments for this fact. Once algebraicity of the
Chern classes is known, the result follows directly from Proposition 2.2 and
the existence of the comparison isomorphism. �

Proposition 3.3. The comparison isomorphism σ is compatible with Chern
classes. More precisely,

σ((2πi)jcsing
j ) = cdR

j

Proof. Recall that the j-th Chern class is the j-th elementary symmetric
polynomial in the 1-st Chern class of diagonal torus (splitting principle).
Hence it suffices to consider the case j = 1.

For singular cohomology (or rather cohomology of sheaves on Gl1(C) =
C∗) consider the exact sequence of sheaves

0 → Z 2πi−−→ Oan exp−−→ Oan∗ → 1

csing
1 is the image of the invertible function z (the coordinate function of

C∗) under the connecting homomorphism. For algebraic or holomorphic de
Rham cohomology consider the morphism of complexes

O∗[−1] → Ω∗ f 7→ df

f

cdR
1 = dz

z is the image of the invertible function z under this morphism of
complexes. The two constructions are nearly (but not quite) compatible with
the definition of the comparison functor σ which asks for Z to be naturally
embedded into the constant functions C ⊂ Oan. This gives the factor 2πi
as claimed. �

Corollary 3.4. Let as before ωdR = pdR
1 ∧ · · · ∧ pdR

n ∈ Hn2

dR(Gln). Then

σ((2πi)
n(n+1)

2 ωsing) = ωdR
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Proof. By Proposition 3.3 and compatibility of σ with the suspension map
we have

σ((2πi)jpsing
j ) = pdR

j

Moreover, σ is compatible with products. �

Lemma 3.5. For i, j = 1, . . . , n let zij be the natural coordinate on n× n-
matrices. Recall that ρdR

Z is the integral generator of Hn2
(gln, Z) ⊂ Hn2

dR(Gln).
Then

ρZ =
1

detn

n∧
i,j=1

dzij

Proof. The complex Ω∗(Gln,Q) is quasi-isomorphic to
∧∗ gl∗n,Q where ele-

ments in gl∗n,Q are viewed as left-invariant differential forms (see [Ho] Lemma
4.1). The differential form in the statement is clearly Gln-invariant. In order
to check that it is an integral basis, it suffices to restrict to the tangent space
of 1 ∈ Gln. There it is the standard generator. �

Remark 3.6. All computations are up to sign, hence we do not have to
specify a prefered ordering of the coordinates.

4. A volume computation

Proposition 4.1. Let zij be the standard holomorphic coordinates on Gln(C).
Then ∫

U(n)

1
detn

n∧
ij=1

dzij = ±
n−1∏
ν=0

(2π i)ν+1

ν!

Before going into the proof, we review integration of differential forms
over fibres of a bundle, thereby fixing notation. Consider p : X → Y a
fibre bundle with smooth compact fibres of dimension c and a C∞-volume
form ω on Y . Recall the definition of the volume form

∫
p ω on Y : for every

y ∈ Y and tangent vectors v1, . . . , vq ∈ TyY , the volume form ω[v1, . . . , vq]
on p−1(y) assigns to all x ∈ p−1y and w1, . . . , wc ∈ Txp−1(y) the value

ω[v1, . . . , vq](w1, . . . , wc) = ω(w1, . . . , wc, ṽ1, . . . , ṽq)

where ṽi is a preimage of vi. The form ω[v1, . . . , vq] is independent of the
choice of these ṽi. Then(∫

p
ω

)
(v1, . . . , vq) =

∫
p−1(y)

ω[v1, . . . , vq]

Proof of Proposition 4.1: Recall

ρZ =
1

detn

n∧
ij=1

dzij
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We argue by induction on n. For n = 1 we have∫
S1

dz

z
= 2πi

by Cauchy’s formula.
Suppose now the formula holds true for n. We abbreviate the value by

±C(n). The claim reads

C(n + 1) = ±(2πi)n+1

n!
C(n)

We consider the diagram

A
� // diag(1, A) (z0, . . . , zn)

U(n) � � // U(n + 1) //

p

��

Cn+1 3 (x0 + iy0, . . . , xn + iyn)

S2n+1 � � // R2n+2 3 (x0, y0,= . . . , xn, yn)

o

OO

_

OO

with the left vertical p given by application to the first vector of the standard
basis ~a0 = (1, 0, . . . , 0)> ∈ R2n+2.

We integrate ρZ over the fibres. The resulting form
∫
p ρZ is U(n + 1)-

invariant and uniquely determined by its value in ~a0, which we are go-
ing to compute. Let ~v1, . . . , ~v2n+1 ∈ T~a0

S2n+1 be tangent vectors. Then
ρZ[v1, . . . , v2n+1] is an U(n)-invariant form and uniquely determined by its
value in the unit matrix E.

We choose as basis of the tangent space of S2n+1 in ~a0 the other vectors
in the standard basis of R2n+2 and denote them

~b0,~a1,~b1, . . . ,~an,~bn.

Let ρ0 be the unique U(n + 1)-equivariant form on S2n+1 with

ρ0(~b0,~a1, . . . ,~bn) = 1

For later use, we record that the surface of the unit ball in dimension
2n + 2 is computed by

(*)
∫

S2n+1

ρ0 = 2
πn+1

n!

We have to choose preimages in the tangent space TEU(n + 1) for these
vectors. We can use arbitrary hermitian matrices Aν for 1 ≤ ν ≤ n und Bν

for 0 ≤ ν ≤ n such that

Aν~a0 = ~an Bν~a0 = ~bν .
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A simple choice are the complex matrices

Aν = Eν0 − E0ν ν ≥ 1
Bν = iEν0 + iE0ν ν ≥ 1
B0 = iE00

Here we are using the usual notation for the standard basis of the matrix
ring over C but with indices starting from 0.

It is more convenient to pass to complexified tangent spaces. T C
~a0

S2n+1

has the simpler basis

~v0 = i~b0

~vν = (~aν − i~bν)/2 ν = 1, . . . , n

~vn+ν = (~aν + i~bν)/2 ν = 1, . . . , n

Its lift to T C
EU(n + 1) is given by

ṽ0 = −E00

ṽν = +Eν0 ν = 1, . . . , n

ṽn+ν = −E0ν ν = 1, . . . , n

By evaluating in a standard basis of T C
E U(n) we get

ρZ[~v0, . . . , ~v2n] = ±dz11 ∧ . . . ∧ dznn = ρ
U(n)
Z

By inductive hypothesis this implies(∫
p
ρZ

)
(~v0, . . . , ~v2n) = ±C(n)

We now translate back to the original basis. We easily find for ν ≥ 1

~vν ∧ ~vn+ν =
1
4
(~aν − i~bν) ∧ (~aν + i~bν) =

i

2
~aν ∧~bν

and hence

2n∧
i=0

~vi = ±(~b0 ∧ ~a1 ∧~b1 ∧ . . . ∧ ~an ∧~bν) ·
in+1

2n
⇒(∫

p
ρZ

)
(~b0,~a1,~b1, . . . ,~bn) = ±C(n)in+12n ⇒∫

p
ρZ = ±C(n)in+12nρ0
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Together with equation (*) for the unit sphere this yields

C(n + 1) =
∫

U(n+1)
ρZ =

∫
S2n+1

(∫
p
ρZ

)
= ±C(n)in+12n

∫
S2n+1

ρ0

= ±C(n)
(2πi)n+1

n!
This proves the claim. �

5. Proof of the main result

Proof of Proposition 1.3. We want to compare the elements ρdR
Z (see Lemma

3.5) and ωdR (see Corollary 3.4) in Hn2

dR(Gln). Let α ∈ Q∗ such that

ωdR = αρdR
Z

By Corollary 3.4
σ(ωsing) = (2πi)−

n(n+1)
2 αρdR

Z
The comparison isomorphism between singular cohomology and holomorphic
de Rham cohomology can be reformulated as integration. By Corollary 2.4,
Lemma 3.5 and Proposition 4.1, this means

(2πi)
n(n+1)

2 α−1 =
∫

U(n)

1
detn ∧

n
i,j=1 dzij = ±

n−1∏
ν=0

(2πi)ν+1

ν!

where zij are the holomorphic coordinates on the space on n × n matrices.
Hence

α = ±
n−1∏
ν=0

1
ν!

as claimed. �
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