Inhaltsverzeichnis

1 Stetigkeit in abstrakten Räumen 6
 1.1 Vorschläge zur Veranschaulichung 6
 1.2 Stetigkeit bei metrischen Räumen 8
 1.3 Konvergenz von Folgen in metrischen Räumen 14
 1.4 Abgeschlossene und offene Teilmengen 17
 1.5 Topologische Räume 20
 1.6 Induzierte Topologie 24
 1.7 Abgeschlossene Teilmengen topologischer Räume 25
 1.8 Grenzwerte in topologischen Räumen 27
 1.9 Komplexe Differenzierbarkeit* 31

2 Kompaktheit 37
 2.1 Kompakte metrische Räume 37
 2.2 Fundamentalsatz der Algebra 39
 2.3 Affine Räume* .. 40
 2.4 Normierte Räume .. 42
 2.5 Überdeckungen kompakter metrischer Räume 48
 2.6 Integrale mit Parametern 52

3 Mengentheoretische Topologie 55
 3.1 Topologische Räume 55
 3.2 Inneres, Abschluß, Umgebungsbegriff 59
 3.3 Zusammenhang .. 62
 3.4 Topologische Mannigfaltigkeiten* 68
 3.5 Kompakte Räume .. 69
 3.6 Konstruktion topologischer Räume 72
 3.7 Kompakte topologische Eins-Mannigfaltigkeiten* 80
 3.8 Produkttopologie ... 83

4 Topologie und algebraische Strukturen 87
 4.1 Topologische Gruppen 87
 4.2 Quotienten nach Gruppenwirkungen 90
 4.3 Projektive Räume ... 94
 4.4 Topologisches Exponentialgesetz 99
 4.5 Eigentliche Abbildungen* 105
 4.6 Separierte Abbildungen* 108
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Homotopie und Fundamentalgruppe</td>
<td>110</td>
</tr>
<tr>
<td>5.1</td>
<td>Einführung in die algebraische Topologie</td>
<td>110</td>
</tr>
<tr>
<td>5.2</td>
<td>Definition der Fundamentalgruppe</td>
<td>115</td>
</tr>
<tr>
<td>5.3</td>
<td>Fundamentalgruppe der Kreislinie</td>
<td>121</td>
</tr>
<tr>
<td>5.4</td>
<td>Anwendungen und Beispiele</td>
<td>125</td>
</tr>
<tr>
<td>5.5</td>
<td>Homotopien zwischen stetigen Abbildungen</td>
<td>129</td>
</tr>
<tr>
<td>5.6</td>
<td>Kategorien und Funktoren</td>
<td>130</td>
</tr>
<tr>
<td>5.7</td>
<td>Homotopie und Fundamentalgruppe</td>
<td>135</td>
</tr>
<tr>
<td>5.8</td>
<td>Abelisierte Fundamentalgruppe*</td>
<td>142</td>
</tr>
<tr>
<td>5.9</td>
<td>Selbstabbildungen der Kreislinie</td>
<td>144</td>
</tr>
<tr>
<td>6</td>
<td>Beschreibung einiger Fundamentalgruppen</td>
<td>149</td>
</tr>
<tr>
<td>6.1</td>
<td>Produkte und Koprodukte in Kategorien</td>
<td>149</td>
</tr>
<tr>
<td>6.2</td>
<td>Kartesische Diagramme</td>
<td>151</td>
</tr>
<tr>
<td>6.3</td>
<td>Kokartesische Diagramme</td>
<td>154</td>
</tr>
<tr>
<td>6.4</td>
<td>Der Satz von Seifert und van Kampen</td>
<td>156</td>
</tr>
<tr>
<td>6.5</td>
<td>Freie Monoide und freie Gruppen</td>
<td>161</td>
</tr>
<tr>
<td>6.6</td>
<td>Push-out von Gruppen</td>
<td>167</td>
</tr>
<tr>
<td>6.7</td>
<td>Simplicialkomplexe und triangulierbare Flächen</td>
<td>169</td>
</tr>
<tr>
<td>6.8</td>
<td>Klassifikation der geschlossenen Flächen</td>
<td>176</td>
</tr>
<tr>
<td>6.9</td>
<td>Gruppen durch Erzeugende und Relationen</td>
<td>186</td>
</tr>
<tr>
<td>6.10</td>
<td>Die Fundamentalgruppen geschlossener Flächen</td>
<td>187</td>
</tr>
<tr>
<td>7</td>
<td>Überlagerungstheorie</td>
<td>190</td>
</tr>
<tr>
<td>7.1</td>
<td>Überlagerungen</td>
<td>190</td>
</tr>
<tr>
<td>7.2</td>
<td>Kategorien von Mengen mit Operation</td>
<td>193</td>
</tr>
<tr>
<td>7.3</td>
<td>Quotientenabbildungen als Überlagerungen</td>
<td>195</td>
</tr>
<tr>
<td>7.4</td>
<td>Lifts und Decktransformationen</td>
<td>196</td>
</tr>
<tr>
<td>7.5</td>
<td>Universelle Überlagerungen</td>
<td>199</td>
</tr>
<tr>
<td>7.6</td>
<td>Eigenschaften von Funktoren</td>
<td>206</td>
</tr>
<tr>
<td>7.7</td>
<td>Transformationen</td>
<td>208</td>
</tr>
<tr>
<td>8</td>
<td>Überlagerungen und Fundamentalgruppe</td>
<td>212</td>
</tr>
<tr>
<td>8.1</td>
<td>Transport durch Wegeliften</td>
<td>212</td>
</tr>
<tr>
<td>8.2</td>
<td>Klassifikation von Überlagerungen</td>
<td>220</td>
</tr>
<tr>
<td>8.3</td>
<td>Existenz universeller Überlagerungen</td>
<td>222</td>
</tr>
<tr>
<td>8.4</td>
<td>Adjungierte Funktoren</td>
<td>225</td>
</tr>
<tr>
<td>8.5</td>
<td>Der abstrakte Faserfunktor</td>
<td>229</td>
</tr>
<tr>
<td>8.6</td>
<td>Die Zopfgruppe</td>
<td>232</td>
</tr>
<tr>
<td>8.7</td>
<td>Das Yoneda-Lemma*</td>
<td>240</td>
</tr>
<tr>
<td>8.8</td>
<td>Mehr zu adjungierten Funktoren*</td>
<td>242</td>
</tr>
</tbody>
</table>
8.9 Überlagerungen topologischer Gruppen* .. 247

9 Kategorien und Funktoren ... 250
 9.1 Kategorien ... 250
 9.2 Funktoren .. 256
 9.3 Transformationen .. 263
 9.4 Natürliche Konstruktionen in der Geometrie .. 269
 9.5 Köcher* .. 271
 9.6 Produkte und Koprodukte in Kategorien ... 274
 9.7 Produkte und Summen von Vektorräumen* .. 279
 9.8 Algebren* ... 282
 9.9 Yonedalemma* .. 285
 9.10 Universen* ... 288

10 Danksagung ... 291

Literaturverzeichnis ... 292

Indexvorwort .. 293

Index ... 294
Diese Zusammenstellung ist ergänzt um die besonders relevanten Abschnitte der Skripte zur Analysis. Alle in der farbigen Darstellung grünen und überwiegend vierteiligen Referenzen beziehen sich auf die öffentliche Werkbank. Lädt man diese Datei in denselben Ordner, funktionieren bei modernen Programmen zur Darstellung von pdf-Dateien auch die Hyperlinks.
1 Stetigkeit in abstrakten Räumen

1.1 Vorschläge zur Veranschaulichung

1.1.1 Eine Abbildung \(f : \mathbb{R}^n \to \mathbb{R}^m \) schreiben wir in der Form

\[
(x_1, \ldots, x_n) \mapsto (f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n))
\]

oder abkürzend \(f = (f_1, \ldots, f_m) \). Man kann sich derartige Abbildungen auf die verschiedensten Arten vorstellen.

1. Den Fall \(n = m = 1 \) hatten wir schon in ?? ausführlich behandelt und sogar etwas allgemeiner mögliche Interpretationen einer Abbildung von \(\mathbb{R} \) in einen beliebigen Raum beziehungsweise von einem beliebigen Raum nach \(\mathbb{R} \) besprochen: Erstere kann man sich etwa veranschaulichen als Beschreibung der Bewegung eines Teilchens in besagtem Raum, Letztere als eine Temperaturverteilung auf besagtem Raum.

2. Im Fall \(n + m = 3 \) kann man sich die Abbildung \(f \) ähnlich wie im Fall \(n = m = 1 \) durch ihren Graphen \(\Gamma(f) = \{(x, f(x)) \mid x \in \mathbb{R}\} \subset \mathbb{R}^3 \) beziehungsweise \(\Gamma(f) = \{(x, y, f(x, y)) \mid x, y \in \mathbb{R}\} \subset \mathbb{R}^3 \) veranschaulichen. Der Graph einer Funktion \(f : \mathbb{R}^2 \to \mathbb{R} \) ist anschaulich eine hügelige Landschaft. Der Graph einer Abbildung \(f : \mathbb{R} \to \mathbb{R}^2 \) sieht aus wie ein Draht im \(\mathbb{R}^3 \) mit genau einem Punkt für jede vorgegebene \(x \)-Koordinate. Zum Beispiel ist der Graph jeder konstanten Abbildung \(\mathbb{R} \to \mathbb{R}^2 \) eine Parallele zur \(x \)-Achse und der Graph jeder konstanten Abbildung \(\mathbb{R}^2 \to \mathbb{R} \) eine „vollständig platte Landschaft“ alias eine zur \((x, y)\)-Ebene parallele Ebene.

3. Eine Funktion \(f : \mathbb{R}^2 \to \mathbb{R} \) kann man auch graphisch darstellen, indem man auf der Ebene \(\mathbb{R}^2 \) die Niveaulinien einzeichnet, die im Bild der Hügellandschaft die Höhenlinien in einer Landkarte für unsere Landschaft wären, in Formeln die Mengen \(\{(x, y) \mid f(x, y) = c\} \) für verschiedene, meist äquidistant gewählte \(c \in \mathbb{R} \). Auch eine Funktion \(f : \mathbb{R}^3 \to \mathbb{R} \) kann man sich noch mithilfe ihrer analog definierten Niveauflächen vorstellen, aber mit dem Zeichnen wird es dann schon schwierig.

4. Eine Funktion \(f : \mathbb{R}^n \to \mathbb{R}^n \) kann man sich vorstellen als ein Vektorfeld, jedem Punkt \(x \in \mathbb{R}^n \) wird ja in der Tat ein Vektor \(f(x) \in \mathbb{R}^n \) zugeordnet.

5. Es ist auch oft nützlich, sich \(f \) wirklich als eine Abbildung vorzustellen. Die Abbildung \(x \mapsto (x, x) \) ist in diesem Bild zum Beispiel die diagonale Einbettung der Zahlengerade in die Ebene, und \((x, y) \mapsto (y, x) \) ist die Spiegelung am Bild unserer diagonalen Einbettung.
Die Niveaulinien und der Graph der Funktion \(f : \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto \sqrt{x^2 + y^2} \). Der Graph dieser Funktion hat die Gestalt einer Eistüte mit dem Öffnungswinkel 90°, die mit ihrer Spitze senkrecht auf den Ursprung in der \(xy \)-Ebene steht.

Die Darstellung als bewegtes Teilchen und der Graph der Funktion \(f : \mathbb{R} \to \mathbb{R}^2, z \mapsto (\cos(2\pi z/(0, 4)), \sin(2\pi z/(0, 4))) \). Anders als im Text haben wir hier eine Funktion der \(z \)-Koordinate dargestellt.
1.1.2. Ich will den Begriff der Stetigkeit nun statt für Abbildungen $\mathbb{R}^n \to \mathbb{R}^m$

1.2 Stetigkeit bei metrischen Räumen

Definition 1.2.1. Unter einer **Metrik** d auf einer Menge X versteht man eine Abbildung $d : X \times X \to \mathbb{R}_{\geq 0}$ derart, daß für alle $x, y, z \in X$ gilt:

1. $d(x, y) = 0 \iff x = y$;
2. $d(x, y) = d(y, x)$;
3. $d(x, y) \leq d(x, z) + d(z, y)$.

Ein **metrischer Raum** ist ein Paar $X = (X, d)$ bestehend aus einer Menge X und einer Metrik d auf X.

Beispiel 1.2.2. Der Buchstabe d steht in diesem Zusammenhang vermutlich für das Wort „Distanz“. Auf dem \mathbb{R}^n liefert der übliche Skalarproduktabstand $d(x, y) := \sqrt{(x_1 - y_1)^2 + \ldots + (x_n - y_n)^2}$ eine Metrik. Die Ungleiche aus der Definition einer Metrik wird in diesem Beispiel in ?? formal bewiesen und bedeutet anschaulich, daß in einem Dreieck mit Seitenlängen a, b, c stets gilt $a \leq b + c$. Sie heißt deshalb auch ganz allgemein die **Dreiecksungleichung**.

Beispiel 1.2.3. Auf dem \mathbb{R}^n ist auch der **Betrag$abstand$

$$d(x, y) = \sup_{1 \leq i \leq n} |x_i - y_i|$$

eine Metrik. Wenn nichts anderes gesagt ist, fassen wir den \mathbb{R}^n stets auf als einen metrischen Raum mit dem Betragabstand als Metrik. Diese Metrik ist zwar weniger anschaulich als der Skalarproduktabstand, läßt sich aber einfacher handhaben.
Illustration zur Dreiecksungleichung
Beispiel 1.2.4. Jede Teilmenge eines metrischen Raums ist mit der induzierten Metrik selbst ein metrischer Raum.

Definition 1.2.5. Sei X ein metrischer Raum. Für $x \in X$ und $\varepsilon > 0$ setzen wir

$$B(x; \varepsilon) := \{z \in X \mid d(x, z) < \varepsilon\}$$

Diese Menge heißt der ε-Ball um x oder auch die ε-Kugel um x oder auch die ε-Umgebung von x.

Beispiel 1.2.6. Für den Skalarproduktabstand im \mathbb{R}^3 ist der Ball um x mit Radius ε anschaulich tatsächlich ein Ball. Für den Betragsabstand hat $B(x; \varepsilon)$ dagegen die Gestalt eines Würfels mit Mittelpunkt x und Seitenlänge 2ε.

Definition 1.2.7. Unter einer Umgebung eines Punktes in einem metrischen Raum versteht man eine Teilmenge von besagtem Raum, die einen ganzen Ball um unseren Punkt umfaßt.

1.2.8 (Vom Nutzen des Umgebungsbegriffs). Die Umgebungen eines Punktes im \mathbb{R}^n bezüglich der euklidischen Metrik sind dieselben wie seine Umgebungen bezüglich der skalarpunktmetrik, was man unschwer explizit prüft und was formal auch aus 2.4.12 folgen wird. Das ist der Grund dafür, daß wir im Folgenden unsere Definitionen nach Möglichkeit mithilfe von Umgebungen formulieren: Für so definierte Begriffe ist a priori klar, daß im Fall des \mathbb{R}^n ihre Bedeutung nicht davon abhängt, ob wir mit dem Skalarproduktabstand oder mit dem Betragsabstand arbeiten.

1.2.9. Der Schnitt von endlich vielen Umgebungen eines Punktes in einem metrischen Raum ist wieder eine Umgebung besagten Punktes. Je zwei verschiedene Punkte eines metrischen Raums besitzen disjunkte Umgebungen. Genauer sind für x, y mit $d(x, y) = r > 0$ die $(r/2)$-Bälle um x und y disjunkt. In der Tat folgte für z aus dem Schnitt ja mit Hilfe der Dreiecksungleichung $r = d(x, y) \leq d(x, z) + d(y, z) < r$, also kann es solch ein z nicht geben.

Definition 1.2.10. Eine Abbildung $f : X \to Y$ zwischen metrischen Räumen heißt stetig im Punkt $p \in X$, wenn es für jede Umgebung U von $f(p)$ eine Umgebung U' von p gibt mit $f(U') \subset U$. Eine Abbildung zwischen metrischen Räumen heißt stetig genau dann, wenn sie stetig ist in jedem Punkt.

Lemma 1.2.11 (ε-δ-Kriterium). Eine Abbildung $f : X \to Y$ zwischen metrischen Räumen ist stetig im Punkt $p \in X$ genau dann, es für jedes $\varepsilon > 0$ ein $\delta = \delta_\varepsilon > 0$ gibt derart, daß gilt $f(B(p; \delta)) \subset B(f(p); \varepsilon)$.

10
Bälle in der Ebene für den Betragsabstand und den Skalarproduktabstand
Beweis. Ist \(f \) stetig bei \(p \), so finden wir insbesondere für die Umgebung \(U := B(f(p); \varepsilon) \) von \(f(p) \) eine Umgebung \(U' \) von \(p \) mit \(f(U') \subset U \), und diese Umgebung \(U' \) muß dann ihrerseits einen Ball \(B(p; \delta) \) umfassen. Gilt umgekehrt das \(\varepsilon-\delta \)-Kriterium und haben wir eine Umgebung \(U \) von \(f(p) \) gegeben, so finden wir erst ein \(\varepsilon > 0 \) mit \(B(f(p); \varepsilon) \subset U \), können dann dazu ein \(\delta \) finden mit \(f(B(p; \delta)) \subset B(f(p); \varepsilon) \), und \(U' := B(p; \delta) \) schließlich ist die gesuchte Umgebung von \(p \) mit \(f(U') \subset U \).

Beispiel 1.2.12. Einfache Beispiele für stetige Abbildungen sind Einbettungen von einem Teilraum, konstante Abbildungen, oder auch die Projektion eines \(\mathbb{R}^n \) auf eine Koordinate. In diesen Fällen können wir einfach \(\delta = \varepsilon \) nehmen.

Beispiel 1.2.13. Als etwas kompliziertere Beispiele bemerken wir, daß die Addition und die Multiplikation \(\mathbb{R}^2 \rightarrow \mathbb{R}, (x, y) \mapsto x + y \) beziehungsweise \((x, y) \mapsto xy \) stetig sind. Das ist im Wesentlichen die Aussage der ersten beiden Teile von Lemma ??.

1.2.14 \textbf{(Partiell stetig impliziert nicht stetig).} Es gibt Funktionen \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) derart, daß sowohl \(x \mapsto f(x, b) \) als auch \(y \mapsto f(a, y) \) stetig sind für alle \(b \) beziehungsweise alle \(a \), daß aber dennoch die Funktion \(f \) selbst nicht stetig ist. Als Beispiel betrachte man die Funktion mit \((x, y) \mapsto xy/(x^2 + y^2) \) für \((x, y) \neq (0, 0)\) und \((0, 0) \mapsto 0\). Sie ist nicht stetig am Nullpunkt nach dem anschließenden Satz 1.2.15, da nämlich ihre Verknüpfung mit \(\mathbb{R} \rightarrow \mathbb{R}^2, t \mapsto (t, t) \) nicht stetig ist bei \(t = 0 \). Die Stetigkeit von \(t \mapsto (t, t) \) hinwiederum mag man aus der Komponentenregel 1.2.18 folgern. Der Anschauung mag die Erkenntnis helfen, daß unsere merkwürdige Funktion, wenn man vom Ursprung selbst einmal absieht, auf allen Geraden durch den Ursprung konstant ist. Auf den beiden Koordinatenachsen ist unsere Funktion konstant Null, auf allen anderen Geraden durch den Ursprung jedoch nimmt sie nur am Ursprung den Wert Null an und sonst konstant einen von Null verschiedenen Wert.

\textbf{Satz 1.2.15.} \textit{Jede Verknüpfung von stetigen Abbildungen ist stetig.}

\textit{Beweis.} Seien \(f : X \rightarrow Y \) und \(g : Y \rightarrow Z \) Abbildungen zwischen metrischen Räumen und \(p \in X \) ein Punkt. Wir zeigen genauer: Ist \(f \) stetig bei \(p \) und \(g \) stetig bei \(f(p) \), so ist \((g \circ f)\) stetig bei \(p \). Ist in der Tat \(g \) stetig bei \(f(p) \), so finden wir für jede Umgebung \(U \) von \(g(f(p)) \) eine Umgebung \(U' \) von \(f(p) \) mit \(g(U') \subset U \). Ist zusätzlich \(f \) stetig ist bei \(p \), finden wir für diese Umgebung \(U' \) von \(f(p) \) weiter eine Umgebung \(U'' \) von \(p \) mit \(f(U'') \subset U' \). Damit haben wir aber auch eine Umgebung \(U'' \) von \(p \) gefunden mit \((g \circ f)(U'') \subset U \).

\textbf{Definition 1.2.16.} Gegeben metrische Räume \((X_i, d_i)\) für \(1 \leq i \leq n \) machen wir das Produkt \(X = X_1 \times \ldots \times X_n \) zu einem metrischen Raum durch die \textit{Produkt-}
metrik, indem wir für \(x = (x_1, \ldots, x_n) \) und \(y = (y_1, \ldots, y_n) \) vereinbaren
\[
d(x, y) = \sup_{1 \leq i \leq n} d_i(x_i, y_i)
\]

Beispiel 1.2.17. Der Betragsabstand auf \(\mathbb{R}^{n+m} \) ist die Produktmetrik zu den Betragsabständen auf \(\mathbb{R}^n \) und \(\mathbb{R}^m \).

Proposition 1.2.18 (Komponentenregel). Seien \(Z \) und \(X_1, \ldots, X_n \) metrische Räume und \(f_i : Z \to X_i \) Abbildungen. Genau dann ist die Abbildung \(f = (f_1, \ldots, f_n) : Z \to X_1 \times \ldots \times X_n \) stetig, wenn alle \(f_i \) stetig sind.

1.2.19. Wenden wir diese Proposition an mit \(f \) der Identität auf einem Produkt, so impliziert die Stetigkeit der Identität, daß alle Projektionsabbildungen \(\text{pr}_i : X_1 \times \ldots \times X_n \to X_i \) stetig sein müssen.

Beweis. Da die Projektionen \(\text{pr}_i \) Abstände zwischen Punkten nie vergrößern, können wir ihre Stetigkeit direkt zeigen, indem „wir jeweils \(\delta = \varepsilon \) nehmen“. Ist \(f \) stetig, so sind folglich auch die \(f_i = \text{pr}_i \circ f \) stetig als Verknüpfungen stetiger Abbildungen. Sind umgekehrt alle \(f_i \) stetig in \(p \), so gibt es für jedes \(\varepsilon > 0 \) gewisse \(\delta_i \) mit \(d(p, z) < \delta_i \Rightarrow d_i(f_i(p), f_i(z)) < \varepsilon \), wo \(d_i \) die Metrik auf \(X_i \) bezeichnet. Nehmen wir \(\delta = \inf \delta_i \), so gilt
\[
d(p, z) < \delta \Rightarrow d(f(p), f(z)) < \varepsilon
\]
und das ist gleichbedeutend zu \(f(B(p; \delta)) \subset B(f(p); \varepsilon) \).

Beispiel 1.2.20. Eine Abbildung \(f = (f_1, \ldots, f_n) : \mathbb{R}^k \to \mathbb{R}^n \) ist genau dann stetig, wenn alle ihre Komponenten \(f_i : \mathbb{R}^k \to \mathbb{R} \) stetig sind. Allgemeiner ist für einen metrischen Raum \(X \) eine Abbildung \(f = (f_1, \ldots, f_n) : X \to \mathbb{R}^n \) genau dann stetig, wenn alle ihre Komponenten \(f_i : X \to \mathbb{R} \) stetig sind.

Korollar 1.2.21 (Summen und Produkte stetiger Abbildungen sind stetig). Ist \(X \) ein metrischer Raum und sind \(f, g \) stetige Abbildungen \(X \to \mathbb{R} \), so sind auch \(f + g \) und \(fg \) stetige Abbildungen \(X \to \mathbb{R} \).

Beweis. Wir schreiben \(f + g \) beziehungsweise \(fg \) als die Verknüpfung der nach 1.2.18 stetigen Abbildung \(X \to \mathbb{R}^2, x \mapsto (f(x), g(x)) \) mit der nach 1.2.13 stetigen Addition beziehungsweise Multiplikation \(\mathbb{R}^2 \to \mathbb{R} \).

Beispiel 1.2.22. Die Abbildung \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) gegeben durch die Vorschrift
\[
(x, y) \mapsto (x \sinh(y), x^2y^3)
\]
ist stetig. In der Tat reicht es nach der Komponentenregel zu zeigen, daß ihre beiden Komponenten f_1 und f_2 stetig sind. Wir zeigen das nur für die erste Komponente und überlassen die Behandlung der zweiten Komponente dem Leser. Warum also ist die Abbildung $f_1 : \mathbb{R}^2 \to \mathbb{R}$, $(x, y) \mapsto x \sinh(y)$ stetig? Nun, $(x, y) \mapsto x$ ist stetig nach 1.2.19 als Projektion auf eine Koordinate, $(x, y) \mapsto y$ desgleichen, $(x, y) \mapsto \sinh(y)$ dann auch als Verknüpfung stetiger Funktionen, und schließlich auch $(x, y) \mapsto x \sinh(y)$ als Produkt stetiger Funktionen.

Übungen

Übung 1.2.23. Ist (X, d) ein metrischer Raum, so ist für alle $z \in X$ die Abbildung $X \to \mathbb{R}$, $x \mapsto d(x, z)$ stetig. Hinweis: Dreiecksungleichung. Ist allgemeiner $A \subseteq X$ eine nichtleere Teilmenge, so ist auch die Abbildung $d_A : X \to \mathbb{R}$ gegeben durch $d_A(x) = \inf\{d(x, a) \mid a \in A\}$ stetig. Alternativ verwenden wir auch die Notation $d(x, A) = d_A(x)$.

Übung 1.2.24. Ist (X, d) ein metrischer Raum, so ist die Metrik stetig als Abbildung $d : X \times X \to \mathbb{R}$.

Übung 1.2.25. Wir versehen den Körper der komplexen Zahlen \mathbb{C} mit der Metrik $d(z, w) = |z - w|$. Man zeige, daß das in der Tat eine Metrik ist, und daß die Addition und die Multiplikation stetige Abbildungen $\mathbb{C} \times \mathbb{C} \to \mathbb{C}$ sind und das Bild des Inversen eine stetige Abbildung $\mathbb{C}^\times \to \mathbb{C}^\times$.

Ergänzende Übung 1.2.26. Man zeige, daß das Invertieren von Matrizen eine stetige Abbildung $\text{GL}(n; \mathbb{C}) \to \text{GL}(n; \mathbb{C})$ ist. Hinweis: Cramer’sche Regel ??

Übung 1.2.27. Sei $f : X \to Y$ eine Abbildung von metrischen Räumen, die Abstände nicht verkleinert, in Formeln $d(f(x), f(z)) \geq d(x, z) \ \forall x, z \in X$. Man zeige, daß f injektiv ist und $f^{-1} : f(X) \to X$ stetig.

Übung 1.2.28. Jede lineare Abbildung $f : \mathbb{R}^k \to \mathbb{R}^n$ ist stetig. Jede multilineare Abbildung $f : \mathbb{R}^{k(1)} \times \ldots \times \mathbb{R}^{k(r)} \to \mathbb{R}^n$ ist stetig.

1.3 Konvergenz von Folgen in metrischen Räumen

Definition 1.3.1. Sei $\mathbb{N} \to X$, $n \mapsto x_n$ eine Folge in einem metrischen Raum X und $x \in X$ ein Punkt. Wir sagen, die Folge x_n strebt gegen x oder konvergiert gegen x und nennen x den Grenzwert der Folge, wenn jede Umgebung von x fast alle Glieder unserer Folge enthält. Wir schreiben dann

$$\lim_{n \to \infty} x_n = x$$

Gleichbedeutend können wir ebensogut auch fordern, daß jeder Ball um x fast alle Glieder unserer Folge enthält.
Illustration zur Konvergenz von Folgen. Eingezeichnet sind drei Umgebungen eines Punktes x, in jeder sollen fast alle Folgenglieder liegen.
1.3.2. Der Grenzwert einer Folge ist eindeutig, wenn er existiert. Das folgt wie im
Beweis von ?? daraus, daß nach 1.2.9 je zwei verschiedene Punkte eines metri-
schen Raums disjunkte Umgebungen besitzen. Einen gemeinsame Verallgemeine-
rung für den im vorhergehenden eingeführten Begriff des Grenzwerts einer Folge
in einem metrischen Raum und den in ?? eingeführten Grenzwertbegriff für Ab-
bildungen mit Werten in \(\mathbb{R} \) geben wir in 1.8.6 im Kontext allgemeiner topologi-
scher Räume.

Definition 1.3.3. Ein metrischer Raum heißt **beschränkt**, wenn es für die mögli-
chen Abstände zwischen Punkten unseres Raums eine reelle obere Schranke gibt.
Eine Abbildung in einen metrischen Raum heißt **beschränkt**, wenn ihr Bild be-
schränkt ist.

Beispiel 1.3.4. Sei \(D \) eine Menge und \(X \) ein metrischer Raum. Auf dem Raum
\(\text{Ens}^b(D,X) \) aller beschränkten Abbildungen \(f : D \to X \) kann man eine Metrik
erklären durch die Vorschrift
\[
d(f,g) = \sup \{d(f(p), g(p)) \mid p \in D\}
\]
im Fall \(D \neq \emptyset \) und in offensichtlicher Weise im Fall \(D = \emptyset \). Diese Metrik heißt
die **Metrik der gleichmäßigen Konvergenz**. In der Tat ist für \(f_n, f \) im Funktio-
nenraum \(\text{Ens}^b(D, \mathbb{R}) \) mit dieser Metrik die Konvergenz
\[
\lim_{n \to \infty} f_n = f
\]
gleichbedeutend dazu, daß die Abbildungen \(f_n \) im Sinne unserer Definition ??
gleichmäßig gegen die Abbildung \(f \) konvergieren.

Definition 1.3.5 (Punktweise und gleichmäßige Konvergenz). Sei \(D \) eine Men-
ge, \(X \) ein metrischer Raum, \(f_n : D \to X \) eine Folge von Abbildungen und
\(f : D \to X \) eine weitere Abbildung.

1. Wir sagen, die Folge der \(f_n \) **konvergiere punktweise** gegen \(f \), wenn gilt
\[
\lim_{n \to \infty} f_n(p) = f(p) \quad \text{für alle Punkte } p \in D.
\]
2. Wir sagen, die Folge der \(f_n \) **konvergiere gleichmäßig** gegen \(f \), wenn es für
dedes \(\varepsilon > 0 \) ein \(N = N_\varepsilon \) gibt mit
\[
n \geq N \Rightarrow (d(f_n(p), f(p)) < \varepsilon \ \forall p \in D)
\]

Übungen

Übung 1.3.6. Sei \((x_n, y_n) \) eine Folge im Produkt \(X \times Y \) der metrischen Räume
\(X \) und \(Y \). Genau dann konvergiert unsere Folge gegen \((x,y) \), wenn \(x_n \) gegen \(x \)
konvergiert und \(y_n \) gegen \(y \). Man formuliere und beweise auch die offensichtliche
Verallgemeinerung auf beliebige endliche Produkte metrischer Räume.
Übung 1.3.7. Für beschränkte Abbildungen von einer Menge D in einen metrischen Raum X ist auch in dieser Allgemeinheit gleichmäßige Konvergenz gleichbedeutend zur Konvergenz im Raum $\text{Ens}^b(D, X)$ mit seiner eben erklärten „Metrnik der gleichmäßigen Konvergenz“.

Übung 1.3.8. Für jede konvergente Folge in einem metrischen Raum ist die Menge der Folgenglieder beschränkt.

Übung 1.3.9 (Stetigkeit als Folgenstetigkeit). Sei $f : X \to Y$ eine Abbildung von metrischen Räumen. Genau dann ist f stetig in p, wenn für jede Folge x_n mit $\lim_{n \to \infty} x_n = p$ gilt $\lim_{n \to \infty} f(x_n) = f(p)$. Hinweis: ??.

Übung 1.3.10 (Stetigkeit komplexer Potenzreihen). Man zeige, daß jede komplexe Potenzreihe eine stetige komplexwertige Funktion auf ihrer Konvergenzkreisscheibe $\{z \mid |z| < r\}$ liefert, für r der Konvergenzradius. Hinweis: Man kopiere den Beweis im Reellen. Insbesondere sehen wir so ein zweites Mal, daß die komplexe Exponentialfunktion stetig ist.

1.4 Abgeschlossene und offene Teilmengen

Definition 1.4.1. Seien X ein metrischer Raum und $A \subset X$ eine Teilmenge. Ein Punkt $x \in X$ heißt ein **Berührungspunkt von A**, wenn es eine Folge in A gibt, die gegen x konvergiert. Eine Teilmenge $A \subset X$ heißt **abgeschlossen** oder präziser abgeschlossen in X, wenn sie alle ihre Berührungspunkte enthält, wenn sie also „abgeschlossen ist unter der Bildung von Grenzwerten“. Statt „A ist eine abgeschlossene Teilmenge von X“ schreiben wir kurz aber unüblich

$$A \varnothing X$$

1.4.2. Wenn wir eine Menge einfach nur „abgeschlossen“ nennen, so in der Hoffnung, dem Leser sei klar, in Bezug auf welchen größeren Raum X dies „abgeschlossen“ gemeint ist. Ist X ein metrischer Raum und sind $U \subset Y \subset X$ Teilmengen, so meint $U \varnothing Y$, daß U abgeschlossen ist als Teilmenge des Raums Y mit seiner induzierten Metrik.

Definition 1.4.3. Eine Teilmenge eines metrischen Raums heißt **offen** oder genauer off en in unserem metrischen Raum genau dann, wenn sie für jeden ihrer Punkte eine Umgebung ist, d.h. wenn sie mit jedem Punkt auch einen ganzen Ball um besagten Punkt enthält. Statt „U ist eine offene Teilmenge von X“ schreiben wir kurz aber unüblich

$$U \varnothing X$$

1.4.4. Wenn wir eine Menge einfach nur „offen“ nennen, so in der Hoffnung, dem Leser sei klar, in Bezug auf welchen größeren Raum X dies „offen“ gemeint ist.
Illustration zu Beispiel 1.4.5: Ein Ball in einem metrischen Raum ist stets offen.
Ist X ein metrischer Raum und sind $U \subset Y \subset X$ Teilmengen, so meint $U \subset Y$, daß U offen ist als Teilmenge des Raums Y mit seiner induzierten Metrik.

Beispiele 1.4.5. In einem metrischen Raum ist ein Ball $B(x; r)$ stets offen, denn für $z \in B(x; r)$ gilt $d(x, z) < r$, also gibt es $\varepsilon > 0$ mit $d(x, z) < r - \varepsilon$, und dann haben wir aber $B(z; \varepsilon) \subset B(x; r)$ nach der Dreiecksungleichung. Insbesondere umfaßt jede Umgebung eines Punktes eine offene Umgebung desselben Punktes.

Satz 1.4.6 (Komplemente offener und abgeschlossener Teilmengen). Eine Teilmenge eines metrischen Raums ist abgeschlossen genau dann, wenn ihr Komplement offen ist.

Beweis. Sei X unser metrischer Raum und $M \subset X$ eine Teilmenge. Ist M nicht abgeschlossen, so gibt es einen Punkt $p \in X \setminus M$, der Berührungspunkt von M ist, also $p = \lim_{n \to \infty} x_n$ mit $x_n \in M$. Dann kann es aber kein $\varepsilon > 0$ geben mit $B(p; \varepsilon) \subset X \setminus M$, also ist $X \setminus M$ nicht offen. Ist $X \setminus M$ nicht offen, so gibt es einen Punkt $p \in X \setminus M$ derart, daß gilt

$$B(p; 1/n) \cap M \neq \emptyset \quad \forall n \geq 1$$

Wählen wir jeweils einen Punkt $x_n \in B(p; 1/n) \cap M$, so gilt $\lim_{n \to \infty} x_n = p$ und M ist nicht abgeschlossen.

Übungen

Ergänzende Übung 1.4.8. Ein Abbildung zwischen metrischen Räumen ist stetig genau dann, wenn ihr Graph abgeschlossen ist im kartesischen Produkt unserer beiden Räume. Hinweis: 1.3.9

Ergänzende Übung 1.4.9. Jede abgeschlossene echte Untergruppe der reellen Zahlengeraden ist zyklisch, als da heißt von der Gestalt $\mathbb{Z}\alpha$ für ein $\alpha \in \mathbb{R}$. Hinweis: Ist $G \subset \mathbb{R}$ unsere Untergruppe, so betrachte man $\inf(G \cap \mathbb{R}_{>0})$.

und abgeschlossen. Die im Sinne unserer hier gegebenen Definition „offenen“ Intervalle von \mathbb{R} sind genau die Intervalle (a, b) für $a, b \in \mathbb{R}$, d.h. unsere „offenen reellen Intervalle“ aus \mathbb{R}.

Übung 1.4.11. Nimmt man zu einer Teilmenge M eines metrischen Raums X alle ihre Berührungspunkte hinzu, so erhält man eine abgeschlossene Menge, genauer: Die kleinste abgeschlossene Menge, die M umfaßt. Diese Menge heißt auch der Abschluß von M in X und wird mit $\text{Cl}_X(M) = \text{Cl}(M) = \overline{M}$ bezeichnet.

1.4.12 (Diskussion der Notation). Diese Notation heißt sich mit unserer Notation \mathbb{R} für die erweiterten reellen Zahlen, obwohl natürlich \mathbb{R} schon auch der Abschluß von \mathbb{R} in \mathbb{R} ist. Ich hoffe, daß der Leser stets aus dem Kontext erschließen kann, was im Einzelfall jeweils gemeint ist. Soweit ich es abschätzen kann, werde ich \mathbb{R} nie als Bezeichnung für den Abschluß von \mathbb{R} in einem anderen Raum als eben in \mathbb{R} selbst verwenden.

Ergänzende Übung 1.4.13. Sei X ein metrischer Raum und seien $A, B \subset X$ disjunkte, abgeschlossene Teilmengen. So gibt es eine stetige Funktion $f : X \rightarrow [0, 1]$ mit $f|_A = 0$ und $f|_B = 1$. Hinweis: Man betrachte d_A wie in Übung 1.2.23 mache den Ansatz $f(z) = g(d_A(z), d_B(z))$ für geeignetes $g : \mathbb{R}^2 \setminus 0 \rightarrow [0, 1]$.

Übung 1.4.14. Sei X ein metrischer Raum, $z \in X$ ein Punkt, $r \in \mathbb{R}$ eine reelle Zahl. So ist die Menge $\{x \in X \mid d(x, z) \leq r\}$ abgeschlossen.

Übung 1.4.15. Ist X ein metrischer Raum und $A \subset X$ eine Teilmenge, so kann ihr Abschluß \overline{A} in der Notation von 1.2.23 beschrieben werden als die Menge $\overline{A} = \{x \in X \mid d(x, A) = 0\}$.

Ergänzende Übung 1.4.16. Ist $f : X \rightarrow Y$ eine stetige Abbildung metrischer Räume, so ist ihr Graph eine abgeschlossene Teilmenge $\Gamma(f) \subset X \times Y$.

1.5 Topologische Räume

Dritten scheint es mir auch unabhängig davon wichtig, daß Sie beizeiten mit diesem Begriffsapparat vertraut werden, der die ganze Mathematik durchdringt: Um ihn an einfachen Beispielen einzuüben, will ich deshalb alles, was in dieser Vorlesung ohne große Umwege in der Allgemeinheit topologischer Räume formuliert und bewiesen werden kann, auch in diesem Rahmen formulieren und beweisen. Vielfach werden die Aussagen und Beweise dadurch sogar einfacher, und ich denke, dieser Vorteil wiegt zum Teil bereits die zusätzlichen Schwierigkeiten auf, die durch das Erlernen dieses neuen Begriffsapparats und seiner Beziehungen zu den primären Zielen der Vorlesung entstehen. Ich beginne mit Vorübungen zur Mengenlehre.

1.5.2. Gegeben eine Menge X können wir die Menge $\mathcal{P}(X)$ aller Teilmengen von X bilden, die sogenannte Potenzmenge von X. Weil es mich verwirrt, über Mengen von Mengen zu reden, nenne ich wie in ?? Teilmengen von $\mathcal{P}(X)$ lieber Systeme von Teilmengen von X und spreche im folgenden von Teilsystemen, wenn ich Teilmengen solcher Mengensysteme meine.

Definition 1.5.3. Gegeben eine Familie $(X_i)_{i \in I}$ von Teilmengen einer Menge X im Sinne von ?? erklärt man ihren **Schnitt** und ihre **Vereinigung** durch die Vorschriften

\[
\bigcap_{i \in I} X_i := \{ x \in X \mid \text{Für alle } i \in I \text{ gilt } x \in X_i \}
\]

\[
\bigcup_{i \in I} X_i := \{ x \in X \mid \text{Es existiert ein } i \in I \text{ mit } x \in X_i \}
\]

1.5.4 (Schnitt und Vereinigung leerer Mengenfamilien). Insbesondere ist der Schnitt über die leere Familie von Teilmengen von X ganz X und die Vereinigung über die leere Familie von Teilmengen von X ist die leere Menge. Man könnte erwägen, beim Schnitt über die leere Familie die Menge X noch mit zu notieren, weil es darauf so sehr ankommt, und etwa $\bigcap_{i \in I} X_i$ zu schreiben. Ich habe auch schon die Konvention gesehen, nach der der Schnitt über die leere Mengenfamilie als die leere Menge interpretiert wird, aber die Sinnhaftigkeit einer solchen Konvention hat sich mir nicht erschlossen.

Ergänzung 1.5.5. In 9.6.14 und 9.6.7 diskutieren wir allgemeiner Produkte und „disjunkte Vereinigungen“ beliebiger nicht notwendig endlicher Familien von Mengen.

Definition 1.5.6. Eine **Topologie** \mathcal{T} auf einer Menge X ist ein System von Teilmengen $\mathcal{T} \subset \mathcal{P}(X)$, das stabil ist unter dem Bilden von endlichen Schnitten und beliebigen Vereinigungen. In Formeln ausgedrückt fordern wir von einer Topologie \mathcal{T} also:

1. $U_1, \ldots, U_n \in \mathcal{T} \Rightarrow U_1 \cap \ldots \cap U_n \in \mathcal{T}$ für $n \geq 0$ und insbesondere auch $X \in \mathcal{T}$ als der Spezialfall $n = 0$. Gleichbedeutend dazu sind die beiden Forderungen $X \in \mathcal{T}$ sowie $U, V \in \mathcal{T} \Rightarrow U \cap V \in \mathcal{T}$;
2. \(U \subset \mathcal{T} \Rightarrow \bigcup_{U \in \mathcal{U}} U \in \mathcal{T} \) und damit insbesondere auch \(\emptyset \in \mathcal{T} \), da ja das leere Mengensystem \(\mathcal{U} = \emptyset \) in jedem Mengensystem enthalten ist.

Ein **topologischer Raum** ist ein Paar \((X, \mathcal{T})\) bestehend aus einer Menge mitsamt einer Topologie. Statt \(U \in \mathcal{T} \) schreiben wir meist

\[
U \subset X
\]

und nennen \(U \) eine **offene Teilmenge von** \(X \). Die Notation \(\subset \) ist in der Literatur jedoch unüblich.

Definition 1.5.7. Seien \(X \) ein topologischer Raum und \(A \subset X \) eine Teilmenge. Eine Teilmenge \(U \subset X \) heißt eine **Umgebung von** \(A \), wenn es eine offene Menge \(V \subset X \) gibt mit \(A \subset V \subset U \). Im Fall einer einelementigen Teilmenge \(A = \{p\} \) sprechen wir auch von einer **Umgebung von** \(p \).

Definition 1.5.8. Eine Abbildung \(f : X \to Y \) zwischen topologischen Räumen heißt **stetig im Punkt** \(p \in X \), wenn es für jede Umgebung \(U \) von \(f(p) \) eine Umgebung \(U' \) von \(p \) gibt mit \(f(U') \subset U \). Eine Abbildung zwischen topologischen Räumen heißt **stetig** genau dann, wenn sie stetig ist in jedem Punkt.

Beispiel 1.5.9. Für jeden metrischen Raum bildet das System seiner im Sinne von 1.4.3 offenen Teilmengen eine Topologie, die **metrische Topologie**. Wir fordern von einer Topologie **nicht**, daß ein beliebiger Schnitt offener Mengen stets wieder offen sein muß: Sonst müßten ja in unserem Beispiel der metrischen Räume alle einpunktigen Mengen offen sein, als Schnitte immer kleinerer Bälle. Da nach 1.4.5 Bälle in metrischen Räumen stets offen sind, ist in metrischen Räumen eine Umgebung eines Punktes im topologischen Sinne 1.5.7 dasselbe wie eine Umgebung im metrischen Sinne 1.2.7. Insbesondere ist eine Abbildung zwischen metrischen Räumen „topologisch stetig“ im Sinne der obigen Definition 1.5.8 genau dann, wenn sie „metrisch stetig“ im Sinne unserer Definition 1.2.10.

Beispiel 1.5.10 (Topologie auf den erweiterten reellen Zahlen). Auf unserer erweiterten reellen Zahlengeraden \(\overline{\mathbb{R}} \) erklären wir eine Topologie durch die Vorschrift, daß eine Menge \(U \subset \overline{\mathbb{R}} \) offen sein möge genau dann, wenn sie für jedes ihrer Elemente eine Umgebung im Sinne von ?? ist, wenn sie also mit jedem Punkt \(p \) auch ein ganzes Intervall \([a, b]\) um \(p \) umfaßt mit \(a < p \) falls \(p \neq -\infty \) und \(p < b \) falls \(p \neq \infty \). Unsere Umgebungen im Sinne von ?? sind dann auch genau die Umgebungen für diese Topologie im Sinne von 1.5.7, und eine Abbildung \(\overline{\mathbb{R}} \to \overline{\mathbb{R}} \) ist offensichtlich topologisch stetig im Sinne der obigen Definition 1.5.8 genau dann, wenn sie stetig ist im Sinne unserer Definition ??.

Beispiele 1.5.11. Es gibt auch Topologien, die unserer bis hierher entwickelten Anschauung eher ungewohnt sein mögen: Auf jeder Menge können wir etwa
die Klumpentopologie betrachten, die nur aus der ganzen Menge und der leeren Menge besteht, oder die diskrete Topologie, bei der wir schlicht alle Teilmengen als offen ansehen. Einen topologischen Raum mit der diskreten Topologie nennen wir auch kurz einen diskreten Raum.

Übungen

Ergänzende Übung 1.5.13 (De Morgan’sche Regeln). Man verallgemeinere die Formeln aus ??, Genauer schreibe man in Formeln und zeige, daß der Schnitt einer derartigen Vereinigung mit einer weiteren Menge die Vereinigung der Schnitte ist, die Vereinigung eines derartigen Schnitts mit einer weiteren Menge der Schnitt der Vereinigungen, das Komplement eines Schnitts die Vereinigung der Komplemente und das Komplement einer Vereinigung der Schnitt der Komplemente. Etwas allgemeiner zeige man für zwei Familien \((A_i)_{i \in I}\) und \((B_j)_{j \in J}\) von Teilmengen einer Menge \(X\) die Formeln

\[
\left(\bigcup_{i \in I} A_i \right) \cap \left(\bigcup_{j \in J} B_j \right) = \bigcup_{(i,j) \in I \times J} (A_i \cap B_j)
\]

\[
\left(\bigcap_{i \in I} A_i \right) \cup \left(\bigcap_{j \in J} B_j \right) = \bigcap_{(i,j) \in I \times J} (A_i \cup B_j)
\]

Besonders Mutige zeigen für eine durch eine Menge \(A\) indizierte Familie \((X_a)_{a \in A}\) von Teilmengen einer vorgegebenen Menge \(X\) und eine beliebige Abbildung \(g : A \rightarrow J\) in eine weitere Menge \(J\) die Formel

\[
\bigcap_{j \in J} \left(\bigcup_{a \in A: g(a) = j} X_a \right) = \bigcup_{s : J \rightarrow A: s \cdot j = \text{id}} \left(\bigcap_{j \in J} X_{s(j)} \right)
\]

Hier läuft die Vereinigung rechts also über alle Schnitte \(s : J \rightarrow A\) von \(g\). Durch Übergang zu den Komplementen folgert man die Gültigkeit einer analogen Formel, in der \(\bigcup\) und \(\bigcap\) vertauscht sind.

Übung 1.5.14. Seien \(f : X \rightarrow Y\) und \(g : Y \rightarrow Z\) Abbildungen zwischen topologischen Räumen. Ist \(f\) stetig in \(p \in X\) und \(g\) stetig in \(f(p) \in Y\), so ist \(g \circ f\) stetig in \(p\). Hinweis: 1.2.15.
1.6 Induzierte Topologie

1.6.1. Um die Beziehung zu unserem Stetigkeitsbegriff für Abbildungen von einer Teilmenge \(D \subset \mathbb{R}^n \) nach \(\mathbb{R}^m \) zu klären, erklären wir zunächst ein allgemeines Verfahren, das Teilmengen topologischer Räume mit einer Topologie versieht.

Definition 1.6.2. Gegeben ein \(X \supset Y \) ein topologischer Raum mit einer Teilmenge erklärt man die induzierte Topologie oder Spurtopologie auf \(Y \) durch die Vorschrift

\[
U \subset Y \iff \exists V \subset X \text{ mit } U = V \cap Y
\]

In Worten ist also eine Teilmenge von \(Y \) offen für die induzierte Topologie genau dann, wenn sie der Schnitt von \(Y \) mit einer offenen Teilmenge von \(X \) ist. Ab jetzt fassen wir stillschweigend jede Teilmenge \(Y \) eines topologischen Raums \(X \) auf als topologischen Raum mit der induzierten Topologie.

1.6.3. Es ist klar, daß das in 1.6.2 beschriebene Mengensystem auf einer Teilmenge eines topologischen Raums in der Tat eine Topologie auf besagter Teilmenge liefert und daß die Einbettungsabbildung stetig ist.

1.6.4. Wenn wir eine Menge einfach nur „offen“ nennen, so in der Hoffnung, dem Leser sei klar, in Bezug auf welchen größeren Raum \(X \) dies „offen“ gemeint ist. Ist \(X \) ein topologischer Raum und sind \(M \subset Y \subset X \) Teilmengen, so meint \(M \subset Y \), daß \(M \) offen ist als Teilmenge des Raums \(Y \) mit seiner induzierten Topologie.

Beispiel 1.6.5. Gegeben eine Teilmenge \(D \subset \mathbb{R} \) und eine Abbildung \(f : D \to \mathbb{R} \) ist \(f \) stetig an einer Stelle \(p \in D \) im Sinne von genau dann, wenn sie stetig ist bei \(p \) im topologischen Sinne für die auf \(D \) induzierte Topologie. Desgleichen ist unsere Abbildung stetig im Sinne von genau dann, wenn sie stetig ist im topologischen Sinne.

Satz 1.6.6 (Stetigkeit und Urbilder offener Mengen). Eine Abbildung zwischen topologischen Räumen ist stetig genau dann, wenn darunter das Urbild jeder offenen Menge offen ist.

1.6.7. Insbesondere gilt diese Aussage auch für Abbildungen zwischen metrischen Räumen.

Beweis. Sei \(f : X \to Y \) stetig an jeder Stelle \(p \in X \). Gegeben \(U \subset Y \) offen ist ja \(U \) Umgebung eines jeden seiner Punkte. Folglich gibt es für jede Stelle \(p \in f^{-1}(U) \) eine Umgebung \(U'_p \) mit \(f(U'_p) \subset U \). Diese \(U'_p \) können sogar offen gewählt werden, und damit ist \(f^{-1}(U) \) offen als die Vereinigung aller \(U'_p \) mit \(p \in f^{-1}(U) \).

Ist umgekehrt \(p \in X \) gegeben, so gibt es für jede Umgebung \(U \) von \(f(p) \) eine offene, in \(U \) enthaltene Umgebung \(V \) von \(f(p) \), und ist das Urbild jeder offenen
Menge offen und \(U' = f^{-1}(V) \) ist eine Umgebung von \(p \) mit \(f(U') \subset U \). Ist also das Urbild jeder offenen Menge offen, so ist unsere Abbildung auch stetig an jeder Stelle \(p \).

\textbf{Ergänzung 1.6.8.} Entwickelt man die Theorie der topologischen Räume ab initio, so wird man in der Regel die im vorhergehenden Satz enthaltene Charakterisierung wegen ihrer großen Eleganz gleich als Definition der Stetigkeit nehmen. Daß die Verknüpfung stetiger Abbildungen stetig ist, kann man von dieser Definition ausgehend sehr leicht und direkt einsehen, indem man beachtet, daß aus \(f : X \rightarrow Y \) und \(g : Y \rightarrow Z \) stetig folgt \(V \subset Z \Rightarrow g^{-1}(V) \subset Y \Rightarrow f^{-1}(g^{-1}(V)) \subset X \). Da nun gilt \(f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \), ist damit auch \(g \circ f \) stetig.

\textbf{Übungen}

\textbf{Übung 1.6.9.} Man zeige, daß auf einer Teilmenge eines metrischen Raums die Spurtopologie zur metrischen Topologie mit der Topologie zur induzierten Metrik übereinstimmt.

\textbf{Übung 1.6.11.} Eine Teilmenge eines topologischen Raums ist offen genau dann, wenn sie für jeden ihrer Punkte eine Umgebung ist.

\textbf{Übung 1.6.12.} Sei \(X \) ein topologischer Raum und \(U \subset X \) eine offene Teilmenge. So ist eine Teilmenge \(M \subset U \) offen in \(U \) genau dann, wenn sie offen ist in \(X \). In Formeln gilt unter der Voraussetzung \(U \subset X \) für Teilmengen \(M \subset U \) also \(M \subset U \leftrightarrow M \subset X \).

\textbf{Übung 1.6.13 (Universelle Eigenschaft der induzierten Topologie).} Sei \(f : X \rightarrow Y \) eine Abbildung zwischen topologischen Räumen und \(Z \subset Y \) eine Teilmenge mit \(f(X) \subset Z \). So ist \(f \) stetig genau dann, wenn die induzierte Abbildung \(f : X \rightarrow Z \) stetig ist für die auf \(Z \) induzierte Topologie. Analoges gilt für Stetigkeit in einem Punkt.

\section{1.7 Abgeschlossene Teilmengen topologischer Räume}

\textbf{Definition 1.7.1.} Eine Teilmenge \(M \) eines topologischen Raums \(X \) heißt \textbf{abgeschlossen} oder präziser \textbf{abgeschlossen in} \(X \) und wir schreiben in Formeln \(M \subset X \) genau dann, wenn ihr Komplement \(X \setminus M \) offen ist.
1.7.2. Wenn wir eine Menge einfach nur „abgeschlossen“ nennen, so in der Hoffnung, dem Leser sei klar, in Bezug auf welchen größeren Raum X dies „abgeschlossen“ gemeint ist. Ist X ein topologischer Raum und sind $M \subset Y \subset X$ Teilmengen, so meint $M \not\in Y$, daß M abgeschlossen ist als Teilmenge des Raums Y mit seiner induzierten Topologie 1.6.2. Die Terminologie kommt vom Fall metrischer Räume her, in dem die Komplemente offener Mengen nach 1.4.6 gerade diejenigen Teilmengen waren, die „abgeschlossen sind unter dem Bilden von Grenzwerten von Folgen“.

Lemma 1.7.3. Jede endliche Vereinigung und beliebige Schnitte abgeschlossener Mengen sind abgeschlossen.

Beweis. Das folgt mit der Definition einer Topologie sofort aus der Formel

$$X \setminus \bigcap_{M \in \mathcal{M}} M = \bigcup_{M \in \mathcal{M}} (X \setminus M)$$

Diese Formel gilt ganz allgemein für jedes System $\mathcal{M} \subset \mathcal{P}(X)$ von Teilmengen einer Menge X.

Definition 1.7.4. Gegeben ein topologischer Raum X und eine Teilmenge $M \subset X$ gibt es stets eine kleinste abgeschlossene Teilmenge von X, die M umfaßt, nämlich den Schnitt über alle abgeschlossenen Teilmengen von X, die M umfassen. Wir notieren diesen Schnitt $\mathrm{Cl}_X(M) = \mathrm{Cl}(M) = \overline{M}$ und nennen sie den Abschluß von M oder genauer den **Abschluß von M in X**.

1.7.5 (**Diskussion der Notation**). Diese Notation heißt sich mit unserer Notation \mathbb{R} für die erweiterten reellen Zahlen. Ich hoffe, daß der Leser aus dem Kontext erschließen kann, was jeweils gemeint ist. Immerhin ist \mathbb{R} auch der Abschluß von \mathbb{R} in den erweiterten reellen Zahlen mit ihrer Topologie aus 1.5.10.

1.7.6. Eine Abbildung ist stetig genau dann, wenn darunter das Urbild jeder abgeschlossenen Menge abgeschlossen ist: Das folgt unmittelbar aus dem entsprechenden Satz 1.6.6 für offene Mengen, da das Urbild des Komplements einer Menge stets das Komplement ihres Urbilds ist.

Beispiel 1.7.7. Wir geben einen neuen Beweis für die Erhaltung von Ungleichungen im Grenzwert \lim, der zwar nur für reelle Folgen mit reellen Grenzwerten funktioniert, aber dafür viele Möglichkeiten der Verallgemeinerung aufzeigt. Zunächst ist die Menge $H = \{(x, y) \in \mathbb{R}^2 \mid x \leq y\}$ abgeschlossen in \mathbb{R}^2 nach 1.7.6 als Urbild der abgeschlossenen Menge $[0, \infty) \subset \mathbb{R}$ unter der stetigen Abbildung $(x, y) \mapsto y - x$. Ist (x_n, y_n) eine konvergente Folge in H, so liegt mithin auch ihr Grenzwert in H, und das bedeutet gerade die Erhaltung von Ungleichungen im Grenzwert.

26
Proposition 1.7.8. Sei \(f : X \rightarrow Y \) eine Abbildung topologischer Räume.

1. Sei \(\mathcal{U} \) eine offene Überdeckung von \(X \), d.h. ein System offener Teilmengen von \(X \) mit \(X = \bigcup_{U \in \mathcal{U}} U \). So ist \(f \) stetig genau dann, wenn \(f|_U \) stetig ist für alle \(U \in \mathcal{U} \). Etwas vage gesprochen ist demnach Stetigkeit eine lokale Eigenschaft.

2. Sei \(X \) überdeckt von endlich vielen abgeschlossenen Teilmengen von \(X \), in Formeln \(A_1, \ldots, A_n \subseteq \bigcap X \) und \(X = \bigcup_{i=1}^n A_i \). So ist \(f \) stetig genau dann, wenn \(f|_{A_i} \) stetig ist für alle \(i = 1, \ldots, n \).

\[\text{Beweis.} \]

Ist \(f \) stetig, so sind alle \(f|_U \) stetig als Verknüpfung von \(f \) mit der stetigen Inklusion \(U \hookrightarrow X \). Sind andererseits alle \(f|_U \) stetig, so ist für alle \(W \subseteq \bigcap Y \) und alle \(U \in \mathcal{U} \) das Urbild \(f^{-1}(W) \cap U \) offen in \(U \), nach 1.6.12 ist also \(f^{-1}(W) \cap U \) offen in \(X \) als Vereinigung offener Mengen. Mithin ist \(f \) stetig. Teil 2 zeigt man ähnlich: Nach 1.7.6 muß nur gezeigt werden, daß für jede abgeschlossene Teilmenge \(B \varsubsetneq Y \) von \(Y \) ihr Urbild \(f^{-1}(B) \) abgeschlossen ist in \(X \). Da aber gilt \(f^{-1}(B) = f_1^{-1}(B) \cup \ldots \cup f_n^{-1}(B) \) und \(f_i^{-1}(B) \varsubsetneq A_i \) nach Annahme folgt die Proposition aus 1.7.10 und den Definitionen.

Übungen

\[\text{Übung 1.7.9.} \]

Gegeben ein topologischer Raum \(X \) mit einer Teilmenge \(Y \) zeige man: \(A \varsubsetneq Y \iff \exists B \varsubsetneq X \text{ mit } A = B \cap Y \).

\[\text{Übung 1.7.10.} \]

Sei \(X \) ein topologischer Raum und \(A \varsubsetneq X \) eine abgeschlossene Teilmenge. So ist eine Teilmenge \(B \subset A \) abgeschlossen in \(A \) unter der Spurtopologie genau dann, wenn \(B \) abgeschlossen ist in \(X \). In Formeln gilt unter der Voraussetzung \(A \varsubsetneq X \) für Teilmengen \(B \subset A \) also \(B \varsubsetneq A \equiv B \varsubsetneq X \).

\[\text{Übung 1.7.11.} \]

Seien \(X \) ein topologischer Raum und \(Y, Z \) metrische Räume. Man zeige, daß eine Abbildung \((f, g) : X \rightarrow Y \times Z \) stetig ist genau dann, wenn \(f \) und \(g \) stetig sind. Man zeige, daß Produkt und Summe von stetigen reellwertigen Funktionen auf einem topologischen Raum wieder stetig sind.

\[\text{Vorschau 1.7.12.} \]

In ?? werden wir erklären, wie man ganz allgemein das Produkt topologischer Räume so mit einer Topologie versehen kann, daß das Analogon der vorhergehenden Übung auch für beliebige topologische Räume \(Y, Z \) gilt.

1.8 Grenzwerte in topologischen Räumen

\[\text{Definition 1.8.1.} \]

Ein Punkt eines topologischen Raums \(X \) heißt ein Häufungspunkt von \(X \), wenn jede seiner Umgebungen auch noch andere Punkte unseres Raums enthält.
1.8.2. Ein Punkt eines topologischen Raums ist also genau dann ein Häufungspunkt, wenn die nur aus diesem einen Punkt bestehende Teilmenge nicht offen ist. Man kann also gleichbedeutend auch von einem nichtoffenen Punkt reden, aber das vergrößert dann wieder den terminologischen Abstand zu unserer Darstellung der Theorie stetiger Funktionen auf \mathbb{R}.

Ergänzung 1.8.3 (Weitere Terminologie). Gegeben ein topologischer Raum T mit einer Teilmenge $X \subset T$ nennen wir ein Element $t \in T$ einen Häufungspunkt zu X oder ausführlicher einen Häufungspunkt zu X in T, wenn er im Sinne unserer Definition 1.8.1 ein Häufungspunkt des Raums $X \cup \{t\}$ mit seiner induzierten Topologie ist. Manche Autoren erklären zusätzlich die „Häufungspunkte einer Folge in einem topologischen Raum Z“ als die Punkte von Z mit der Eigenschaft, daß in jeder ihrer Umgebungen unendlich viele Folgenglieder liegen.

1.8.4. Ein topologischer Raum heißt Hausdorff oder ein Hausdorff-Raum, wenn in ihm je zwei verschiedene Punkte disjunkte Umgebungen besitzen. Zum Beispiel ist jeder metrische Raum mit seiner metrischen Topologie offensichtlich ein Hausdorffraum.

Satz 1.8.5 (Eindeutigkeit stetiger Fortsetzungen in Häufungspunkten). Seien X, Y topologische Räume, $p \in X$ ein Häufungspunkt und $f : X \setminus p \to Y$ eine Abbildung. Ist Y Hausdorff, so gibt es höchstens eine Fortsetzung von f zu einer Abbildung $\tilde{f} : X \to Y$, die stetig ist bei p.

Beweis. Wäre sonst \hat{f} eine weitere bei p stetige Fortsetzung mit $\hat{f}(p) \neq \tilde{f}(p)$, so fänden wir disjunkte Umgebungen \hat{V} und \tilde{V} dieser beiden Bildpunkte und dazu Umgebungen \hat{U} und \tilde{U} von p mit $\hat{f}(\hat{U}) \subset \hat{V}$ und $\tilde{f}(\tilde{U}) \subset \tilde{V}$. Daraus folgte aber $f(\hat{U} \cap \tilde{U} \setminus p) \subset \hat{V} \cap \tilde{V} = \emptyset$ im Widerspruch dazu, daß die Umgebung $\hat{U} \cap \tilde{U}$ von p nicht nur aus unserem Häufungspunkt p selbst bestehen darf. □

Definition 1.8.6. Seien X, Y topologische Räume mit Y Hausdorff. Seien weiter $p \in X$ ein Häufungspunkt und $f : X \setminus p \to Y$ eine Abbildung. Sei schließlich $b \in Y$ ein Punkt. Wir sagen, $f(x)$ strebt gegen b für $x \to p$ und schreiben

$$\lim_{x \to p} f(x) = b$$

als Abkürzung für die Aussage, daß die Fortsetzung von f zu $\tilde{f} : X \to Y$ durch $\tilde{f}(p) := b$ stetig ist bei p. In diesem Fall nennen wir b den Grenzwert oder lateinisierend Limes der Funktion f für $x \to p$. Nach der Eindeutigkeit stetiger Fortsetzungen 1.8.5 ist dieser Grenzwert eindeutig bestimmt, wenn er existiert.
In einem Hausdorffraum haben je zwei verschiedene Punkte disjunkte Umgebungen.
1.8.7. Salopp gesprochen verhält es sich demnach so, daß eine Abbildung in einen Hausdorffraum mit einer einpunktigen Definitions lücke an einem Häufungspunkt ihres Definitionsbereichs auf höchstens eine Weise stetig in diese Definitions lücke hinein fortgesetzt werden kann. Der Wert dieser an besagter Stelle stetigen Fortsetzung heißt dann der Grenzwert unserer Abbildung an besagter Stelle.

1.8.8. Insbesondere gilt für eine Folge \(\mathbb{N} \to Y, n \mapsto y_n \) in einem Hausdorffraum \(Y \) und einen Punkt \(b \in Y \) in unserer neuen Notation

\[
\lim_{n \to \infty} y_n = b
\]

genau dann, wenn jede Umgebung von \(b \) fast alle Glieder unserer Folge enthält. Wir sagen dann auch, die Folge \(y_n \) strebt gegen \(b \) oder konvergiert gegen \(b \) und nennen \(b \) einen Grenzwert der Folge. Gleichbedeutend können wir ebensogut fordern, daß jede offene Menge, die \(b \) enthält, auch fast alle Glieder unserer Folge enthält. In dieser Weise umfaßt unser Begriff des Grenzwerts für topologische Räume alle bis hierher betrachteten Grenzwertbegriffe.

Übungen

Übung 1.8.11. Konvergiert eine Folge von stetigen Funktionen von einem topologischen Raum in einen metrischen Raum gleichmäßig, so ist auch die Grenzfunktion stetig. Hinweis: Man kopiere den Beweis von ??.

Übung 1.8.12. Genau dann ist \(p \) Häufungspunkt des metrischen Raums \(X \), wenn es eine Folge \(x_n \) in \(X \setminus p \) gibt mit \(\lim_{n \to \infty} x_n = p \).

Übung 1.8.13. Seien \(X \) ein topologischer Raum, \(p \in X \) ein Häufungspunkt und \(f_i : X \setminus p \to Y_i \) Abbildungen in metrische Räume für \(1 \leq i \leq n \). Sei \(Y = Y_1 \times \ldots \times Y_n \) das Produkt und \(f = (f_1, \ldots, f_n) : X \to Y \). So ist \(\lim_{x \to p} f(x) = b \) für \(b = (b_1, \ldots, b_n) \) gleichbedeutend zu \(\lim_{x \to p} f_i(x) = b_i \forall i \).
Übung 1.8.14 (Quetschlemma). Seien X ein topologischer Raum, $p \in X$ ein Häufungspunkt und $f, g, h : X \setminus p \rightarrow \mathbb{R}$ Funktionen mit der Eigenschaft $f(x) \leq g(x) \leq h(x) \quad \forall x \in X \setminus p$. So folgt aus $\lim_{x \to p} f(x) = b = \lim_{x \to p} h(x)$ bereits $\lim_{x \to p} g(x) = b$.

Übung 1.8.15. Im Fall einer Abbildung in einen metrischen Raum mit Metrik d ist $\lim_{x \to p} f(x) = y$ gleichbedeutend zu $\lim_{x \to p} d(f(x), y) = 0$.

1.9 Komplexe Differenzierbarkeit*

Definition 1.9.1. Seien $U \subset \mathbb{C}$ eine Teilmenge und $p \in U$ ein Häufungspunkt. Eine Funktion $f : U \rightarrow \mathbb{C}$ heiße \textbf{komplex differenzierbar bei p mit Ableitung $b \in \mathbb{C}$}, wenn gilt

$$
\lim_{z \to p} \frac{f(z) - f(p)}{z - p} = b
$$

Wir kürzen diese Aussage ab durch $f'(p) = b$.

1.9.2. Der Grenzwert ist hier im Sinne von 1.8.6 zu verstehen. Diese Definition ist fast identisch zu unserer Definition im Reellen?? bis auf das Detail, daß wir überall statt reeller Zahlen komplexe Zahlen betrachten und, wie im Komplexen üblich, die Variable mit z bezeichnen. Den Definitionsparagraphen unserer Funktion haben wir statt mit I hier mit U bezeichnet, weil der meistgebrauchte Fall nicht mehr der eines halboffenen Intervalls, sondern vielmehr der einer offenen Teilmenge der komplexen Zahlenebene ist. Der Fall eines Intervalls $U \subset \mathbb{R}$ wird jedoch auch oft vorkommen. In diesem Fall stimmt die hier definierte Ableitung überein mit der Ableitung im Sinne von ???. Der Rest dieses Abschnitts besteht darin, unsere Resultate zur reellen Differenzierbarkeit mitsamt ihren Beweisen im Komplexen zu wiederholen.

1.9.3. Ich gebe noch einige alternative Formulierungen an. Ist $U \subset \mathbb{C}$ eine Teilmenge und $p \in U$ ein Häufungspunkt, so ist per definitionem eine Funktion $f : U \rightarrow \mathbb{C}$ komplex differenzierbar bei p mit Ableitung $b \in \mathbb{C}$ genau dann, wenn es eine Funktion $\varphi : U \rightarrow \mathbb{C}$ gibt, die stetig ist bei p mit Funktionswert $\varphi(p) = b$ derart, daß für alle $z \in U$ gilt

$$f(z) = f(p) + (z - p)\varphi(z)$$

In anderen nochmals anderen Formeln ist unsere Funktion $f : U \rightarrow \mathbb{C}$ komplex differenzierbar bei p mit Ableitung b genau dann, wenn gilt

$$f(p + h) = f(p) + bh + \varepsilon(h)h$$

für eine Funktion ε, die stetig ist bei Null und die dort den Wert Null annimmt. Hier ist zu verstehen, daß die Funktion ε definiert sein soll auf der Menge aller h
mit \(h + p \in U \). Diese Formulierung hat den Vorteil, daß besonders gut zum Ausdruck kommt, inwiefern für festes \(p \) und kleines \(h \) der Ausdruck \(f(p) + f'(p)h \) eine gute Approximation von \(f(p+h) \) ist. Anschaulich wirkt \(f \) lokal um einen gegebenen Punkt \(p \) in erster Approximation wie eine Drehstreckung mit Zentrum in besagtem Punkt, deren Winkel und Streckfaktor durch \(f'(p) \) beschrieben werden, gefolgt von einer Verschiebung um \(f(p) \).

Beispiele 1.9.4. Eine konstante Funktion auf einer Menge von komplexen Zahlen ist bei jedem Häufungspunkt besagter Menge komplex differenzierbar mit Ableitung Null. Die Funktion \(\text{id} : \mathbb{C} \to \mathbb{C}, z \mapsto z \) hat bei jedem Punkt \(p \) die Ableitung \(\text{id}'(p) = 1 \).

Lemma 1.9.5. Die Funktion \(z \mapsto \frac{1}{z} \) ist komplex differenzierbar bei jedem Punkt von \(\mathbb{C}^\times \) und ihre Ableitung bei einer Stelle \(p \in \mathbb{C}^\times \) ist \(-\frac{1}{p^2} \).

Beweis. Wir rechnen \(\lim_{z \to p} \frac{\frac{1}{z} - \frac{1}{p}}{z - p} = \lim_{z \to p} -\frac{1}{zp} = \frac{1}{p^2} \).

Lemma 1.9.6. Sei \(U \subset \mathbb{C} \) eine Teilmenge. Ist \(p \in U \) ein Häufungspunkt und \(f : U \to \mathbb{C} \) komplex differenzierbar bei \(p \in U \), so ist \(f \) stetig bei \(p \).

Beweis. Das folgt sofort aus 1.9.3.

Proposition 1.9.7. Sei \(U \subset \mathbb{C} \) eine Teilmenge und seien \(f, g : U \to \mathbb{C} \) komplex differenzierbar bei einem Häufungspunkt \(p \in U \). So sind auch die Funktionen \(f + g \) und \(fg \) komplex differenzierbar bei \(p \) und es gilt
\[
(f + g)'(p) = f'(p) + g'(p) \quad \text{und} \quad (fg)'(p) = f'(p)g(p) + f(p)g'(p)
\]

Beweis. Identisch zum Beweis im Reellen nach ??.

Definition 1.9.8. Ist eine Funktion \(f : U \to \mathbb{C} \) definiert auf einer Teilmenge \(U \subset \mathbb{C} \) ohne isolierte Punkte und differenzierbar bei jedem Punkt von \(U \), so nennen wir \(f \) **komplex differenzierbar auf** \(U \) und nennen die Funktion \(f' : U \to \mathbb{C} \), \(p \mapsto f'(p) \) ihre **Ableitung**.

1.9.9. Für die Ableitungen komplex differenzierbarer Funktionen mit gemeinsamem Definitionsgebiet gelten mithin die **Summenregel** und die **Produktregel** oder **Leibniz-Regel**
\[
(f + g)' = f' + g' \quad \text{und} \quad (fg)' = fg' + f'g
\]

Korollar 1.9.10 (Ableiten ganzzahliger Potenzen). Für alle \(n \in \mathbb{Z} \) und unter der Voraussetzung \(z \neq 0 \) im Fall \(n \leq 0 \) ist die Ableitung der Funktion \(z \mapsto z^n \) die Funktion \(z \mapsto nz^{n-1} \).
Beweis. Man zeigt das durch vollständige Induktion über n separat für $n \geq 0$ und $n \leq -1$.

Satz 1.9.11 (Kettenregel). Seien $U, V \subset \mathbb{C}$ Teilmengen und $f : U \to \mathbb{C}$ und $g : V \to \mathbb{C}$ Funktionen und es gelte $f(U) \subset V$. Sei f komplex differenzierbar bei einem Häufungspunkt $p \in U$ und sei $f(p)$ ein Häufungspunkt von V und g komplex differenzierbar bei $f(p)$. So ist $g \circ f : U \to \mathbb{C}$ komplex differenzierbar bei p mit Ableitung

$$(g \circ f)'(p) = g'(f(p)) \cdot f'(p)$$

Beispiel 1.9.12. Wir berechnen für $\lambda, \mu \in \mathbb{C}$ und $m \geq 1$ eine natürliche Zahl die Ableitung der Funktion $\mathbb{R} \to \mathbb{C}$ gegeben durch $f : t \mapsto (t^2 + \lambda t + \mu)^m$ und erhalten mit der Kettenregel $f'(t) = (2t + \lambda)m(t^2 + \lambda t + \mu)^{m-1}$. Schalten wir noch eine differenzierbare Abbildung $t : \mathbb{R} \to \mathbb{R}, \tau \mapsto t(\tau)$ davor, so ergibt sich die Ableitung der zusammengesetzten Funktion wieder mit der Kettenregel zu

$$\frac{df}{d\tau} = \frac{df}{dt} \frac{dt}{d\tau} = (2t(\tau) + \lambda)m(t(\tau)^2 + \lambda t(\tau) + \mu)^{m-1} \frac{dt}{d\tau}$$

Proposition 1.9.13 (Quotientenregel). Sei $U \subset \mathbb{C}$ eine Teilmenge, $f : U \to \mathbb{C}$ eine Funktion ohne Nullstelle und $p \in U$ ein Häufungspunkt.

1. Ist f komplex differenzierbar bei p, so ist auch $z \mapsto 1/f(z)$ komplex differenzierbar bei p und hat dort die Ableitung $-f'(p)/f(p)^2$.

2. Ist zusätzlich $g : U \to \mathbb{C}$ komplex differenzierbar bei p, so ist auch g/f komplex differenzierbar bei p mit Ableitung

$$\left(\frac{g}{f}\right)'(p) = \frac{g'(p)f(p) - g(p)f'(p)}{f(p)^2}$$

Beweis. Teil 1 folgt sofort aus 1.9.5 mit der Kettenregel 1.9.11. Teil 2 folgt aus Teil 1 mit der Produktregel 1.9.7.

Satz 1.9.14 (Ableitung von Umkehrfunktionen). Sei $U \subset \mathbb{C}$ offen und sei $f : U \to \mathbb{C}$ eine stetige Injektion mit offenem Bild und stetiger Umkehrung $f^{-1} : f(U) \to U$. Ist dann f komplex differenzierbar beim Punkt $p \in U$ mit Ableitung $f'(p) \neq 0$, so ist auch die Umkehrfunktion $f^{-1} : f(U) \to \mathbb{C}$ komplex differenzierbar bei $q = f(p)$ mit Ableitung

$$(f^{-1})'(q) = 1/f'(f^{-1}(q))$$
1.9.15. In ?? werden wir zeigen, daß eine injektive komplek

differenzierbare Funktion mit offenen Definitionsbereich stets offenes Bild und eine stetige Um-
kehrung hat. Ein Teil der Bedingungen an unsere Funktion sind also eigentlich
überflüssig und dienen nur dazu, den Beweis zu vereinfachen.

Beweis. Nach unseren Annahmen gibt es eine stetige Funktion ohne Nullstelle
\(\varphi: U \rightarrow \mathbb{C} \) mit \(f(z) - f(p) = (z - p)\varphi(z) \) und \(\varphi(p) = f'(p) \). Setzen wir hier
\(z = f^{-1}(w) \), so ist \(\psi = 1/(\varphi \circ f^{-1}) : f(U) \rightarrow \mathbb{C} \) eine stetige Funktion mit
\((w - q)\psi(w) = f^{-1}(w) - f^{-1}(q) \) und \(\psi(q) = 1/f'(p) \).

Beispiel 1.9.16. Das Quadrieren liefert eine Bijektion zwischen der Halbebene al-
ler komplexen Zahlen mit positivem Realteil und der „geschlitzten Zahlenebene“
\(\mathbb{C} \backslash \mathbb{R}_{\leq 0} \). Die Umkehrfunktion zu dieser Bijektion ist also eine komplex differen-
zierbare Funktion auf der geschlitzten Zahlenebene, die wir \(\sqrt{z} \) notieren und die
nach 1.9.14 differenzierbar ist mit Ableitung \(1/(2\sqrt{z}) \).

Lemma 1.9.17. Die komplexe Exponentialfunktion ist komplex differenzierbar
und stimmt auf der ganzen komplexen Zahlenebene mit ihrer eigenen Ableitung
überein.

Beweis. Der Beweis des reellen Analogons ?? kann wortwörtlich übernommen
werden.

Beispiel 1.9.18. Ist \(U \subseteq \mathbb{C} \) eine offene Teilmenge derart, daß die Exponential-
funktion eine Injektion mit offением Bild \(\exp(U) \subseteq \mathbb{C} \) und stetiger Umkehrfunk-
tion \(\log : \exp(U) \rightarrow \mathbb{C} \) liefert, so nennt man log einen **Zweig des Logarithmus**.

Nach 1.9.14 ist jeder solche Zweig des Logarithmus komplex differenzierbar mit
Ableitung
\[
\log'(q) = \frac{1}{\exp(\log q)} = \frac{1}{q}
\]
Im Spezialfall \(U = \mathbb{R} + (-\pi, \pi)i \) spricht man auch vom **Hauptzweig des Loga-
rithmus**, den wir bereits in ?? eingeführt und sogar noch auf die negative reelle
Achse fortgesetzt hatten, allerdings in nur noch partiell stetiger Weise.

1.9.19. Eine kompleks differenzierbare komplexwertige Funktion, die auf einer
offenen Teilmenge der komplexen Zahlenebene definiert ist, heißt eine **holomor-
phie Funktion.** Die Theorie der holomorphen Funktionen, die sogenannte **Funk-
tionentheorie**, ist grundlegend verschieden von der Theorie der differenzierbaren
reellwertigen Funktionen auf einer offenen Teilmenge der reellen Zahlengerade, die
wir in dieser Vorlesung ausführlich studiert haben. Zum Beispiel ist jede ho-

tomorphe Funktion bereits beliebig oft komplex differenzierbar. Mehr dazu findet
man etwa in ??.
Anschauliche Bedeutung der Ableitung der komplexen Exponentialfunktion
Übungen

Übung 1.9.20. Ein komplexes Polynom hat bei \(\lambda \in \mathbb{C} \) eine mehrfache Nullstelle genau dann, wenn auch seine Ableitung bei \(\lambda \) verschwindet.

Übung 1.9.21. Man zeige, daß für alle \(z \in \mathbb{C} \) mit \(|z| < 1 \) der Hauptzweig des Logarithmus von \(1 + z \) auch dargestellt werden kann durch die Potenzreihe

\[
\log(1 + z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \ldots
\]

Hinweis: Es reicht zu zeigen, daß für alle \(u \in \mathbb{C} \) mit \(|u| = 1 \) das Einsetzen von \(z = ut \) auf beiden Seiten dieselbe Funktion in \(t \in (-1, 1) \) liefert. Beide Seiten nehmen aber bei \(z = 0 \) den Wert Null an, so daß es reicht, die Gleichheit ihrer Ableitungen zu zeigen. Im Rahmen der Funktionentheorie dürfen Sie diese Übung in ?? mit mehr Theorie und weniger Rechnen ein weiteres Mal lösen.
2 Kompaktheit

2.1 Kompakte metrische Räume

Definition 2.1.1. Ein metrischer Raum heißt **kompakt** oder ausführlicher **folgenkompakt**, wenn jede Folge in unserem Raum eine konvergente Teilfolge besitzt.

Vorschau 2.1.2. Wir werden bald sehen, wie sich der Begriff der Kompaktheit im Fall allgemeiner topologischer Räume in die beiden Begriffe „folgenkompakt“ und „überdeckungskompakt“ aufspaltet. Im Fall metrischer Räume fallen zwar beide Begriffe noch zusammen, aber bis zum Beweis dieser Tatsache in 2.5.3 muß man sie auch hier noch auseinanderhalten.

2.1.3. Eine Teilmenge \(A \) eines metrischen Raums nennen wir kompakt oder auch ein **Kompaktum**, wenn sie kompakt ist als metrischer Raum mit der induzierten Metrik, wenn also jede Folge in \(A \) eine Teilfolge besitzt, die **gegen einen Punkt aus \(A \) konvergiert.**

2.1.5. Jeder kompakte metrische Raum ist beschränkt. Ist in der Tat ein Raum nicht beschränkt, so finden wir darin eine Folge \(x_n \) mit \(d(x_0, x_n) \geq n \), und diese Folge kann nach 1.3.8 keine konvergente Teilfolge haben.

Proposition 2.1.6. Jedes endliche Produkt von kompakten metrischen Räumen ist kompakt.

Beweis. Sei \(X = X_1 \times \ldots \times X_n \) mit kompakten \(X_i \). Sei eine Folge in \(X \) gegeben. Da \(X_1 \) kompakt ist, finden wir eine Teilfolge unserer Folge, die in der ersten Koordinate konvergiert. Da auch \(X_2 \) kompakt ist, finden wir von dieser Teilfolge hinwiederum eine Teilfolge, die auch in der zweiten Koordinate konvergiert. Indem wir so weitermachen, finden wir schließlich eine Teilfolge, die in jeder Koordinate konvergiert. Diese Teilfolge konvergiert dann nach 1.3.6 auch in \(X \).

Lemma 2.1.7. Eine kompakte Teilmenge eines metrischen Raums ist stets abgeschlossen.
Beweis. Sei X unser Raum und $A \subset X$ unsere Teilmenge. Ist A nicht abgeschlossen, so gibt es eine Folge in A, die gegen einen Punkt aus $X \setminus A$ konvergiert. Solch eine Folge kann aber unmöglich eine Teilfolge haben, die gegen einen Punkt aus A konvergiert.

Lemma 2.1.8. Eine abgeschlossene Teilmenge eines kompakten metrischen Raums ist stets kompakt.

Beweis. Sei X unser Raum und $A \subset X$ unsere Teilmenge. Jede Folge in A besitzt nach unseren Annahmen eine Teilfolge, die gegen einen Punkt aus X konvergiert. Da A abgeschlossen ist, muß dieser Punkt dann bereits in A liegen.

Satz 2.1.9 (Heine-Borel). Eine Teilmenge des \mathbb{R}^n ist kompakt genau dann, wenn sie beschränkt und abgeschlossen ist.

Beweis. Nach 2.1.5 und 2.1.7 ist eine kompakte Teilmenge eines metrischen Raums stets beschränkt und abgeschlossen. In der anderen Richtung wissen wir schon aus ???, daß für jedes $k \geq 0$ das Intervall $[-k, k]$ kompakt ist. Falls eine Teilmenge $A \subset \mathbb{R}^n$ beschränkt ist, finden wir ein k mit $A \subset [-k, k]^n$. Nach 2.1.6 ist nun $[-k, k]^n$ kompakt, und als abgeschlossene Teilmenge eines kompakten Raums ist nach 2.1.8 dann auch A selbst kompakt.

Beispiel 2.1.10. Die Menge $[0, 1] \cap \mathbb{Q}$ ist abgeschlossen in \mathbb{Q} und beschränkt, ist aber nicht kompakt für die induzierte Metrik.

Proposition 2.1.11. Unter einer stetigen Abbildung metrischer Räume werden Kompakta stets auf Kompakta abgebildet.

Beweis. Sei $f : X \to Y$ unsere stetige Abbildung und $A \subset X$ ein Kompaktum. Ist y_n eine Folge in $f(A)$, so finden wir eine Folge x_n in A mit $f(x_n) = y_n$. Falls A kompakt ist, besitzt die Folge x_n eine Teilfolge x_{n_k}, die gegen einen Punkt $x \in A$ konvergiert. Dann ist y_{n_k} nach 1.3.9 eine Teilfolge der Folge y_n, die gegen einen Punkt von $f(A)$ konvergiert, nämlich gegen $f(x)$.

2.1.13. Ist also in Formeln X ein nichtleerer kompakter Raum und $f : X \to \mathbb{R}$ stetig, so gibt es $p, q \in X$ mit $f(p) \leq f(x) \leq f(q) \ \forall x \in X$.

Beweis. Nach 2.1.11 ist $f(X) \subset \mathbb{R}$ kompakt, also beschränkt und abgeschlossen. Aus $X \neq \emptyset$ folgt weiter $f(X) \neq \emptyset$. Damit besitzt $f(X)$ ein Supremum und Infimum in \mathbb{R}. Da $f(X)$ kompakt, also abgeschlossen ist, folgt $\sup f(X) \in f(X)$ und $\inf f(X) \in f(X)$. Es gibt in anderen Worten $p, q \in X$ mit $\sup f(X) = f(p)$ und $\inf f(X) = f(q)$.
Definition 2.1.14. Eine stetige Abbildung von metrischen Räumen heißt \textit{gleichmäßig stetig} genau dann, wenn es für jedes $\varepsilon > 0$ ein $\delta > 0$ gibt, daß für beliebige Punkte x, y im Definitions bereich gilt
\[d(x, y) < \delta \Rightarrow d(f(x), f(y)) < \varepsilon \]

Satz 2.1.15 (Gleichmäßige Stetigkeit auf Kompakta). Jede stetige Abbildung von einem kompakten metrischen Raum in einen weiteren metrischen Raum ist gleichmäßig stetig.

\textit{Beweis.} Mutatis mutandis zeigt das der Beweis von Satz ??.

Übungen

Übung 2.1.16. Endliche Vereinigungen kompakter Teilmengen eines metrischen Raums sind stets wieder kompakt.

Ergänzende Übung 2.1.17. Ist in einem metrischen Raum eine abzählbare Familie kompakter Teilmengen $(K_n)_{n \in \mathbb{N}}$ gegeben mit leerem Schnitt $\bigcap_{n \in \mathbb{N}} K_n = \emptyset$, so gibt es schon ein N mit $K_0 \cap \ldots \cap K_N = \emptyset$. Das wird verallgemeinert auf den Fall beliebiger Familien in 2.5.11.

Ergänzende Übung 2.1.18. Sei (X, d) ein metrischer Raum, $K \subset X$ kompakt und $A \subset X$ abgeschlossen mit $A \cap K = \emptyset$. So gibt es $\delta > 0$ mit $d(x, y) \geq \delta$ für alle $x \in A, y \in K$. Hinweis: 1.2.23 und 1.4.15.

Ergänzende Übung 2.1.19. Man zeige, daß man auf dem Raum $\text{Ens}(\mathbb{N}, \{W, Z\})$ aller Folgen in der zweielementigen Menge $\{W, Z\}$ eine Metrik erklären kann durch die Vorschrift $d(\omega, \eta) = 2^{-n}$ für $n \in \mathbb{N}$ die kleinste Zahl mit $\omega(n) \neq \eta(n)$, beziehungsweise $d(\omega, \eta) = 0$ falls $\omega = \eta$. Man zeige weiter, daß der so gebildete metrische Raum kompakt ist. Nebenbei bemerkt denke ich bei W an „Wappen“ und bei Z an „Zahl“ und bei der Übung an Anwendungen in der Wahrscheinlichkeits theorie.

2.2 Fundamentalsatz der Algebra

Satz 2.2.1 (Fundamentalsatz der Algebra). \textit{Jedes nicht konstante komplexe Polynom besitzt mindestens eine komplexe Nullstelle.}

2.2.2. Der im folgenden wiedergegebene Beweis von Jean-Robert Argand hat den Vorteil, mit besonders wenigen technischen Hilfsmitteln auszukommen. Einen Überblick über die gängigsten alternativen Beweise mit ihren Stärken und Schwächen gebe ich in ??.
Beweis. Sei \(P \in \mathbb{C}[X] \) unser Polynom. Wir zeigen zunächst, daß es eine Stelle \(p \in \mathbb{C} \) gibt, an der die Funktion \(\mathbb{C} \to \mathbb{R}, z \mapsto |P(z)| \) ihr Minimum annimmt, in Formeln \(|P(z)| \geq |P(p)| \forall z \in \mathbb{C} \). In der Tat, nehmen wir irgendein \(u \in \mathbb{C} \) her, so gibt es offensichtlich \(R \in \mathbb{R} \) derart, daß aus \(|z| \geq R \) folgt \(|P(z)| \geq |P(u)| \).

Als stetige Funktion nimmt aber die Funktion \(z \mapsto |P(z)| \) auf der kompakten Kreisscheibe \(\{ z \mid |z| \leq R \} \) ein Minimum an, sagen wir an der Stelle \(p \), und das muß dann auch das Minimum von \(|P(z)| \) auf ganz \(\mathbb{C} \) sein. Wir zeigen nun \(P(p) = 0 \) durch Widerspruch und müssen dazu nachweisen: Ist \(p \in \mathbb{C} \) gegeben mit \(P(p) \neq 0 \), so nimmt die Funktion \(z \mapsto |P(z)| \) bei \(p \) nicht ihr Minimum an. Sei dazu erst einmal \(p \in \mathbb{C} \) beliebig. Entwickeln wir \(P(p+w) \) nach Potenzen von \(w \), so erhalten wir

\[
P(p+w) = P(p) + bw^m + w^{m+1}Q(w)
\]

mit \(b \neq 0 \), \(m \geq 1 \) (da \(P \) nicht konstant ist) und einem geeigneten Polynom \(Q \). Nach \(\square \) finden wir \(q \in \mathbb{C} \) mit \(P(p) + bq^m = 0 \) und sind fertig, sobald wir zeigen können, daß unter der Annahme \(P(p) \neq 0 \) für hinreichend kleine \(t > 0 \) gilt

\[
|P(p+tq)| < |P(p)|
\]

Das ist klar im Fall \(Q = 0 \) und wir müssen nur noch erklären, warum die Terme der Ordnung > \(m \) diese Ungleichung für kleines \(t \) nicht zerstören können. Wir betrachten dazu die Abbildung \(\mathbb{R} \to \mathbb{C}, t \mapsto P(p+tq) \) und erhalten

\[
P(p+tq) = P(p) - t^m P(p) + t^{m+1} \tilde{Q}(t)
\]

für ein geeignetes Polynom \(\tilde{Q} \), also

\[
|P(p+tq)| \leq (1 - t^m)|P(p)| + t^m|t \tilde{Q}(t)| \quad \text{für } t \in [0, 1]
\]

Gilt nun \(P(p) \neq 0 \) und wählen wir \(t \in (0, 1) \) hinreichend klein für die Ungleichung \(|t \tilde{Q}(t)| < |P(p)| \), so folgt \(|P(p+tq)| < |P(p)| \) und wir sind fertig. \(\square \)

2.3 Affine Räume*

2.3.1. Dieser Abschnitt ist ein Auszug aus Abschnitt ?? der linearen Algebra. Ich habe ihn hier nur eingefügt, um Unklarheiten zu vermeiden, was die im weiteren verwendeten Notationen und Begriffsbildungen angeht.

Definition 2.3.2. Ein affiner Raum oder kurz Raum über einem Körper \(k \) ist ein Tripel

\[
E = (E, \vec{E}, a)
\]
bestehend aus einer nichtleeren Menge E, einer abelschen Gruppe $\vec{E} \subset \text{Ens} \times E$ von Permutationen von E, von der man fordert, daß für alle $p \in E$ das Anwenden auf p eine Bijektion $\vec{E} \to E$ besagter Gruppe mit unserem Raum liefert, sowie einer Abbildung $a : k \times \vec{E} \to \vec{E}$, die die abelsche Gruppe \vec{E} zu einem k-Vektorraum macht. Die Elemente von \vec{E} heißen die Translationen oder Richtungsvektoren unseres affinen Raums und den Vektorraum \vec{E} selbst nennen wir den Richtungsraum unseres affinen Raums E. Die Operation von k auf \vec{E} mag man die Reskalierung von Translationen nennen. Unter der Dimension unseres affinen Raums verstehen wir die Dimension seines Richtungsraums. Das Resultat der Operation von $\vec{v} \in \vec{E}$ auf $p \in E$ notieren wir $\vec{v} + p := \vec{v}(p)$ oder manchmal auch $p + \vec{v}$.

2.3.3 (Diskussion der Notation). Die eben eingeführte Notation für den Richtungsraum eines affinen Raums steht in Konflikt mit der Notation aus ??, nach der mit Pfeilen versehene Mannigfaltigkeiten orientierte Mannigfaltigkeiten andeuten sollen. Was jeweils gemeint ist, muß der Leser aus dem Kontext erschließen.

2.3.4. Ist E ein affiner Raum, so liefert nach Annahme für jedes $p \in E$ die Operation eine Bijektion $\vec{E} \to E$, $\vec{u} \mapsto \vec{u} + p$ und es gilt $0 + p = p$ sowie $\vec{u} + (\vec{v} + p) = (\vec{u} + \vec{v}) + p$ für alle $\vec{u}, \vec{v} \in \vec{E}$ und $p \in E$. Flapsig gesprochen ist also ein affiner Raum ein „Vektorraum, bei dem man den Ursprung vergessen hat“. Gegeben $p, q \in E$ definieren wir $p - q$ als den Richtungsvektor $\vec{u} \in \vec{E}$ mit $p = \vec{u} + q$.

2.3.5 (Vektorräume als affine Räume). Jeder Vektorraum V kann als ein affiner Raum aufgefaßt werden, indem wir als Translationen die durch die Addition von festen Vektoren gegebenen Abbildungen nehmen, so daß unsere Gruppe von Translationen das Bild des injektiven Gruppenhomomorphismus $V \to \text{Ens} \times (V)$, $v \mapsto (v+)$ wird, und die Reskalierung von Translationen dadurch erklären, daß dieser Gruppenhomomorphismus einen Vektorraumisomorphismus auf sein Bild liefern soll. Insbesondere erhalten wir damit eine kanonische Identifikation

$$\text{trans} : V \cong \vec{V}$$

Beispiel 2.3.6. Es scheint mir besonders sinnfällig, den uns umgebenden Raum mathematisch als dreidimensionalen reellen affinen Raum zu modellieren: Hierbei denkt man sich \vec{E} als die Gruppe aller „Parallelverschiebungen“. Ähnlich mag man die Zeit modellieren als einen eindimensionalen reellen affinen Raum. Die leere Menge kann in meinen Konventionen nie ein affiner Raum sein, es gibt hierzu jedoch auch andere Konventionen.

Definition 2.3.8. Eine Abbildung $\varphi : E \to E'$ zwischen affinen Räumen heißt eine affine Abbildung genau dann, wenn es eine lineare Abbildung zwischen den zugehörigen Richtungsräumen $\vec{\varphi} : \vec{E} \to \vec{E}'$ gibt mit

$$\varphi(p) - \varphi(q) = \vec{\varphi}(p - q) \quad \forall p, q \in E$$

Diese lineare Abbildung $\vec{\varphi}$ ist dann durch φ eindeutig bestimmt und heißt der lineare Anteil unserer affinen Abbildung.

2.4 Normierte Räume

2.4.1. Unter einem reellen Vektorraum beziehungsweise einem reellen Raum verstehen wir einen Vektorraum beziehungsweise einen affinen Raum über dem Körper der reellen Zahlen. Wollen wir einen reellen Vektorraum beziehungsweise affinen Raum mit einer Metrik versehen, so reicht es, wenn wir jedem seiner Vektoren beziehungsweise Richtungsräumen in geeigneter Weise eine „Länge“ zuordnen. Einen solchen abstrakten Längenbegriff für die Vektoren eines Vektorraums nennt man eine „Norm“. Die Details folgen.

Definition 2.4.2. Sei V ein reeller Vektorraum. Eine Norm auf V ist eine Abbildung $\| \, \| : V \to \mathbb{R}_{\geq 0}$, $v \mapsto \|v\|$ derart, daß gilt:

1. $\|\lambda v\| = |\lambda| \cdot \|v\| \quad \forall v \in V, \lambda \in \mathbb{R}$;
2. $\|v\| = 0 \iff v = 0$;
3. $\|v + w\| \leq \|v\| + \|w\| \quad \forall v, w \in V$.

Unter einem normierten Vektorraum versteht man ein Paar $(V, \| \, \|)$ bestehend aus einem Vektorraum V und einer Norm $\| \, \|$ auf V. Fordert man nur die erste und dritte Bedingung, so spricht man von einer Halbnorm.

Ergänzung 2.4.3. Für Leser, die schon mit komplexen Zahlen vertraut sind, sei noch erwähnt, daß man von einer Norm auf einem komplexen Vektorraum stärker fordert, daß die erste Bedingung sogar für alle $\lambda \in \mathbb{C}$ gelten soll, wobei $|\lambda|$ als die „Norm der komplexen Zahl λ“ im Sinne von ?? zu verstehen ist.
2.4.4. Jeder normierte Vektorraum wird ein metrischer Raum vermittels der **durch die Norm induzierten Metrik**

\[d(v, w) = \|v - w\| \]

Zum Beispiel gehört unser Betragsabstand auf dem \(\mathbb{R}^n \) zur Maximumsnorm. Wir dürfen damit in normierten Vektorräumen über Stetigkeit und Konvergenz von Folgen reden. Allgemeiner verstehen wir unter einem **normierten affinen Raum** einen reellen oder komplexen affinen Raum im Sinne von 2.3.2, dessen Richtungsraum mit einer Norm versehen ist. Auch jeder normierte affine Raum trägt eine natürliche Metrik, die durch dieselbe Formel beschrieben wird. Reden wir ohne nähere Spezifikation von einem **normierten Raum**, so meinen wir einen normierten affinen Raum. Leser, die mit dem Begriff eines affinen Raums noch nicht vertraut sind, möge sich aber auch einen normierten Vektorraum denken.

Beispiel 2.4.5. Mit \(v \mapsto \|v\| \) ist auch \(v \mapsto \alpha\|v\| \) eine Norm, für jedes \(\alpha > 0 \). Auf dem Nullraum gibt es nur eine Norm, die eben den Nullvektor auf Null wirft.

Beispiel 2.4.6. Auf dem \(\mathbb{R}^n \) definiert man die **Skalarproduktnorm** eines Vektors \(v = (v_1, \ldots, v_n) \) durch \(\|v\| = \|v\|_2 = \sqrt{\langle v, v \rangle} = \sqrt{v_1^2 + \ldots + v_n^2} \). Wie man formal zeigt, daß das tatsächlich eine Norm ist, diskutieren wir in ??.

Beispiel 2.4.7. Auf dem \(\mathbb{R}^n \) für \(n > 0 \) definiert man die **Maximumsnorm** von \(v = (v_1, \ldots, v_n) \) durch \(|v| = \|v\|_\infty = \max(|v_1|, \ldots, |v_n|) \). Auf dem Raum \(V = \text{Ens}^b(D, \mathbb{R}) \) aller beschränkten reellwertigen Funktionen auf einer Menge \(D \) haben wir die Supremumsnorm, gegeben für \(D \neq \emptyset \) durch

\[\|f\|_\infty = \text{sup}\{|f(x)| \mid x \in D\} \]

und im Fall \(D = \emptyset \) als die einzige mögliche Norm auf dem Nullraum. Für eine endliche Menge \(D \) mit \(n \) Punkten erhalten wir unsere Maximumsnorm auf dem \(\mathbb{R}^n \) als Spezialfall der Supremumsnorm. Noch allgemeiner definieren wir für jeden normierten Vektorraum \((W, \|\|) \) auf dem Raum \(V = \text{Ens}^b(D, W) \) aller beschränkten Abbildungen von \(D \) nach \(W \) die Supremumsnorm durch \(\|f\|_\infty = \text{sup}\{|f(x)| \mid x \in D\} \) im Fall \(D \neq \emptyset \) und im Fall \(D = \emptyset \) als die einzige mögliche Norm auf dem Nullraum. Die zu unserer Supremumsnorm gehörige Metrik ist in allen diesen Fällen die Metrik der gleichmäßigen Konvergenz.

Beispiel 2.4.8. Sind \(V_1, \ldots, V_n \) normierte Vektorräume, so erklären wir auf ihrem Produkt \(V_1 \times \ldots \times V_n \) die **Produktnorm** durch die Vorschrift \(\|(v_1, \ldots, v_n)\| = \sup \|v_i\| \) im Fall \(n > 0 \) und als die einzige Norm auf dem Nullraum im Fall \(n = 0 \). Offensichtlich induziert die Produktnorm die Produktmetrik.

Satz 2.4.9 (Stetigkeit linearer Abbildungen). Eine **lineare Abbildung zwischen normierten Vektorräumen** \(f : V \rightarrow W \) ist stetig genau dann, wenn es eine Konstante \(C \geq 0 \) gibt mit

\[\|f(v)\| \leq C\|v\| \quad \forall v \in V \]
2.4.10. Wir werden in 2.4.13 sehen, daß lineare Abbildungen zwischen endlichdimensionalen normierten reellen Vektorräumen immer stetig sind. Sie werden in 2.4.26 sogar folgern, daß lineare Abbildungen von einem endlichdimensionalen normierten reellen Vektorraum in einen beliebigen weiteren normierten reellen Vektorraum immer stetig sind.

Beweis. Ist \(f \) stetig, so gibt es \(\delta > 0 \) mit \(\|v - 0\| \leq \delta \Rightarrow \|f(v) - f(0)\| \leq 1 \). Setzen wir \(C = 1/\delta \), so folgt \(\|f(v)\| \leq C\|v\| \) zunächst für alle Vektoren \(v \) der Norm \(\|v\| = \delta \) und dann durch Multiplikation mit Skalaren für alle \(v \in V \). Gibt es umgekehrt ein \(C > 0 \) mit \(\|f(v)\| \leq C\|v\| \) \(\forall v \in V \), so finden wir für alle \(\varepsilon > 0 \) ein \(\delta = \varepsilon/C > 0 \) so daß gilt

\[
\|v - w\| \leq \delta \Rightarrow \|f(v) - f(w)\| = \|f(v - w)\| \leq C\delta = \varepsilon
\]

Definition 2.4.11. Zwei Normen \(|| \), \(|| \) auf einem reellen Vektorraum \(V \) heißen äquivalent, wenn es positive Konstanten \(c, C > 0 \) gibt mit

\[
\|v\| \leq C|v| \quad \text{und} \quad |v| \leq c\|v\| \quad \forall v \in V
\]

Satz 2.4.12 (Äquivalenz von Normen). Auf einem endlichdimensionalen reellen Vektorraum sind je zwei Normen äquivalent.

Beweis. Wir dürfen ohne Beschränkung der Allgemeinheit annehmen, daß \(V \) der \(\mathbb{R}^n \) ist mit \(n \geq 1 \) und daß eine unserer Normen die Maximumsnorm \(|v| \) ist. Sei \(\| \| \) eine zweite Norm. Bezeichnet \(e_1, \ldots, e_n \) die Standardbasis des \(\mathbb{R}^n \) und ist \(v = v_1e_1 + \ldots + v_ne_n \), so haben wir

\[
\|v\| = \|v_1e_1 + \ldots + v_ne_n\| \\
\leq |v_1| \cdot \|e_1\| + \ldots + |v_n| \cdot \|e_n\| \\
\leq |v| \cdot C
\]

mit \(C = \|e_1\| + \ldots + \|e_n\| \). Insbesondere folgern wir, daß \(\| \| : \mathbb{R}^n \rightarrow \mathbb{R} \) eine \(\| \| \)-stetige Abbildung ist, also stetig für die durch die Maximumsnorm \(|\| \) gegebene Metrik auf \(\mathbb{R}^n \), denn aus \(d(x, y) = |x - y| < \varepsilon/C \) folgt \(||x|| - ||y|| \leq ||x - y|| < \varepsilon. \)

Nun ist aber die Oberfläche

\[
F := \{v \in \mathbb{R}^n \mid |v| = 1\}
\]

des Hyperkusus \(|\| \)-kompakt nach 2.1.9 und nicht leer falls gilt \(n \geq 1 \). Nach 2.1.12 nimmt folglich die Funktion \(|| \| \) auf \(F \) ein Minimum \(a \) an, und da \(F \) nicht den Nullvektor enthält, ist dies Minimum notwendig positiv, \(a > 0 \). Wir folgern zunächst einmal \(a|v| \leq \|v\| \) für alle \(v \in F \). Dann gilt aber natürlich auch \(a|\lambda v| \leq \|\lambda v\| \) für alle \(\lambda \in \mathbb{R} \) und \(v \in F \), also \(a|w| \leq ||w|| \) \(\forall w \in \mathbb{R}^n \). Mit \(c = 1/a \) gilt also \(|w| \leq c||w|| \) \(\forall w \in \mathbb{R}^n \). \(\Box \)
Illustration zur Äquivalenz von Normen am Beispiel der Betragsnorm und der Skalarprodukt norm auf dem \mathbb{R}^2.
Variante zum Schluß des vorhergehenden Beweises. Statt mit Kompaktheit zu argumentieren, kann man hier alternativ auch mit Induktion über n und „Vollständigkeit“ argumentieren, wenn man denn diesen Begriff bereits kennt. Die Argumentation verläuft dann wie folgt: Wir betrachten die affinen Hyperebenen $H_i = \{ x \mid x_i = 1 \}$. Aus der Induktionsannahme können wir durch Widerspruch folgen, daß es positive Konstanten $a_i > 0$ gibt mit

$$a_i \leq \| w \| \quad \forall w \in H_i$$

In der Tat gäbe es sonst in H_i eine Folge w_ν mit $\| w_\nu \| \to 0$ für $\nu \to \infty$. Diese Folge wäre im Sinne von ?? eine Cauchy-Folge für die von $\| \| \cdot \| \|$ auf H_i induzierte Metrik. Dann wäre sie aber wegen der Äquivalenz der Normen nach der Induktionsannahme auch eine Cauchy-Folge für die von der Maximumsnorm $\| \cdot \|$ auf H_i induzierte Metrik und müßte nach ?? konvergieren gegen einen Punkt $w \in H_i$ mit $\| w \| = 0$. Widerspruch! Nun gibt es für $v \in \mathbb{R}^n \setminus \{0\}$ stets $\lambda \in \mathbb{R}$ mit $|\lambda| = |v|$ derart, daß $\lambda^{-1} v$ in einer der affinen Hyperebenen H_i liegt. Mit $a = \inf(a_i)$ folgt $a \leq \| \lambda^{-1} v \|$ und $|v| \leq c \| v \|$ für $c = 1/a$.

Korollar 2.4.13. Jede lineare Abbildung zwischen endlichdimensionalen normierten reellen Vektorräumen ist stetig.

Beweis. Jeder Vektorraumisomorphismus zwischen endlichdimensionalen normierten reellen Vektorräumen ist stetig nach dem Satz über die Äquivalenz von Normen 2.4.12 und dem Kriterium für die Stetigkeit linearer Abbildungen 2.4.9. So können wir uns beim Beweis des Korollars auf den Fall 1.2.28 linearer Abbildungen $\mathbb{R}^n \to \mathbb{R}^m$ zurückziehen.

2.4.14. Wir nennen eine Teilmenge eines endlichdimensionalen reellen Raums offen, wenn sie offen ist für die von irgendeiner Norm auf seinem Richtungsraum induzierte Metrik. Nach unserem Satz 2.4.12 über die Äquivalenz von Normen ist sie dann notwendig offen für jede von einer Norm induzierte Metrik. Die so erklärten offenen Teilmengen bilden die sogenannte natürliche Topologie auf unserem endlichdimensionalen reellen Raum.

Definition 2.4.15. Ist $f : V \to W$ eine stetige lineare Abbildung normierter Vektorräume, so heißt die kleinste mögliche Konstante $C \geq 0$ wie in 2.4.9 auch die Operatornorm $\| f \|$ von f, in Formeln

$$\| f \| = \sup\{ \| f(v) \| \mid \| v \| \leq 1 \}$$

2.4.16. Die stetigen linearen Abbildungen zwischen normierten Vektorräumen V, W nennt man auch beschränkte Operatoren, da sie nach 2.4.9 genau die linearen Abbildungen sind, die den Einheitsball auf eine beschränkte Menge abbilden. Ich notiere die Menge aller stetigen linearen Abbildungen $\mathcal{B}(V, W)$ oder
auch $\mathcal{B}_\mathbb{R}(V, W)$, wenn ich besonders betonen will, daß reell-lineare Abbildungen gemeint sind und nicht etwa „komplex-lineare“ Abbildungen, wie wir sie später für gewöhnlich betrachten werden. Ich werde die Notation \mathcal{B} benutzen, die Terminologie jedoch vermeiden und nach Möglichkeit von stetigen Operatoren reden, da diese ja keineswegs beschränkte Abbildungen im Sinne von 1.3.3 zu sein brauchen.

Übungen

Übung 2.4.17. Für je zwei Vektoren v, w eines normierten Vektorraums gilt $\|v + w\| \geq \|v\| - \|w\|$.

Übung 2.4.18. Gegeben ein normierter Vektorraum $(V, \|\|)$ sind die folgenden Abbildungen stetig: Die Norm $\|\| : V \rightarrow \mathbb{R}$, die Addition $V \times V \rightarrow V$, und die Multiplikation mit Skalaren $\mathbb{R} \times V \rightarrow V$. Ist unsere Norm die Skalarprodukt-norm zu einem Skalarprodukt $V \times V \rightarrow \mathbb{R}$, so ist auch dies Skalarprodukt stetig. Leser, die bereits mit komplexen Zahlen vertraut sind, zeigen Analoges auch für komplexe Vektorräume.

Übung 2.4.19 (Gruppenwege in normierten Vektorräumen). Die stetigen Gruppenhomomorphismen von der additive Gruppe der reellen Zahlen in einen normierten Vektorraum sind genau die linearen Abbildungen. Hinweis: ??.

Ergänzende Übung 2.4.20. In einem normierten reellen Vektorraum ist jede nicht-leere offene Teilmengen bereits ein Erzeugendensystem.

Übung 2.4.21. Man zeige: Jede stetige lineare Abbildung zwischen normierten Vektorräumen ist gleichmäßig stetig.

Übung 2.4.22. Die Menge aller stetigen reellwertigen Funktionen auf einem Raum X notiere ich $C(X, \mathbb{R})$. Das C steht hier für englisch „continuous“ und französisch „continu“. Man zeige: Versehen wir die Menge $C([a, b], \mathbb{R})$ aller stetigen reellwertigen Funktionen auf einem kompakten reellen Intervall $[a, b]$ mit der Supremumsnorm, so wird das Integral $f \mapsto \int_a^b f(t)dt$ eine stetige Abbildung $C([a, b], \mathbb{R}) \rightarrow \mathbb{R}$.

Übung 2.4.23. Bezeichnet $C^1([a, b], \mathbb{R}) \subset C([a, b], \mathbb{R})$ den Teilraum der einmal stetig differenzierbaren Funktionen, so ist das Ableiten $f \mapsto f'$ keine stetige Abbildung $C^1([a, b], \mathbb{R}) \rightarrow C([a, b], \mathbb{R})$.

Übung 2.4.24. Seien U, V, W normierte Vektorräume. Eine bilineare Abbildung $F : U \times V \rightarrow W$ ist stetig genau dann, wenn es eine Konstante $C > 0$ gibt mit $\|F(u, v)\| \leq C\|u\|\|v\|$. Man formuliere und beweise die analoge Aussage auch für multilineare Abbildungen.

Übung 2.4.25. Gegeben eine Menge D und ein normierter Vektorraum V erläutere man auf dem Raum $\text{Ens}^b(D, V)$ der beschränkten Abbildungen $D \rightarrow V$ eine
Norm derart, daß die zugehörige Metrik die Metrik der gleichmäßigen Konvergenz aus 1.3.4 wird.

Übung 2.4.26. Jede lineare Abbildung von einem endlichdimensionalen Vektorraum in einen normierten Vektorraum W ist stetig. Sind allgemeiner endlichdimensionale Vektorräume V_1, \ldots, V_n gegeben, so ist jede multilineare Abbildung $V_1 \times \ldots \times V_n \to W$ stetig. Hinweis: Das Bild liegt immer in einem endlichdimensionalen Teilraum. Man erinnere 2.4.13 und 1.2.28.

Übung 2.4.27. Sind $f : V \to W$ und $g : W \to X$ stetige Abbildungen zwischen normierten Vektorräumen, so gilt $\| g \circ f \| \leq \| g \| \| f \|$.

Übung 2.4.28. Man zeige: Der Raum $B(V, W)$ aller stetigen linearen Abbildungen zwischen normierten Vektorräumen V, W ist ein Untervektorraum im Raum $\text{Hom}(V, W)$ aller linearen Abbildungen von V nach W, und die in 2.4.15 eingeführte Abbildung $f \mapsto \| f \|$ ist eine Norm auf $B(V, W)$.

Ergänzende Übung 2.4.29. Sind normierte Vektorräume V_1, \ldots, V_n und W gegeben und ist $f : V_1 \times \ldots \times V_n \to W$ eine stetige multilineare Abbildung, so heißt die kleinste mögliche Konstante $C \geq 0$ wie in 2.4.24 die *Norm* von f und wird notiert

$$\| f \| := \sup \{ \| f(v_1, \ldots, v_n) \| \mid \| v_i \| \leq 1 \}$$

Man zeige, daß wir so eine Norm auf dem Vektorraum $B(V_1, \ldots, V_n; W)$ aller stetigen multilinearen Abbildungen erhalten. Weiter zeige man: Die offensichtliche Abbildung liefert einen Isomorphismus von normierten Räumen

$$B(V_1, B(V_2, \ldots, V_n; W)) \cong B(V_1, \ldots, V_n; W)$$

Übung 2.4.30. Seien V ein komplexer Vektorraum und $\| \|$ eine Norm als reeller Vektorraum, also $\| \lambda v \| = | \lambda | \| v \|$ $\forall \lambda \in \mathbb{R}$. Wir nehmen an, daß die Multiplikation mit komplexen Skalaren $\mathbb{C} \times V \to V$ stetig ist. Man zeige, daß wir dann mit dem Supremum über komplexen Zahlen α auf dem Einheitskreis $\| v \|_c := \sup_{| \alpha | = 1} \| \alpha v \|$ eine Norm $\| \|_c$ auf V als komplexer Vektorraum erhalten, und daß diese Norm äquivalent ist zu unserer ursprünglichen Norm.

2.5 Überdeckungen kompakter metrischer Räume

Definition 2.5.1. Sei X eine Menge. Unter einer Überdeckung von X versteht man ein System $\mathcal{U} \subset \mathcal{P}(X)$ von Teilmengen von X mit Vereinigung X, in Formeln ausgedrückt $X = \bigcup_{U \in \mathcal{U}} U$. Unter einer Teilüberdeckung einer Überdeckung \mathcal{U} versteht man ein Teilsystem $\mathcal{V} \subset \mathcal{U}$, das auch selbst schon eine Überdeckung ist.
Eine Überdeckung eines Quadrats durch vier Kreisscheiben
Definition 2.5.2. Unter einer offenen Überdeckung eines metrischen Raums oder allgemeiner eines topologischen Raums versteht man eine Überdeckung, die aus offenen Teilmengen besteht.

Satz 2.5.3 (Kompaktheit und offene Mengen). Ein metrischer Raum ist folgenkompakt genau dann, wenn jede offene Überdeckung unseres Raums eine endliche Teilüberdeckung besitzt.

2.5.4. Ich hoffe, daß Sie im weiteren Verlauf dieser Vorlesung noch sehen werden, wie wichtig diese Charakterisierung der Kompaktheit ist. Im Kontext topologischer Räume wird Satz 2.5.3 sogar die Definition der Kompaktheit. Sie ist so wichtig, daß ich sie nicht im Fließtext verstecken will. Eine ausführlichere Diskussion des Begriffs geben wir in ?? und sehr ähnlich auch in 3.5.

Definition 2.5.5. Ein topologischer Raum heißt kompakt und manchmal auch ausführlicher überdeckungskompakt, wenn jede offene Überdeckung unseres Raums eine endliche Teilüberdeckung besitzt.

2.5.6. In dieser Terminologie besagt unser Satz 2.5.3, daß ein metrischer Raum genau dann folgenkompakt ist, wenn er überdeckungskompakt ist.

2.5.7 (Diskussion der Terminologie). Nennen wir einen topologischen Raum kompakt, so meinen wir a priori überdeckungskompakt. Topologische Räume mit der Eigenschaft, daß jede Folge eine konvergente Teilfolge besitzt, heißen dahingegen folgenkompakt. In der französischen Literatur ist eine abweichende Terminologie üblich: Unsere überdeckungskompakten oder kurz kompakten topologischen Räume heißen dort quasikompakt, und „kompakt“ meint dort „überdeckungskompakt und Hausdorff“.

Ergänzung 2.5.8. Ein Beispiel für einen folgenkompakten aber nicht überdeckungskompakten topologischen Raum finden Sie in ?? oder ?? . Besitzt ein überdeckungskompakter topologischer Raum die zusätzliche Eigenschaft, daß man für jeden seiner Punkte eine Folge von Umgebungen derart finden kann, daß jede seiner Umgebungen mindestens eine Umgebung dieser Folge umfaßt, so ist er auch folgenkompakt mit demselben Argument, wie wir es im Beweis des Satzes verwenden.

Beweis von Satz 2.5.3. Sei X ein metrischer Raum. Ist X nicht folgenkompakt, so finden wir in X eine Folge ohne konvergente Teilfolge. Dann besitzt jeder Punkt von X eine offene Umgebung, die nur endlich viele Folgenglieder enthält, und alle diese offenen Umgebungen bilden eine offene Überdeckung von X ohne endliche Teilüberdeckung. Das zeigt die eine Richtung. Den Beweis der anderen Richtung beginnen wir mit einem Lemma, das auch für sich genommen oft hilfreich ist.
Lemma 2.5.9 (Überdeckungssatz von Lebesgue). Ist X ein folgenkompakter metrischer Raum und U eine offene Überdeckung von X, so gibt es ein $\varepsilon > 0$ derart, daß für alle Punkte $x \in X$ der ε-Ball $B(x; \varepsilon)$ um x ganz in einer der überdeckenden offenen Mengen $U \in U$ enthalten ist.

Erster Beweis. Gäbe es kein solches $\varepsilon > 0$, so könnten wir für jedes $n \in \mathbb{N}_{\geq 1}$ einen Punkt $x_n \in X$ finden derart, daß $B(x_n; 1/n)$ in keinem $U \in U$ enthalten wäre. Durch Übergang zu einer Teilfolge könnten wir ohne Beschränkung der Allgemeinheit zusätzlich annehmen, daß die Folge der x_n konvergiert, etwa gegen $x \in X$. Nun finden wir jedoch ein $U \in U$ mit $x \in U$ und dazu $\rho > 0$ mit $B(x; \rho) \subset U$ und dazu N mit $d(x_N, x) < \rho/2$ und $1/N < \rho/2$, und dann gälte $B(x_N; 1/N) \subset B(x; \rho/2) \subset B(x; \rho) \subset U$ im Widerspruch zur Wahl der x_n.

Zweiter Beweis. Man betrachte die Funktion $f : X \to \mathbb{R}_{>0}$ gegeben durch die Vorschrift

$$f(x) := \sup\{r \leq 1 \mid \text{Es gibt } U \in U \text{ mit } B(x; r) \subset U\}$$

Die Dreiecksungleichung liefert $|f(x) - f(y)| \leq d(x, y)$, insbesondere ist f stetig. Sicher dürfen wir $X \neq \emptyset$ annehmen. Dann nimmt f nach 2.1.12 sein Minimum an und jede positive Zahl echt unterhalb dieses Minimums ist ein mögliches ε.

Um die andere Implikation im Satz zu zeigen sei nun X folgenkompakt und U eine offene Überdeckung von X. Es gilt zu zeigen, daß sie eine endliche Teilüberdeckung besitzt. Wählen wir zu unserer Überdeckung U ein ε wie im Überdeckungssatz 2.5.9, so reicht es auch zu zeigen, daß es eine endliche Teilmenge $E \subset X$ gibt mit

$$X = \bigcup_{x \in E} B(x; \varepsilon)$$

In der Tat liegt ja der ε-Ball $B(x; \varepsilon)$ um ein beliebiges $x \in X$ nach Wahl von ε schon in einem der $U \in U$. Gibe es aber für ein $\varepsilon > 0$ keine endliche Überdeckung von X durch ε-Bälle, so könnten wir induktiv eine Folge $(x_n)_{n \in \mathbb{N}}$ konstruieren mit $x_n \notin \bigcup_{0 \leq \nu < n} B(x_{\nu}; \varepsilon)$ für alle n, also $d(x_n, x_m) \geq \varepsilon$ für $n \neq m$, und diese Folge könnte keine konvergente Teilfolge haben, im Widerspruch zur Annahme.

2.5.10. Sei X eine Menge. Unter einer Überdeckung einer Teilmenge $Y \subset X$ durch Teilmengen von X versteht man ein Mengensystem $U \subset \mathcal{P}(X)$ mit $Y \subset \bigcup_{U \in U} U$. Nach unseren Definitionen ist eine Teilmenge Y eines topologischen Raums X kompakt für die induzierte Topologie genau dann, wenn jede Überdeckung von Y durch offene Teilmengen von X eine endliche Teilüberdeckung besitzt.
Übungen

Übung 2.5.11 (Nichtleere Schnitte in Kompakta). Ist in einem kompakten topologischen Raum X ein System abgeschlossener Teilmengen $\mathcal{K} \subset \mathcal{P}(X)$ mit leerem Schnitt $\bigcap_{K \in \mathcal{K}} K = \emptyset$ gegeben, so gibt es bereits ein endliches Teilsystem $\mathcal{E} \subset \mathcal{K}$ mit leerem Schnitt $\bigcap_{K \in \mathcal{E}} K = \emptyset$.

Ergänzende Übung 2.5.12 (Satz von Dini). Eine monoton wachsende Folge stetiger reellwertiger Funktionen auf einem kompakten Raum, die punktweise gegen eine stetige Funktion konvergiert, konvergiert sogar gleichmäßig. Hinweis: 2.5.11.

Ergänzende Übung 2.5.13. Man zeige, daß das Bild eines kompakten topologischen Raums unter einer stetigen Abbildung kompakt ist für die Spurtopologie. Insbesondere ist jede stetige reellwertige Funktion auf einem kompakten topologischen Raum beschränkt.

Ergänzende Übung 2.5.14. Gegeben ein topologischer Raum X mit einer offenen Überdeckung \mathcal{U} zeige man: Eine Teilmenge Y unseres Raums ist genau dann abgeschlossen, wenn sie mit jeder Teilmenge unserer Überdeckung abgeschlossenen Schnitt hat, in Formeln

$$Y \not\subseteq X \iff (Y \cap U) \not\subseteq U \quad \forall U \in \mathcal{U}$$

Die fraglichen Schnitte sollen hierbei abgeschlossen sein in U, nicht in X.

2.6 Integrale mit Parametern

Satz 2.6.1 (über Integrale mit Parametern). Gegeben ein metrischer Raum X und eine stetige Funktion $f : X \times [a, b] \to \mathbb{R}$ ist auch die Funktion $X \to \mathbb{R},$ $x \mapsto \int_a^b f(x, t)dt$ stetig.

Beweis. Versuchen wir den Raum $\mathcal{C}([a, b], \mathbb{R})$ aller stetigen reellwertigen Funktionen auf $[a, b]$ mit der Supremumsnorm, so ist nach dem gleich folgenden Satz 2.6.4 die von f induzierte Abbildung $\tilde{f} : X \to \mathcal{C}([a, b], \mathbb{R}), x \mapsto f(x)$ stetig. Nach Übung 2.4.22 ist weiter das Integrieren $\int f : \mathcal{C}([a, b], \mathbb{R}) \to \mathbb{R}$ stetig. Damit ist unsere Abbildung $\int \circ \tilde{f} : X \to \mathbb{R}$ stetig als eine Verknüpfung stetiger Abbildungen.

52
Alternativer Beweis. Ist \(X \) offen oder abgeschlossen in einem \(\mathbb{R}^n \), so kann man auch elementarer argumentieren. Zunächst reicht es ja, die Stetigkeit an jeder Stelle \(x \in X \) nachzuweisen. Mit dieser Überlegung können wir uns leicht auf den Fall zurückziehen, daß \(X \) kompakt ist. Dann ist aber auch \(X \times [a, b] \) kompakt und nach 2.1.15 ist \(f \) dort gleichmäßig stetig. Für alle \(\varepsilon > 0 \) gibt es insbesondere \(\delta > 0 \) mit

\[
|x - y| < \delta \Rightarrow |f(x, t) - f(y, t)| < \varepsilon \text{ für alle } t \in [a, b].
\]

Aus \(|x - y| < \delta \) folgt mithin

\[
\left| \int_a^b f(x, t) \, dt - \int_a^b f(y, t) \, dt \right| \leq \int_a^b |f(x, t) - f(y, t)| \, dt \leq (b - a)\varepsilon
\]

und das zeigt die Behauptung.

2.6.3. Den Raum aller stetigen Abbildungen von einem kompakten Raum \(X \) in einen metrischen Raum \(Y \), versehen mit der Metrik der gleichmäßigen Konvergenz, wird \(C(X, Y) \) notiert. Das \(C \) steht hier für englisch „continous“ und französisch „continu“.

Satz 2.6.4 (Stetige Abbildungen in Abbildungsräume). Seien \(X, Y \) und \(K \) metrische Räume. Ist \(K \) kompakt, so ist eine Abbildung \(f : X \times K \rightarrow Y \) stetig genau dann, wenn die induzierte Abbildung \(\tilde{f} : X \rightarrow C(K, Y) \) stetig ist für die Metrik der gleichmäßigen Konvergenz auf \(C(K, Y) \).

Beweis. Daß aus der Stetigkeit von \(\tilde{f} \) die Stetigkeit von \(f \) folgt, sieht man ohne weitere Schwierigkeiten. Wir zeigen nun die andere Richtung und müssen die Stetigkeit von \(\tilde{f} \) an jeder Stelle \(p \in X \) nachweisen. Sei diese Stelle \(p \) ab jetzt fest gewählt und sei \(\varepsilon > 0 \) gegeben. Aufgrund der Stetigkeit von \(f \) gibt es für jedes \(s \in K \) ein \(\delta_s > 0 \) mit

\[
f(B((p, s); \delta_s)) \subset B(f(p, s); \varepsilon)
\]

Nun gilt für unsere Metrik auf \(X \times K \) ja \(B((p, s); \delta) = B(p; \delta) \times B(s; \delta) \) und nach 2.5.3 gibt es eine endliche Teilmenge \(E \subset K \) mit \(K \subset \bigcup_{s \in E} B(s; \delta_s) \). Für \(\eta = \min_{s \in E} \delta_s \) behaupten wir dann

\[
x \in B(p; \eta) \Rightarrow d(f(x, t), f(p, t)) < 2\varepsilon \ \forall t \in K
\]

In der Tat finden wir für jedes \(t \in K \) ein \(s \in E \) mit \(t \in B(s; \delta_s) \) und für dies \(s \) liegen \((p, t) \) und \((x, t) \) beide in \(B((p, s); \delta_s) \). Damit ist die Stetigkeit von \(\tilde{f} \) bei \(p \) gezeigt.

53
Illustration zum Beweis von Satz 2.6.4. Die mit gestrichelten Rändern eingezeichneten Quadrate sind so gewählt, daß unsere Abbildung f auf jedem Quadrat höchstens um den Abstand ε von ihrem Wert im Zentrum des jeweiligen Quadrats abweicht. Die gepunkteten Linien begrenzen einen Streifen der Breite 2η, in dem unsere Funktion auf jeder Vertikalen höchstens um 2ε von ihrem Wert am Schnittpunkt der besagten Vertikalen mit der fett eingezeichneten Horizontalen abweicht.
3 Mengentheoretische Topologie

3.1 Topologische Räume

3.1.1. Wir beginnen mit einigen Erinnerungen zur Begriffswelt der topologischen Räume aus 1.5, wo im wesentlichen derselbe Stoff in größerer Ausführlichkeit und unter besonderer Betonung der Motivation durch Fragen der Analysis entwickelt wurde.

3.1.2. Gegeben eine Menge X können wir die Menge $\mathcal{P}(X)$ aller Teilmengen von X bilden, die sogenannte Potenzmenge von X. Weil es mich verwirrt, über Mengen von Mengen zu reden, nenne ich wie in ?? Teilmengen von $\mathcal{P}(X)$ lieber Systeme von Teilmengen von X und spreche im folgenden von Teilsystemen, wenn ich Teilmengen solcher Mengensysteme meine.

Definition 3.1.3. Eine Topologie \mathcal{T} auf einer Menge X ist ein System von Teilmengen $\mathcal{T} \subset \mathcal{P}(X)$, das stabil ist unter dem Bilden von endlichen Schnitten und beliebigen Vereinigungen. In Formeln ausgedrückt fordern wir von einer Topologie \mathcal{T} also:

1. $U_1, \ldots, U_n \in \mathcal{T} \Rightarrow U_1 \cap \ldots \cap U_n \in \mathcal{T}$ für $n \geq 0$ und insbesondere auch $X \in \mathcal{T}$ als der Spezialfall $n = 0$. Gleichbedeutend dazu sind die beiden Forderungen $X \in \mathcal{T}$ sowie $U, V \in \mathcal{T} \Rightarrow U \cap V \in \mathcal{T}$;

2. $U \subset \mathcal{T} \Rightarrow \bigcup_{U \in \mathcal{U}} U \in \mathcal{T}$ und damit insbesondere auch $\emptyset \subset \emptyset$, da ja das leere Mengensystem $\mathcal{U} = \emptyset$ in jedem Mengensystem enthalten ist.

Ein topologischer Raum ist ein Paar (X, \mathcal{T}) bestehend aus einer Menge mitsamt einer Topologie. Statt $U \in \mathcal{T}$ schreiben wir meist

$$U \subset X$$

und nennen U eine offene Teilmenge von X. Die Notation \subset ist in der Literatur jedoch unüblich.

Beispiel 3.1.4. Für jeden metrischen Raum bildet das System seiner im Sinne von 1.4.3 offenen Teilmengen eine Topologie, die metrische Topologie. Gegeben ein endlichdimensionaler reeller affiner Raum liefert jede Norm auf seinem Richtungsraum eine Metrik auf unserem affinen Raum und diese liefert dann eine Topologie. Der Satz über die Äquivalenz von Normen 2.4.12 zeigt nun, daß diese Topologie gar nicht von der gewählten Norm abhängt, vergleiche 2.4.14. Sie heißt die natürliche Topologie auf unserem endlichdimensionalen reellen affinen Raum.
3.1.5. Auf jeder Menge können wir die **Klumpentopologie** betrachten, die nur aus der ganzen Menge und der leeren Menge besteht, oder die **diskrete Topologie**, bei der wir alle Teilmengen als offen ansehen. Einen topologischen Raum mit der diskreten Topologie nennen wir auch kurz einen **diskreten Raum**.

Definition 3.1.6. Ist X ein topologischer Raum und $Y \subset X$ eine Teilmenge, so erklärt man die **induzierte Topologie** oder **Spurtopologie** auf Y durch die Vorschrift

$$U \subset Y \iff \exists V \subset X \text{ mit } U = V \cap Y$$

In Worten ist also eine Teilmenge von Y offen für die induzierte Topologie, wenn sie der Schnitt von Y mit einer offenen Teilmenge von X ist. Ab jetzt fassen wir stillschweigend jede Teilmenge Y eines topologischen Raums X auf als topologischen Raum mit der induzierten Topologie.

3.1.7. Es ist klar, daß das in 3.1.6 beschriebene Mengensystem auf einer Teilmenge eines topologischen Raums in der Tat eine Topologie auf besagter Teilmenge liefert.

3.1.8. Wenn wir eine Menge einfach nur „offen“ nennen, so in der Hoffnung, dem Leser sei klar, in Bezug auf welchen größeren Raum X dies „offen“ gemeint ist. Ist X ein topologischer Raum und sind $M \subset Y \subset X$ Teilmengen, so meint $M \subset Y$, daß M offen ist als Teilmenge des Raums Y mit seiner induzierten Topologie.

3.1.9. Gegeben ein topologischer Raum X gilt $V \subset U \subset X \Rightarrow V \subset X$. Ist in der Tat V offen in der Spurtopologie, so gibt es $W \subset X$ mit $V = W \cap U$ und daraus folgt $V \subset X$.

Definition 3.1.10. Eine Abbildung von einem topologischen Raum in einen weiteren heißt **stetig**, wenn darunter das Urbild jeder offenen Menge offen ist.

Satz 3.1.11. Die Verknüpfung stetiger Abbildungen ist stetig.

Beweis. Sind $f : X \to Y$ und $g : Y \to Z$ stetig, so gelten beide Implikationen der Implikationskette $V \subset Z \Rightarrow g^{-1}(V) \subset Y \Rightarrow f^{-1}(g^{-1}(V)) \subset X$. Da nun gilt $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$, ist damit auch $(g \circ f)$ stetig. □

Beispiel 3.1.13 (Metrische Stetigkeit als topologische Stetigkeit). Eine Abbildung zwischen metrischen Räumen ist „metrisch stetig“ im Sinne von 1.2.10 genau dann, wenn sie „topologisch stetig“ ist im Sinne unserer Definition 3.1.10.
In der Tat, sei \(f : X \to Y \) unsere Abbildung zwischen metrischen Räumen. Jeder Ball \(B(y; \varepsilon) \) im metrischen Raum \(Y \) ist offen nach 1.4.5. Ist \(f \) topologisch stetig, so ist demnach sein Urbild \(f^{-1}B(y; \varepsilon) \) offen in \(X \). Für jedes \(x \in X \) mit \(f(x) = y \) gibt es nach der Definition der metrischen Topologie also \(\delta > 0 \) mit \(B(x; \delta) \subset f^{-1}B(y; \varepsilon) \) alias \(f(B(x; \delta)) \subset B(y; \varepsilon) \), und das zeigt die metrische Stetigkeit von \(f \). Ist umgekehrt \(f \) metrisch stetig, so ist nach derselben Argumentation das Urbild jedes Balls offen, und dann natürlich auch das Urbild jeder offenen Menge als Vereinigung von Urbildern solcher Bälle.

Lemma 3.1.14 (Universelle Eigenschaft der induzierten Topologie). Sei \(f : X \to Y \) eine Abbildung zwischen topologischen Räumen und \(Z \subset Y \) eine Teilmenge mit \(f(X) \subset Z \). So ist \(f \) stetig genau dann, wenn die induzierte Abbildung \(f : X \to Z \) stetig ist für die auf \(Z \) induzierte Topologie.

Beweis. Die Einbettung \(i : Z \hookrightarrow Y \) ist offensichtlich stetig. Ist also \(f : X \to Z \) stetig, so auch \(f : X \to Y \) als Verknüpfung stetiger Abbildungen. Sei umgekehrt \(f : X \to Y \) stetig mit \(f(X) \subset Z \). Gegeben \(U \subset Z \) existiert \(V \subset Y \) mit \(V \cap Z = U \). Dann ist \(f^{-1}(U) = f^{-1}(V) \) offen in \(X \) aufgrund der Stetigkeit von \(f : X \to Y \).

Definition 3.1.15. Eine Teilmenge \(M \) eines topologischen Raums \(X \) heißt abgeschlossen oder präziser abgeschlossen in \(X \) und wir schreiben in Formeln \(M \subset \bar{X} \), wenn ihr Komplement \(X \setminus M \) offen ist.

3.1.16. Wenn wir eine Menge einfach nur „abgeschlossen“ nennen, so in der Hoffnung, dem Leser sei klar, in Bezug auf welchen größeren Raum \(X \) dies „abgeschlossen“ gemeint ist. Ist \(X \) ein topologischer Raum und sind \(M \subset Y \subset X \) Teilmengen, so meint \(M \subset Y \), daß \(M \) abgeschlossen ist als Teilmengen des Raums \(Y \) mit seiner induzierten Topologie 3.1.6.

Lemma 3.1.17. Jede endliche Vereinigung und beliebige Schnitte abgeschlossener Mengen sind abgeschlossen.

Beweis. Das folgt mit der Definition einer Topologie sofort aus der Formel

\[
X \setminus \bigcap_{M \in M} M = \bigcup_{M \in M} (X \setminus M)
\]

Diese Formel gilt ganz allgemein für jedes System \(M \subset \mathcal{P}(X) \) von Teilmengen einer Menge \(X \).

3.1.18 (Stetigkeit und abgeschlossene Mengen). Eine Abbildung ist stetig genau dann, wenn darunter das Urbild jeder abgeschlossenen Menge abgeschlossen ist: Das folgt unmittelbar aus der Definition 3.1.10, da das Urbild des Komplements einer Menge stets das Komplement ihres Urbilds ist.

57
Proposition 3.1.19. Sei \(f : X \to Y \) eine Abbildung topologischer Räume.

1. Sei \(\mathcal{U} \) eine offene Überdeckung von \(X \) alias ein System offener Teilmengen von \(X \) mit \(X = \bigcup_{U \in \mathcal{U}} U \). So ist \(f \) stetig genau dann, wenn \(f|_U \) stetig ist für alle \(U \in \mathcal{U} \). Etwas vage gesprochen ist demnach Stetigkeit eine locale Eigenschaft.

2. Sei \(X \) überdeckt von endlich vielen abgeschlossenen Teilmengen von \(X \), in Formeln \(A_1, \ldots, A_n \subset \bigcap X \) und \(X = \bigcup_{i=1}^n A_i \). So ist \(f \) stetig genau dann, wenn \(f|_{A_i} \) stetig ist für alle \(i = 1, \ldots, n \).

Beweis. Ist \(f \) stetig, so sind alle \(f|_U \) stetig als Verknüpfung von \(f \) mit der stetigen Inklusion \(U \hookrightarrow X \). Sind andererseits alle \(f|_U \) stetig, so ist für alle \(W \subset Y \) und alle \(U \in \mathcal{U} \) das Urbild \(f^{-1}(W) \cap U \) offen in \(U \), nach 3.1.9 ist also \(f^{-1}(W) \cap U \) sogar offen in \(X \), und damit ist dann natürlich auch \(f^{-1}(W) = \bigcup_{U \in \mathcal{U}} f^{-1}(W) \cap U \) offen in \(X \) als Vereinigung offener Mengen. Mithin ist \(f \) stetig. Teil 2 zeigt man ähnlich: Nach 3.1.18 muß nur gezeigt werden, daß für jede abgeschlossene Teilmenge \(B \subset Y \) ihr Urbild \(f^{-1}(B) \) abgeschlossen ist in \(X \). Da aber gilt \(f^{-1}(B) = f_1^{-1}(B) \cup \ldots \cup f_n^{-1}(B) \) und \(f_i^{-1}(B) \subset A_i \), nach Annahme folgt die Proposition aus Übung 3.1.23 und den Definitionen. \(\square \)

Definition 3.1.20. Eine Abbildung zwischen topologischen Räumen heißt ein Homöomorphismus oder auch eine topologische Abbildung, wenn sie stetig und bijektiv ist und zusätzlich die inverse Abbildung auch stetig ist. Zwei topologische Räume heißen homöomorph, wenn es zwischen ihnen einen Homöomorphismus gibt. In Formeln schreiben wir dann \(X \cong Y \).

Übungen

Übung 3.1.21. Auf jeder Menge kann man die koendliche Topologie erklären durch die Vorschrift, daß außer der leeren Menge nur die Komplemente endlicher Mengen offen sein sollen.

Übung 3.1.22. Auf jeder teilgeordneten Menge kann man die Ordnungstopologie, auch genannt Alexandroff-Topologie, erklären durch die Vorschrift, daß genau die Teilmengen offen sein sollen, die mit einem Element auch jedes kleinere Element enthalten. Genau dann entsteht eine Topologie in dieser Weise aus einer Teilordnung, wenn es für jedes Element eine kleinste offene Menge gibt, die es umfaßt.

Übung 3.1.23. Gegeben ein topologischer Raum \(X \) mit einer Teilmenge \(Y \) zeige man: \(A \not\subset Y \iff \exists B \not\subset X \) mit \(A = B \cap Y \). Weiter zeige man für Teilmengen \(B \subset A \subset X \) die Implikation \((B \not\subset A \not\subset X) \Rightarrow B \not\subset X \).
3.2 Inneres, Abschluß, Umgebungsbegriff

Definition 3.2.1. Sei X ein topologischer Raum und $M \subset X$ eine Teilmenge.

1. Es gibt eine größte offene Teilmenge $\text{Inn}_X(M) = \text{Inn}(M) = M^\circ$ von X, die in M enthalten ist, nämlich die Vereinigung über alle offenen Teilmen- gen U von X, die in M enthalten sind. M° heißt der **offene Kern** oder auch das **Innere**, englisch **interior** von M in X.

2. Es gibt eine kleinste abgeschlossene Teilmenge $\text{Cl}_X(M) = \text{Cl}(M) = \overline{M}$ von X, die M umfaßt, nämlich den Schnitt über alle abgeschlossenen Teil- mengen A von X, die M umfassen. Diese Menge \overline{M} heißt der **Abschluß**, englisch **closure** von M in X.

3. Man definiert den **Rand** oder genauer den **topologischen Rand** von M in X als $\partial_X M = \partial M := \overline{M} \setminus M^\circ$. Er ist stets abgeschlossen in X.

3.2.2. Die Herkunft der Bezeichnung ∂M für den Rand von M wird in ?? diskutiert. Ich habe die englische Abkürzung Cl für den Abschluß vorgezogen, weil ich das Kürzel Ab für die „Kategorie der abelschen Gruppen“ reservieren will.

Beispiele 3.2.3. Für eine beliebige Teilmenge M der abgeschlossenen Kreisscheibe $D^2 \subset \mathbb{R}^2$, die die offene Kreisscheibe umfaßt, ist der offene Kern von M in \mathbb{R}^2 die offene Kreisscheibe, und der Rand M in \mathbb{R}^2 die Kreislinie. Für einen beliebigen topologischen Raum X ist natürlich der offene Kern von X in X ebenso wie der Abschluß von X in X schlicht X selber, und der Rand von X in X ist leer.

Lemma 3.2.4. Seien X ein topologischer Raum und $M, N \subset X$ Teilmengen.

1. Es gilt $\overline{X \setminus M} = X \setminus M^\circ$ und $(X \setminus M)^\circ = X \setminus \overline{M}$;

2. Es gilt $\overline{M \cup N} = \overline{M} \cup \overline{N}$ und $(M \cap N)^\circ = M^\circ \cap N^\circ$.

Beweis. 1. Wir rechnen

$$X \setminus M^\circ = X \setminus \bigcup_{U \text{ offen} \atop U \subset M} U = \bigcap_{U \text{ offen} \atop U \subset M} (X \setminus U) = \bigcap_{A \text{ abgeschlossen} \atop A \supset (X \setminus M)} A = \overline{X \setminus M}$$

Die Gleichheit $(X \setminus M)^\circ = X \setminus \overline{M}$ ergibt sich, wenn wir in der schon bewiesenen Gleichheit auf beiden Seiten das Komplement nehmen und M durch $X \setminus M$ ersetzen.

2. $\overline{M \cup N}$ ist abgeschlossen und umfaßt M und N, also auch \overline{M} und \overline{N}. Ande- rerseits ist $\overline{M} \cup \overline{N}$ abgeschlossen und umfaßt $M \cup N$, also auch $\overline{M} \cup \overline{N}$. Die Gleichheit $(M \cap N)^\circ = M^\circ \cap N^\circ$ zeigt man analog. \qed
Definition 3.2.5. Sei \(X \) ein topologischer Raum, \(M \subset X \) eine Teilmenge und \(p \in X \) ein Punkt. So benutzt man die Sprechweisen
\[
\begin{align*}
p \in M^\circ & \iff p \text{ ist innerer Punkt von } M; \\
p \in \overline{M} & \iff p \text{ ist Berührungspunkt von } M; \\
p \in \partial M & \iff p \text{ ist Randpunkt von } M.
\end{align*}
\]
Hier ist wieder zu beachten, daß es ganz entscheidend von \(X \) abhängt, welche Punkte nun innere Punkte, Berührungspunkte oder Randpunkte von \(M \) sind.

Definition 3.2.6. Seien \(X \) ein topologischer Raum und \(A \subset X \) eine Teilmenge. Eine Teilmenge \(U \subset X \) heißt eine Umgebung von \(A \), wenn es eine offene Menge \(V \subset X \) gibt mit \(A \subset V \subset U \). Im Fall einer einelementigen Teilmenge \(A = \{p\} \) sprechen wir auch von einer Umgebung von \(p \).

Lemma 3.2.7. Sei \(X \) ein topologischer Raum, \(M \subset X \) eine Teilmenge und \(p \in X \) ein Punkt. So gilt:
1. \(p \in M^\circ \iff M \text{ ist eine Umgebung von } p; \)
2. \(p \in \overline{M} \iff M \text{ trifft jede Umgebung von } p; \)
3. \(p \in \partial M \iff M \text{ und } X\setminus M \text{ treffen jede Umgebung von } p. \)

Beweis. 1 ist klar nach den Definitionen. Für 2 bemerken wir, daß nach Lemma 3.2.4.1 gilt
\[
p \in \overline{M} \iff p \notin (X\setminus M)^\circ \iff X\setminus M \text{ ist keine Umgebung von } p \iff \text{jede Umgebung von } p \text{ trifft } M.
\]
Sicher gilt weiter \(p \in \partial M \iff p \in \overline{M} \cap (X\setminus M). \) Nun folgt 3 aus der eben unter 2 bewiesenen Aussage.

3.2.8. Ein topologischer Raum \(X \) heißt Hausdorff, wenn darin je zwei verschiedene Punkte disjunkte Umgebungen besitzen. Gleichbedeutend wird auch die Bezeichnung separiert verwendet.

3.2.10. Seien \(X \) ein topologischer Raum, \((x_n)_{n \in \mathbb{N}} \) eine Folge in \(X \) und \(x \in X \) ein Punkt. Wir sagen, die Folge \((x_n) \) konvergiere gegen \(x \) und \(x \) sei ein Grenzwert unserer Folge und schreiben
\[
\lim_{n \to \infty} x_n = x
\]
as Abkürzung für die Aussage, daß in jeder Umgebung von \(x \) fast alle Glieder unserer Folge liegen. In einem Hausdorffraum kann ein- und dieselbe Folge nicht gegen zwei verschiedene Punkte konvergieren.
3.2.11. Eine Teilmenge F eines topologischen Raums X heißt **folgenabgeschlossen**, wenn sie mit jeder in X konvergierenden Folge auch deren Grenzwerte enthält. In metrischen Räumen sind folgenabgeschlossene Teilmengen stets abgeschlossen. In beliebigen topologischen Räumen gilt das nicht mehr, wie das folgende Beispiel 3.2.18 zeigt.

Übungen

Übung 3.2.12. Man zeige, daß im allgemeinen $M \cap N \neq M \cap N$. Welche Inklusion gilt stets?

Übung 3.2.13. Eine Abbildung $f : X \to Y$ von topologischen Räumen ist stetig genau dann, wenn für alle Teilmengen $M \subset X$ gilt $f(M) \subset f(M)$.

Übung 3.2.15. Eine Teilmenge eines topologischen Raums ist offen genau dann, wenn sie für jeden ihrer Punkte eine Umgebung ist.

Übung 3.2.16. Eine Teilmenge eines topologischen Raums $T \subset X$ ist abgeschlossen genau dann, wenn jeder Punkt $x \in X$ eine Umgebung U besitzt derart, daß $T \cap U$ abgeschlossen ist in U.

Übung 3.2.17. Sei $f : X \to Y$ eine Abbildung von topologischen Räumen und $p \in X$ ein Punkt. So heißt f **stetig bei p**, wenn es für jede Umgebung $V \subset Y$ von $f(p)$ eine Umgebung $U \subset X$ von p gibt mit $f(U) \subset V$. Man zeige: Unsere Abbildung ist stetig genau dann, wenn sie stetig ist bei jedem Punkt.

Ergänzende Übung 3.2.18 (**Folgenabgeschlossen heißt nicht abgeschlossen**). Diese Übung liefert ein Beispiel für eine folgenabgeschlossene aber nicht abgeschlossene Teilmenge eines Hausdorffraums. Wir betrachten auf der Menge $\text{Ens}(\mathbb{R}, \mathbb{R})$ aller Abbildungen $f : \mathbb{R} \to \mathbb{R}$ die „Topologie der punktweisen Konvergenz“: Eine Teilmenge $U \subset \text{Ens}(\mathbb{R}, \mathbb{R})$ ist in Bezug auf diese Topologie offen genau dann, wenn es für jedes $f \in U$ ein $\varepsilon > 0$ und eine endliche Teilmenge $E \subset \mathbb{R}$ gibt mit

$$
(|g(x) - f(x)| < \varepsilon \ \forall x \in E) \ \Rightarrow \ g \in U
$$

Man zeige, daß das in der Tat eine Topologie ist, daß in dieser Topologie je zwei verschiedene Funktionen disjunkte Umgebungen besitzen, und daß die messbaren Funktionen darin eine unter Konvergenz von Folgen abgeschlossene aber nicht topologisch abgeschlossene Teilmenge bilden. Unsere „Topologie der punktweisen Konvergenz“ wird sich im übrigen in 3.8.1 folgende als ein Spezialfall der sogenannten „Produkttopologie“ erweisen.

61

Ergänzung 3.2.20. Besitzt in einem topologischen Raum jeder Punkt eine abzählbare Umgebungsbasis, so sagt man auch, er „gehorche dem ersten Abzählbarkeitsaxiom“.

3.3 Zusammenhang

Definition 3.3.1. Ist X ein topologischer Raum und sind $x, y \in X$ Punkte, so nennen wir eine stetige Abbildung $\gamma : [a, b] \to X$ von einem mehrpunkigen kompakten reellen Intervall $[a, b]$ nach X mit $\gamma(a) = x$ und $\gamma(b) = y$ einen **Weg von x nach y**. Ein topologischer Raum X heißt **wegweise zusammenhängend** oder kurz **wegzusammenhängend**, wenn er nicht leer ist und es für je zwei Punkte unseres Raums einen Weg vom einen zum anderen gibt.

3.3.2. Das Bild eines wegzusammenhängenden Raums unter einer stetigen Abbildung ist offensichtlich stets wieder wegzusammenhängend.

Definition 3.3.3. Ein topologischer Raum heißt **zusammenhängend**, wenn er nicht leer ist und sich nicht als disjunkte Vereinigung von zwei nichtleeren offenen Teilmengen schreiben läßt.

Beispiel 3.3.4. Ein diskreter topologischer Raum ist zusammenhängend genau dann, wenn er aus genau einem Punkt besteht.

3.3.5. Gleichbedeutend könnten wir natürlich auch fordern, daß unser Raum nicht leer ist und sich nicht als disjunkte Vereinigung von zwei nichtleeren abgeschlossenen Teilmengen schreiben läßt. Eine Teilmenge eines topologischen Raums nennen wir nach unseren allgemeinen Konventionen zusammenhängend, wenn sie zusammenhängend ist als topologischer Raum mit der induzierten Topologie.

3.3.6 (**Diskussion der Terminologie**). In der Literatur wird meist auch die leere Menge zusammenhängend genannt. Mir scheint das unnatürlich, da sich mit dieser Konvention jeder zusammenhängende Raum in eine Vereinigung von zwei disjunkten offenen zusammenhängenden Teilmengen zerlegen ließe.

Proposition 3.3.7. Das Bild eines zusammenhängenden Raums unter einer stetigen Abbildung ist stets zusammenhängend.
Beweis. Es reicht, wenn wir für eine stetige Surjektion \(f : X \to Y \) aus \(Y \) nicht zusammenhängend folgern, daß auch \(X \) nicht zusammenhängend ist. Ist jedoch \(Y = Y_0 \sqcup Y_1 \) eine Zerlegung in zwei offene, disjunkte, nichtleere Teilmengen, so auch \(X = f^{-1}(Y_0) \sqcup f^{-1}(Y_1) \). Ist \(Y \) leer, so auch \(X \). Die Proposition folgt.

Proposition 3.3.8 (Charakterisierung zusammenhängender Räume). Gegeben ein topologischer Raum sind gleichbedeutend:

1. Unser Raum ist zusammenhängend;
2. Jede stetige Abbildung von unserem Raum in einen Raum mit der diskreten Topologie ist einwertig;

3.3.9. Wir verwenden hier unsere Konvention ??, nach der eine Abbildung einwertig heißt, wenn ihr Bild aus genau einem Element besteht.

Beweis. 1 \(\Rightarrow \) 2 folgt aus 3.3.7, da das Bild einer stetigen Abbildung unseres zusammenhängenden Raums in einen diskreten Raum notwendig zusammenhängend und diskret ist und damit nach 3.3.4 aus einem einzigen Punkt bestehen muß. 2 \(\Rightarrow \) 3 ist klar. 3 \(\Rightarrow \) 1 zeigt man durch Widerspruch: Ist unser Raum nicht zusammenhängend, so ist er entweder leer und die einzige Abbildung in unseren zweielementigen Raum ist nicht einwertig, oder er besitzt eine Zerlegung in zwei disjunkte nichtleere offenen Teilmengen. Dann aber können wir eine stetige nicht einwertige Abbildung in unsere zweielementige Menge angeben durch die Vorschrift, daß sie auf der einen Teilmenge das eine Element als Wert annehmen soll und auf der anderen das andere.

Lemma 3.3.10 (Zusammenhängende Teilmengen von \(\mathbb{R} \)). Eine Teilmenge der reellen Zahlengerade ist zusammenhängend genau dann, wenn sie ein nichtleeres Intervall ist.

Beweis. Jedes nichtleere reelle Intervall ist zusammenhängend nach Proposition 3.3.8 und dem Zwischenwertsatz. Ist umgekehrt \(A \subset \mathbb{R} \) nicht leer und kein Intervall, so gibt es \(p \in \mathbb{R} \setminus A \) mit \(A \cap \mathbb{R}_{<p} \neq \emptyset \neq A \cap \mathbb{R}_{>p} \), und das ist eine Zerlegung von \(A \) in zwei nichtleere offene Teilmengen.

3.3.11. Ich gebe noch eine zweiten Beweis, der nicht auf dem Zwischenwertsatz aufbaut. Deshalb kann man mit seiner Hilfe umgekehrt den Zwischenwertsatz aus 3.3.7 folgern.
Zweiter Beweis, daß nichtleere Intervalle zusammenhängend sind. Sei sonst $I \subset \mathbb{R}$ ein nichtleeres Intervall mit einer Zerlegung $I = I_0 \sqcup I_1$ in zwei für die Spurtopologie offene nichtleere Teilmengen. Ohne Beschränkung der Allgemeinheit dürfen wir annehmen, es gebe $a \in I_0$ und $b \in I_1$ mit $a < b$. Ohne Beschränkung der Allgemeinheit dürfen wir weiter annehmen, es sei sogar $I = [a, b]$. Nun sind I_0, I_1 auch abgeschlossen in I und damit in \mathbb{R}. Für $p = \sup I_0$ folgt $p \in I_0$ und $p < b$ und damit $(p, b] \subset I_1$ und dann auch $p \in I_1$, im Widerspruch zu $I_0 \cap I_1 = \emptyset$.

3.3.12 (Wegzusammenhängende Teilmengen von \mathbb{R}). Eine Teilmenge $A \subset \mathbb{R}$ ist wegzusammenhängend genau dann, wenn A ein nichtleeres Intervall ist. In der Tat ist jedes nichtleere reelle Intervall offensichtlich wegzusammenhängend. Ist umgekehrt $A \subset \mathbb{R}$ nicht leer und kein Intervall, so gibt es reelle Zahlen $x < p < y$ mit $x, y \in A$ aber $p \notin A$. Dann aber kann es nach dem Zwischenwertsatz keinen Weg von x nach y geben, der ganz in A verläuft.

3.3.13. Wir sehen insbesondere, daß die zusammenhängenden Teilmengen von \mathbb{Q} genau die einelementigen Teilmengen sind. Topologische Räume mit dieser Eigenschaft heißen total unzusammenhängend.

Beweis. Wir argumentieren durch Widerspruch. Sei X nicht leer und nicht zusammenhängend, also die disjunkte Vereinigung $X = U \sqcup V$ zweier nichtleerer offener Teilmengen. Gäbe es einen Weg $\varphi : [a, b] \to X$ mit $\varphi(a) \in U$ und $\varphi(b) \in V$, so wäre $[a, b] = \varphi^{-1}(U) \sqcup \varphi^{-1}(V)$ eine disjunkte Zerlegung des Intervalls $[a, b]$ in zwei nichtleere offene Teilmengen, und das stünde im Widerspruch zu unserer Erkenntnis, daß Intervalle zusammenhängend sind. Also kann es keinen solchen Weg geben und X ist auch nicht wegzusammenhängend.

Lemma 3.3.16. Besitzt in einem topologischen Raum jeder Punkt eine wegzusammenhängende Umgebung, so sind seine Wegzusammenhangskomponenten offen und unser Raum zusammenhängend genau dann, wenn er wegzusammenhängend ist.
Beweis. Besitzt jeder Punkt eine wegzusammenhängende Umgebung, so sind die Wegzusammenhangskomponenten sicher offen. Ist unser Raum nicht leer und nicht wegzusammenhängend, so hat er mindestens zwei Wegzusammenhangskomponenten, und nehmen wir eine dieser Komponenten und die Vereinigung der Übrigen, so erhalten wir eine Überdeckung durch zwei nichtleere offene Teilmengen. Also ist unter diesen Voraussetzungen unser Raum auch nicht zusammenhängend. Daß umgekehrt jeder wegzusammenhängende Raum auch zusammenhängend ist, wissen wir bereits aus 3.3.14.

Definition 3.3.17. Eine maximale zusammenhängende Teilmenge eines topologischen Raums heißt eine Zusammenhangskomponente.

Proposition 3.3.18 (Zerlegung in Zusammenhangskomponenten). Gegeben ein topologischer Raum X gilt:

1. Jeder Punkt liegt in genau einer Zusammenhangskomponente;
2. Ist eine Teilmenge unseres Raums zusammenhängend, so ist auch ihr Abschluß zusammenhängend. Insbesondere sind Zusammenhangskomponenten stets abgeschlossen;
3. Ist $A \subseteq \mathcal{P}(X)$ ein System von zusammenhängenden Teilmengen von X mit nichtleerem Schnitt $\bigcap_{A \in A} A \neq \emptyset$, so ist auch die Vereinigung $\bigcup_{A \in A} A$ zusammenhängend.

Beweis. 2. Sei A unsere zusammenhängende Teilmenge. Da nach Annahme A nicht leer ist, gilt dasselbe für \bar{A}. Ist \bar{A} nicht zusammenhängend, so zerfällt \bar{A} also in zwei nichtleere disjunkte abgeschlossene Teilmengen $\bar{A} = A_1 \cup A_2$. Nach der Definition von \bar{A} kann keines der A_i schon A enthalten, also ist $A = (A_1 \cap A) \cup (A_2 \cap A)$ eine disjunkte Zerlegung in zwei nichtleere abgeschlossene Teilmengen, und damit ist auch A nicht zusammenhängend im Widerspruch zur Voraussetzung.

3. Wir setzen $Y = \bigcup_{A \in A} A$. Sei $Y = U \cup V$ eine Zerlegung von Y in zwei offene disjunkte Teilmengen. Es gilt zu zeigen, daß U oder V schon ganz Y sein muß. Ohne Beschränkung der Allgemeinheit dürfen wir annehmen $U \cap \bigcap_{A \in A} A \neq \emptyset$. Da die A zusammenhängend sind, folgt dann schon $U \supseteq A$ für alle A und damit $U = Y$.

1. Nach 3 ist die Vereinigung über alle zusammenhängenden Teilmengen, die einen gegebenen Punkt enthalten, selbst zusammenhängend.

Ergänzung 3.3.19. Wir geben einen alternativen Beweis für den Satz 3.3.14, nach dem jeder wegzusammenhängende Raum zusammenhängend ist. Sei dazu X unser Raum. Als wegzusammenhängender Raum ist X nicht leer. Ist $x \in X$ ein
Punkt, so ist \(X \) die Vereinigung über die Bilder aller Wege \(\gamma \) in \(X \) mit Anfangspunkt \(x \), in Formeln
\[
X = \bigcup_{\gamma(0)=x} \gamma([0,1])
\]
Alle diese Bilder \(\gamma([0,1]) \) sind zusammenhängend als Bilder zusammenhängender Mengen und ihr Schnitt ist nicht leer, denn er enthält \(x \). Nach 3.3.18.3 ist also \(X \) zusammenhängend.

Definition 3.3.20. Eine Teilmenge eines topologischen Raums heißt wie in (??) diskret, wenn jeder ihrer Punkte eine Umgebung besitzt, in der kein anderer Punkt besagter Teilmenge liegt. In anderen Worten heißt also eine Teilmenge eines topologischen Raums diskret, wenn sie mit der Spurtopologie ein diskreter topologischer Raum wird.

Beispiel 3.3.21. Die Menge aller Brüche \(\{1, 1/2, 1/3, \ldots\} \) mit einer Eins im Zähler ist eine diskrete Teilmenge der reellen Zahlengerade.

3.3.22 (**Diskussion der Terminologie**). Andere Autoren verstehen unter einer „diskreten Teilmenge“ eines topologischen Raums abweichend, was in unserer Terminologie eine „diskrete abgeschlossene Teilmenge“ ist.

Übungen

Übung 3.3.23 (Die Sinuskurve des Topologen**). Man betrachte in \(\mathbb{R}^2 \) die Vereinigung des Graphen der Funktion \(\mathbb{R}^x \to \mathbb{R} \), \(x \mapsto \sin(1/x) \) mit der \(y \)-Achse. Man zeige zur Übung, daß diese Teilmenge von \(\mathbb{R}^2 \) zusammenhängend, aber nicht weg-zusammenhängend ist.

Übung 3.3.24. Besitzt jeder Punkt eines topologischen Raums eine zusammenhängende Umgebung, so sind seine Zusammenhangskomponenten offen.

Übung 3.3.25. Das Komplement einer abgeschlossenen diskreten Teilmenge in einer zusammenhängenden offenen Teilmenge eines \(\mathbb{R}^n \) ist für \(n > 1 \) zusammenhängend. Dasselbe gilt im Übrigen auch ohne die Bedingung „abgeschlossen“, ist dann aber schwerer zu zeigen.

Übung 3.3.26. Ist \(U \subset \mathbb{R}^n \) offen und zusammenhängend und \(A \subset \mathbb{R}^n \) ein affiner Teilraum einer Dimension \(\dim A \leq n - 2 \) alias einer Kodimension mindestens Zwei, so ist auch \(U \setminus A \) zusammenhängend. Für Teilräume \(A \) der Kodimension Eins alias affine Hyperebenen \(A \) gilt das natürlich nicht!
Ein Teil der Sinuskurve des Topologen, die in der Nähe der y-Achse allerdings schwer zu zeichnen ist
3.4 Topologische Mannigfaltigkeiten

Definition 3.4.1. Eine stetige Abbildung topologischer Räume heißt eine *topologische Einbettung* oder kürzer *Einbettung*, wenn sie einen Homöomorphismus mit ihrem Bild induziert, für die induzierte Topologie auf besagtem Bild.

Vorschau 3.4.2. Sei allgemeiner C eine Kategorie mit einem ausgezeichneten treuen Funktor $F : C \to \text{Ens}$ in die Kategorie der Mengen. So nennen wir einen Morphismus $i : U \to X$ in C eine *Einbettung*, wenn für alle $Z \in C$ das Nachschalten von i eine Bijektion

$$C(Z, U) \to \{ \varphi \in C(Z, X) \mid \text{im}(F(\varphi)) \subset \text{im}(F(i)) \}$$

induziert. In anderen Worten stehen rechts alle Morphismen φ, für die $F(\varphi)$ über $F(i)$ faktorisiert.

Definition 3.4.3. Eine d-dimensionale topologische Mannigfaltigkeit ohne Rand oder kurz d-Mannigfaltigkeit ist ein topologischer Hausdorffraum X, in dem jeder Punkt $p \in X$ eine offene Umgebung besitzt, die homöomorph ist zu einer offenen Teilmenge des \mathbb{R}^d.

3.4.6. Genau dann ist ein Hausdorffraum eine d-Mannigfaltigkeit, wenn jeder Punkt eine offene Umgebung besitzt, die homöomorph ist zu \mathbb{R}^d.

Beispiele 3.4.7. Jede offene Teilmengen einer Mannigfaltigkeit ist eine Mannigfaltigkeit. Die Sphäre S^d ist eine d-Mannigfaltigkeit.

Beispiel 3.4.8. Welche Fälle die Bedingung „Hausdorff“ in der Definition einer Mannigfaltigkeit ausschließt, erkennt man am Beispiel der *Zahlengeraden mit verdoppelter Nullpunkt*. Wir betrachten genauer die disjunkte Vereinigung $\mathbb{R} = \mathbb{R} \cup \{0\}$ von \mathbb{R} mit einer einelementigen Menge $\{0\}$ und die Abbildung $\pi : \mathbb{R} \to \mathbb{R}$ gegeben durch $\pi(x) = x \ \forall x \in \mathbb{R}, \pi(0) = 0$. Auf \mathbb{R} erklären wir eine Topologie durch die Vorschrift „U ist offen in \mathbb{R} genau dann, wenn $\pi(U)$ offen in \mathbb{R}“. In diesem topologischen Raum haben 0 und $\bar{0}$ in \mathbb{R} keine disjunkten Umgebungen, aber jeder Punkt besitzt eine zu \mathbb{R} homöomorphe offene Umgebung.
Übungen

Übung 3.4.9. Man zeige, daß die Verknüpfung von zwei Einbettungen stets wieder eine Einbettung ist.

Übung 3.4.10. Ist ein \mathbb{R}^n homöomorph zur reellen Geraden \mathbb{R}, so folgt $n = 1$. In Formeln gilt also $\mathbb{R}^n \cong \mathbb{R} \Rightarrow n = 1$. Hinweis: Das Komplement eines beliebigen Punktes in \mathbb{R} ist nicht wegzusammenhängend.

Übung 3.4.11. Man zeige: Das Achsenkreuz $\{(x, y) \in \mathbb{R}^2 \mid xy = 0\}$ ist nicht homöomorph zur Zahlengerade \mathbb{R}.

Übung 3.4.12. Je zwei nichtleere offene konvexe Teilmengen des \mathbb{R}^n sind homöomorph. Sind unsere Mengen zusätzlich beschränkt, so gibt es sogar einen Homöomorphismus zwischen ihren Abschlüssen, der Homöomorphismen zwischen ihren Rändern induziert.

Übung 3.4.13. Das Komplement einer abgeschlossenen diskreten Teilmenge in einer zusammenhängenden topologischen Mannigfaltigkeit der Dimension mindestens zwei ist zusammenhängend. Dasselbe gilt im Übrigen auch ohne die Bedingung „abgeschlossen“, ist dann aber schwerer zu zeigen.

3.5 Kompakte Räume

3.5.1. Ich erinnere Grundlegendes zum Begriff der Kompaktheit allgemeiner topologischer Räume aus ???. Ich beginne mit einer Wiederholung der Definition.

Definition 3.5.2. Ein topologischer Raum heißt **kompakt**, wenn jede offene Überdeckung unseres Raums eine endliche Teilüberdeckung besitzt.

3.5.3. Ist X unser topologischer Raum, so fordern wir also in Formeln ausgedrückt, daß es für jedes System $\mathcal{U} \subset \mathcal{P}(X)$ von offenen Teilmengen von X mit $X = \bigcup_{U \in \mathcal{U}} U$ ein endliches Teilsystem $\mathcal{E} \subset \mathcal{U}$ gibt mit $X = \bigcup_{U \in \mathcal{E}} U$.

3.5.4 (Diskussion der Terminologie). Die Konventionen sind, was den Begriff der Kompaktheit angeht, nicht einheitlich. Die hier gewählte Konvention ist im englischen Sprachraum weit verbreitet. Bourbaki und mit ihm die meisten französischen und auch viele andere Autoren nennen die in unserem Sinne kompakten Räume nur **quasikompakt** und fordern von kompakten Räumen zusätzlich die Hausdorff-Eigenschaft. Eine Teilmenge eines topologischen Raums, deren Abschluß kompakt ist, nennt man **relativ kompakt**.

69
3.5.5 (Kompaktheit metrischer Räume). Nach 2.5.3 ist ein metrischer Raum „folgenkompakt“, als da heißt kompakt im Sinne von 2.1.1 genau dann, wenn er für seine metrische Topologie kompakt ist im Sinne unserer abstrakten Definition 3.5.2.

Beispiele 3.5.6. Eine Menge mit der diskreten Topologie ist kompakt genau dann, wenn sie endlich ist. Eine Menge mit der Klumpentopologie ist stets kompakt.

3.5.7 (Ausformulierung der Kompaktheit in der Spurtopologie). Sei X ein topologischer Raum und $A \subset X$ eine Teilmenge. So sind gleichbedeutend nach unseren Definitionen (1) A ist kompakt mit der induzierten Topologie und (2) für jedes System $\mathcal{U} \subset \mathcal{P}(X)$ von offenen Teilmengen von X mit $A \subset \bigcup_{U \in \mathcal{U}} U$ finden wir ein endliches Teilsystem $\mathcal{E} \subset \mathcal{U}$ mit $A \subset \bigcup_{U \in \mathcal{E}} U$.

Lemma 3.5.8. Eine kompakte Teilmenge eines Hausdorffraums ist stets abgeschlossen.

Beweis. Durch Widerspruch. Sei X unser Hausdorffraum und $A \subset X$ eine kompakte Teilmenge. Ist A nicht abgeschlossen, so gibt es $x \in \overline{A} \setminus A$. Für jedes $a \in A$ finden wir dann in X disjunkte offene Umgebungen U_a und V_a von a und x. Natürlich gilt $A \subset \bigcup_{a \in A} U_a$, also gibt es auch endlich viele $a, \ldots, b \in A$ mit $A \subset U_a \cup \ldots \cup U_b$. Als endlicher Schnitt offener Mengen ist dann jedoch auch $V_a \cap \ldots \cap V_b$ offen und nach Konstruktion gilt $A \cap V_a \cap \ldots \cap V_b = \emptyset$ im Widerspruch zu unserer Annahme $x \in \overline{A}$.

Lemma 3.5.9. Eine abgeschlossene Teilmenge eines kompakten Raums ist stets kompakt.

Beweis. Sei X unser kompakter Raum und $A \subset X$ abgeschlossen. Ist \mathcal{U} ein System von offenen Teilmengen von X, deren Vereinigung A umfaßt, so schließen wir

$$A \subset \bigcup_{U \in \mathcal{U}} U \quad \Rightarrow \quad X = (X \setminus A) \cup \bigcup_{U \in \mathcal{U}} U$$

$$\quad \Rightarrow \quad X = (X \setminus A) \cup U_1 \cup \ldots \cup U_k$$

$$\quad \Rightarrow \quad A \subset U_1 \cup \ldots \cup U_k$$

für geeignete $U_1, \ldots, U_k \in \mathcal{U}$.

Satz 3.5.10. Das Bild eines kompakten Raums unter einer stetigen Abbildung ist stets kompakt.

Beweis. Sei $f : X \to Y$ stetig und X kompakt. Es gilt zu zeigen, daß auch $f(X)$ kompakt ist. Sei dazu \mathcal{U} ein System von offenen Teilmengen von Y. So gilt

$$f(X) \subset \bigcup_{U \in \mathcal{U}} U \quad \Rightarrow \quad X = \bigcup_{U \in \mathcal{U}} f^{-1}(U)$$

$$\quad \Rightarrow \quad X = f^{-1}(U_1) \cup \ldots \cup f^{-1}(U_k)$$

$$\quad \Rightarrow \quad f(X) \subset U_1 \cup \ldots \cup U_k$$

für geeignete $U_1, \ldots, U_k \in \mathcal{U}$.
Definition 3.5.11. Eine nicht notwendig stetige Abbildung von topologischen Räumen heißt **abgeschlossen**, wenn das Bild jeder abgeschlossenen Menge wieder abgeschlossen ist.

Satz 3.5.12. Eine stetige Abbildung von einem kompakten Raum in einen Hausdorffraum ist stets abgeschlossen. Eine stetige bijektive Abbildung von einem kompakten Raum auf einen Hausdorffraum ist stets ein Homöomorphismus.

Beweis. Sei X kompakt, Y Hausdorff und $f : X \to Y$ stetig und bijektiv. Es reicht zu zeigen, daß f abgeschlossene Mengen auf abgeschlossene Mengen abbildet. Aber in der Tat gilt ja $A \subset X \Rightarrow \overline{A}$ kompakt $\Rightarrow f(A)$ kompakt $\Rightarrow f(A) \subset Y$ nach 3.5.9 und 3.5.10 und 3.5.8.

3.5.13 (**Hausdorff-Eigenschaft versus Kompaktheit**). Die Hausdorff-Eigenschaft und die Kompaktheit sind Antagonisten: Die Hausdorff-Eigenschaft verlangt nach vielen offenen Mengen und die Kompaktheit nach wenigen. Ist beides gleichzeitig erfüllt, so kann man nach dem vorhergehenden Satz 3.5.12 keine zusätzlichen Mengen als offen deklarieren, ohne die Kompaktheit zu verlieren, und nicht weniger Mengen als offen deklarieren, ohne die Hausdorff-Eigenschaft zu verlieren.

Satz 3.5.14 (Extrema auf Kompakta**). Eine stetige reellwertige Funktion auf einem nichtleeren kompakten Raum ist beschränkt und nimmt ihr Maximum und ihr Minimum an.

Beweis. Ist X kompakt und $f : X \to \mathbb{R}$ stetig, so ist $f(X) \subset \mathbb{R}$ auch kompakter, also beschränkt und abgeschlossen. Haben wir zusätzlich $X \neq \emptyset$, so folgt $\sup f(X), \inf f(X) \in f(X)$.

Übungen

Übung 3.5.16. Man sagt, ein System $\mathcal{A} \subset \mathcal{P}(X)$ von Teilmengen einer Menge X habe **nichtleere endliche Schnitte**, wenn für jedes endliche Teilsystem $\mathcal{E} \subset \mathcal{A}$ der Schnitt $\bigcap_{A \in \mathcal{E}} A$ nicht leer ist. Man zeige: Ein topologischer Raum X ist kompakt genau dann, wenn für jedes System $\mathcal{A} \subset \mathcal{P}(X)$ von abgeschlossenen Teilmengen von X mit nichtleeren endlichen Schnitten auch der gesamte Schnitt nicht leer ist, in Formeln $\bigcap_{A \in \mathcal{A}} A \neq \emptyset$. 71
Übung 3.5.17. Sind A, B disjunkte kompakte Teilmengen eines Hausdorffraums X, so gibt es disjunktte offene Mengen $U, V \subset X$ mit $A \subset U$ und $B \subset V$. Hinweis: Man beginne mit dem Fall, daß A nur aus einem Punkt besteht.

Übung 3.5.18. In einem kompakten Hausdorffraum läßt sich jede Umgebung eines Punktes zu einer abgeschlossenen Umgebung desselben Punktes verkleinern. Hinweis: 3.5.17.

Übung 3.5.19. Die Abbildung $(0, 2\pi) \to \mathbb{C}, t \mapsto \exp(it)$ ist ein Homöomorphismus auf ihr Bild.

Übung 3.5.20. Man zeige: Gegeben ein topologischer Raum X können wir auf $X \sqcup \{\infty\}$ eine Topologie T erklären durch die Vorschrift $T := \{U \mid U \subset X\} \sqcup \{U \sqcup \{\infty\} \mid U \sqcup \{\infty\} \subset X\}$ mit $X \setminus U$ kompakt. Man zeige weiter, daß $X \sqcup \{\infty\}$ mit dieser Topologie ein kompakter topologischer Raum ist. Er heißt die Ein-Punkt-Kompaktifizierung von X. Gegeben irgendeine weitere Menge Z und eine Hausdorff’sche Topologie auf $X \sqcup Z$, für die in_X eine offene Einbettung ist, muß dann die Abbildung $X \sqcup Z \to X \sqcup \{\infty\}$ stetig sein, die auf X die Identität ist und auf Z konstant den Wert ∞ annimmt.

3.6 Konstruktion topologischer Räume

3.6.1 (Vergleich verschiedener Topologien auf derselben Menge). Gegeben Topologien $T, T' \subset \mathcal{P}(X)$ auf derselben Menge X sagt man, T sei größer gleich oder auch feiner als T' und T' sei kleiner gleich oder auch gröber als T, wenn gilt

$$T \supset T'$$

3.6.2. Sind $T_i \subset \mathcal{P}(X)$ Topologien auf ein- und derselben Menge X, für i aus einer Indexmenge I, so ist offensichtlich auch ihr Schnitt $T := \bigcap_{i \in I} T_i$ eine Topologie.

Definition 3.6.3. Ist X eine Menge und $\mathcal{E} \subset \mathcal{P}(X)$ ein System von Teilmengen von X, so definiert man auf X die von \mathcal{E} erzeugte Topologie $\langle \mathcal{E} \rangle$ als den Schnitt in $\mathcal{P}(X)$ über alle Topologien auf X, die \mathcal{E} umfassen, alias die kleinste Topologie auf X, die \mathcal{E} umfaßt.

3.6.4 (Von Mengensystem erzeugte Topologie, explizite Beschreibung). Natürlich ist $\langle \mathcal{E} \rangle$ damit die kleinste Topologie auf X, die \mathcal{E} umfaßt. Wir können $\langle \mathcal{E} \rangle$ alternativ auch wie folgt beschreiben: Zunächst bilden wir das Mengensystem $\tilde{\mathcal{E}} = \{U \subset X \mid \exists V_1, \ldots, V_k \in \mathcal{E} \text{ mit } U = V_1 \cap \ldots \cap V_k\}$ aller endlichen Schnitte von Mengen aus \mathcal{E}, mitgemeint ist hier $X \in \tilde{\mathcal{E}}$ als der „Schnitt über gar keine Menge aus \mathcal{E}“, und anschließend bilden wir das Mengensystem...
\(\langle \mathcal{E} \rangle = \{ W \subset X | \text{Es gibt } \mathcal{U} \subset \mathcal{E} \text{ mit } W = \bigcup_{U \in \mathcal{U}} U \} \) aller beliebigen Vereinigungen von Mengen aus \(\mathcal{E} \), mitgemeint ist hier \(\emptyset \in \langle \mathcal{E} \rangle \) als die „Vereinigung über gar keine Menge aus \(\mathcal{E} \)“. In der Tat ist auch das so konstruierte Mengensystem \(\langle \mathcal{E} \rangle \) eine Topologie auf \(X \), und für jede Topologie \(\mathcal{T} \) auf \(X \) mit \(\mathcal{T} \supset \mathcal{E} \) folgt umgekehrt erst \(\mathcal{T} \supset \mathcal{E} \) und dann \(\mathcal{T} \supset \langle \mathcal{E} \rangle \).

Definition 3.6.5. Sei \((X, \mathcal{T})\) ein topologischer Raum. Ein Mengensystem \(\mathcal{E} \subset \mathcal{P}(X) \) heißt eine **Subbasis** der Topologie \(\mathcal{T} \), wenn es die Topologie erzeugt, in Formeln \(\langle \mathcal{E} \rangle = \mathcal{T} \). Es heißt eine **Basis** der Topologie, wenn die offenen Mengen unseres topologischen Raums \(X \) gerade alle beliebigen Vereinigungen von Mengen aus \(\mathcal{E} \) sind.

Beispiel 3.6.6. Die übliche Topologie aus 1.5.10 auf der Menge der erweiterten reellen Zahlen \(\bar{\mathbb{R}} = \mathbb{R} \cup \{ \pm \infty \} \) können wir in dieser Terminologie besonders elegant beschreiben als die Topologie, die erzeugt wird von allen Teilmengen der Gestalt \(\{ x | x < a \} \) und allen Teilmengen der Gestalt \(\{ x | x > a \} \) für beliebige \(a \in \bar{\mathbb{R}} \).

Definition 3.6.7. Seien \(Y \) eine Menge, \(X_i \) topologische Räume indiziert durch \(i \in I \) und \(f_i : X_i \to Y \) Abbildungen. Die größte alias feinste Topologie auf \(Y \), für die alle diese Abbildungen stetig werden, heißt die **Finaltopologie** auf \(Y \) in Bezug auf unsere Familie von Abbildungen.

3.6.8 (**Explizite Beschreibung der Finaltopologie**). Es gilt noch zu zeigen, daß solch eine größte Topologie tatsächlich existiert. Dazu beachte man, daß das Mengensystem \(\{ V \subset Y \mid f_i^{-1}(V) \subset X_i \ \forall i \in I \} \) eine Topologie auf \(Y \) ist. Es scheint mir nun klar, daß für diese Topologie alle \(f_i \) stetig sind, und daß alle anderen Topologien mit besagter Eigenschaft in dieser explizit gegebenen Topologie enthalten sein müssen. Damit haben wir sogar eine explizite Beschreibung der Finaltopologie erhalten.

Lemma 3.6.9. Seien \(X \) ein topologischer Raum, \(f : X \to Y \) eine Abbildung und \(\mathcal{E} \subset \mathcal{P}(Y) \) ein Mengensystem. So ist \(f \) ist stetig für die von \(\mathcal{E} \) erzeugte Topologie auf \(Y \) genau dann, wenn die Urbilder aller \(V \in \mathcal{E} \) offen sind in \(X \).

Beweis. Sind die Urbilder aller \(V \in \mathcal{E} \) offen, so ist \(\mathcal{E} \) enthalten in der finalen Topologie auf \(Y \). Folglich ist die von \(\mathcal{E} \) erzeugte Topologie kleiner gleich der besagten finalen Topologie, und dann muß \(f \) offensichtlich stetig sein. Der Beweis der anderen Richtung ist unproblematisch.

Satz 3.6.10 (Universelle Eigenschaft der Finaltopologie). Seien \(f_i : X_i \to Y \) Abbildungen topologischer Räume in eine Menge. Versehen wir \(Y \) mit der Finaltopologie, so ist eine Abbildung \(g : Y \to Z \) in einen weiteren topologischen Raum \(Z \) stetig genau dann, wenn alle \(g \circ f_i : X_i \to Z \) stetig sind.
Beweis. Mit g sind natürlich auch alle $g \circ f_i$ stetig. Sind umgekehrt alle $g \circ f_i$ stetig, so folgt aus $W \subseteq Z$ natürlich $f^{-1}(g^{-1}(W)) \subseteq X_i$ für alle i und damit $g^{-1}(W) \subseteq Y$ nach unserer expliziten Beschreibung der Finaltopologie.

3.6.11 (Charakterisierung der Finalität durch die universelle Eigenschaft). Sind \mathcal{T} und \mathcal{T}' zwei Topologien auf Y, für die die Aussage des vorhergehenden Satzes gilt, so liefert die Identität stetige Abbildungen $(Y, \mathcal{T}) \to (Y, \mathcal{T}') \to (Y, \mathcal{T})$, woraus wir folgern $\mathcal{T} = \mathcal{T}'$. Die Finaltopologie auf Y kann also auch charakterisiert werden als die einzige Topologie auf Y, für die die Aussage des vorhergehenden Satzes gilt.

3.6.12. Ist $f : X \to Y$ eine Surjektion, so heißt die Finaltopologie auf Y auch die Quotiententopologie. Eine Abbildung $f : X \to Y$ von topologischen Räumen heißt final, wenn die Topologie auf Y mit der Finaltopologie zu f übereinstimmt. Zum Beispiel ist die Identität auf einem topologischen Raum stets final.

Lemma 3.6.13 (Transitivität finaler Abbildungen). Seien $e : W \to X$ und $f : X \to Y$ stetig. Sind f und e final, so auch ihre Verknüpfung $f \circ e$. Ist $f \circ e$ final, so ist auch f final.

3.6.15. Insbesondere ist jede stetige Abbildung final, die eine stetige Rechtsinverse alias einen stetigen Schnitt besitzt, d.h. für die es eine stetige Abbildung s gibt mit $f \circ s = \text{id}$.

Beweis. Sei Z ein weiterer topologischer Raum und $g : Y \to Z$ eine Abbildung. Ist $g \circ (f \circ e) = (g \circ f) \circ e$ stetig, so folgt erst $g \circ f$ stetig wegen der Finalität von e und dann g stetig wegen der Finalität von f. Also hat auch $f \circ e$ die universelle Eigenschaft, die finale Abbildungen charakterisiert, und wir haben gezeigt, daß jede Verknüpfung finaler Abbildungen final ist. Nun zeigen wir die letzte Aussage und nehmen an, $f \circ e$ sei final. Ist nun $g \circ f$ stetig, so ist $g \circ (f \circ e) = (g \circ f) \circ e$ stetig und dann ist wegen der Finalität von $f \circ e$ auch g selbst. Also hat dann f die universelle Eigenschaft, die finale Abbildungen charakterisiert.

3.6.16. Gegeben eine Familie topologischer Räume (X_i) versehen wir ihre disjunkte Vereinigung $\bigsqcup X_i$ mit der Finaltopologie bezüglich der Inklusionen, wenn nichts anderes gesagt wird. Eine Teilmenge der disjunkten Vereinigung ist also offen genau dann, wenn ihr Schnitt mit jedem X_i offen ist. Die so topologisierte disjunkte Vereinigung heißt auch die topologische Summe der X_i.

3.6.17. Mit unserem neuen Begriff können wir 3.1.19 umformulieren wie folgt: Ist $X = \bigcup U_i$ eine offene Überdeckung oder eine endliche abgeschlossene Überdeckung, so trägt X die Finaltopologie bezüglich der Einbettungen der U_i und
\(\bigcup U_i \to X \) ist final. Dasselbe gilt auch für jede „lokal endliche“ abgeschlossene Überdeckung, was in 3.6.40 diskutiert wird.

Definition 3.6.18. Eine Abbildung von topologischen Räumen heißt **offen**, wenn das Bild jeder offenen Menge offen ist. Wir fordern von einer offenen Abbildung nicht, daß sie stetig sein muß.

Lemma 3.6.19. Jede stetige offene oder abgeschlossene Surjektion ist final.

Beweis. Gegeben eine Surjektion \(f : X \to Y \) gilt für jede Teilmenge \(V \subseteq Y \) sicher \(V = f(f^{-1}(V)) \). Ist \(f \) zusätzlich offen, so folgt aus \(f^{-1}(V) \subseteq X \) also \(V \subseteq Y \) und \(f \) ist in der Tat final. Im Fall einer stetigen abgeschlossenen Surjektion argumentiert man genauso. \(\square \)

Lemma 3.6.20 (Finalität ist lokal in der Basis). Sei \(f : X \to Y \) eine stetige Abbildung. Ist \(f \) final und \(V \subseteq Y \) offen, so ist auch \(f : f^{-1}(V) \to V \) final. Besitzt umgekehrt \(Y \) eine offene Überdeckung \(\mathcal{V} \) derart, daß \(f : f^{-1}(V) \to V \) final ist für alle \(V \in \mathcal{V} \), so ist auch \(f \) selbst final.

Beweis. Gegeben eine Teilmenge \(W \subseteq Y \) finden wir
\[
\begin{align*}
 f^{-1}(W) \subseteq X & \Rightarrow f^{-1}(W) \cap f^{-1}(V) \subseteq f^{-1}(V) \quad \forall V \in \mathcal{V} \\
 & \Rightarrow (W \cap V) \subseteq f^{-1}(V) \quad \forall V \in \mathcal{V} \\
 & \Rightarrow W \subseteq Y \\
\end{align*}
\]

Beweis. Gegeben eine Teilmenge \(W \subseteq Y \) finden wir
\[
\begin{align*}
 f^{-1}(W) \subseteq X & \Rightarrow f^{-1}(W) \cap f^{-1}(V) \subseteq f^{-1}(V) \quad \forall V \in \mathcal{V} \\
 & \Rightarrow (W \cap V) \subseteq f^{-1}(V) \quad \forall V \in \mathcal{V} \\
 & \Rightarrow W \subseteq Y \\
\end{align*}
\]

Beweis. Gegeben eine Teilmenge \(W \subseteq Y \) finden wir
\[
\begin{align*}
 f^{-1}(W) \subseteq X & \Rightarrow f^{-1}(W) \cap f^{-1}(V) \subseteq f^{-1}(V) \quad \forall V \in \mathcal{V} \\
 & \Rightarrow (W \cap V) \subseteq f^{-1}(V) \quad \forall V \in \mathcal{V} \\
 & \Rightarrow W \subseteq Y \\
\end{align*}
\]

Beispiel 3.6.22. Wir konstruieren das Möbiusband. Zu dem Behufe betrachten wir auf \([0, 1] \times [-1, 1]\) die Äquivalenzrelation \(\sim \), die erzeugt wird von \((0, y) \sim (1, -y)\). Die Menge der Äquivalenzklassen versehen wir mit der Quotiententopologie, und fertig ist das Möbiusband. Als Übung zeige man, daß unser so konstruiertes Möbiusband kompakt ist.

Beispiel 3.6.23 (Verkleben topologischer Räume). Wir zeigen, wie man mit unserem Formalismus zwei topologische Räume \(X \) und \(Y \) verkleben kann. Wir brauchen dazu als „Kleber“ eine Menge \(K \) und Abbildungen \(f : K \to X \), \(g : K \to Y \). Dann betrachten wir auf der disjunkten Vereinigung \(Y \sqcup X \) die Äquivalenzrelation \(\sim \) erzeugt von \(f(z) \sim g(z) \quad \forall z \in K \) und nehmen als Topologie auf der Verklebung
\[
Y \sqcup_K X = (Y \sqcup X) / \sim
\]
Versuch einer graphischen Darstellung unserer Konstruktion des Möbiusbands.
Der besseren Vorstellung halber habe ich hier das Rechteck $[0, 5] \times [-1, 1]$ gezeichnet und die Identifikationsvorschrift für die senkrechten Kanten durch mit \equiv bezeichnete Linien beispielhaft angedeutet.

Man erhält eine stetige Abbildung des Möbiusbands nach $\mathbb{R}^3 \cong \mathbb{C} \times \mathbb{R}$ vermittels der Formel $(t, \tau) \mapsto (\tau e^{i\pi t}, \sqrt{1 - \tau^2 \cos^2 \pi t})$. Anschaulich gesprochen verbindet man je zwei gegenüberliegende Punkte des Einheitskreises durch einen Bogen mit varierender mittlerer Höhe. Das Bild ist eine sich selbst durchdringende räumliche Fläche, bei der man sich die Selbstdurchdringung leicht wegdenken kann. Man nennt sie auch die **Kreuzhaube**. In dieser Anschauung für das Möbiusband bezahlt man in gewisser Weise mit der Selbstdurchdringung für die gute Sichtbarkeit des Randkreises.
die Finaltopologie zu den beiden offensichtlichen Abbildungen $X \to Y \sqcup_K X$, $Y \to Y \sqcup_K X$.

Satz 3.6.24 (Stetigkeitseigenschaften der Nullstellen von Polynomen). *Die Vorschrift* $(\lambda_1, \ldots, \lambda_n) \mapsto (T - \lambda_1) \ldots (T - \lambda_n)$ *liefer für jedes n eine finale Abbildung* $\pi : \mathbb{C}^n \to \text{Pol}$ *in den affinen Raum* Pol *aller normierten komplexen Polynome vom Grad* n, *und die davon induzierte Abbildung ist ein Homöomorphismus*

$$\mathbb{C}^n / S_n \xrightarrow{\sim} \text{Pol}$$

3.6.25. Hier meint \mathbb{C}^n / S_n den Bahnenraum für die Operation der symmetrischen Gruppe durch Vertauschung der Koordinaten mit der Quotiententopologie alias den Raum der Multimengen komplexer Zahlen der Kardinalität n. Auf unserem Raum Pol dahingegen betrachten wir die natürliche Topologie. Unser Satz ist ein topologisches Analogon des Hauptsatzes über symmetrische Polynome ??, vergleiche ??.

Beispiel 3.6.26. Ist $f : \mathbb{C} \to \mathbb{C}$ stetig, so ist auch die Abbildung $\text{Pol} \to \mathbb{C}$ gegeben durch $(T - \lambda_1) \ldots (T - \lambda_n) \mapsto f(\lambda_1) + \ldots + f(\lambda_n)$ stetig.

Beweis. Links ist hier die Operation der symmetrischen Gruppe durch Vertauschung der Koordinaten gemeint. Aus der Finalität von π folgen die anderen Aussagen unmittelbar. Die Abschätzung ?? zeigt aber, daß Urbilder von Kompakta K unter π stets wieder kompakt sind. Nach 3.6.42 ist dann $\pi^{-1}(K) \to K$ final, nach 3.6.20 damit auch $\pi^{-1}(K^n) \to K^n$, und nach der Lokalität der Finalität 3.6.20 damit auch unsere Abbildung π selbst. □

Korollar 3.6.27 (Stetigkeit der einzigen reellen Nullstelle). *Gegeben* $n \geq 1$ *ungerade bilden im affinen Raum* $\text{Pol}^e_{\mathbb{R}}$ *aller reellen normierten Polynome vom Grad* n *die Polynome mit einer einzigen reellen Nullstelle eine offene Teilmenge* $\text{Pol}^e_{\mathbb{R}}$ *und die Abbildung* $N : \text{Pol}^e_{\mathbb{R}} \to \mathbb{R}$, *die jedem Polynom mit einer einzigen reellen Nullstelle diese einzige Nullstelle zuordnet, ist stetig.*

3.6.28. Einen alternativen Beweis liefert der Satz über implizite Funktionen, vergleiche ??, Er scheint mir im ganzen schwieriger, liefert aber auch zusätzlich die Differenzierbarkeit unserer Abbildung N.

Beweis. Wir erinnern unsere finale Abbildung π aus 3.6.24. Nach 3.6.41 ist auch $\pi : \pi^{-1}(\text{Pol}_{\mathbb{R}}) \to \text{Pol}_{\mathbb{R}}$ final. Bezeichnet $U_i \subseteq \mathbb{C}^n$ die Teilmenge der Tupel, bei denen bestenfalls der i-te Eintrag reell sein darf, so gilt

$$\pi^{-1}(\text{Pol}^e_{\mathbb{R}}) = \bigcup_{i=1}^n U_i \cap \pi^{-1}(\text{Pol}_{\mathbb{R}})$$

77
und die rechte Seite ist folglich offen in \(\pi^{-1}(\text{Pol}_{R}) \). Dann gilt aber wegen der Finalität auch \(\text{Pol}_{R} \subseteq \text{Pol}_{R} \). Nach 3.6.20 ist damit auch \(\pi : \pi^{-1}(\text{Pol}_{R}) \to \text{Pol}_{R} \) final. Nun ist die Vereinigung von eben sogar eine disjunkte Vereinigung der Schnitte \(U_{i} \cap \pi^{-1}(\text{Pol}_{R}) \). Die Abbildung \(\bar{N} : \pi^{-1}(\text{Pol}_{R}) \to R \), die den Punkten aus \(U_{i} \) jeweils ihre \(i \)-te Koordinate zuordnet, ist dann offensichtlich stetig. Wegen \(N \circ \pi = \bar{N} \) und der Finalität von \(\pi \) ist damit auch \(N \) selbst stetig.

Definition 3.6.29. Seien \(X \) eine Menge, \(Y_{i} \) topologische Räume indiziert durch \(i \in I \) und \(f_{i} : X \to Y_{i} \) Abbildungen. Die kleinste Topologie auf \(X \), für die die alle die \(f_{i} \) stetig werden, heißt die **Initialtopologie** oder auch die **Kofinaltopologie** auf \(X \) in Bezug auf unsere Familie von Abbildungen.

3.6.30. Der Schnitt aller Topologien auf \(X \), für die alle \(f_{i} \) stetig sind, hat sicher auch diese Eigenschaft und ist folglich die kleinste Topologie mit dieser Eigenschaft. Das zeigt, daß solch eine kleinste Topologie wirklich existiert. Etwas expliziter kann man die Initialtopologie beschreiben als die Topologie auf \(X \), die von allen \(f_{i}^{-1}(V) \) mit \(i \in I \) und \(V \subseteq Y_{i} \) erzeugt wird.

Beispiel 3.6.31. Ist \(Y \) ein topologischer Raum und \(X \subseteq Y \) eine Teilmenge, so stimmt die auf \(X \) induzierte Topologie überein mit der Initialtopologie zur Inklusion \(X \hookrightarrow Y \). Ganz allgemein nennen wir eine stetige Abbildung \(f : X \to Y \) **initial**, wenn \(X \) die Initialtopologie trägt. Zum Beispiel ist die Identität auf einem topologischen Raum stets initial. Eine initiale injektive Abbildung topologischer Räume nennen wir auch eine **topologische Einbettung**.

Satz 3.6.32 (Universelle Eigenschaft der Initialtopologie). Seien \(f_{i} : X \to Y_{i} \) Abbildungen von einer Menge in topologische Räume. Versehen wir \(X \) mit der Initialtopologie und ist \(W \) ein topologischer Raum und \(e : W \to X \) eine Abbildung, so ist \(e \) stetig genau dann, wenn alle \(f_{i} \circ e : W \to Y_{i} \) stetig sind.

Beweis. Mit \(e \) sind natürlich auch alle \(f_{i} \circ e \) stetig. Sind umgekehrt alle \(f_{i} \circ e \) stetig, so ist die Finaltopologie zu \(e \) auch eine Topologie auf \(X \), für die alle \(f_{i} \) stetig sind. Folglich umfaßt die Finaltopologie zu \(e \) unsere Initialtopologie und \(e \) ist stetig.

3.6.33 **(Charakterisierung der Initialität).** Analog wie in 3.6.11 zeigt man, daß auch die Initialtopologie auf \(Y \) charakterisiert werden kann als die einzige Topologie, für die die Aussage des vorhergehenden Satzes 3.6.32 gilt.

Vorschau 3.6.34. In der Homotopietheorie arbeitet man oft mit sogenannten **CW-Komplexen**. Darunter versteht man einen Hausdorffraum \(X \) mit einer Familie von stetigen Abbildungen \(\varphi_{\alpha} : D^{n(\alpha)} \to X \) von geschlossenen Bällen \(D^{n} := \{ x \in \mathbb{R}^{n} \mid \|x\| \leq 1 \} \) nach \(X \) derart, daß gilt:
1. Die Restriktionen unserer Abbildungen auf die offenen Bälle sind Homöomorphismen auf ihr Bild $\varphi_\alpha : (D^n(\alpha) \setminus S^{n(\alpha)}) \to \varphi_\alpha(D^n(\alpha) \setminus S^{n(\alpha)})$ und unser Raum X ist als Menge die disjunkte Vereinigung der Bilder der offenen Bälle $X = \bigsqcup_\alpha \varphi_\alpha(D^n(\alpha) \setminus S^{n(\alpha)})$. Diese Bilder der offenen Bälle heißen die Zellen unseres CW-Komplexes;

2. Für jedes α ist $\varphi_\alpha(S^{n(\alpha)})$ enthalten in einer endlichen Vereinigung von Bildern von anderen φ_β mit $n(\beta) < n(\alpha)$;

3. Der Raum X trägt die finale Topologie in Bezug auf die Familie der $\varphi_\alpha : D^n(\alpha) \to X$.

Übungen

Ergänzende Übung 3.6.35. Gegeben ein CW-Komplex X ist die Vereinigung $X \leq^*_n$ aller Zellen der Dimension $\leq n$ abgeschlossen. Sie heißt das n-Skelett unseres CW-Komplexes.

Übung 3.6.37 (Transitivität finaler Familien). Seien $e_{ij} : W_{ij} \to X_i$ und $f_i : X_i \to Y$ Familien von topologischen Räumen und stetigen Abbildungen. Tragen die X_i die finalen Topologien für die e_{ij} und trägt Y die finale Topologie für die f_i, so trägt Y auch die finale Topologie für die $f_i e_{ij}$. Trägt andererseits Y die finale Topologie bezüglich der $f_i e_{ij}$, so trägt Y auch die finale Topologie bezüglich der f_i.

Übung 3.6.38 (Transitivität initialer Familien). Seien $f_i : X \to Y_i$ und $g_{ji} : Y_i \to Z_{ji}$ Familien von topologischen Räumen und stetigen Abbildungen. Trägt X die initiale Topologie für die f_i und tragen die Y_i die initialen Topologien für die g_{ji}, so trägt X auch die initiale Topologie für die $g_{ji} f_i$. Trägt andererseits X die initiale Topologie bezüglich der $g_{ji} f_i$, so trägt X auch die initiale Topologie bezüglich der f_i. Hinweis: Charakterisierung der Initialität durch universelle Eigenschaft 3.6.33. Diese Übung besagt unter anderem, daß die Verknüpfung von zwei initialen Abbildungen stets initial ist, und daß Verknüpfung $g \circ f$ von zwei
stetigen Abbildungen nur dann initial sein kann, wenn \(f \) initial ist. Insbesondere ist jede stetige Abbildung initial, die eine stetige Linksinverse besitzt. Noch spezieller ist die diagonale Einbettung \(X \to X \times X \) stets initial.

\textit{Übung} 3.6.39. Operiert auf einem topologischen Raum \(X \) eine Gruppe \(G \) durch stetige Abbildungen und versehen wir den zugehörigen Bahnenraum \(X/G \) mit der Finaltopologie, so ist die Projektion \(X \to X/G \) offen. Ist unsere Gruppe \(G \) endlich, so ist sie auch abgeschlossen.

\textit{Übung} 3.6.40. Sei \(X \) ein topologischer Raum. Ein System \(A \subset \mathcal{P}(X) \) von Teilmengen von \(X \) heißt \textbf{lokal endlich}, wenn jeder Punkt \(x \in X \) eine Umgebung besitzt, die nur endlich viele der Teilmengen unseres Systems trifft. Man zeige: Gegeben eine lokal endliche Überdeckung eines topologischen Raums durch abgeschlossene Teilmengen trägt unser Raum die Finaltopologie in Bezug auf die Einbettungen der Teilmengen unserer Überdeckung.

\textit{Übung} 3.6.41. Sei \(f : X \to Y \) eine stetige Abbildung. Ist \(B \subset Y \) abgeschlossen, so ist auch \(f : f^{-1}(B) \to B \) final. Besitzt umgekehrt \(Y \) eine lokal endliche abgeschlossene Überdeckung \(\mathcal{B} \) derart, daß \(f : f^{-1}(B) \to B \) final ist für alle \(B \in \mathcal{B} \), so ist auch \(f \) selbst final. Hinweis: Eigenständige Beweise sind wie immer willkommen, aber man kann die Aussage jedenfalls aus 3.6.17 und 3.6.37 ableiten.

\textit{Übung} 3.6.43 \textbf{(Finale Abbildungen und Zusammenhang)}. Ist \(f : X \to Y \) final mit zusammenhängenden Fasern, so sind die Zusammenhangskomponenten von \(X \) die Urbilder der Zusammenhangskomponenten von \(Y \). Ist insbesondere \(Y \) zusammenhängend, so auch \(X \).

\textit{Ergänzende Übung} 3.6.44. Sei \(f : X \to Y \) eine stetige Surjektion auf einen Hausdorffraum. Besitzt \(Y \) eine lokal endliche Überdeckung durch Kompakta, deren Urbilder unter \(f \) auch kompakt sind, so ist \(f \) final. Hinweis: 3.6.20.

\textit{Übung} 3.6.45. Man zeige, daß im Raum aller normierten reellen Polynome vom Grad \(n \) die über \(\mathbb{R} \) zerfallenden Polynome eine abgeschlossene Teilmenge bilden und daß darin die offene Teilmenge der Polynome ohne Nullstelle bei Null in \((n + 1)\) Zusammenhangskomponenten zerfällt, die durch die Zahl der mit Vielfachheit genommenen positiven Nullstellen der in ihnen enthaltenen Polynome charakterisiert werden können.

\section{3.7 Kompakte topologische Eins-Mannigfaltigkeiten*}

3.7.1. Dieser Abschnitt ist für das Weitere entbehrlich. Er dient im Wesentlichen dazu, den Leser davon zu überzeugen, daß die bisher entwickelten abstrakten Begriffsbildungen immer noch eine enge Beziehung zur Anschauung haben.
Satz 3.7.2 (Klassifikation kompakter Einsmannigfaltigkeiten). Jede zusammenhängende kompakte topologische Einsmannigfaltigkeit ist homöomorph zur Kreislinie S^1.

Lemma 3.7.4. Läßt sich ein zusammenhängender Hausdorffraum schreiben als Vereinigung von zwei offenen zu \mathbb{R} homöomorphen Teilmengen, so ist er homöomorph zur Zahlengeraden \mathbb{R} oder zur Kreislinie S^1.

Beweis. Sei X unser Raum und seien $\varphi, \psi : \mathbb{R} \hookrightarrow X$ offene stetige Einbettungen, deren Bilder X überdecken. Da X zusammenhängend ist, haben wir $\varphi(\mathbb{R}) \cap \psi(\mathbb{R}) \neq \emptyset$. Sicher ist $\varphi^{-1}(\psi(\mathbb{R}))$ offen in \mathbb{R}, folglich ist jede Zusammenhangskomponente dieser Menge ein offenes Intervall. Wäre solch eine Zusammenhangskomponente beschränkt, sagen wir von der Gestalt (a, b) mit $a, b \in \mathbb{R}$, so folgte $(\psi^{-1} \circ \varphi)((a, b)) = (\psi^{-1} \circ \varphi)([a, b])$, und da $\varphi([a, b])$ kompakt und damit abgeschlossen ist, wäre $(\psi^{-1} \circ \varphi)((a, b))$ sowohl offen als auch abgeschlossen und damit ganz \mathbb{R} und es folgte $\varphi : \mathbb{R} \sim X$ und wir wären fertig. Wir dürfen also annehmen, jede Zusammenhangskomponente von $\varphi^{-1}(\psi(\mathbb{R}))$ sei ein unbeschränktes Intervall. Folglich besitzt dieser Raum und damit auch $\varphi(\mathbb{R}) \cap \psi(\mathbb{R})$ entweder eine oder zwei Zusammenhangskomponenten. Wir beginnen mit dem Fall einer Komponente. Indem wir notfalls φ beziehungsweise ψ durch ihre Verknüpfung mit $t \mapsto -t$ ersetzen, dürfen wir annehmen, daß es $a, b \in \mathbb{R}$ gibt derart, daß φ und ψ Homöomorphismen

$$(-\infty, a) \to \varphi(\mathbb{R}) \cap \psi(\mathbb{R}) \leftarrow (b, \infty)$$

induzieren. Die Verknüpfung ist also streng monoton. Wäre sie streng monoton fallend, so hätten wir

$$\lim_{x \nearrow a} \varphi(x) = \varphi(a) = \psi(b) = \lim_{y \searrow b} \psi(y)$$

im Widerspruch zur Wahl von a und b. Also ist unsere Verknüpfung streng monoton wachsend und gegeben c, d mit $\varphi(c) = \psi(d)$ haben wir

$$X = \psi((-\infty, d]) \cup \varphi([c, \infty))$$

wobei $\varphi(c) = \psi(d)$ der einzige gemeinsame Punkt dieser beiden Mengen ist. Sie sind beide abgeschlossen in X, da ihre Urbilder unter ψ und φ es sind, und daraus folgt dann, daß X homöomorph ist zu \mathbb{R}. Im Fall zweier Komponenten argumentieren wir analog. □
Illustration zum Beweis von 3.7.4.
Beweis von Satz 3.7.2. Sei \(X = U_1 \cup U_2 \cup \ldots \cup U_r \) eine offene Überdeckung durch zu \(\mathbb{R} \) homöomorphe Teilmengen. Wir können die Mengen unserer Überdeckung so anordnen, daß \(U_1 \cup U_2 \cup \ldots \cup U_i \) für jedes \(i \geq 1 \) zusammenhängend ist. Ist \(i \) minimal derart, daß \(U_1 \cup \ldots \cup U_i \) nicht homöomorph ist zu \(\mathbb{R} \), so muß nach dem Lemma diese Vereinigung bereits homöomorph zu \(S^1 \) sein, und damit als nicht-leere abgeschlossene und offene Teilmenge mit ganz \(X \) zusammenfallen. \(\Box \)

3.8 Produkttopologie

Definition 3.8.1. Gegeben \((X_i)_{i \in I} \) eine Familie topologischer Räume ist die Produkttopologie auf ihrem kartesischen Produkt \(\prod_{i \in I} X_i \) definiert als die initiale Topologie zu den Projektionen auf die Koordinaten \(\text{pr}_j : \prod X_i \to X_j \).

3.8.2. Abstrakt gefaßt erhalten wir so genau das Produkt im Sinne der Kategorientheorie 9.6.1 im Fall der Kategorie der topologischen Räume.

3.8.3. Ausformuliert bedeutet diese Definition: Alle \(\text{pr}_j \) sind stetig, und eine Abbildung \(e : W \to \prod X_i \) von einem topologischen Raum \(W \) in das Produkt ist stetig genau dann, wenn alle \(\text{pr}_j \circ e : W \to X_j \) es sind. Etwas expliziter liefert die Konstruktion der Initialtopologie, daß die Produkttopologie auf \(\prod X_i \) erzeugt wird durch alle Mengen der Form \(\text{pr}_i^{-1}(U_i) \) für \(i \in I \) und \(U_i \subset X_i \). Eine Basis der Topologie wird folglich gegeben durch alle endlichen Schnitte solcher Mengen alias die „offenen Quader“

\[
U_{i_1} \times \ldots \times U_{i_k} \times \prod_{i \neq i_1, \ldots, i_k} X_i
\]

mit \(U_{i_\nu} \subset X_{i_\nu} \) für paarweise verschiedene \(i_\nu \).

3.8.4. Auf einem endlichen Produkt metrischer Räume liefert die Produktmetrik stets die Produkttopologie. Speziell stimmt auf dem \(\mathbb{R}^n \) die Produkttopologie überein mit der natürlichen Topologie aus 2.4.14.

3.8.6. Der Beweis kann auch als eine einfache Anwendung unserer allgemeinen Aussagen zur Transitivität initialer Familien 3.6.38 gelesen werden.

Beweis. Die erste Aussage folgt unmittelbar aus der universellen Eigenschaft der Produkttopologie als der Initialtopologie zu den Projektionen. Die zweite Aussage folgt aus der Letztten. Sei also \((f_i : X_i \to Y_i)_{i \in I} \) eine Familie initialer
Abbildungen. Es gilt zu zeigen, daß auf $\prod X_i$ die Initialtopologie in Bezug auf $(f_i) : \prod X_i \to \prod Y_i$ übereinstimmt mit der Produkttopologie. Daß hier die Produkttopologie größergleich der Initialtopologie ist, folgt aus der bereits bewiesenen Stetigkeit des Produkts (f_i) unserer Abbildungen. Nun haben wir offensichtlich für alle $j \in I$ die Gleichheit von Abbildungen

$$(\text{pr}_j^Y \circ (f_i)) = f_j \circ \text{pr}_j^X : \prod X_i \to Y_j$$

und diese Abbildungen sind per definitionem stetig für beide Topologien. Da die f_j initial sind, müssen dann auch die $\text{pr}_j^X : \prod X_i \to Y_j$ stetig sein die Initialtopologie, die damit größergleich der Produkttopologie ist. Folglich stimmen diese beiden Topologien überein.

\[\Box\]

Proposition 3.8.7 (Abgeschlossenheit der Diagonale bedeutet Hausdorff). Ge- nau dann ist ein topologischer Raum X ein Hausdorffraum, wenn die Diagonale eine abgeschlossene Teilmenge des Produkts unseres Raums mit sich selbst ist, in Formeln

$$\Delta(X) \subseteq X \times X$$

Beweis. Ist X Hausdorff, so gibt es für $(x, y) \in (X \times X) \setminus \Delta(X)$ disjunkte offene Umgebungen $U, V \subseteq X$ von x beziehungsweise y. Dann ist $(U \times V) \subseteq (X \times X)$ eine offene Umgebung von (x, y), die die Diagonale nicht trifft. Gibt es umgekehrt offene Umgebung von (x, y), die die Diagonale nicht trifft, so ist diese eine Vereinigung von Quatern $U \times V$ mit U disjunkt zu V, und einer von diesen muß (x, y) enthalten, also $x \in U$ und $y \in V$.

\[\Box\]

3.8.9. Die Projektionen eines Produkts von topologischen Räumen auf seine Faktoren sind im allgemeinen nicht abgeschlossen. Zum Beispiel ist die sogenannte Hyperbel $\{(x, y) \mid xy = 1\}$ eine abgeschlossene Teilmenge der Ebene \mathbb{R}^2, ihre Projektion auf die x-Achse ist jedoch keine abgeschlossene Teilmenge der Zahlengerade \mathbb{R}.

84
3.8.11. Um diesen Satz so prägnant formulieren zu können, müssen wir unsere Konvention zugrundelegen, nach der die leere Menge kein zusammenhängender topologischer Raum ist.

Beweis. Ist das Produkt zusammenhängend, so nach 3.3.7 auch die Faktoren als Bilder der stetigen Projektionen. Für die Rückrichtung prüfen wir unser Zusammenhangskriterium 3.3.8. Sei $\prod X_i \times \{0, 1\}$ stetig. Wenn X_i zusammenhängend ist, so folgt $f(x) = f(y)$, wenn sich x und y nur in der i-ten Koordinate unterscheiden. Daraus folgt induktiv $f(x) = f(y)$, wenn sich x und y nur in endlich vielen Koordinaten unterscheiden. Gilt nun $f^{-1}(0) \neq \emptyset$, so folgt $f^{-1}(0) \supset U_{i_1} \times \ldots \times U_{i_k} \times \prod_{i \neq i_1, \ldots, i_k} X_i$ für geeignete paarweise verschiedene Indizes i_1, \ldots, i_k und geeignete nichtleere offene Teilmengen $U_{i_1} \subset X_{i_1}, \ldots, U_{i_k} \subset X_{i_k}$. Mit unserer Vorüberlegung folgt daraus sofort, daß f konstant sein muß.

Übungen

Übung 3.8.12. Ist $f : X \to Y$ stetig und Y Hausdorff, so ist der Graph von f eine abgeschlossene Teilmenge $\Gamma(f) \subset X \times Y$.

Ergänzende Übung 3.8.14. Ein Produkt von abgeschlossenen Teilmengen ist stets eine abgeschlossene Teilmenge des Produkts. Allgemeiner zeige man für topologische Räume X, Y und Teilmengen $A \subset X$ und $B \subset Y$ die Gleichheit $\overline{A \times B} = \overline{A} \times \overline{B}$ des Abschlusses des Produkts mit dem Produkt der Abschlüsse.

Übung 3.8.15. Für beliebige topologische Räume X, Y, Z ist die offensichtliche Abbildung $X \times Y \times Z \to (X \times Y) \times Z$ ein Homöomorphismus.

Ergänzende Übung 3.8.17. Man zeige, daß die Menge aller $(x, y) \in \mathbb{R} \times \mathbb{R}$ mit $x \leq y$ abgeschlossen ist. Man folgere, daß bei Grenzwerten von Funktionen mit Werten in \mathbb{R} Ungleichungen erhalten bleiben. Hinweis: 3.2.13.

Ergänzende Übung 3.8.18. Sind $f, g : X \to \mathbb{R}^n$ stetige Abbildungen, so ist auch die Abbildung $H : X \times [0, 1] \to \mathbb{R}^n$ mit $(x, \tau) \mapsto \tau f(x) + (1 - \tau) g(x)$ stetig.

Ergänzende Übung 3.8.19. Das Produkt von zwei Mannigfaltigkeiten der Dimensionen n und m ist eine Mannigfaltigkeit der Dimension $n + m$.
Ergänzende Übung 3.8.20. Jede kompakte d-Mannigfaltigkeit X läßt sich stetig in einen \mathbb{R}^n einbetten. Hinweis: Man findet für jedes $x \in X$ eine stetige Abbildung $f_x : X \to \mathbb{R}^d$, die injektiv ist auf einer offenen Umgebung U_x von x. Endlich viele dieser U_x überdecken X.

Ergänzende Übung 3.8.22. Gegeben topologische Räume X und Y sowie Kompakta $K \subset X$ und $L \subset Y$ sowie $W \subset X \times Y$ mit $K \times L \subset W$ gibt es $U \subset X$ und $V \subset Y$ mit $K \subset U$ und $L \subset V$ sowie $U \times V \subset W$.

Ergänzende Übung 3.8.23. Man zeige, daß es keinen topologischen Raum X gibt derart, daß $X \times X$ homöomorph ist zu \mathbb{R}. Hinweis: Man zeige, daß für X zusammenhängend mit mehr als einem Punkt das Komplement eines Punktes in $X \times X$ auch zusammenhängend ist. Man zeige allgemeiner, daß es keine zwei topologischen Räume X, Y mit jeweils mindestens zwei Punkten so gibt, daß $X \times Y$ homöomorph ist zu \mathbb{R}. Höherdimensionale Analoga zeigen wir in ??.

Ergänzende Übung 3.8.24. Man zeige, daß für jeden topologischen Raum X die Abbildung $\text{Exp} \times \text{id} : [0, 1] \times X \to S^1 \times X$ final ist. Hinweis: 3.6.13 und 3.6.20.

4 Topologie und algebraische Strukturen

4.1 Topologische Gruppen

Definition 4.1.1. Ein topologisches Magma ist ein Magma M mit einer Topologie derart, daß die Verknüpfung $M \times M \to M$ stetig ist.

Definition 4.1.2. Ein topologisches Monoid ist ein Monoid M mit einer Topologie derart, daß die Verknüpfung $M \times M \to M$ stetig ist.

Definition 4.1.3. Eine topologische Gruppe ist eine Gruppe G mit einer Topologie derart, daß die Verknüpfung $G \times G \to G$ und die Inversenabbildung $G \to G$ stetig sind.

Ergänzung 4.1.5. Segal und Nikolov haben gezeigt, daß eine kompakte Hausdorffgruppe keinen surjektiven Gruppenhomomorphismus auf eine unendliche aber endlich erzeugte Gruppe besitzen kann. Gemeint sind hier Homomorphismen von abstrakten Gruppen, also nach Vergessen der Topologie.

Beispiele 4.1.6. Die Gruppen $GL(n; \mathbb{R})$ sind topologische Gruppen in der von der natürlichen Topologie auf dem endlichdimensionalen reellen Vektorraum aller reellen $(n \times n)$-Matrizen induzierten Topologie. Jeder normierte Vektorraum ist mit der Addition als Verknüpfung und der metrischen Topologie eine topologische Gruppe.

4.1.7. Gegeben ein topologisches Magma M ist die Linkstranslation $(x\cdot) : M \to M$ stetig als die Verknüpfung

$$M \overset{(x,\text{id})}{\longrightarrow} M \times M \to M$$

mit x der entsprechenden konstanten Abbildung $M \to M$, die ja stets stetig ist. In derselben Weise folgt, daß auch die Rechtstranslationen $(\cdot x)$ stetig sind und daß im Fall einer topologischen Gruppe alle Translationen und ebenso die Konjugationen $g \mapsto xgx^{-1}$ für alle x Homöomorphismen sind.

4.1.8. Jede offene Untergruppe einer topologischen Gruppe ist auch abgeschlossen als das Komplement der Vereinigung ihrer nichttrivialen Linksnebenklassen.

Beweis. In der Tat erzeugt in jeder topologischen Gruppe jede Umgebung des neutralen Elements eine offene Untergruppe. Nach 4.1.8 ist diese offene Untergruppe auch abgeschlossen. Ist unsere Gruppe zusammenhängend, so muß sie also bereits mit besagter Untergruppe übereinstimmen.

Ergänzung 4.1.10. Ein stetiger Gruppenhomomorphismus von der additiven Gruppe der reellen Zahlen in eine topologische Gruppe heißt ein **Gruppenweg** in unserer topologischen Gruppe. In der Literatur ist auch die Bezeichnung als **Einparameteruntergruppe** gebräuchlich. In 2.4.19 bestimmen wir die Gruppenwege in der additiven Gruppe eines normierten reellen Vektorraums, in ?? die Gruppenwege in Matrix-Liegruppen.

Ergänzung 4.1.11. Gegeben eine Umgebung \(U \subset G \) des neutralen Elements einer topologischen Gruppe gibt es stets eine weitere Umgebung \(V \subset G \) des neutralen Elements mit \(V^2 \subset U \) alias \(xy \in U \forall x, y \in V \). In der Tat gibt es eine Umgebung von \((1, 1) \) in \(G \times G \), die unter der Verknüpfung in \(U \) landet, und jede solche Umgebung umfaßt eine Umgebung der Gestalt \(A \times B \) für Umgebungen \(A, B \) von \(1 \in G \). Der Schnitt \(A \cap B \) ist dann die gesuchte Umgebung \(V \) des neutralen Elements.

Übungen

Übung 4.1.12. Jede diskrete Untergruppe einer topologischen Gruppe ist abgeschlossen.

Übung 4.1.13. Ist \(G \) eine Hausdorffgruppe und \(A \subset G \) eine abelsche Untergruppe, so ist auch der Abschluß \(\bar{A} \) unserer Untergruppe abelsch. In der Tat folgt aus \(aba^{-1}b^{-1} = 1 \) für alle \(a, b \in A \) dasselbe zunächst für alle \(a \in A, b \in \bar{A} \) und dann für alle \(a, b \in \bar{A} \).

Übung 4.1.14. Man zeige, daß eine zusammenhängende topologische Gruppe mit einer abzählbar basierten Umgebung des neutralen Elements stets abzählbar basiert ist. Hinweis: Gegeben eine offene Teilmenge \(U \subset G \) ist die Multiplikation \(U^n \rightarrow G \) stets offen.

Übung 4.1.15. Jede Untergruppe einer topologischen Gruppe ist mit der induzierten Topologie selbst eine topologische Gruppe. Jedes Produkt topologischer Gruppen ist mit der Produkttopologie wieder eine topologische Gruppe.

Übung 4.1.17. Ein Gruppenhomomorphismus von topologischen Gruppen ist stetig genau dann, wenn er stetig ist beim neutralen Element.
Übung 4.1.18. Gegeben eine Untergruppe einer topologischen Gruppe ist auch ihr Abschluß eine Untergruppe.

Übung 4.1.19. In jeder topologischen Gruppe ist die Zusammenhangskomponente des neutralen Elements eine Untergruppe, ja sogar ein Normalteiler. Man nennt sie meist die **Einszusammenhangskomponente** oder kurz **Einskomponente**. Die Einskomponente einer topologischen Gruppe G wird G^0 notiert.

Übung 4.1.20. In einer topologischen Gruppe erzeugt jede zusammenhängende Umgebung der Eins die Einskomponente.

Übung 4.1.21. Jeder diskrete Normalteiler einer zusammenhängenden topologischen Gruppe liegt bereits im Zentrum besagter Gruppe.

Übung 4.1.22. Sei G eine Gruppe mit einer Topologie. Sind die Translationen $(g·) : G → G$ und $(·g) : G → G$ stetig für alle $g ∈ G$, ist die Inversenbildung stetig beim neutralen Element e, und ist die Verknüpfung $G × G → G$ stetig bei (e,e), so ist G eine topologische Gruppe.

Übung 4.1.23. Ein **topologischer Schiefkörper** ist ein Schiefkörper k mit einer Topologie derart, daß die Addition und die Multiplikation stetig sind als Abbildungen $k × k → k$ sowie, für die auf $k^×$ induzierte Topologie, auch das Bilden des Inversen $k^× → k^×$. Man zeige, daß für einen Hausdorff’schen topologischen Schiefkörper k die Gruppen $\text{GL}(d; k)$ topologische Gruppen sind.

Übung 4.1.24. Man zeige: Jede topologische Gruppe, die homöomorph ist zur additiven Gruppe \mathbb{R} der reellen Zahlen, ist bereits als topologische Gruppe isomorph zur Gruppe \mathbb{R} der reellen Zahlen.

Übung 4.1.26. Seien \mathcal{H} ein Hilbertraum und $U(\mathcal{H})$ die Gruppe seiner unitären Automorphismen. Man zeige, daß $U(\mathcal{H})$ eine topologische Gruppe wird, wenn wir sie mit der Initialtopologie zu allen Auswertungen an Vektoren $ev_v : U(\mathcal{H}) → \mathcal{H}$ für $v ∈ \mathcal{H}$ versehen, der sogenannten **starken Topologie**. Man zeige weiter: Ist G eine topologische Gruppe und $α : G × \mathcal{H} → \mathcal{H}$ eine Operation durch unitäre Abbildungen, so ist $α$ genau dann stetig, wenn der induzierte Gruppenhomomorphismus $G → U(\mathcal{H})$ stetig ist für die starke Operator topology auf $U(\mathcal{H})$.

Übung 4.1.27. Seien \mathcal{H} ein Hilbertraum und $U(\mathcal{H})$ die Gruppe seiner unitären Automorphismen. Man zeige, daß auf $U(\mathcal{H})$ die starke Topologie übereinstimmt mit der sogenannten **schwachen Topologie**, die definiert ist als Initialtopologie zu allen Abbildungen $U(\mathcal{H}) → \mathbb{C}$, $A ↦ \langle w, Av \rangle$ für $v, w ∈ \mathcal{H}$. Hinweis: Mit $|\langle v, Av \rangle − \langle v, v \rangle|$ ist auch $\|v − Av\|$ klein. Man zeige weiter: Ist \mathcal{H} abzählbar basiert, so auch $U(\mathcal{H})$ mit seiner starken Topologie.
4.2 Quotienten nach Gruppenwirkungen

4.2.1. Operiert eine Gruppe G auf einem topologischen Raum X, so versehen wir den Bahnenraum X/G a priori mit der Quotiententopologie zur Projektion $X \twoheadrightarrow X/G$.

Lemma 4.2.2. Operiert eine Gruppe G durch stetige Abbildungen auf einem topologischen Raum X, so ist die Quotientenabbildung $X \twoheadrightarrow X/G$ offen und surjektiv und die abgeschlossenen Teilmengen von X/G sind genau die Bilder der abgeschlossenen G-stabilen Teilmengen von X.

4.2.2. Operiert eine Gruppe G durch stetige Abbildungen auf einem topologischen Raum X, so ist insbesondere für jeden weiteren Raum Y ihr Produkt mit der Identität eine finale Abbildung $Y \times X \rightarrow Y \times X/G$, denn es ist eine offene Surjektion als Produkt offener Surjektionen und damit final nach 3.6.19. Wir sagen deshalb auch, Quotienten nach Gruppenwirkungen seien **produktfest final**. Allgemeiner wird 6.2.12 zeigen, daß sie sogar „basisfest final“ sind, ja daß offene Surjektionen unter beliebigem „Basiswechsel“ offene Surjektionen bleiben.

Beweis. Das Urbild des Bildes einer offenen Menge ist die Vereinigung all ihrer mit der Gruppenoperation verschobenen Kopien und damit offen. Die Beschreibung der abgeschlossenen Teilmengen des Quotienten folgt aus der Beschreibung seiner offenen Teilmengen. □

Definition 4.2.4. Eine Operation einer topologischen Gruppe G auf einem topologischen Raum X heißt **stetig**, wenn die zugehörige Abbildung $G \times X \rightarrow X$ stetig ist.

Beispiel 4.2.5. Die offensichtliche Operation von $GL(n+1; \mathbb{R})$ auf $\mathbb{P}^n \mathbb{R}$ ist stetig für die Topologie auf $\mathbb{P}^n \mathbb{R}$ als Bahnenraum der Operation von \mathbb{R}^\times auf $\mathbb{R}^{n+1}\setminus\{0\}$. Um das zu sehen, betrachte man das kommutative Diagramm

$$
\begin{array}{ccc}
GL(n+1; \mathbb{R}) \times \mathbb{R}^{n+1}\setminus\{0\} & \rightarrow & \mathbb{R}^{n+1}\setminus\{0\} \\
\downarrow & & \downarrow \\
GL(n+1; \mathbb{R}) \times \mathbb{P}^n \mathbb{R} & \rightarrow & \mathbb{P}^n \mathbb{R}
\end{array}
$$

Die obere Horizontale ist offensichtlich stetig und die linke Vertikale ist final, da die Quotientenabbildung nach Lemma 4.2.2 produktfest final ist. Mithin ist auch die untere Horizontale stetig.

4.2.6 (**Homogene Räume**). Gegeben eine topologische Gruppe G und eine Untergruppe $H \subset G$ ist die Operation von G auf G/H stetig. In der Tat betrachte man das Diagramm

$$
\begin{array}{ccc}
G \times G & \rightarrow & G \\
\downarrow & & \downarrow \\
G \times G/H & \rightarrow & G/H
\end{array}
$$

90
und beachte, daß nach 4.2.2 die linke Vertikale auch final ist. Ist etwas allgemeiner \(f : X \rightarrow Y \) eine stetige offene Surjektion von topologischen Räumen, die äquivariant ist für Operationen einer Gruppe \(G \) auf beiden Räumen, in Formeln \(f(gx) = gf(x) \), und ist \(G \) mit einer Topologie versehen, für die die Operation auf \(X \) stetig ist, so ist auch die Operation auf \(Y \) stetig.

4.2.7. Gegeben ein homogener Raum \(X \) einer topologischen Gruppe \(G \) gibt es offensichtlich genau eine Topologie auf \(X \) derart, daß für jeden Punkt \(x \in X \) das Anwenden \(G \rightarrow X, g \mapsto gx \) eine finale Abbildung ist. Wir nennen sie die **Topologie als homogener Raum** auf \(X \).

Lemma 4.2.8 (Quotienten nach abgeschlossenen Untergruppen). Eine Untergruppe einer topologischen Gruppe ist abgeschlossen genau dann, wenn der Quotient nach unserer Untergruppe Hausdorff ist.

Beweis. Seien \(G \supset H \) besagte Gruppen. Ist der Quotient \(G/H \) Hausdorff, so sind seine Punkte abgeschlossen, und damit ist auch \(H \) abgeschlossen in \(G \) als Urbild einer abgeschlossenen Teilmenge von \(G/H \). Für die Umkehrung gilt es zu zeigen, daß die Diagonale \(\Delta_{G/H} \) in \(G/H \times G/H \) abgeschlossen ist. Das Produkt der Projektionen \(G \times G \rightarrow G/H \times G/H \) ist nach 4.2.2 als Komposition finaler Abbildungen oder alternativ als Produkt offener stetiger Surjektionen auch selbst final. Es reicht also zu zeigen, daß das Urbild der Diagonale \(\Delta_{G/H} \) in \(G \times G \) abgeschlossen ist. Dies Urbild kann aber auch beschrieben werden als das Urbild von \(H \) unter der Abbildung \(G \times G \rightarrow G, (x, y) \mapsto xy^{-1} \).

4.2.9 (Zusammenhangskomponenten von Bahnenräumen). Operiert eine zusammenhängende topologische Gruppe \(G \) stetig auf einem topologischen Raum \(X \), so ist \(X \) zusammenhängend genau dann, wenn \(X/G \) zusammenhängend ist. Operiert allgemeiner eine zusammenhängende topologische Gruppe \(G \) stetig auf einem topologischen Raum \(X \), so induziert die Quotientenabbildung \(X \rightarrow X/G \) eine Bijektion zwischen der Menge \(\text{Zus}(X) \subset \mathcal{P}(X) \) der Zusammenhangskomponenten von \(X \) und der Menge \(\text{Zus}(X/G) \subset \mathcal{P}(X/G) \) der Zusammenhangskomponenten von \(X/G \). Das alles folgt sofort aus Übung 3.6.43 über finale Abbildungen und Zusammenhang.

Beispiel 4.2.10. Die Gruppen \(\text{SO}(n) \) sind zusammenhängend. In der Tat folgt mit 3.6.42, daß die Operation auf der \(n \)-Sphäre \(S^n \) einen Homöomorphismus \(\text{SO}(n+1)/\text{SO}(n) \rightarrow S^n \) liefert, und mit Induktion über \(n \) und 4.2.9 folgt die Behauptung. In derselben Weise zeigt man, daß auch die Gruppen \(\text{SU}(n) \) zusammenhängend sind. Ein Beweis mit mehr Algebra und weniger Topologie wird in ?? skizziert.
Übungen

Übung 4.2.13. Operiert eine topologische Gruppe G stetig auf einem topologischen Raum X und ist $N \subset G$ ein Normalteiler, dessen Elemente X punktweise festhalten, so ist auch die induzierte Operation von G/N auf X stetig.

Übung 4.2.14. Gegeben $G \supset H \supset K$ eine topologische Gruppe mit zwei Normalteilern ist der Isomorphismus aus dem noetherschen Isomorphiesatz ?? ein Homöomorphismus $G/H \cong (G/K)/(H/K)$.

Übung 4.2.15. Man zeige, daß die Einbettung $U(n) \hookrightarrow \text{GL}(n; \mathbb{C})$ einen Homöomorphismus $U(n)/O(n) \cong \text{GL}(n; \mathbb{C})/\text{GL}(n; \mathbb{R})$ induziert.

Übung 4.2.16. Der Abschluß des neutralen Elements in einer topologischen Gruppe ist stets ein Normalteiler und der Quotient danach eine Hausdorffgruppe und die Surjektion auf den Quotienten nicht nur final, sondern auch initial.

Übung 4.2.17. Seien X ein topologischer Raum und $R \subset X \times X$ eine Äquivalenzrelation. Ist X/R Hausdorff, so ist $R \subset X \times X$ abgeschlossen. Ist $R \subset X \times X$ abgeschlossen und $X \rightarrow X/R$ offen, so ist X/R Hausdorff. Hinweis: Nach 3.6.19 ist jede stetige offene Surjektion final und bleibt final beim Drankreuzen eines weiteren Raums.

Übung 4.2.18. Ist $Y \rightarrow X$ eine initiale stetige G-äquivariante Abbildung von topologischen Räumen mit einer stetigen Operation einer Gruppe G, so ist auch die induzierte Abbildung $Y/G \rightarrow X/G$ initial. Hinweis: Es gilt zu zeigen, daß jede für die Quotiententopologie auf Y/G offene Menge auch für die Initialtopologie offen ist.

Ergänzende Übung 4.2.19 (Zusammenhangskomponenten von $\text{SO}(p,1)$). Gegeben $p,q \in \mathbb{N}$ betrachte man die Diagonalmatrizen mit p Einsen und q Minus-Einsen $J = J_{p,q} := \text{diag}(1, \ldots, 1, -1, \ldots, -1)$ und erkläre Gruppen

$$\text{GO}(p, q) \supset \text{O}(p, q) \supset \text{SO}(p, q)$$
wie folgt: $O(p, q) := \{ A \in GL(p+q; \mathbb{R}) \mid A^\top JA = J \}$, $SO(p, q) := \{ A \in O(p, q) \mid \det A = 1 \}$, und $GO(p, q) := \mathbb{R}^\times O(p, q)$. Im Spezialfall $q = 1$ betrachten wir die Quadrik $Q := \{ v \in \mathbb{R}^{p+1} \mid v^\top Jv = -1 \}$. Man zeige, daß sie genau zwei Komponenten hat. Wir erklären weiter

$$SO(p, 1)^+ \subset O(p, 1)^+$$

als die Gruppe aller Elemente von $SO(p, 1)$ beziehungsweise $O(p, 1)$, die beide Komponenten von Q stabilisieren. Man zeige, daß $SO(p, 1)^+$ die Einskomponente von $O(p, 1)$ ist. Hinweis: Der Satz von Witt ?? zeigt, daß $O(p, 1)$ transitiv auf Q operiert. Etwas Nachdenken zeigt dasselbe für $SO(p, 1)$ unter der Annahme $p > 0$.

In diesem Fall zeige man, daß wir einen surjektiven Gruppenhomomorphismus

$$(\det, \text{komp}) : O(p, 1) \to \{-1\} \times \{1\}$$

erhalten, wo komp erklärt sei durch $\text{komp}(g) = 1$, wenn g beide Komponenten von Q stabilisiert.

Übung 4.2.21 (Realisierung von $SL(2; \mathbb{R})/SO(2)$ durch Matrizen). Wir betrachten die Menge $Y \subset \text{Mat}(2; \mathbb{R})$ aller positiv definiten Matrizen mit der Determinante Eins und fassen sie auf als eine Menge von Skalarprodukten auf \mathbb{R}^2. Sie trägt eine transitive Wirkung von $SL(2; \mathbb{R})$ durch die Vorschrift $A \cdot S := ASA^\top$ und die Standgruppe der Einheitsmatrix alias des Standard-Skalarprodukts ist $SO(2)$. Also erhalten wir eine Bijektion $SL(2; \mathbb{R})/SO(2) \cong Y$ durch $A \mapsto AA^\top$. Sie besitzt eine stetige Spaltung, die wir etwa erhalten können, indem wir jedes Skalarprodukt die Matrix zuordnen, in deren Spalten die Vektoren derjenigen Orthonormalbasis stehen, die in ihm aus der Standardbasis durch das Gram-Schmidt-Verfahren entsteht. Folglich ist die von $\text{Mat}(2; \mathbb{R})$ induzierte Topologie auf Y auch in der Tat die Topologie als homogener Raum. Diese Realisierung ist eng verwandt zur Polarzerlegung ?? Eine alternative Realisierung als obere Halbeebene besprechen wir in 4.3.15.

Übung 4.2.22. Gegeben ein Körper \mathbb{K} erinnere man aus ?? die Bruhat-Zerlegung

$$GL(n; \mathbb{K})/B = \bigsqcup_{w \in S_n} BwB/B$$

für B die invertierbaren oberen Dreiecksmatrizen und zeige für $\mathbb{K} = \mathbb{R}, \mathbb{C}$ die Existenz von Homöomorphismen $BwB/B \cong \mathbb{K}^{l(w)}$ für $l(w)$ die Zahl der Fehlstände der Permutation w. 93
4.3 Projektive Räume

Beispiele 4.3.1. Die wichtigsten hausdorffschen topologischen Schiefkörper sind für uns im folgenden der Körper der reellen Zahlen \(\mathbb{R} \), der Körper der komplexen Zahlen \(\mathbb{C} \) und der Schiefkörper der Quaternionen \(\mathbb{H} \).

Definition 4.3.2. Die **projektiven Räume** \(\mathbb{P}^n_k \) für \(n \geq 0 \) und einen hausdorffschen topologischen Schiefkörper \(k \) erhält man als die Menge aller Ursprungsgeraden oder genauer aller von einem von Null verschiedenen Element erzeugten Rechtsuntermoduln in \(k^{n+1} \). Wir versehen unsere projektiven Räume mit der Quotiententopologie bezüglich der offensichtlichen Surjektionen

\[
\pi : k^{n+1} \setminus 0 \to \mathbb{P}^n_k \quad x \mapsto xk
\]

Die natürliche Operation von \(GL(n+1; k) \) auf \(k^{n+1} \) induziert eine Operation von \(GL(n+1; k) \) auf \(\mathbb{P}^n_k \).

Lemma 4.3.3. **Gegeben ein hausdorffscher topologischer Schiefkörper \(k \) stimmt auf \(k^d \setminus 0 \) die von \(k^d \) induzierte Topologie überein mit der Topologie als homogener Raum von \(GL(d; k) \).**

Beweis. Es reicht zu zeigen, daß das Anwenden auf den ersten Vektor der Standardbasis \(\pi : A \mapsto A e_1 \) eine finale Abbildung \(GL(d; k) \to k^d \setminus 0 \) ist. Da Finalität nach 3.6.20 lokal ist in der Basis, reicht es, für jeden Vektor \(v \neq 0 \) eine offene Umgebung \(U \) zu finden, daß \(\pi : \pi^{-1}(U) \to U \) final ist. Nach 3.6.13 reicht es, besagte offene Umgebung \(U \) so zu finden, daß \(\pi : \pi^{-1}(U) \to U \) einen stetigen Schnitt besitzt. Dazu wählen wir zu unserem von Null verschiedenen Vektor \(v \) eine invertierbare Matrix \(A = (v|a_2|\ldots|a_d) \) mit erster Spalte \(v \) und nehmen als \(U := k^d \setminus \langle a_2, \ldots, a_d \rangle \) das Komplement des Rechtserzeugnisses ihrer anderen Spalten und als stetigen Schnitt auf \(U \) die Abbildung \(w \mapsto (w|a_2|\ldots|a_d) \), die jedem \(w \in U \) diejenige Matrix zuordnet, die aus \(A \) entsteht beim Ersetzen der ersten Spalte durch \(w \). Die Hausdorff-Eigenschaft haben wir dabei implizit verwendet, um zu sehen, daß das Erzeugnis \(\langle a_2, \ldots, a_d \rangle \) abgeschlossen ist.

4.3.4 (Frage der Existenz globaler Schnitte von \(GL(n; \mathbb{R}) \to \mathbb{R}^n \setminus 0 \)). Der Beweis von Lemma 4.3.3 beruht auf der Erkenntnis, daß die Abbildung, die jeder invertierbaren Matrix ihre erste Spalte zuordnet, lokal stetige Schnitte besitzt. Im Fall von \(GL(2; \mathbb{R}) \to \mathbb{R}^2 \setminus 0 \) ist es auch nicht schwer, einen globalen stetigen Schnitt anzugeben. Im Fall von \(GL(3; \mathbb{R}) \to \mathbb{R}^3 \setminus 0 \) hingegen gibt es keinen globalen stetigen Schnitt: Aus solch einem Schnitt könnte man nämlich unschwer eine „Kämmung des Igels“ konstruieren, und wir werden in 5.4.4 zeigen, daß es solch eine Kämmung nicht geben kann.
Lemma 4.3.5. Gegeben ein hausdorffscher topologischer Schiefkörper \mathbb{K} stimmt die Topologie auf dem projektiven Raum $\mathbb{P}^n\mathbb{K}$ als Quotient von $\mathbb{K}^{n+1}\setminus 0$ überein mit der Topologie als homogener Raum in Bezug auf die offensichtliche Operation von $\text{GL}(n+1;\mathbb{K})$. Des weiteren ist der projektive Raum $\mathbb{P}^n\mathbb{K}$ ist Hausdorff.

Beweis. Wir versehen $\mathbb{P}^n\mathbb{K}$ mit seiner Topologie als Quotient von $\mathbb{K}^{n+1}\setminus 0$ und betrachten die Abbildungen

$$\text{GL}(n+1;\mathbb{K}) \rightarrow \mathbb{K}^{n+1}\setminus 0 \rightarrow \mathbb{P}^n\mathbb{K}$$

gegeben durch das Anwenden auf den ersten Vektor de Standardbasis e_1 und die offensichtliche Projektion. Die Erste Abbildung ist final nach Lemma 4.3.3. Die Zweite ist final nach Annahme. Also ist nach 3.6.13 auch ihre Verknüpfung final. Damit stimmt auf $\mathbb{P}^n\mathbb{K}$ die Topologie als homogener Raum überein mit der Topologie als Quotient von $\mathbb{K}^{n+1}\setminus 0$ aus 4.3.2. Die Hausdorfeigenschaft folgt dann aus 4.2.8, da die Standgruppen unseres homogenen Raums $\mathbb{P}^n\mathbb{K}$ offensichtlich abgeschlossen sind.

Proposition 4.3.6 (Projektive Räume als Mannigfaltigkeiten). Für $\mathbb{K} = \mathbb{R}$, \mathbb{C} oder \mathbb{H} ist der projektive Raum $\mathbb{P}^n\mathbb{K}$ eine kompakte topologische Mannigfaltigkeit der Dimension $n \dim_{\mathbb{R}} \mathbb{K}$.

Beispiele 4.3.7. Die reelle projektive Gerade $\mathbb{P}^1\mathbb{R}$ ist homöomorph ist zu einer Kreislinie S^1, die komplexe projektive Gerade $\mathbb{P}^1\mathbb{C}$ zur Kugelschale S^2, und die quaternionale projektive Gerade $\mathbb{P}^1\mathbb{H}$ homöomorph zur 4-Sphäre S^4. Weiter ist $\mathbb{P}^2\mathbb{R}$ homöomorph ist zu einer Kugelschale, in die man ein kreisrundes Loch geschnitten hat, um dort ein Möbiusband einzukleben. All das zu zeigen ist eine gute Übung.

Vorschau 4.3.8. Die offensichtlichen Projektionen von den geeignet erklärten Einheitssphären auf die jeweiligen projektiven Räume $S^2 \rightarrow \mathbb{P}^1\mathbb{R} \cong S^1$, $S^3 \rightarrow \mathbb{P}^1\mathbb{C} \cong S^2$, $S^7 \rightarrow \mathbb{P}^1\mathbb{H} \cong S^4$ sind Faserbündel, ja sogar Hauptfaserbündel mit Fasern S^0, S^1 und S^3. Faserbündel mit Basis, Faser und Totalraum jeweils einer Sphäre heißen Hopf-Faserungen. Mithilfe der Oktionen kann man auch eine Hopf-Faserung über der S^8 mit Faser S^7 und Totalraum S^{15} konstruieren. Man kann sogar zeigen, daß es außerhalb dieser Dimensionen keine Hopf-Faserungen gibt, aber das ist für uns vorerst außer Reichweite.

Beweis von 4.3.6. Identifizieren wir in \mathbb{R}-linearer Weise $\mathbb{K}^{n+1} \cong \mathbb{R}^m$ und bezeichnen mit $S = S^{m-1} \subset \mathbb{K}^{n+1}$ die Menge aller Vektoren der Länge Eins für das Standard-Skalarprodukt des \mathbb{R}^m, eine hochdimensionale Sphäre, so erhalten wir eine stetige Surjektion $S \rightarrow \mathbb{P}^n\mathbb{K}$. Als Bilder kompakter Räume sind demnach unsere projektiven Räume kompakt. Somit müssen wir nur noch für jeden Punkt eine zu \mathbb{K}^n homöomorphe offene Umgebung finden. Wir betrachten
dazu einen beliebigen endlichdimensionalen \mathbb{K}-Vektorraum W und zeigen, daß für jede affine Hyperebene $H \subset W$, die den Ursprung vermeidet, die Injektion $i_H : H \rightarrow \mathbb{P}W$ gegeben durch $v \mapsto \langle v \rangle$ eine offene Einbettung ist. Ist in der Tat $\tilde{H} \subset W$ der Untervektorraum der Richtungsvektoren unserer affinen Hyperebene H, so ist $\pi^{-1}(\pi(H)) = W \setminus \tilde{H}$ offen in $W \setminus \{0\}$. Mithin hat unsere Injektion $i_H : H \rightarrow \mathbb{P}W$ offenes Bild. Nun betrachten wir das kommutative Diagramm

$$
\begin{array}{ccc}
W \setminus \tilde{H} & \xrightarrow{\pi} & \mathbb{P}W \\
\downarrow & & \downarrow i_H
\end{array}
$$

Der linke schräge Pfeil ordne jedem Punkt den Schnittpunkt mit H der durch ihn verlaufenden Ursprungsgeraden zu. Er ist stetig, denn ist $\lambda_H : W \rightarrow k$ die Linearform, deren Niveaufläche zum Wert Eins gerade H ist, so wird er gegeben durch die Formel $w \mapsto \lambda_H(w)^{-1}w$ oder im quaternionalen Fall besser $w \mapsto w\lambda_H(w)^{-1}$. Er ist nach 3.6.13 sogar final, da er einen Schnitt besitzt, eben die Einbettung $H \rightarrow W \setminus \tilde{H}$. Der rechte schräge Pfeil ist final, da diese Eigenschaft nach 3.6.20 lokal ist in der Basis. Zusammen folgt, daß die horizontale Bijektion ein Homöomorphismus $H \sim i_H(H)$ sein muß. Damit ist $\mathbb{P}W$ in der Tat eine Mannigfaltigkeit.

Beispiel 4.3.9. Unter einer vollständigen Fahne von Untervektorräumen eines endlichdimensionalen Vektorraums V über einem Körper k versteht man eine Folge von Untervektorräumen

$$ V = V_n \supset V_{n-1} \supset \ldots \supset V_1 \supset V_0 = 0 $$

mit $\dim V_i = i$. Die Menge aller derartigen Fahnen notieren wir $\mathcal{F}(V)$ und nennen sie die Fahnenmannigfaltigkeit. Auf dieser Menge operiert die Gruppe $\text{GL}(V)$ in offensichtlicher Weise, und diese Operation ist auch sicher transitiv. Die Standgruppe der Fahne

$$ k^n = \langle e_1, \ldots, e_n \rangle \supset \langle e_1, \ldots, e_{n-1} \rangle \supset \ldots \supset \langle e_1 \rangle \supset 0 $$

ist die Gruppe der oberen Dreiecksmatrizen $B \subset \text{GL}(n; k)$. Wir erhalten so eine Bijektion

$$ \text{GL}(n; k)/B \sim \mathcal{F}(k^n) $$

Analoges gilt für einen Schiefkörper k, wobei wir vereinbaren, Vektorräume als Rechtsmoduln verstehen zu wollen. Arbeiten wir über dem Körper \mathbb{R} oder \mathbb{C} oder dem Schiefkörper \mathbb{H}, so ist die Fahnenmannigfaltigkeit mit ihrer Topologie als homogener Raum kompakt aufgrund der Iwasawa-Zerlegung ??, ?? und ??.
Illustration zum Beweis von 4.3.6
Übungen

Übung 4.3.10. Man prüfe die Beschreibungen von $\mathbb{P}^1 \mathbb{K}$ für $\mathbb{K} = \mathbb{R}, \mathbb{C}, \mathbb{H}$ aus 4.3.7.

Übung 4.3.11. Man zeige, daß $\mathbb{P}^1 \mathbb{R}$ homöomorph ist zu einer Kreislinie S^1, $\mathbb{P}^1 \mathbb{C}$ homöomorph zur Kugelschale S^2, und $\mathbb{P}^1 \mathbb{H}$ homöomorph zur 4-Sphäre S^4. Man zeige weiter, daß $\mathbb{P}^2 \mathbb{R}$ homöomorph ist zu einer Kugelschale, in die man ein kreisrundes Loch geschnitten hat, um dort ein Möbiusband einzukleben.

Übung 4.3.12. Man zeige, daß $\mathbb{P}^1 \mathbb{R}$ homöomorph ist zu einer Kreislinie S^1, $\mathbb{P}^1 \mathbb{C}$ homöomorph zur Kugelschale S^2, und $\mathbb{P}^1 \mathbb{H}$ homöomorph zur 4-Sphäre S^4. Man zeige weiter, daß $\mathbb{P}^2 \mathbb{R}$ homöomorph ist zu einer Kugelschale, in die man ein kreisrundes Loch geschnitten hat, um dort ein Möbiusband einzukleben.

Übung 4.3.13. Man zeige, daß die Gruppe $\text{GL}(n; \mathbb{R})^+$ aller reellen $(n \times n)$-Matrizen mit positiver Determinante zusammenhängend ist. Hinweis: Induktion über n. Aus 4.3.3 folgt man unschwer, daß im Fall $n > 1$ für den homogenen Raum $\mathbb{R}^n \setminus 0$ unserer Gruppe seine Topologie als homogener Raum mit der offensichtlichen Topologie übereinstimmt, so daß dieser homogene Raum zusammenhängend ist. Damit müssen wir nach 4.2.9 nur noch zeigen, daß die Standgruppe eines Punktes zusammenhängend ist.

Übung 4.3.14. Versenken wir $\mathbb{R}^d \setminus 0$ mit der von \mathbb{R}^d induzierten Topologie, so liefert für $d > 1$ das Anwenden auf einen beliebigen von Null verschiedener Vektor eine finale Abbildung $\text{SL}(d; \mathbb{R}) \to \mathbb{R}^d \setminus 0$. Dasselbe gilt im Komplexen.

Übung 4.3.15 (Realisierung von $\text{SL}(2; \mathbb{R})/\text{SO}(2)$ als obere Halbebene). Wir betrachten die Operation von $\text{SL}(2; \mathbb{R}) \subset \text{GL}(2; \mathbb{C})$ auf der Riemann’schen Zahlenkugel $\mathbb{P}^1 \mathbb{C}$. Sie stabilisiert den Äquator $\mathbb{P}^1 \mathbb{R}$ und man prüft ohne Schwierigkeiten, daß sie außer dem Äquator nur zwei weitere Bahnen hat, nämlich die nördliche und die südliche Hemisphäre. Die Kreislinie $\text{SO}(2)$ operiert durch Rotationen um die Polachse, aber „mit verdoppelter Geschwindigkeit“. Insbesondere operiert $(-\text{id})$ als die Identität. Die Standgruppe jedes der beiden Pole unter $\text{SL}(2; \mathbb{R})$ ist aber in der Tat die $\text{SO}(2)$, und wir erhalten so je eine Bijektion von $\text{SL}(2; \mathbb{R})/\text{SO}(2)$ mit jeder der beiden Hemisphären. Unter der natürlichen Identifikation $\mathbb{C} \cup \{\infty\} \to \mathbb{P}^1 \mathbb{C}$ mit $z \mapsto (1, z)$ entsprechen unsere beiden Hemisphären den beiden Zusammenhangskomponenten von $\mathbb{C} \setminus \mathbb{R}$ und die Pole den Punkten $\pm i$ und die Operation erhält die Gestalt

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} : z \mapsto \frac{c + dz}{a + bz}
\]

wie in ?? Wählen wir stattdessen die Identifikation $\mathbb{C} \cup \{\infty\} \to \mathbb{P}^1 \mathbb{C}$ mit $z \mapsto (z, 1)$, so erhält unsere Operation diejenigen Mathematikern besser vertraute
Gestalt

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} : z \mapsto \frac{az + b}{cz + d}
\]

Man findet leicht eine stetige Spaltung, explizit hat man etwa auf der oberen Halbebene die Spaltung

\[
x + yi \mapsto y^{-1/2} \begin{pmatrix} 1 & 0 \\ x & y \end{pmatrix}
\]

Sie ist auch eine unmittelbare Konsequenz der Iwasawa-Zerlegung ???. Diese Spaltungen zeigen im übrigen sehr direkt, daß das Urbild jedes Kompaktums unter SL(2; \(\mathbb{R}\)) \(\rightarrow\) SL(2; \(\mathbb{R}\))/SO(2) kompakt ist, was nach 4.5.11 und 4.5.14 auch ganz allgemein für Quotienten einer topologischen Gruppe nach einer kompakten Untergruppe gilt. Eine alternative Realisierung durch Matrizen haben wir in 4.2.21 besprochen.

4.4 Topologisches Exponentialgesetz

Definition 4.4.1. Gegeben topologische Räume \(X, Y\) bezeichne \(\text{Top}(X, Y)\) die Menge aller stetigen Abbildungen von \(X\) nach \(Y\). Gegeben Teilmengen \(K \subset X\) und \(U \subset Y\) bezeichne

\(\mathcal{O}(K, U) \subset \text{Top}(X, Y)\)

die Menge aller stetigen Abbildungen \(f : X \rightarrow Y\) mit \(f(K) \subset U\). Die auf \(\text{Top}(X, Y)\) von den Mengen \(\mathcal{O}(K, U)\) für \(K \subset X\) kompakt und \(U \subset Y\) offen erzeugte Topologie heißt wie in ?? die **kompakt-offene Topologie**. Wir denken uns Räume stetiger Abbildungen im Zweifelsfall stets mit dieser Topologie versehen und verwenden für den so entstehenden topologischen Raum die Notation

\(\mathcal{C}(X, Y)\)

4.4.2 (Diskussion der Notation). Manche Quellen verwenden die Notation \(Y^X = \mathcal{C}(X, Y)\). Ich will versuchen, diese exponentielle Schreibweise zu vermeiden. Sie hat den Nachteil, daß in wieder anderen Quellen die Notation \(Y^X\) vielmehr die Menge aller Abbildungen \(\text{Ens}(X, Y)\) abkürzt.

Lemma 4.4.3 (Funktorialitäten). Gegeben stetige Abbildungen \(f : X' \rightarrow X\) und \(g : Y \rightarrow Y'\) sind auch die induzierten Abbildungen \((\circ f) : \mathcal{C}(X, Y) \rightarrow \mathcal{C}(X', Y)\) und \((g \circ) : \mathcal{C}(X, Y) \rightarrow \mathcal{C}(X, Y')\) stetig.

Beweis. Die erste Behauptung folgt aus \((\circ f)^{-1}\mathcal{O}(K', U) = \mathcal{O}(f(K), U)\). Die zweite Behauptung folgt aus \((g \circ)^{-1}\mathcal{O}(K, U') = \mathcal{O}(K, g^{-1}(U'))\). \(\square\)
Lemma 4.4.4. Gegeben ein topologischer Raum X und eine Familie topologischer Räume (Y_i) liefert die offensichtliche Abbildung einen Homöomorphismus
\[C \left(X, \prod_i Y_i \right) \xrightarrow{\sim} \prod_i C(X, Y_i) \]

4.4.5. In kategorieller Sprache ausgedrückt besagt unser Lemma, daß der Funktor $C(X, -) : \text{Top} \to \text{Top}$ verträglich ist mit Produkten. Ist X lokal kompakt im Sinne von 4.4.7, so folgt Lemma 4.4.4 auch mit der Adjunktion 4.4.11 unmittelbar aus der allgemeinen Erkenntnis ??, daß ein rechtsadjungierter Funktor stets mit Limites vertauscht.

Beweis. Per definitionem ist unsere Abbildung eine Bijektion von Mengen. Für $K \subset X$ kompakt und j einen beliebigen aber festen Index und $U_j \subset Y_j$ offen induziert unsere Abbildung nun sicher eine Bijektion zwischen den Teilmengen $O(K, U_j \times \prod_{i \neq j} Y_i)$ und $O(K, U_j) \times \prod_{i \neq j} C(X, Y_i)$. Diese Mengen erzeugen aber die jeweiligen Topologien.

4.4.6. Unter einer Eigenschaft von Objekten einer Kategorie C versteht man formal einen Funktor $C^* : \text{Iso}(C) \to \{\text{wahr}, \text{falsch}\}$ von der Isomorphismenkategorie von C in die diskrete Kategorie der zweielementigen Menge der Wahrheitswerte.

Definition 4.4.7. Sei (E) eine Eigenschaft topologischer Räume. Sagen wir, ein topologischer Raum X sei lokal (E), so meinen wir, daß sich jede Umgebung eines beliebigen Punkts von X verkleinern läßt zu einer Umgebung desselben Punktes, die als topologischer Raum mit der induzierten Topologie die Eigenschaft (E) hat.

Beispiel 4.4.8. Speziell heißt ein topologischer Raum wie in ?? lokal kompakt, wenn sich jede Umgebung eines jeden seiner Punkte zu einer kompakten Umgebung des besagten Punktes verkleinern läßt.

4.4.9 (Diskussion der Terminologie). In der Terminologie von Bourbaki wird von einem lokal kompakten Raum zusätzlich die Hausdorff-Eigenschaft gefordert. Ich schließe mich dieser Terminologie nicht an, da sie im Widerspruch steht zu der eben vereinbarten allgemeinen Bedeutung des Adjektivs „lokal“. Im Deutschen bringt man diesen Unterschied zumindest in der alten Rechtschreibung dadurch zum Ausdruck, daß man „lokalkompakt“ zusammenschreibt, wenn die Hausdorff-Bedingung mit gemeint ist.

4.4.10. Ein kompakter Hausdorff-Raum ist nach 3.5.18 stets lokal kompakt. Stärker zeigen wir: Besitzt in einem Hausdorffraum jeder Punkt eine kompakte Umgebung, so ist unser Raum bereits lokal kompakt im Sinne von 4.4.7. In der Tat, seien $X \supset K \supset U \supset p$ unser Raum, ein Kompaktum K, eine in X offene Menge
Seien X,Y,Z topologische Räume. Ist Y lokal kompakt, so induziert die Bijektion aus dem Exponentialgesetz $\operatorname{Ens}(X \times Y,Z) \to \operatorname{Ens}(X,\operatorname{Ens}(Y,Z))$ eine Bijektion zwischen den entsprechenden Teilmengen von stetigen Abbildungen

$$\operatorname{Top}(X \times Y,Z) \sim \operatorname{Top}(X,\operatorname{C}(Y,Z))$$

4.4.12. In der Terminologie der Kategorientheorie 8.4 bedeutet dieser Satz, daß für lokal kompaktes Y der Funktor $\operatorname{C}(Y,\) : \operatorname{Top} \to \operatorname{Top}$ rechtsadjungiert ist zum Funktor $\times Y$. In Korollar 4.4.14 folgern wir, daß diese Abbildung im Satz unter der zusätzlichen Annahme, daß auch X lokal kompakt ist, sogar einen Homöomorphismus $\operatorname{C}(X \times Y,Z) \sim \operatorname{C}(X,\operatorname{C}(Y,Z))$ induziert. Das heißt dann eigentlich erst das Exponentialgesetz aus Gründen, die dort erläutert werden. In ?? formulieren wir bereits das sehr schwache Exponentialgesetz, nach dem für beliebige Räume X,Y,Z und $f : X \times Y \to Z$ stetig auch die induzierte Abbildung $\tilde{f} : X \to \operatorname{C}(Y,Z)$ stetig ist. Der Beweis wird gleich wiedeholt.

Beweis. Sei $f : X \times Y \to Z$ stetig und $\tilde{f} : X \to \operatorname{C}(Y,Z)$ die induzierte Abbildung. Wir wiederholen zunächst, noch ohne irgendwelche Bedingungen an Y, den Beweis aus ??, daß \tilde{f} auch stetig ist. Es reicht, diese Stetigkeit an jeder Stelle $x \in X$ zu zeigen. Gegeben $K \subset Y$ kompakt und $U \subset Z$ offen mit $f(x) \in \mathcal{O}(K,U)$ gilt es, eine offene Umgebung V von x zu finden mit $\tilde{f}(V) \subset \mathcal{O}(K,U)$. Nun besagt unsere Bedingung gerade $f(x \times K) \subset U$, und wir finden natürlich offene Quadrate $V_i \times W_i \subset X \times Y$ mit $x \in V_i$ und $x \times K \subset \bigcup_i V_i \times W_i$ und $f(V_i \times W_i) \subset U$ für alle i. Wegen der Kompaktheit von K finden wir sogar eine endliche Familie offener Quadrate mit dieser Eigenschaft, indiziert sagen wir durch $1 \leq i \leq n$. Jetzt nehmen wir $V = \bigcap_{i=1}^n V_i$ und haben $f(V \times K) \subset U$ alias $\tilde{f}(V) \subset \mathcal{O}(K,U)$ wie gewünscht. Sei nun umgekehrt $\hat{f} : X \to \operatorname{C}(Y,Z)$ stetig und sei $f : X \times Y \to Z$ die induzierte Abbildung. Es gilt zu zeigen, daß \hat{f} stetig ist an jeder Stelle $(x,y) \in X \times Y$. Sei also $U \subset Z$ eine offene Umgebung von $f(x,y) = (\tilde{f}(x))(y)$. Nach Annahme ist $\tilde{f}(x) : Y \to Z$ stetig und Y lokal kompakt, folglich gibt es eine kompakte Umgebung K von y mit $(\tilde{f}(x))(K) \subset U$, also $\tilde{f}(x) \in \mathcal{O}(K,U)$. Da nun auch die Abbildung $\hat{f} : X \to \operatorname{C}(Y,Z)$ stetig ist bei x, gibt es dann auch eine Umgebung V von x mit $\tilde{f}(V) \subset \mathcal{O}(K,U)$, also mit $f(V \times K) \subset U$ und damit ist $V \times K$ die gesuchte Umgebung von (x,y), die unter f nach U abgebildet wird. \(\square\)
Illustration zum Beweis von Satz 4.4.11. Das Bild kommt von dem Beweis des Spezialfalls 2.6.4. Das \(p \) im Bild heißt in unserem Beweis \(x \), das \(\eta \) im Bild ist so gewählt, daß der \(\eta \)-Ball um \(x \) alias \(p \) in \(V \) enthalten wäre.
Korollar 4.4.13 (Stetigkeit des Auswertens). Ist \(Y \) lokal kompakt und \(Z \) ein beliebiger topologischer Raum, so ist das Auswerten \(C(Y, Z) \times Y \to Z \) stetig.

Beweis. Das Auswerten entspricht unter der Bijektion aus unserem Adjunktionsatz 4.4.11 der Identität auf \(C(Y, Z) = X \) rechts.

Korollar* 4.4.14 (Exponentialgesetz). Seien \(X, Y, Z \) topologische Räume. Sind \(X \) und \(Y \) lokal kompakt, so induziert unser Exponentialgesetz für Mengen einen Homöomorphismus

\[
C(X \times Y, Z) \cong C(X, C(Y, Z))
\]

Ergänzung 4.4.15. In der anderen Schreibweise liest sich das \(Z^{X \times Y} \cong (Z^Y)^X \), daher die Terminologie. Ich benutze diese Aussage im weiteren nicht und zeige sie nur der Vollständigkeit halber.

Beweis. Die Stetigkeit dieser Abbildung ist nach 4.4.11 gleichbedeutend erst zur Stetigkeit der induzierten Abbildung \(C(X \times Y, Z) \times X \to C(Y, Z) \) und durch erneutes Anwenden von 4.4.11 auch zur Stetigkeit der induzierten Abbildung \(C(X \times Y, Z) \times X \times Y \to Z \). Diese Stetigkeit folgt jedoch aus 4.4.13, da mit \(X \) und \(Y \) auch \(X \times Y \) lokal kompakt ist. Also ist die im Korollar betrachtete Bijektion stetig und es bleibt nur noch, die Stetigkeit ihrer Umkehrabbildung zu zeigen. Die Stetigkeit dieser Umkehrabbildung ist jedoch nach 4.4.11 gleichbedeutend zur Stetigkeit der induzierten Abbildung \(C(X, C(Y, Z)) \times X \times Y \to Z \), die hinwiederum stetig sein muß als die Verknüpfung von zwei nach 4.4.11 stetigen Abbildungen \(C(X, C(Y, Z)) \times X \times Y \to C(Y, Z) \times Y \to Z \).

Proposition 4.4.16. Ist \(p : X \to Y \) final und surjektiv und \(Z \) lokal kompakt, so ist auch \(p \times \text{id} : X \times Z \to Y \times Z \) final und surjektiv.

4.4.17. Wir geben in ?? noch einen direkteren Beweis für dieselbe Aussage.

Beweis. Sei \(W \) ein topologischer Raum und \(g : Y \times Z \to W \) eine Abbildung. Ist \(g \circ (p \times \text{id}) : X \times Z \to W \) stetig, so nach 4.4.11 auch die induzierte Abbildung \(X \to C(Z, W) \). Diese Abbildung faktorisiert jedoch als \(X \to Y \to C(Z, W) \) mit \(p \) als erstem Pfeil und der von \(g \) induzierten Abbildung als zweitem Pfeil, da wir \(p \) surjektiv vorausgesetzt hatten. Ist zusätzlich \(p \) final, so ist folglich mit \(g \circ (p \times \text{id}) \) auch die von \(g \) induzierte Abbildung \(Y \to C(Z, W) \) stetig und damit nach 4.4.11 wiederum \(g \) selbst.

Ergänzung 4.4.18. Ein Raum \(Y \) heißt kompakt erzeugt, wenn er Hausdorff ist und wenn die offensichtliche Abbildung \(\bigsqcup_{K \in K} K \to Y \) final ist, für \(K \subset \mathcal{P}(Y) \) das System aller kompakten Teilräume, vergleiche etwa [?]. Man kann zeigen, daß es in der Kategorie der kompakt erzeugten Räume Produkte gibt, die allerdings nicht mit den üblichen Produkten in der Kategorie aller topologischen Räume
übereinstimmen, daß das Darankreuzen einen Rechtsadjungierten hat, der aller-
dings nicht mit dem Raum der stetigen Abbildungen und seiner kompakt-offenen
Topologie übereinstimmt, und daß in dieser Begrifflichkeit auch eine Variante des
Exponentialgesetzes gilt.

Übungen

Übung 4.4.19. Ist X kompakt, so stimmt die kompakt-offene Topologie auf $C(X, \mathbb{C})$
überrin mit der von der Supremumsnorm induzierten Topologie.

Übung 4.4.20. Gegeben topologische Räume X, Y ist diejenige Abbildung $Y \to C(X, Y)$
stetig, die jedem Punkt $y \in Y$ die entsprechende konstante Abbildung
zuordnet, die eben ganz X auf diesen einen Punkt y wirft.

Übung 4.4.21. Gegeben topologische Räume X, Y mit X lokal kompakt ist das
Auswerten eine stetige Abbildung $X \to C(C(X, Y), Y)$. Hinweis: Man verwende
die Stetigkeit des Auswertens 4.4.13 und das sehr schwache Exponentialgesetz
4.4.12.

Übung 4.4.22. Die stetigen Abbildungen von einem topologischen Raum in ei-
ne topologische Gruppe bilden unter der punktweisen Verknüpfung und mit der
kompakt-offenen Topologie selbst eine topologische Gruppe. Die stetigen Ab-
bildungen von einem topologischen Raum in einen topologischen Vektorraum bil-
den unter der punktweisen Verknüpfung und mit der kompakt-offenen Topologie

Übung 4.4.23. Ist $Y \to Y'$ initial und X ein beliebiger topologischer Raum, so
ist auch $C(X, Y) \to C(X, Y')$ initial.

Ergänzende Übung 4.4.24. Man zeige, daß für jeden lokal kompakten Raum Y
die Verknüpfung $C(X, Y) \times C(Y, Z) \to C(X, Z)$ stetig ist. Hinweis: Gegeben
$Q \subset V \subset Y$ eine kompakte Teilmenge in einer offenen Teilmenge gibt es unter
unseren Annahmen stets eine kompakte Teilmenge $R \subset Y$ und eine offene Teil-
menge $W \subset Y$ mit $Q \subset W \subset R \subset V$. Sind X und Y lokal kompakt, folgt das
auch leicht aus dem schwachen Exponentialgesetz 4.4.11 und der Stetigkeit des
Auswertens 4.4.13.

Übung 4.4.25. Ich erinnere unsere Abkürzung $C(X, \mathbb{C}) = C(X)$. Man zeige: Ist
X ein lokal kompakter Raum und $F : \mathbb{R} \times X \to \mathbb{C}$ differenzierbar nach der
ersten Variablen mit stetiger partieller Ableitung $\partial F : \mathbb{R} \times X \to \mathbb{C}$, so gilt für die
Abbildung $g : \mathbb{R} \to C(X), t \mapsto F(t, \)$ im topologischen Vektorraum $C(X)$ die
Identität

$$\lim_{t \to 0} \frac{g(t) - g(0)}{t} = (\partial F)(0, \)$$

Analoges gilt für Abbildungen $F : \mathbb{R} \times X \to V$ in einen beliebigen normierten
reellen Vektorraum.
4.5 Eigentliche Abbildungen*

Definition 4.5.1. Eine Abbildung von topologischen Räumen \(f : X \rightarrow Y \) heißt **eigentlich**, wenn sie stetig ist und wenn darüber hinaus für jeden weiteren Raum \(Z \) die Abbildung \(f \times \text{id} : X \times Z \rightarrow Y \times Z \) abgeschlossen ist.

4.5.2. Auf Französisch verwendet man für „eigentlich“ den Begriff **propre**, auf Deutsch sagt man alternativ auch **universell abgeschlossen**. Im Rahmen der Terminologie dieser Vorlesungen sollte man besser **produktfest abgeschlossen** sagen und dann bemerken, daß jede produktfest abgeschlossene Abbildung auch basisfest abgeschlossen ist. Die Terminologie ist hier nicht ganz einheitlich, in der Literatur werden verschiedene andere Wenn auch eng verwandte Definition des Begriffs einer eigentlichen Abbildung verwendet.

Lemma 4.5.4 (Eigentliche Abbildungen auf einen Punkt). Ein topologischer Raum ist kompakt genau dann, wenn die konstante Abbildung von besagtem Raum auf den einpunktigen Raum eigentlich ist.

Beweis. Sei \(X \) kompakt und \(Z \) beliebig. Ich denke mir \(X \) vertikal und \(Z \) horizontal. Sei \(A \subset X \times Z \) abgeschlossen und \(z \in Z \) gegeben derart, daß \(A \) die vertikale Faser bei \(z \) nicht trifft, in Formeln \(A \cap (X \times \{z\}) = \emptyset \). So gibt es für jedes \(x \in X \) offene Umgebungen \(U_x \subset X \) von \(x \) und \(V_x \subset Z \) von \(z \) mit \(A \cap (U_x \times V_x) = \emptyset \). Endlich viele \(U_x \) überdecken nun aber \(X \) und der Schnitt der zugehörigen \(V_x \) ist eine offene Umgebung von \(z \), die die Projektion von \(A \) nicht trifft. Also ist die konstante Abbildung von einem Kompaktum auf einen einpunktigen Raum eigentlich. Die Umkehrung ist für uns weniger wichtig. Um sie zu zeigen, betrachten wir ein System abgeschlossener Teilmengen \(\mathcal{A} \subset \mathcal{P}(X) \) mit nichtleeren endlichen Schnitten und müssen nach 3.5.16 nur zeigen, daß auch sein gesamter Schnitt nicht leer ist. Dazu dürfen wir annehmen, daß \(\mathcal{A} \) stabil ist unter endlichen Schnitten, und bilden den Raum

\[
Z := X \sqcup \{\infty\}
\]

mit der Topologie, für die die offenen Teilmengen alle Teilmengen sind, die entweder \(\infty \) vermeiden oder \(\infty \) enthalten und mindestens ein \(A \in \mathcal{A} \) umfassen. Aufgrund unserer Annahme an \(\mathcal{A} \) liegt \(\infty \) im Abschluß von \(X \subset Z \). Betrachten
wir die Diagonale $\Delta \subset X \times Z$, so muß das Bild ihres Abschlusses $\bar{\Delta}$ unter der Projektion auf die zweite Koordinate ganz Z sein. Es gibt also ein $x \in X$ mit $(x, \infty) \in \bar{\Delta}$ und daraus folgt sofort $x \in \bigcap_{A \in A} A$.

Proposition 4.5.5. Operiert eine kompakte topologische Gruppe G auf einem Hausdorffraum X, so ist auch der Bahnenraum X/G Hausdorff.

Ergänzung 4.5.6. Ich hätte einen Beweis vorgezogen, der das Konzept eigentlicher Abbildungen vermeidet, aber mir ist keiner eingefallen. Unter stärkeren Voraussetzungen ist es einfacher, vergleiche 4.2.11.

Beweis. Wegen der Kompaktheit von G ist die Projektion $G \times X \to X$ eigentlich. Damit ist auch die Wirkung eigentlich als Komposition der Projektion mit dem Homöomorphismus $G \times X \xrightarrow{\sim} G \times X$, $(g, x) \mapsto (g, gx)$. Damit ist auch das Produkt der Wirkung $G \times X \times X \to X \times X$ mit der Identität auf X eine eigentliche Abbildung, und schalten wir $id \times \Delta$ davor, so erkennen wir mit 3.8.7 und 4.5.10, daß die Abbildung

$$G \times X \to X \times X$$

$$(g, x) \mapsto (gx, x)$$

eigentlich ist. Insbesondere ist ihr Bild $\Gamma \subset X \times X$ abgeschlossen und das Komplement offen. Dann ist aber nach 4.2.1 und 4.2.2 auch das Bild dieses Komplements in $X/G \times X/G$ offen und die Diagonale in $X/G \times X/G$ folglich abgeschlossen.

Ergänzung 4.5.7. Die Operation einer topologischen Gruppe G auf einem topologischen Raum X heißt **eigentlich**, wenn die Abbildung $G \times X \to X \times X$, $(g, x) \mapsto (gx, x)$ eigentlich ist. Die zweite Hälfte des Beweises von 4.5.5 zeigt, daß bei einer eigentlichen Operation der Bahnenraum stets Hausdorff ist. Die erste Hälfte des Beweises von 4.5.5 zeigt, daß eine Operation einer kompakten Gruppe stets eigentlich ist.

Ergänzung 4.5.8. Man kann zeigen, daß eine stetige Abbildung eigentlich ist genau dann, wenn sie abgeschlossen ist und alle ihre Fasern kompakt sind. Bei Bourbaki kann man nachlesen, warum ein beliebiges Produkt von eigentlichen Abbildungen wieder eigentlich ist. Diese Aussage heißt der **Satz von Frolik-Tychonoff**.

Übungen

Übung 4.5.9 (Eigentlichkeit ist lokal in der Basis). Seien $f : X \to Y$ stetig und $U \subset \mathcal{P}(Y)$ eine offene Überdeckung von Y. Genau dann ist f eigentlich, wenn die induzierten Abbildungen $f^{-1}(U) \to U$ eigentlich sind für alle $U \in U$.
Übung 4.5.10 (Permanenzeigenschaften eigentlicher Abbildungen). Jede Verknüpfung eigentlicher Abbildungen ist eigentlich. Eine Einbettung ist eigentlich genau dann, wenn sie abgeschlossen ist. Ist \(g \circ f \) eigentlich und \(f \) surjektiv, so ist auch \(g \) eigentlich. Landet \(g \) in einem Punkt, so spezialisiert die letzte Behauptung zur Aussage, daß stetige Bilder von Kompakta stets kompakt sind.

Ergänzende Übung 4.5.11. Leser, die bereits mit Faserprodukten 6.2.7 vertraut sind, werden leicht zeigen können, daß gegeben eine eigentliche Abbildung \(X \to Y \) und eine beliebige stetige Abbildung \(Z \to Y \) auch die erweiterte Abbildung \(X \times_Y Z \to Z \) eigentlich ist. Insbesondere bedeutet das im Fall von einpunktigem \(Z \), daß alle Fasern einer eigentlichen Abbildung kompakt sind, und im Fall einer kompakten Teilmenge \(K \subset Y \) ergibt sich mit 4.5.10 und 4.5.4, daß die Urbilder von Kompakta unter eigentlichen Abbildungen kompakt sind.

Übung 4.5.12. Sind \(X \to Y \) und \(X' \to Y \) eigentlich, so auch \((X \sqcup X') \to Y \).

Ist insbesondere \(Z \to Y \) stetig und sind Teilräume \(X, X' \subset Z \) gegeben mit \(X \to Y \) und \(X' \to Y \) eigentlich, so ist auch \((X \sqcup X') \to Y \) eigentlich mit der vorhergehenden Übung 4.5.10.

Weiterführende Übung 4.5.14. Ist \(G \) eine topologische Gruppe und \(K \subset G \) eine kompakte Untergruppe, so ist die Multiplikation \(G \times K \to G \) eigentlich. Hinweis: 4.5.11. Ist \(G \) eine topologische Gruppe und \(K \subset G \) eine kompakte Untergruppe, so ist die Projektion \(G \to G/K \) eigentlich. Hinweis: Man verwende das kartesische Diagramm zum Quotienten 6.2.13 und die Erkenntnis, daß Quotienten nach 4.2.2 produktfest final sind.

Weiterführende Übung 4.5.15. Seien \(G \) eine Hausdorffgruppe und \(K \subset G \) eine kompakte Untergruppe und \(\Gamma \subset G \) eine diskrete Untergruppe. So besitzt jeder Punkt \(x \in G/K \) eine offene Umgebung \(U \) mit der Eigenschaft, daß für \(\gamma \in \Gamma \) gilt

\[
\gamma(U) \cap U \neq \emptyset \quad \Rightarrow \quad \gamma(x) = x \quad \text{und} \quad \gamma(U) = U.
\]

Hinweis: Die Untergruppe \(\Gamma \) ist abgeschlossen nach 4.1.25 und für jede Teilmenge \(A \subset \Gamma \) ist dann \(AK \cong G \) abgeschlossen in \(G \) nach 4.5.14.

Übung 4.5.17. Ist \(X \to Y \) eine eigentliche äquivariante Abbildung von Räumen mit einer Operation einer Gruppe \(G \) durch stetige Abbildungen, so ist auch die auf den Bahnenräumen induzierte Abbildung \(X/G \to Y/G \) eigentlich. Hinweis: Quotientenabbildungen sind produktfest final.
Übung 4.5.18. Es operiere eine topologische Gruppe G auf einem Raum X und sei $P \subset G$ eine Untergruppe mit G/P kompakt. Man zeige, daß die Operation eine eigentliche Abbildung $G \times_{/P} X \to X$ induziert. Hinweis: Man betrachte $G \times X \to G \times X$ mit $(g,x) \mapsto (g, gx)$. Ist weiter $A \not\subset X$ abgeschlossen und P-stabil, so ist auch GA abgeschlossen in X. Hinweis: $G \times_{/P} A \to G \times_{/P} X$ ist eine abgeschlossene Einbettung. Diese Übung verallgemeinert unsere Erkenntnis 4.5.7, daß Operationen kompakter Gruppen stets eigentlich sind.

Übung 4.5.19 (Bruhatzellen sind offen in ihrem Abschluß). Wir betrachten $K = \mathbb{R}, \mathbb{C}$ und betrachten in $G := GL(n; K)$ die Untergruppe der oberen Dreiecksmatrizen B. Wir wollen zeigen, daß jede Doppelnenebenklasse BwB offen in ihrem Abschluß ist. Dazu zeige man der Reihe nach: (1) Ist s die Permutationsmatrix einer Permutation mit nur einem Fehlstand, so ist $P_s := B \sqcup BsB$ eine abgeschlossene Untergruppe von $GL(n; K)$ aus „Block-oberen Dreiecksmatrizien mit einem (2×2)-Block und sonst nur (1×1)-Blöcken. (2) Die Quotienten P_s/B sind homöomorph zu $\mathbb{P}^1 K$ und insbesondere kompakt. (3) Alle Produkte der Gestalt $P_sP_\ldots P_t$ sind abgeschlossen in G wegen 4.5.18. (4) Ist die Zahl $l(x)$ der Fehlstände eines Produkts $x = rs\ldots t$ die Zahl seiner Faktoren, so ist das Produkt $P_rP_s\ldots P_t$ nach ?? die Vereinigung der Doppelnenebenklasse $Br\ldots tB$ mit Doppelnenebenklassen BxB für $l(x) < l(rs\ldots t)$. Im übrigen zeigen wir für Bahnen von „algebraischen Gruppen auf algebraischen Varietäten“ in ?? in voller Allgemeinheit, daß sie offen sind in ihrem Abschluß und das sogar in Bezug auf die „Zariski-Topologie“.

4.6 Separierte Abbildungen*

Definition 4.6.1. Eine stetige Abbildung $f : X \to Y$ heißt separiert, wenn die Diagonale eine abgeschlossene Teilmenge $X \subset X \times_Y X$ ist.

Lemma 4.6.3. Ist $g \circ f$ eigentlich und g separiert, so ist auch f eigentlich.

4.6.4. Landet g in einem Punkt, so liefert dieses Lemma insbesondere die bereits aus 3.5 bekannte Aussage, daß das Bild einer stetigen Abbildung von einem Kompaktum in einen Hausdorffraum stets abgeschlossen ist. Bei Bourbaki findet sich unser Lemma zumindest schon einmal für g injektiv.
Beweis. Seien $f : X \to Y$ und $g : Y \to Z$. Wir betrachten zum Morphismus f das in Top_Z kartesische Diagramm

$$
\begin{array}{ccc}
X & \to & Y \\
\downarrow & & \downarrow \\
X \times_Z Y & \to & Y \times_Z Y
\end{array}
$$

aus 6.2.11 und sehen, daß mit der Diagonale $Y \hookrightarrow Y \times_Z Y$ auch die Abbildung $(\text{id}, f) : X \to X \times_Z Y$ eine abgeschlossene Einbettung ist. Der Morphismus f ergibt sich als deren Verknüpfung mit dem eigentlichen da durch Basiswechsel aus $X \to Z$ entstehenden Morphismus $X \times_Z Y \to Y$.

Lemma 4.6.5. Eine stetige Abbildung zwischen lokal kompakten Hausdorffräumen ist eigentlich genau dann, wenn das Urbild jedes Kompakts kompakt ist.

Definition 4.6.6. Eine Teilmenge eines topologischen Raums heißt relativ Hausdorff, wenn je zwei verschiedene Punkte unserer Teilmenge disjunkte Umgebungen im ursprünglichen Raum besitzen.

Übungen

Übung 4.6.8. Sei X ein topologischer Raum und $Y \subset X$ eine relativ Hausdorff’sche Teilmenge. Gegeben zwei zueinander disjunkte Kompakta $K, L \subset Y$ gibt es dann disjunkte offene Mengen $U, V \subset X$ mit $K \subset U$ und $L \subset V$.

Übung 4.6.9. Ist $f : X \to Y$ eigentlich und separiert und $i : A \hookrightarrow X$ eine Einbettung derart, daß $f \circ i$ eigentlich ist, so muß i eine abgeschlossene Einbettung sein. Hinweis: 4.6.3 und 4.5.10.
5 Homotopie und Fundamentalgruppe

5.1 Einführung in die algebraische Topologie

5.1.1. Ich erinnere an den vertrauten Begriff der Stetigkeit von Funktionen mehrerer reeller Veränderlichen. Weiter bezeichne \(\| \| : \mathbb{R}^n \to \mathbb{R} \) die Skalarprodukt-norm, \(\| x \| := \sqrt{x_1^2 + \ldots + x_n^2} \) für \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \), und

\[
S^n := \{ x \in \mathbb{R}^{n+1} \mid \| x \| = 1 \}
\]

die \textit{n-dimensionalen Kugelschale} oder \textit{n-Sphäre}. Es ist also \(S^{-1} = \emptyset \), \(S^0 = \{+1, -1\} \), \(S^1 \) die Kreislinie, \(S^2 \) die Kugelschale und so weiter. Zur Motivation liste ich nun einige typische Probleme der Topologie auf.

1. Man zeige, daß es für \(n \geq 0 \) keine stetige Injektion \(S^n \hookrightarrow \mathbb{R}^n \) der \(n \)-dimensionalen Kugelschale in die \(n \)-dimensionale Ebene gibt. Als Übung empfehlen sich die Fälle \(n = 0, 1 \). Der Fall \(n = 2 \) wird in 5.9.6 erledigt, der allgemeine Fall ergibt sich als Konsequenz aus ??.

2. „Ein Igel läßt sich nicht kämmen ohne Wirbel“. In Formeln zeige man: Es gibt keine stetige Abbildung \(\kappa : S^2 \to S^2 \) derart, daß \(\kappa(x) \) senkrecht steht auf \(x \) für alle \(x \in S^2 \). Wir zeigen das in 5.4.4.

3. Es bezeichne stets \(D^n = \{ x \in \mathbb{R}^n \mid \| x \| \leq 1 \} \) die \textit{n-dimensionalen Vollkugel}. Es ist also \(D^0 \) ein Punkt, \(D^1 = [-1, +1] \) ein kompaktes Intervall, \(D^2 \) die abgeschlossene Kreisscheibe und so weiter. Man zeige, daß jede stetige Abbildung \(f : D^n \to D^n \) von einer abgeschlossenen Vollkugel in sich selber einen Fixpunkt hat. Diese Aussage heißt der \textbf{Brouwer'sche Fixpunktsatz}. Als Übung empfehlen sich wieder die Fälle \(n = 0, 1 \). Der Fall \(n = 2 \) wird in 5.4.3 behandelt, der allgemeine Fall in ??.

5.1.2. Gegeben Teilmengen \(A \subset \mathbb{R}^n \) und \(B \subset \mathbb{R}^m \) heißt eine Abbildung \(f : A \to B \) heißt ein \textbf{Homöomorphismus}, wenn sie stetig und bijektiv ist und ihre Inverse \(f^{-1} : B \to A \) auch stetig ist. Des weiteren heißen \(A \) und \(B \) \textbf{homöomorph}, wenn es einen Homöomorphismus von \(A \) nach \(B \) gibt. Wir schreiben kurz \(A \cong B \) für die Aussage „\(A \) ist homöomorph zu \(B \)“. Anschaulich bedeutet \(A \cong B \), daß sich \(A \) durch „Verbeulen und Verbiegen“ aus \(B \) erhalten läßt. Zum Beispiel sind je zwei offene Intervalle in \(\mathbb{R} \) homöomorph, und „Die Oberfläche einer Kaffeetasse mit einem Henkel ist homöomorph zur Oberfläche eines Rettungsrings“. Man bezeichnet die Topologie deshalb auch scherzhaft als „Gummigeometrie“. Zur weiteren Motivation liste ich auch noch einige typische Probleme im Zusammenhang mit dem Homöomorphiebegriff auf.
1. **Invarianz der Dimension**: Man zeige, daß für natürliche Zahlen \(n, m \geq 0 \) gilt \(\mathbb{R}^n \cong \mathbb{R}^m \Rightarrow n = m \). In Worten sind also endlichdimensionale reelle Räume verschiedener Dimension, wenn man sie mit ihrer natürlichen Topologie versieht, auch nicht homöomorph.

2. Man zeige, daß der Rettungsring, auch genannt der zweidimensionale **Torus** \(S^1 \times S^1 \), nicht homöomorph ist zur 2-Sphäre \(S^2 \).

3. Sei \(S \subset \mathbb{R}^2 \) eine Teilmenge der Ebene, die homöomorph ist zur Kreislinie, \(S \cong S^1 \). Man zeige, daß auch das Komplement von \(S \) homöomorph ist zum Komplement der Kreislinie, \(\mathbb{R}^2 \setminus S \cong \mathbb{R}^2 \setminus S^1 \). Der Beweis dieser Aussage gelingt erst unter Zuhilfenahme von Methoden der Analysis. Man kann sie etwa aus ?? zusammen mit ?? und dem „kleinen“ Riemann’schen Abbildungssatz ?? der Funktionentheorie recht leicht folgern.

Ergänzung 5.1.3. Man kann für \(S \subset \mathbb{R}^2 \) homöomorph zur Kreislinie sogar zeigen, daß es einen Homöomorphismus \(f : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) gibt mit \(f(S^1) = S \), aber den Beweis dieses **Satzes von Schönflies** werden wir nicht behandeln. Im übrigen erweisen sich die höherdimensionalen Analoga der Aussagen des letzten Punktes der vorangehenden Aufzählung sämtlich als falsch: Zum Beispiel ist die sogenannte **gehörnte Sphäre von Alexander** eine zur Kugelschale \(S^2 \) homöomorphe Teilmenge des Raums \(\mathbb{R}^3 \), bei der eine Zusammenhangskomponente des Komplements noch nicht einmal einfach zusammenhängend ist.

5.1.4. In mathematisch nicht ganz so präziser Formulierung will ich auch noch die Klassifikation zusammenhängender geschlossener Flächen besprechen. Ich gebe zunächst eine Definition, die etwas unbeholfen ist, da sie die Sprache der Topologie noch weitgehend vermeidet.

Definition 5.1.5. Eine Teilmenge \(F \subset \mathbb{R}^n \) heißt eine **geschlossene topologische in \(\mathbb{R}^n \) eingebettete \(d \)-Mannigfaltigkeit** genau dann, wenn \(F \) kompakt ist und es für jeden Punkt \(p \in F \) eine offene Teilmenge \(U \subset \mathbb{R}^n \) gibt mit \(p \in U \) und \(U \cap F \cong \mathbb{R}^d \).

5.1.6. Beispiele für geschlossene \(d \)-Mannigfaltigkeiten sind die Sphären \(S^d \). Wir zeigen in 3.7.2, daß jede geschlossene 1-Mannigfaltigkeit homöomorph ist zu einer endlichen disjunkten Vereinigung von Kopien von \(S^1 \). Eine geschlossene 2-Mannigfaltigkeit nennen wir auch eine **geschlossene Fläche**. Beispiele für geschlossene Flächen sind die Kugelschale \(S^2 \), der Torus \(S^1 \times S^1 \), oder auch die Oberfläche einer massiven Acht, die homöomorph ist zur Oberfläche einer dickwandigen Suppentasse mit zwei Henkeln. Ein etwas komplizierteres Beispiel für eine geschlossene Fläche ist die sogenannte **Klein’sche Flasche**, die man erhält, indem man bei einer Flasche den Flaschenhals langzieht, umbiegt, ihn von aussen
Die Klein’sche Flasche
unter Durchdringung der Flaschenwand ins Innere der Flasche schiebt, dann ein kreisrundes Loch in den Boden der Flasche schneidet, und schließlich die Flaschenöffnung in das Loch unten am Boden einklebt. Genauer erhält man so in der Anschauung noch keine geschlossene Fläche in unserem Sinne, da sich unsere Fläche selbst überschneidet an der Stelle, an der der Flaschenhals in die Flasche eindringt. In der vierten Dimension jedoch kann man diese Selbstüberschneidung vermeiden. Stellen wir uns dazu die vierte Koordinate als Farbe vor und malen unsere Flasche changierend so an, daß der Flaschenhals und der Flaschenboden rot, der Flaschenkörper aber blau sind. Dann ist klar, daß unsere Fläche ohne Selbstüberschneidung im viere dimensionalnen Raum liegt, und das ist dann wirklich unsere Klein’sche Flasche. Die Klein’sche Flasche ist nicht homöomorph zu einer Teilmengen des \(\mathbb{R}^3 \), wie wir in ?? beweisen werden. Im folgenden Satz brauchen wir noch das berühmte Möbiusband, das man erhält, wenn man einen Papierstreifen einmal verdrillt zu einem Ring verklebt. Der Rand des Möbiusbandes ist eine einzige geschlossene Kreislinie.

Satz 5.1.7 (Klassifikation der geschlossenen Flächen). Jede zusammenhängende geschlossene Fläche ist homöomorph zu genau einer der im folgenden beschriebenen Flächen:

- **Man nehme die Kugelschale \(S^2 \), schneide in diese 2g kreisrunde Löcher hinein und verbinde diese Löcher paarweise durch \(g \) hohle Henkel. Für \(g = 0, 1, 2, \ldots \) liefert das jeweils eine Fläche, die **orientierbare Fläche vom Geschlecht** \(g \);**

- **Man nehme die Kugelschale \(S^2 \), schneide in diese g kreisrunde Löcher hinein und klebe Möbiusbänder in diese Löcher ein. Für \(g = 1, 2, \ldots \) liefert das jeweils eine Fläche, die **nichtorientierbare Fläche vom Geschlecht** \(g \).**

5.1.8. Die orientierbaren Flächen vom Geschlecht \(g = 0, 1, 2 \) sind die Kugelschale, der Torus und die Oberfläche einer Kaffeetasse mit zwei Henkeln oder auch eines Abseilachters, wie ihn Bergsteiger verwenden. Die nichtorientierbaren Flächen vom Geschlecht \(g = 1, 2 \) sind die reelle projektive Ebene \(\mathbb{P}^2 \mathbb{R} \) aus 4.3 und die Klein’sche Flasche. Die nicht orientierbaren Flächen zeichnen sich dadurch aus, daß man bei einem Rundweg als Spaziergänger auf der Fläche unter Umständen „mit dem Kopf nach unten“ wieder am Ausgangspunkt ankommt. Statt desinklebens von Möbiusbändern mag man sich gleichbedeutend auch das Ankleben sogenannter „Kreuzhauben“ vorstellen, wie sie auf Seite 185 vorgestellt werden. Zum Nachdenken hier noch eine Frage: Welche Fläche unserer Liste erhält man, wenn man an die Klein’sche Flasche einen Henkel anklebt? Die Antwort liefert die „Henkelelimination“ im Beweis des Klassifikationssatzes 6.8.11: Wir erhalten die nichtorientierbare Fläche vom Geschlecht 4. Jetzt gilt es aber zunächst, einen
Eine orientierbare kompakte Fläche vom Geschlecht zwei
präzisen und effektiven Begriffsapparat für die Behandlung derartiger Fragestellungen aufzubauen.

Übungen

Übung 5.1.9. Läßt man aus der Kugelschale S^n für $n \geq 0$ einen Punkt weg, so entsteht ein zu \mathbb{R}^n homöomorpher Raum. Hinweis: Stereographische Projektion.

5.2 Definition der Fundamentalgruppe

5.2.1. Ich erinnere daran, daß wir einen Weg in einem topologischen Raum in ?? definiert hatten als eine stetige Abbildung eines mehrpunktigen kompakten reellen Intervalls in besagten Raum. Ist unser Intervall das Einheitsintervall $[0, 1]$, so reden wir von einem normierten Weg oder auch einfach nur von einem Weg in der Hoffnung, daß aus dem Kontext heraus klar wird, was genau gemeint ist.

Definition 5.2.2. Seien X ein topologischer Raum und $x, y \in X$ Punkte. Die Menge aller normierten Wege von x nach y bezeichnen wir mit

$$\Omega(X, y, x) := \{ \alpha : [0, 1] \to X \mid \text{α ist stetig, } \alpha(0) = x, \ \alpha(1) = y \}$$

Für zwei Wege $\gamma \in \Omega(X, z, y)$ und $\alpha \in \Omega(X, y, x)$, von denen er Eine da aufhört wo der Andere anfängt, definieren wir ihre Verknüpfung oder auch Aneinandergängung $\gamma * \alpha \in \Omega(X, z, x)$ durch

$$(\gamma * \alpha)(t) := \begin{cases} \alpha(2t) & 0 \leq t \leq 1/2; \\ \gamma(2t - 1) & 1/2 \leq t \leq 1. \end{cases}$$

5.2.3. Die Abbildung $\gamma * \alpha$ ist stetig nach 1.7.8, da es eine Überdeckung ihres Definitionsberiechs durch zwei abgeschlossene Mengen gibt derart, daß die Restriktion darauf jeweils stetig ist.

5.2.4. Anschaulich gesprochen entsteht der Weg $\gamma * \alpha$ dadurch, daß wir erst den Weg α und dann den Weg γ jeweils mit doppelter Geschwindigkeit durchlaufen, so daß wir insgesamt wieder einen normierten alias durch das Einheitsintervall parametrisierten Weg erhalten.

5.2.5. Sei X ein topologischer Raum. Wir definieren für $x \in X$ den konstanten Weg $\varepsilon_x \in \Omega(X, x, x)$ durch $\varepsilon_x(t) = x \ \forall t$ und bilden zu jedem Weg $\alpha \in \Omega(X, y, x)$ den inversen Weg $\bar{\alpha} \in \Omega(X, x, y)$ durch die Vorschrift $\bar{\alpha}(t) := \alpha(1 - t)$. Ein Weg, bei dem Anfangs- und Endpunkt zusammenfallen, heißt geschlossen.
Definition 5.2.6. Seien x, y Punkte eines topologischen Raums X. Zwei Wege α, β von x nach y heißen **homotop** oder präziser **homotop mit festen Randpunkten** und wir schreiben $\alpha \simeq \beta$, wenn es eine stetige Abbildung

$$h : [0, 1]^2 \to X$$

des Einheitsquadrats in unseren Raum gibt, die auf der Unter- beziehungsweise Oberkante unseres Quadrats mit α beziehungsweise β übereinstimmt und die auf der Vorder- und der Hinterkante konstant ist. In Formeln ausgedrückt fordern wir also $h(t, 0) = \alpha(t)$ und $h(t, 1) = \beta(t)$ für alle $t \in [0, 1]$ sowie $h(0, \tau) = x$ und $h(1, \tau) = y$ für alle $\tau \in [0, 1]$. Wir schreiben unter diesen Umständen auch kurz

$$h : \alpha \simeq \beta$$

Ein geschlossener Weg heißt **zusammenziehbar**, wenn er homotop ist zu einem konstanten Weg.

5.2.7. Vielleicht anschaulicher kann man Homotopie von Wegen dahingehend interpretieren, daß es eine durch $\tau \in [0, 1]$ parametrisierte Familie h_τ von normierten Wegen von x nach y geben soll derart, daß gilt $h_0 = \alpha$, $h_1 = \beta$ und daß unsere Familie stetig von τ abhängt in dem Sinne, daß die Abbildung $[0, 1]^2 \to X$, $(t, \tau) \mapsto h_\tau(t)$ stetig ist.

Beispiel 5.2.8. Gegeben $X \subset \mathbb{R}^n$ konvex und $x, y \in X$ sind je zwei Wege $\alpha, \beta \in \Omega(X, y, x)$ homotop vermittels $h(t, \tau) = (1 - \tau) \alpha(t) + \tau \beta(t)$.

Beispiel 5.2.9. Bilder homotoper Wege sind homotop. Ist genauer eine Abbildung $f : X \to Y$ stetig, so folgt aus $h : \alpha \simeq \beta$ schon $f \circ h : f \circ \alpha \simeq f \circ \beta$.

Beispiel 5.2.10. Ein Weg ist homotop zu jeder seiner Umparametrisierungen. Ist genauer $v : [0, 1] \to [0, 1]$ stetig mit $v(0) = 0$ und $v(1) = 1$ und ist $\gamma : [0, 1] \to X$ ein Weg, so folgt $\gamma \simeq \gamma \circ v$. In der Tat finden wir erst $\text{id} \simeq v$ mit 5.2.8, da das eben beides Wege in der konvexen Teilmenge $[0, 1] \subset \mathbb{R}$ sind, und dann $\gamma \circ \text{id} \simeq \gamma \circ v$, da nach 5.2.9 Bilder homotoper Wege homotop sind.

Lemma 5.2.11 (Homotopie ist eine Äquivalenzrelation). Für jeden topologischen Raum X und beliebige Punkte $x, y \in X$ ist Homotopie eine Äquivalenzrelation auf der Menge $\Omega(X, y, x)$ aller Wege von x nach y.

Beweis. Wir müssen zeigen, daß gilt erstens $\alpha \simeq \alpha$, zweitens $\alpha \simeq \beta \Rightarrow \beta \simeq \alpha$, und daß drittens aus $\alpha \simeq \beta$ und $\beta \simeq \gamma$ folgt $\alpha \simeq \gamma$. Wir überlassen dem Leser den Beweis der beiden ersten Aussagen und zeigen nur die letzte Aussage. Seien also $h : \alpha \simeq \beta$ und $g : \beta \simeq \gamma$ Homotopiien. Wir definieren $f : [0, 1]^2 \to X$ durch

$$f(t, \tau) = \begin{cases} h(t, 2\tau) & 0 \leq \tau \leq 1/2; \\ g(t, 2\tau - 1) & 1/2 \leq \tau \leq 1. \end{cases}$$
Dann ist in der Tat die Abbildung f stetig, denn ihre Restriktionen auf die abgeschlossenen Teilmengen $[0, 1] \times [0, 1/2]$ und $[0, 1] \times [1/2, 1]$ des Einheitsquadrats sind es und wir können 3.1.19 anwenden. Nach Konstruktion ist aber nun f eine Homotopie $f : \alpha \simeq \gamma$.

Definition 5.2.12. Äquivalenzklassen von Wegen unter der Äquivalenzrelation der Homotopie nennen wir **Homotopieklassen von Wegen**. Die Menge aller Homotopieklassen von Wegen von einem Punkt x zu einem Punkt y in einem Raum X notieren wir $\pi_1(X, y, x)$, in Formeln setzen wir also

$$\pi_1(X, y, x) := \Omega(X, y, x)/\simeq$$

Die Homotopieklasse eines Weges α notieren wir $[\alpha]$.

Definition 5.2.13. Ein **bepunkteter Raum** (X, x) ist ein topologischer Raum X mit einem ausgezeichneten Punkt $x \in X$, seinem Basispunkt. Für einen bepunkteten Raum (X, x) vereinbaren wir die Abkürzungen $\Omega(X, x) := \Omega(X, x, x)$ für die Menge aller Wege mit unserem ausgezeichneten Punkt x als Anfangs- und Endpunkt sowie $\pi_1(X, x) := \pi_1(X, x, x)$ für die Menge aller Homotopieklassen derartiger Wege.

5.2.14 (Diskussion der Terminologie). In der Literatur nennt man einen bepunkteten Raum auch häufig einen „punktierten Raum“. Ich ziehe es vor, von einem bepunkteten Raum zu reden, da man wieder an anderer Stelle unter einer „punktierten Ebene“ oder einer „punktierten Kreisscheibe“ für gewöhnlich das Komplement eines Punktes in der Ebene oder das Komplement des Ursprungs in der Kreisscheibe versteht. Auf Englisch wird unterschieden zwischen „pointed space“ und „punctured plane“ oder auch „punctured disc“. Ich vermute sorglose Übersetzung als Grund für die unklare Terminologie im Deutschen.

Vorschau 5.2.15. Versuchen wir die Menge $\Omega(X, y, x)$ mit der kompakt-offenen Topologie 4.4.1 und setzen $h(t, \tau) = h_\tau(t)$, so ist h nach dem Exponentialgesetz 4.4.11 stetig genau dann, wenn die Abbildung $[0, 1] \to \Omega(X, y, x)$, $\tau \mapsto h_\tau$ stetig ist. Mit dieser Topologie heißt $\Omega(X, y, x)$ ein **Wegeraum** und zwei Wege sind homotop genau dann, wenn sie zur selben Wegzusammenhangskomponente des Wegeraums gehören. Speziell heißt $\Omega(X, x)$ ein **Schleifenraum** und $\pi_1(X, x)$ ist die Menge der Wegzusammenhangskomponenten des Schleifenraums. Notieren wir $\pi_0(Y)$ die Menge der Wegzusammenhangskomponenten eines topologischen Raums Y, so haben wir demnach in Formeln $\pi_1(X, x) = \pi_0(\Omega(X, x))$ und Lemma ?? erweist sich als Spezialfall der allgemeinen Erkenntnis ??, daß auf jedem topologischen Raum die Wegverbindbarkeit eine Äquivalenzrelation ist.

Satz 5.2.16. Gegeben ein bepunkteter Raum (X, x) induziert das Aneinanderhängen von Wegen eine Verknüpfung auf der Menge $\pi_1(X, x)$ aller Homotopieklassen...
von Wegen mit Anfangs- und Endpunkt \(x \), und mit dieser Verknüpfung wird

\[\pi_1(X, x) \]

eine Gruppe, die **Fundamentalgruppe des bepunkten Raums** \((X, x)\).

Beispiel 5.2.17. Ist \(X \subset \mathbb{R}^n \) eine konvexe Teilmenge, so ist die Fundamentalgruppe von \(X \) nach 5.2.8 für jeden Basispunkt \(x \in X \) trivial.

Beweis. Die beiden ersten Aussagen des anschließenden Lemmas 5.2.18 sagen uns, daß die Homotopieklasse der Verknüpfung von zwei Wegen nur von den Homotopieklassen der verknüpften Wege abhängt. Die weiteren Aussagen liefern das neutrale Element, die Inversen und das Assoziativgesetz.

Lemma 5.2.18. Sein \(X \) ein topologischer Raum. Wann immer die folgenden Verknüpfungen von Wegen in \(X \) sinnvoll sind in dem Sinne, daß der Eine aufhört wo der Andere anfängt, gelten die folgenden Homotopien:

1. \(\alpha \simeq \alpha' \Rightarrow \alpha * \beta \simeq \alpha' * \beta \)
2. \(\beta \simeq \beta' \Rightarrow \alpha * \beta \simeq \alpha * \beta' \)
3. \(\varepsilon * \alpha \simeq \alpha \simeq \alpha * \varepsilon \)
4. \(\alpha * \tilde{\alpha} \simeq \varepsilon, \tilde{\alpha} * \alpha \simeq \varepsilon \)
5. \((\alpha * \beta) = \tilde{\beta} * \tilde{\alpha} \)
6. \((\alpha * \beta) * \gamma \simeq \alpha * (\beta * \gamma) \)

Beweis. Wir zeigen nur beispielhaft die letzte Behauptung. Sicher gilt

\[\alpha * (\beta * \gamma) = ((\alpha * \beta) * \gamma) \circ v \]

für eine stetige „Reparametrisierung“ \(v : [0, 1] \to [0, 1] \) mit \(v(0) = v(1) \). Da nach 5.2.10 ein Weg homotop ist zu allen seinen Reparametrisierungen, folgt die Behauptung.

Satz 5.2.20 (Kriterium für wegweise einfach Zusammenhängend). Kann ein topologischer Raum überdeckt werden durch zwei wegweise einfach zusammenhängende offene Teilmengen mit wegzusammenhängendem Schnitt, so ist er bereits selbst wegweise einfach zusammenhängend.

118
Vorschau 5.2.21. Das Resultat wird sich später als ein Spezialfall des Satzes von Seifert-van Kampen 6.4.1 erweisen.

Beweis. Sei $X = U \cup V$ unser Raum mit seiner Überdeckung. Sei $x \in U \cap V$ fest gewählt. Nach Übung 5.2.26 reicht es zu zeigen, daß $\pi_1(X, x)$ trivial ist. Sei dazu $\gamma \in \Omega(X, x)$ ein geschlossener Weg. Nach dem Überdeckungssatz von Lebesgue 2.5.9 gibt es eine Unterteilung des Einheitsintervalls $0 = a_0 < a_1 < \ldots < a_n = 1$ derart, daß $[a_{i-1}, a_i]$ unter γ abwechselnd ganz in U oder ganz in V landet. Dann gilt $\gamma(a_i) \in U \cap V \forall i$ und wir finden für $0 < i < n$ Wege β_i, die in $U \cap V$ von x nach $\gamma(a_i)$ laufen. Bezeichnet andererseits $\gamma_i : [0, 1] \to X$ den „auf dem Intervall $[a_i−1, a_i]$ reparametrisierten“ Weg $\gamma_i := \gamma \circ v_i$ für $v_i : [0, 1] \to [a_{i−1}, a_i]$ die Restriktion auf $[0, 1]$ der affinen Abbildung mit $v_i(0) = a_{i−1}$ und $v_i(1) = a_i$, so ist nach 5.2.10 unser Weg γ homotop zu $\gamma_n \ast \gamma_{n−1} \ast \ldots \ast \gamma_2 \ast \gamma_1$, wobei es auf die Klammerung nach Lemma 5.2.18 nicht ankommt, da wir nur an „Wegen bis auf Homotopie“ interessiert sind. Nach Lemma 5.2.18 ist das nun weiter homotop zu $\gamma_n \ast (\beta_n−1 \ast \bar{\beta}_{n−1}) \ast \gamma_{n−1} \ast (\beta_{n−2} \ast \bar{\beta}_{n−2}) \ast \ldots \ast \gamma_2 \ast (\beta_1 \ast \bar{\beta}_1) \ast \gamma_1$ und dann auch homotop zu $$(\gamma_n \ast \beta_n−1) \ast (\bar{\beta}_{n−1} \ast \gamma_{n−1} \ast \beta_{n−2}) \ast \ldots \ast (\bar{\beta}_2 \ast \gamma_2 \ast \beta_1) \ast (\bar{\beta}_1 \ast \gamma_1)$$ Da aber nach Annahme $\gamma_n \ast \beta_{n−1}$ beziehungsweise $\bar{\beta}_1 \ast \gamma_1 \ast \beta_{n−1}$ beziehungsweise $\bar{\beta}_1 \ast \gamma_1$ jeweils ein geschlossener Weg ist, der ganz in U oder ganz in V verläuft und somit homotop ist zum konstanten Weg ε_x, muß dann auch die ganze Verknüpfung homotop sein zum konstanten Weg ε_x. □

Korollar 5.2.22. Die Sphären S^n sind für $n \geq 2$ wegweise einfach zusammenhängend.

5.2.23. Daß jeder Weg in einer n-Sphäre für $n \geq 2$, der nicht surjektiv ist, bereits zusammenziehbar sein muß, zeigt man leicht mit einer geeigneten stereographischen Projektion. Es gibt jedoch auch in höherdimensionalen Sphären surjektive Wege, die man etwa mit Hilfe der Hilbertkurve konstruieren kann. Der Beweis gilt diesen Fällen.

Beweis. Entfernen wir für $n \geq 0$ aus S^n einen Punkt, so erhalten wir einen topologischen Raum, der homöomorph ist zu \mathbb{R}^n vermittels einer stereographischen Projektion, und der insbesondere wegweise einfach zusammenhängend ist. Nehmen wir U das Komplement eines Punktes und V das Komplement eines anderen Punktes, so ist $S^n = U \cup V$ eine offene Überdeckung. Ab $n \geq 2$ ist außerdem $U \cap V$ weg zusammenhängend, und dann greift unser Kriterium 5.2.20 für wegweise einfachen Zusammenhang. □

5.2.25 (Funktionalität der Fundamentalgruppe). Sei $f : (X,x) \rightarrow (Y,y)$ ein Morphismus bepunkteter Räume alias eine stetige Abbildung $f : X \rightarrow Y$ mit $f(x) = y$. So erhält man einen Homomorphismus der Fundamentalgruppen $\pi_1(f) = f_\sharp$ durch die Vorschrift

$$\pi_1(f) = f_\sharp : \pi_1(X,x) \rightarrow \pi_1(Y,y) \quad [\alpha] \mapsto [f \circ \alpha]$$

Diese Abbildung ist wohldefiniert, da nach 5.2.9 Bilder homotoper Wege homotop sind. Sie ist ein Gruppenhomomorphismus, da stets gilt $f \circ (\alpha \ast \beta) = (f \circ \alpha) \ast (f \circ \beta)$. Offensichtlich haben wir $\text{id}_X \sharp = \text{id}$ und $(g \circ f)_\sharp = g_\sharp \circ f_\sharp$ wann immer $f : (X,x) \rightarrow (Y,y)$ und $g : (Y,y) \rightarrow (Z,z)$ Morphismen bepunkteter Räume sind. In der Terminologie, die in 9.2.1 eingeführt wird und die wir gleich in 5.6 wiederholen, ist die Fundamentalgruppe demnach ein „Funktor von der Kategorie der bepunkteten topologischen Räume in die Kategorie der Gruppen“.

Übungen

Übung 5.2.26. Man zeige: Ein topologischer Raum ist wegweise einfach zusammenhängend genau dann, wenn er wegzusammenhängend ist und seine Fundamentalgruppe in Bezug auf einen und gleichbedeutend jeden Basispunkt trivial ist.

Übung 5.2.27 (Komplemente von Geradenstücken im Raum). Sei $I \subsetneq \mathbb{R}^n$ abgeschlossen und eine echte Teilmenge eines Untervektorraums der Kodimension Zwei. So ist die Fundamentalgruppe des Komplements von I trivial, in Formeln $\pi_1(\mathbb{R}^n \setminus I, p) = 1$ für jeden Punkt p des Komplements. Ein Argument, das ohne die Bedingung I abgeschlossen auskommt, findet man in 5.7.10. Hinweis: Ohne Beschränkung der Allgemeinheit gelte $\emptyset \neq I \subsetneq 0 \times \mathbb{R}^{n-2}$. Jetzt lasse man die Sonne aus der Richtung der positiven ersten Koordinatenachse leuchten und betrachte die Menge U_+ aller Punkte, die nicht auf A oder im Schatten von A liegen, also

$$U_+ := \{(x_1, \ldots, x_n) \mid x_1 \leq 0 \Rightarrow (0, x_2, x_3, \ldots, x_n) \not\in A\}$$

Ähnlich erkläre man U_- durch Beleuchtung aus der Richtung der negativen ersten Koordinatenachse. So erhalten wir eine Überdeckung unseres Komplements durch zwei zusammenziehbare offene Teilmengen mit wegzusammenhängendem Schnitt.
Übung 5.2.28. Sei \(X \) ein topologischer Raum mit einer Verknüpfung \(X \times X \rightarrow X \) und sei \(e \in X \) ein neutrales Element. Man zeige, daß unter diesen Annahmen die Fundamentalgruppe \(\pi_1(X, e) \) kommutativ ist.

Ergänzende Übung 5.2.29 (Endlich erzeugte Fundamentalgruppen). Man zeige: Die Fundamentalgruppe einer bepunkten kompakten Mannigfaltigkeit ist stets endlich erzeugt. Hinweis: Bezeichne \(B = \{ v \in \mathbb{R}^n \ | \ |v| < 1 \} \) den 1-Ball um den Ursprung und \(\bar{B} = \{ v \in \mathbb{R}^n \ | \ |v| \leq 1 \} \) seinen Abschluß. Für unsere Mannigfaltigkeit \(X \) wähle man stetige Karten \(\varphi_1, \ldots, \varphi_r : \mathbb{R}^n \rightarrow X \) derart, daß die \(\varphi_i(B) \) schon \(X \) überdecken. Für jedes Paar von Indizes \(i, j \) mit \(i \neq j \) wähle man eine endliche Überdeckung des Schnitts \(\varphi_i(\bar{B}) \cap \varphi_j(\bar{B}) \) durch zusammenhängende offene Teilmengen \(U_{ij}^\nu \) von \(\varphi_i(\mathbb{R}^n) \cap \varphi_j(\mathbb{R}^n) \). Für jedes \(\nu \) wähle man einen Weg \(\gamma_{ij}^\nu \) von \(\varphi_j(0) \) nach \(\varphi_i(0) \), der erst innerhalb von \(\varphi_j(\mathbb{R}^n) \) nach \(U_{ij}^\nu \) läuft und dann innerhalb von \(\varphi_i(\mathbb{R}^n) \) nach \(\varphi_i(0) \). Seien \(\beta_i \) Wege von \(p := \varphi_i(0) \) nach \(\varphi_i(0) \) mit der einzigen Einschränkung, daß \(\beta_i \) der konstante Weg sein soll. So erzeugen die Verknüpfungen \(\beta_i \ast \gamma_{ij}^\nu \ast \beta_j \) die Fundamentalgruppe \(\pi_1(X, p) \).

Ergänzende Übung 5.2.30 (Abzählbare Fundamentalgruppen). Man zeige: Die Fundamentalgruppe einer bepunkteten abzählbar basierten Mannigfaltigkeit ist stets abzählbar. Hinweis: Man orientiere sich an den Hinweisen zur vorhergehenden Übung 5.2.29.

5.3 Fundamentalgruppe der Kreislinie

Satz 5.3.1 (Fundamentalgruppe der Kreislinie). Die Fundamentalgruppe der Kreislinie \(S^1 := \{ z \in \mathbb{C} \ | \ |z| = 1 \} \) ist isomorph zur additiven Gruppe der ganzen Zahlen. Genauer ist die Abbildung, die jeder ganzen Zahl \(n \in \mathbb{Z} \) die Homotopieklasse des Weges \([0, 1] \rightarrow S^1, t \mapsto \exp(2\pi i nt) \) zuordnet, ein Isomorphismus

\[
\begin{align*}
\mathbb{Z} & \xrightarrow{\sim} \pi_1(S^1, 1) \\
n & \mapsto [t \mapsto \exp(2\pi i nt)]
\end{align*}
\]

5.3.2. Unter der Umlaufzahl eines Weges \(\gamma \in \Omega(S^1, 1) \) versteht man das Urbild seiner Homotopieklasse \([\gamma] \) unter diesem Isomorphismus. In anderen Worten ist also die Umlaufzahl von \(\gamma \) diejenige ganze Zahl \(n \in \mathbb{Z} \), für die \(\gamma \) homotop ist zum Weg \(t \mapsto \exp(2\pi i nt) \).

Ergänzung 5.3.3. Arbeiten wir mit einem Körper \(\mathbb{C} \) von vergesslichen komplexen Zahlen im Sinne von [LA1], so liefert uns die obige Konstruktion einen kanonischen Isomorphismus \(2\pi i \mathbb{Z} \xrightarrow{\sim} \pi_1(S^1, 1) \), der jedem \(a \in \ker(\exp) = 2\pi i \mathbb{Z} \) den normierten Weg \(t \mapsto \exp(a t) \) zuordnet. Man notiert diese Gruppe auch \(\mathbb{Z}(1) = \mathbb{Z}_C(1) := \ker(\exp) \) und nennt sie den Tate-Twist von \(\mathbb{Z} \).
Beweis. Zur Vereinfachung betrachten wir die Abbildung

\[
\text{Exp} : \mathbb{R} \to S^1 \\
t \mapsto \cos(2\pi t) + i \sin(2\pi t)
\]

Mit der Euler’schen Formel können wir auch schreiben \(\text{Exp}(t) = \exp(2\pi i t)\). Das erklärt erstens unsere Notation und zweitens sieht man so leichter, daß \(\text{Exp}\) ein Gruppenhomomorphismus ist von der additiven Gruppe der reellen Zahlen in die multiplikative Gruppe der komplexen Zahlen der Länge 1. Anschaulich wickelt \(\text{Exp}\) die reelle Gerade auf die Kreislinie auf und aufgrund des Faktors \(2\pi\) haben wir \(\text{Exp}^{-1}(1) = \mathbb{Z}\). In dieser Notation erhält die Abbildungsvorschrift aus unserem Satz die Gestalt

\[
n \mapsto [t \mapsto \text{Exp}(nt)]
\]

Als erstes zeigen wir nun, daß sie einen Gruppenhomomorphismus definiert. Gegeben \(m,n \in \mathbb{Z}\) bezeichnen wir mit \((m + n\cdot)\) den normierten Weg \(t \mapsto m + nt\) aus \(\Omega(\mathbb{R}, m + n, m)\). Da je zwei Wege in \(\mathbb{R}\) mit denselben Endpunkten homotop sind, haben wir

\[
(m + n\cdot) \ast (n\cdot) \simeq ((m + n\cdot)\cdot)
\]

Diese Homotopie bleibt bestehen, wenn wir beide Seiten mit \(\text{Exp}\) verknüpfen. Dies \(\text{Exp}\) dürfen wir dann auf die beiden Faktoren des \(*\)-Produkts verteilen, und wegen \(\text{Exp} \circ (n + m\cdot) = \text{Exp} \circ (n\cdot)\) erkennen wir, daß unsere Abbildungsvorschrift \(n \mapsto [\text{Exp} \circ (n\cdot)]\) in der Tat einen Gruppenhomomorphismus definiert. Um zu zeigen, daß er ein Isomorphismus ist, konstruieren wir eine inverse Abbildung. Der erste Schritt dazu ist die folgende Definition.

Definition 5.3.4. Ist \(Y\) ein topologischer Raum und \(f : Y \to S^1\) eine stetige Abbildung, so heißt eine stetige Abbildung \(\tilde{f} : Y \to \mathbb{R}\) mit \(\text{Exp} \circ \tilde{f} = f\) auch ein **Lift** oder eine **Hochhebung** von \(f\).

Lemma 5.3.5. Seien \(Y\) zusammenhängend, \(f : Y \to S^1\) eine stetige Abbildung und \(\tilde{f}, \hat{f} : Y \to \mathbb{R}\) zwei Lifts von \(f\). So gibt es \(k \in \mathbb{Z}\) mit \(\tilde{f}(y) = \hat{f}(y) + k\) für alle \(y \in Y\).

Beweis. Sicher gilt \(\text{Exp}(\tilde{f}(y) - \hat{f}(y)) = 1\), also \(\tilde{f}(y) - \hat{f}(y) \in \mathbb{Z}\) für alle \(y \in Y\). Ist nun \(Y\) zusammenhängend, so muß \(\tilde{f}(y) - \hat{f}(y)\) nach 3.3.8 konstant sein. □

Lemma 5.3.6. Jede stetige Abbildung \(f : [0, 1] \to S^1\) besitzt einen Lift.

Beweis. Unser \(\text{Exp}\) liefert Homöomorphismen \(\text{Exp}_x : (x, x + 1) \to S^1 \setminus \text{Exp}(x)\) für alle \(x \in \mathbb{R}\), siehe Übung 3.5.19. Ist also \(f\) nicht surjektiv, liegt sagten wir \(\text{Exp}(x)\) nicht in seinem Bild, so ist \(\text{Exp}_x^{-1} \circ f = \tilde{f}\) ein Lift und wir sind fertig. Weil nun \(f\) gleichmäßig stetig ist, finden wir \(0 = a_0 < a_1 < a_2 < \ldots < a_k = 1\) derart, daß \(f\) auf allen Teilintervallen \([a_{i-1}, a_i]\) nicht surjektiv ist. Wir wählen nun Lifts
\(\hat{f}_i \) von \(f|_{[a_{i-1}, a_i]} \) für \(i = 1, \ldots, k \) und können diese Lifts durch Addition von Elementen von \(\mathbb{Z} \) so abändern, daß stets gilt \(\hat{f}_i(a_i) = \hat{f}_{i+1}(a_i) \). Dann definieren wir \(\hat{f} \) durch \(\hat{f}|_{[a_i, a_{i+1}]} = \hat{f}_i \) und sind fertig.

Lemma 5.3.7. Jede stetige Abbildung \(f : [0, 1]^2 \to S^1 \) besitzt einen Lift.

Beweis. Wir zerlegen zunächst unser Quadrat \([0, 1]^2\) in so kleine Schachfelder, daß das Bild keines unserer Felder ganz \(S^1 \) ist. Die Einschränkung von \(f \) auf jedes dieser Felder läßt sich wie im Beweis zuvor leicht liften. Als nächstes konzentrieren wir uns auf eine Zeile von Schachfeldern und ändern in dieser Zeile unsere Lifts so um Konstanten aus \(\mathbb{Z} \) ab, daß sie auf dem Schnitt benachbarter Felder zusammenpassen. So erhalten wir einen Lift auf der ganzen Zeile. Das machen wir für jede Zeile, passen dann diese Lifts wieder aneinander an, und erhalten so schließlich einen Lift auf unserem ganzen Quadrat.

5.3.8. Sei \(x \in S^1 \) ein beliebiger Basispunkt. Für jeden geschlossenen Weg \(\alpha \in \Omega(S^1, x) \) definieren wir seine **Lift-Umlaufzahl** \(\text{Um}(\alpha) \in \mathbb{Z} \) durch

\[
\text{Um}(\alpha) := \tilde{\alpha}(1) - \tilde{\alpha}(0)
\]

für einen und jeden Lift \(\tilde{\alpha} \) von \(\alpha \). Am Ende des Beweises werden wir sehen, daß diese Lift-Umlaufzahl mit der in 5.3.2 definierten Umlaufzahl übereinstimmt, aber bis dahin brauchen wir für dieses Konzept noch eine eigene Bezeichnung.

Proposition 5.3.9. Geschlossene Wege in der Kreislinie sind homotop genau dann, wenn sie dieselbe Lift-Umlaufzahl haben. In Formeln gilt für Wege \(\alpha, \beta \in \Omega(S^1, 1) \) also

\[
\alpha \simeq \beta \iff \text{Um}(\alpha) = \text{Um}(\beta)
\]

Beweis. \(\Rightarrow. \) Zu jeder Homotopie \(h : \alpha \simeq \beta \) finden wir mit Lemma 5.3.7 einen Lift \(\hat{h} \). Sicher ist \(\hat{h} \) auf der Unterkante des Einheitsquadrats ein Lift \(\tilde{\alpha} \) von \(\alpha \), auf der Oberkante ein Lift \(\tilde{\beta} \) von \(\beta \), und auf der Vorder- und Hinterkante muß \(\hat{h} \) wie \(h \) konstant sein. Insbesondere haben wir \(\tilde{\alpha}(0) = \tilde{\beta}(0) \) und \(\tilde{\alpha}(1) = \tilde{\beta}(1) \) und damit folgt \(\text{Um}(\alpha) = \text{Um}(\beta) \).

\(\Leftarrow. \) Die Gleichheit der Umlaufzahlen \(\text{Um}(\alpha) = \text{Um}(\beta) \) bedeutet, daß je zwei Lifts \(\tilde{\alpha} \) und \(\tilde{\beta} \) von \(\alpha \) und \(\beta \) mit demselben Anfangspunkt auch denselben Endpunkt haben. Als Wege in \(\mathbb{R} \) mit demselben Anfangs- und demselben Endpunkt sind dann aber besagte Lifts \(\tilde{\alpha} \) und \(\tilde{\beta} \) homotop nach 5.2.8, und da Bilder homotoper Wege homotop sind nach 5.2.9 folgt \(\alpha \simeq \beta \).

Unsere Abbildung \(\text{Um} : \Omega(S^1, 1) \to \mathbb{Z} \) induziert nach 5.3.9 eine Injektion

\[
\text{Um} : \pi_1(S^1, 1) \to \mathbb{Z}
\]

123
Es reicht zu zeigen, daß sie linksinvers ist zur Abbildung aus unserem Satz. In der Tat prüft man ohne Schwierigkeiten $\text{Um} [\text{Exp} \circ (n \cdot)] = n$. □

5.3.10 (Fundamentalgruppe der punktierten Ebene). Geht man alle Argumente dieses Abschnitts nochmals durch, so sieht man, daß wir überall statt S^1 genausogut C^\times hätten schreiben können, wenn wir statt $\text{Exp} : \mathbb{R} \to S^1$ eben $\text{Exp} : \mathbb{C} \to C^\times$ betrachten. Wieder besitzt jeder Weg $\gamma : [0,1] \to C^\times$ einen Lift, der bis auf eine additive Konstante $k \in \mathbb{Z}$ eindeutig bestimmt ist, und wieder erhalten wir einen Isomorphismus

$$Z \xrightarrow{\sim} \pi_1(C^\times,1)$$
$$n \mapsto [t \mapsto \exp(2\pi int)]$$

und dessen Inverses wird durch die Lift-Umlaufzahl gegeben. In 7.1.1 folgende werden wir sogenannte „Überlagerungen“ betrachten, denen sich diese beiden Situationen als Spezialfälle unterordnen.

Beispiel 5.3.11 (Unmöglichkeit komplexer Wurzelfunktionen). Mit den hier entwickelten Hilfsmitteln können wir sehr schnell sehen, daß es keine stetige Abbildung $w : C \to C$ gibt mit $q \circ w = \text{id}$ für $q : C \to C$ das Quadrieren. In der Tat gälte ja $\pi_1(q) \circ \pi_1(w) = \text{id}$ auf $\pi_1(C^\times,1)$ und diese Gruppe ist isomorph zu \mathbb{Z} und wir haben $\pi_1(q) = (2\cdot)$, wie Sie sich gleich in 5.3.13 überlegen dürfen.

Übungen

Übung 5.3.12. Sei (X,x) ein bepunkteter Raum. Ist $\alpha \in \Omega(X,x)$ ein geschlossener Weg, so gibt es genau eine stetige Abbildung $\hat{\alpha} : S^1 \to X$ mit $\alpha = \hat{\alpha} \circ \text{Exp}$, und die Verknüpfung von $\hat{\alpha}_q : \pi_1(S^1,1) \to \pi_1(X,x)$ mit dem Isomorphismus $Z \xrightarrow{\sim} \pi_1(S^1,1)$ aus unserem Satz 5.3.1 wird gegeben durch $n \mapsto [\alpha]^n$.

Übung 5.3.13. Die Abbildung $[n] : S^1 \to S^1$, $z \mapsto z^n$ induziert auf der Fundamentalgruppe $\pi_1(S^1,1)$ die Abbildung $c \mapsto c^n$ in multiplikativer Schreibweise, also $[n]_c : c \mapsto nc$ in additiver Schreibweise.

Übung 5.3.14. Ist Y ein kartesisches Produkt von endlich vielen reellen Intervallen, so besitzt jede stetige Abbildung $Y \to S^1$ einen Lift.

Übung 5.3.15. Man zeige: Ein geschlossener Weg $\gamma : [0,1] \to C^\times$ mit $\gamma(0) = \gamma(1)$ in $\mathbb{R}_{>0}$ und der Eigenschaft, daß es $a \in (0,1)$ gibt mit $\gamma(a) \in \mathbb{R}_{<0}$ und $\text{Im}(\gamma(t)) \geq 0 \ \forall t \in [0,a]$ und $\text{Im}(\gamma(t)) \leq 0 \ \forall t \in [a,1]$, hat die Umlaufzahl Eins um den Ursprung.
5.4 Anwendungen und Beispiele

Satz 5.4.1 (Retraktionen einer Kreisscheibe auf ihren Rand). Es gibt keine stetige Abbildung von einer abgeschlossenen Kreisscheibe auf ihren Randkreis, deren Einschränkung auf besagten Randkreis die Identität ist.

5.4.2. Ist \(X \supset A \) ein topologischer Raum mit einer Teilmenge, so versteht man ganz allgemein unter einer Retraktion von \(X \) auf \(A \) eine stetige Abbildung \(r : X \to A \) mit \(r(a) = a \) für alle \(a \in A \).

Beweis. Bezeichne \(D = \{ z \in \mathbb{R}^2 \mid \|z\| \leq 1 \} \) die abgeschlossene Einheitskreisscheibe und \(S^1 = \{ z \in \mathbb{R}^2 \mid \|z\| = 1 \} \) ihren Randkreis. Wir führen den Beweis durch Widerspruch und nehmen an, es gäbe solche eine stetige Abbildung \(r : D \to S^1 \) mit \(r(z) = z \) für alle \(z \in S^1 \). Bezeichne \(i : S^1 \hookrightarrow D \) die Einbettung. Wir hätten also ein kommutatives Diagramm von topologischen Räumen

\[
\begin{array}{ccc}
S^1 & \xrightarrow{i} & D \\
\downarrow{id} & & \downarrow{r} \\
S^1 & & \\
\end{array}
\]

und erhielten nach 5.2.25 mit \(\pi_1 \) ein kommutatives Diagramm von Gruppen

\[
\begin{array}{ccc}
\pi_1(S^1,1) & \xrightarrow{i_*} & \pi_1(D,1) \\
\downarrow{id} & & \downarrow{r_*} \\
\pi_1(S^1,1) & & \\
\end{array}
\]

Das ist aber unmöglich, da ja gilt \(\pi_1(D,1) \cong 1 \) nach 5.2.8 und \(\pi_1(S^1,1) \cong \mathbb{Z} \) nach 5.3.1. \(\square \)

Satz 5.4.3 (Fixpunktsatz von Brouwer für die Kreisscheibe). Jede stetige Abbildung von der abgeschlossenen Einheitskreisscheibe in sich selbst hat einen Fixpunkt.

Beweis. Sei \(f : D \to D \) unsere stetige Selbstabbildung der Einheitskreisscheibe \(D \). Wäre \(f : D \to D \) stetig mit \(f(x) \neq x \) für alle \(x \in D \), so könnten wir eine Abbildung \(r : D \to S^1 \) der Einheitskreisscheibe auf ihren Rand \(S^1 \) definieren durch die Vorschrift, daß sie jedem \(x \in D \) denjenigen Punkt \(r(x) \in S^1 \) zuordnet, „in dem der Strahl, der in \(f(x) \) beginnt und durch \(x \) läuft, die Kreislinie \(S^1 \) trifft“. Offensichtlich wäre \(r \) stetig und \(r(z) = z \) für alle \(z \in S^1 \), als da heißt, \(r \) wäre eine Retraktion der Kreisscheibe auf ihren Rand, im Widerspruch zum vorhergehenden Satz 5.4.1. \(\square \)
Die Retraktion r aus dem Beweis des Fixpunktsatzes von Brouwer
Satz 5.4.4 (vom Igel). Es gibt keine stetige Selbstabbildung der Kugelschale \(\kappa : S^2 \to S^2 \) derart, daß \(\kappa(x) \) senkrecht steht auf \(x \) für alle \(x \in S^2 \).

5.4.5. Man stelle sich vor, die Abbildung \(\kappa \) ordne jedem Punkt \(x \) auf der Außенfläche eines kugelförmig zusammengerollten Igels die Richtung \(\kappa(x) \) des dort entspringenden Stachels zu. Die Bedingung „\(\kappa(x) \) steht senkrecht auf \(x \)“ bedeutet, daß die Stacheln flach anliegen müssen, und unser Satz sagt, daß sich ein Igel nicht „wirbelfrei kämmen läßt“. Man beachte jedoch, daß sich ein „Igel von der Form eines Rettungsrings“ durchaus wirbelfrei kämmen läßt. Einen eleganteren Beweis einer allgemeineren Aussage werden wir mit singulärer Homologie in ?? geben können.

Beweis. Wir zeigen das durch Widerspruch und nehmen also an, es gäbe so eine Kämmbung \(\kappa \). Bezeichne \(S^2_+ \) beziehungsweise \(S^2_- \) die nördliche beziehungsweise südliche abgeschlossene Hemisphäre und \(S^1 = S^2_+ \cap S^2_- \) den Äquator. Für \(p \in S^2_+ \) bezeichne \(R^+_p \) die Rotation mit Rotationsachse in der Äquatorebene, die \(p \) auf den Nordpol \((0,0,1)\) dreht. Dann ist \(p \mapsto R^+_p(\kappa(p)) \) eine stetige Abbildung \(\kappa_+ : S^2_+ \to S^1 \). Analog definieren wir \(\kappa_- : S^2_- \to S^1 \). Offensichtlich gilt für alle \(p \) auf dem Äquator \(p \in S^1 \) die Beziehung

\[
\kappa_+(p) = s_p(\kappa_-(p)),
\]

wo \(s_p : S^1 \to S^1 \) die Spiegelung an der zu \(p \) senkrechten Geraden in der Äquatorebene bezeichnet, die also \(p \) auf \(-p\) abbildet. Fassen wir \(S^1 \subset \mathbb{C} \) auf als die komplexen Zahlen der Länge 1, so wird die Abbildung \(s : S^1 \times S^1 \to S^1 \), \((p,x) \mapsto s_p(x) \) beschrieben durch die Formel \((p,x) \mapsto -p^2x^{-1} \). Wir erhalten also

\[
-\kappa_+(p)\kappa_-(p) = p^2 \quad \forall p \in S^1
\]

Das ist aber unmöglich, denn \(p \mapsto p^2 \) induziert auf \(\pi_1(S^1,1) \) nach 5.3.13 die Multiplikation mit 2, wohingegen die linke Seite auf \(\pi_1(S^1,1) \) eine konstante Abbildung liefert: In der Tat läßt sich die stetige Abbildung \(S^1 \to S^1 \), \(p \mapsto -\kappa_+(p)\kappa_-(p) \) ja faktorisieren in

\[
S^1 \overset{\Delta}{\longrightarrow} (S^2_+ \times S^2_-) \overset{\kappa_+ \times \kappa_-}{\longrightarrow} (S^1 \times S^1) \overset{\text{mult}}{\longrightarrow} S^1 \overset{(-1)}{\longrightarrow} S^1
\]

mit \(\Delta(z) = (z,z) \), und die Fundamentalgruppe von \((S^2_+ \times S^2_-) \) ist trivial, da dieser Raum homöomorph ist zur konvexen Teilmenge \(D \times D \subset \mathbb{R}^4 \). Dieser Widerspruch beendet den Beweis. \(\Box \)
Satz vom Igel

Wirbelfreie Kämmung eines toroidalen Igels
Übungen

Übung 5.4.6 (Jeder Mensch hat einen Haarwirbel). Wir gehen dabei davon aus, daß die Haare am Rand des Haarwuchses alle nach unten wachsen. Man zeige: Es gibt keine stetige Abbildung \(\kappa : S^2_+ \rightarrow S^2 \) von der oberen Hemisphäre in die Sphäre, die den Äquator in die untere Hemisphäre abbildet und so, daß \(\kappa(x) \) senkrecht steht auf \(x \) für alle \(x \in S^2_+ \).

Übung 5.4.7 (Die Fundamentalgruppe von einem Produkt). Man zeige: Für zwei bepunktete Räume \((X, x)\) und \((Y, y)\) induzieren die beiden Projektionen \(pr_1 \) und \(pr_2 \) von \(X \times Y \) auf \(X \) und \(Y \) einen Isomorphismus

\[
(\pi_1(pr_1), \pi_1(pr_2)) : \pi_1(X \times Y, (x, y)) \rightarrow \pi_1(X, x) \times \pi_1(Y, y)
\]

und dessen Inverses wird gegeben durch \((\pi_1(id_X, y), \pi_1(x, id_Y))\) mit der Notation \((id_X, y)\) für die Abbildung \(X \rightarrow X \times Y \) gegeben durch \(x \mapsto (x, y) \). Der Rettungsring \(S^1 \times S^1 \) hat also für jeden Basispunkt die Fundamentalgruppe \(\mathbb{Z} \times \mathbb{Z} \).

Anschaulich liefert ja auch jeder geschlossene Weg auf dem Rettungsring zwei Umlaufzahlen: „Wie oft der Weg um die Luftkammer läuft“ und „Wie oft er um den hypothetischen Matrosen im Ring läuft“.

5.5 Homotopien zwischen stetigen Abbildungen

Definition 5.5.1. Seien \(f, g : Y \rightarrow X \) stetige Abbildungen. Eine Homotopie von \(f \) nach \(g \) ist eine stetige Abbildung

\[
H : Y \times [0, 1] \rightarrow X
\]
derart, daß gilt \(H(y, 0) = f(y) \) und \(H(y, 1) = g(y) \) für alle \(y \in Y \). Man sagt, die Abbildung \(f \) sei homotop zu \(g \) und schreibt \(f \simeq g \), wenn es eine Homotopie von \(f \) nach \(g \) gibt.

5.5.2 (Diskussion der Terminologie). Dieser Begriff von Homotopie ist für Wege wesentlich verschieden von unserem Begriff aus 5.2.6, den wir deshalb genauer die Homotopie mit festen Randpunkten genannt haben. Es gibt jedoch eine gemeinsame Verallgemeinerung, bei der man zusätzlich eine Teilmenge \(Z \subset Y \) festlegt und fordert, daß \(H(z, \tau) \) für \(z \in Z \) von \(\tau \) unabhängig sein soll. Zwei Abbildungen \(f, g : Y \rightarrow X \), die in dieser Weise homotop sind und die damit natürlich auf \(Z \) übereinstimmen müssen, heißen homotop relativ zu \(Z \). Für \(Y = [0, 1] \) und \(Z = \{0, 1\} \) erhält man dann unsere Homotopie mit festen Randpunkten als Spezialfall.

Proposition 5.5.3. Gegeben topologische Räume \(X, Y \) ist die Relation \(\simeq \) eine Äquivalenzrelation auf der Menge \(\text{Top}(X, Y) \) aller stetigen Abbildungen von \(X \) nach \(Y \).
Beweis. Wir überlassen den Nachweis der Symmetrie und Reflexivität dem Leser und zeigen nur die Transitivität \((f \simeq g \text{ und } g \simeq h) \Rightarrow f \simeq h\). Seien \(F, G\) Homotopien von \(f\) nach \(g\) beziehungsweise von \(g\) nach \(h\). So definiert man eine Homotopie \(H\) von \(f\) nach \(h\) durch

\[
H(x, \tau) = \begin{cases}
F(x, 2\tau) & 0 \leq \tau \leq 1/2; \\
G(x, 2\tau - 1) & 1/2 \leq \tau \leq 1.
\end{cases}
\]

Definition 5.5.4. Die Äquivalenzklasse einer stetigen Abbildung \(f\) unter der Äquivalenzrelation der Homotopie bezeichnen wir mit \([f]\) und nennen sie die **Homotopieklasse von \(f\)**. Gegeben topologische Räume \(X, Y\) verwenden wir die beiden Notationen \(\text{hTop}(X, Y) = [X, Y]\) für die Menge der Homotopieklassen von stetigen Abbildungen von \(X\) nach \(Y\).

5.5.5. Bei dieser Notation ist Vorsicht geboten, denn für Wege \(\alpha\) hat nun das Symbol \([\alpha]\) zwei verschiedene Bedeutungen. Im Zweifelsfall ist bei Wegen immer die Homotopieklasse von \(\alpha\) unter Homotopie mit festen Randpunkten gemeint.

Beispiel 5.5.6. Sei \(D \subset \mathbb{R}^n\) eine konvexe Teilmenge und \(Y\) ein beliebiger topologischer Raum. So sind je zwei stetige Abbildungen \(f, g : Y \rightarrow D\) homotop. In der Tat ist \(H(y, \tau) = \tau f(y) + (1 - \tau)g(y)\) eine Homotopie.

Proposition 5.5.7. Seien \(f, g : Y \rightarrow X\) stetige homotope Abbildungen, in Formeln \(f \simeq g\). So gilt auch \(h \circ f \simeq h \circ g\) für jede stetige Abbildung \(h : X \rightarrow Z\) und \(f \circ h \simeq g \circ h\) für jede stetige Abbildung \(h : Z \rightarrow Y\).

Beweis. Ist \(H : Y \times [0, 1] \rightarrow X\) eine Homotopie von \(f\) nach \(g\), so ist die Abbildung \(h \circ H : Y \times [0, 1] \rightarrow Z\) eine Homotopie von \(h \circ f\) nach \(h \circ g\) und die Abbildung \(H \circ (h \times \text{id}) : Z \times [0, 1] \rightarrow X\) eine Homotopie von \(f \circ h\) nach \(g \circ h\).

5.5.8. Da nach Proposition 5.5.7 die Homotopieklasse einer Verknüpfung von stetigen Abbildungen nur von den Homotopieklassen der verknüpften Abbildungen abhängt, können wir eine **Verknüpfung von Homotopieklassen** definieren durch die Vorschrift \([f] \circ [g] = [f \circ g]\).

5.6 Kategorien und Funktoren

5.6.1. An dieser Stelle möchte ich damit beginnen, in die Sprache der Kategorien und Funktoren einzuführen, die auch in 9.1.1 in größerer Ausführlichkeit und vor einem anderen Hintergrund besprochen wird.

Definition 5.6.2. Eine **Kategorie** \(C\) ist ein Datum bestehend aus:

a. einer Menge von **Objekten** \(\text{Ob} C\);
b. einer Menge $C(X, Y)$ von **Morphismen** für je zwei Objekte $X, Y \in \text{Ob } C$;

c. einer Abbildung $C(X, Y) \times C(Y, Z) \to C(X, Z)$, $(f, g) \mapsto g \circ f$ für je drei Objekte $X, Y, Z \in C$, genannt die **Verknüpfung** von Morphismen,

derart, daß folgende Axiome erfüllt sind:

1. Die Morphismenmengen sind paarweise disjunkt;

2. Die Verknüpfung ist **assoziativ**, als da heißt, es gilt $(f \circ g) \circ h = f \circ (g \circ h)$ für Morphismen f, g und h, wann immer diese Verknüpfungen sinnvoll sind;

3. Für jedes Objekt $X \in \text{Ob } C$ gibt es einen Morphismus $\text{id}_X \in C(X, X)$, die **Identität auf** X, so daß gilt $\text{id}_X \circ f = f$ und $g \circ \text{id}_X = g$ für Morphismen f und g wann immer diese Verknüpfungen sinnvoll sind. Die üblichen Argumente zeigen, daß es für jedes X höchstens einen derartigen Morphismus geben kann, womit auch die Verwendung des bestimmten Artikels gerechtfertigt wäre.

5.6.3. Seien C eine Kategorie und $X, Y \in \text{Ob } C$ Objekte. Statt $f \in C(X, Y)$ sagen wir auch, f sei ein **Morphismus von X nach Y** und schreiben kurz

$$f : X \to Y$$

Statt id_X schreiben wir oft nur id. Statt $X \in \text{Ob } C$ schreiben wir oft kürzer $X \in C$. Statt $C(X, X)$ schreibe ich gerne kürzer $C(X)$ und nenne diese Menge mit ihrer Verknüpfung das **Monoid der Endomorphismen von X**.

Beispiel 5.6.4 (Die Kategorie der topologischen Räume). Als erstes Beispiel hätte ich gerne die Kategorie $C = \text{Top}$ aller topologischen Räume eingeführt, mit topologischen Räumen als Objekten und stetigen Abbildungen als Morphismen. Das ist jedoch nicht ohne weiteres möglich, da einerseits die „Gesamtheit aller Mengen“ nach ?? nicht als Menge angesehen werden darf, und da wir andererseits von unseren Kategorien stets annehmen, daß ihre Objekte eine Menge bilden sollen. Um diese Untiefen der Logik zu umschiffen, betrachten wir feiner ein Mengensystem alias eine Menge \mathcal{U} von Mengen und die Kategorie

$$\mathcal{U}\text{Top}$$

aller topologischen Räume X, die als Menge betrachtet Elemente unseres Mengensystems \mathcal{U} sind, in Formeln $X \in \mathcal{U}$. Meist wird das Mengensystem \mathcal{U} in der Notation dann aber doch weggelassen und nur insgeheim dazugedacht. So wollen wir es im folgenden meist auch halten.

Beispiel 5.6.6 (Die Homotopiekategorie der topologischen Räume). Wir betrachten die Kategorie \(\text{hTop} \) aller topologischen Räume mit Homotopieklassen stetiger Abbildungen als Morphismen, also

\[\text{hTop}(X, Y) := \text{Top}(X, Y) / \sim \]

Die Verknüpfung von Abbildungen kommt dabei von 5.5.8 her. Die Axiome einer Kategorie sind offensichtlich erfüllt. Für die Menge der Homotopieklassen von Abbildungen zwischen zwei Räumen ist auch die Notation \(\text{hTop}(X, Y) = [X, Y] \) gebräuchlich.

Beispiel 5.6.7 (Die Kategorie der Mengen). Wir betrachten die Kategorie aller Mengen \(\text{Ens} \) oder genauer die Kategorie \(\mathfrak{U}\text{Ens} \) aller Mengen \(X \in \mathfrak{U} \) für ein vorgegebenes Mengensystem \(\mathfrak{U} \). Ihre Objekte sind beliebige Mengen \(X \in \mathfrak{U} \). Für zwei Mengen \(X, Y \in \mathfrak{U} \) ist die Morphismenmenge \(\text{Ens}(X, Y) \) die Menge aller Abbildungen von \(X \) nach \(Y \). Die Verknüpfung ordnet jedem Paar \((f, g) \) von Abbildungen ihre Komposition \(g \circ f \) zu, und \(\text{id}_X \in \text{Ens}(X) \) ist schlicht die identische Abbildung \(\text{id}_X(x) = x \forall x \in X \).

Beispiel 5.6.8 (Die Kategorie der Gruppen). Wir betrachten die Kategorie \(\text{Grp} \) aller Gruppen mit Gruppenhomomorphismen als Morphismen.

Definition 5.6.9. 1. Ein Morphismus \(f \in \mathcal{C}(X, Y) \) in einer Kategorie heißt ein **Isomorphismus** oder **Iso** und als Adjektiv **iso** genau dann, wenn es einen Morphismus \(g \in \mathcal{C}(Y, X) \) gibt mit \(f \circ g = \text{id}_Y \) und \(g \circ f = \text{id}_X \). Wir notieren Isomorphismen oft \(f : X \rightarrow Y \).

2. Zwei Objekte \(X \) und \(Y \) einer Kategorie heißen **isomorph** genau dann, wenn es einen Iso \(f : X \rightarrow Y \) gibt. Man schreibt dann auch kurz \(X \cong Y \).

Beispiele 5.6.10. Isomorphismen in der Kategorie der Mengen nennt man **Bijektionen**, Isomorphismen in der Kategorie der topologischen Räume **Homöomorphismen**, Isomorphismen in der Kategorie der Gruppen **Isomorphismen von Gruppen**. Stetige Abbildungen, die Isomorphismen in der Homotopiekategorie der topologischen Räume repräsentieren, heißen **Homotopieäquivalenzen**. Zwei

5.6.11. Ausgeschrieben bedeutet „zusammenziehbar“ also: Es gibt einen Punkt $x_0 \in X$ und eine stetige Abbildung $H : X \times [0, 1] \to X$ mit $H(x, 0) = x_0$, $H(x, 1) = x$ für alle $x \in X$. Zum Beispiel ist jede konvexe Menge $D \subset \mathbb{R}^n$ zusammenziehbar.

5.6.12. Eine Kategorie, in der jeder Morphismus ein Isomorphismus ist, heißt ein **Gruppoid**. Man erklärt zu jedem topologischen Raum X das **fundamentale Gruppoid** $\mathcal{W} = \mathcal{W}_X = \mathcal{W}(X)$ wie folgt: Seine Objekte sind die Punkte von X und die Morphismenmenge $\mathcal{W}(x, y)$ besteht aus allen Homotopieklassen von Wegen mit Anfangspunkt x und Endpunkt y, in Formeln

$$\mathcal{W}(x, y) := \pi_1(X, y, x)$$

Die Verknüpfung von Morphismen ist das Aneinanderhängen von Wegen. Man benutzt Lemma 5.2.18, um die Axiome einer Kategorie zu prüfen. Unsere Fundamentalgruppe $\pi_1(X, x)$ ist damit genau das Monoid der Endomorphismen des Punktes x im fundamentalen Gruppoid, in Formeln $\pi_1(X, x) = \mathcal{W}_X(x)$.

Definition 5.6.13. Ein **Funktor** $F : \mathcal{A} \to \mathcal{B}$ von einer Kategorie \mathcal{A} in eine Kategorie \mathcal{B} ist ein Datum bestehend aus:

a. einer Abbildung $F : \text{Ob} \mathcal{A} \to \text{Ob} \mathcal{B}, X \mapsto FX$;

b. einer Abbildung $F : \mathcal{A}(X, Y) \to \mathcal{B}(FX, FY), f \mapsto Ff$ für je zwei Objekte $X, Y \in \text{Ob} \mathcal{A}$,

derart, daß gilt:

1. $F(f \circ g) = (Ff) \circ (Fg)$ für beliebige verknüpfbare Morphismen f und g aus der Kategorie \mathcal{A};

2. $F(\text{id}_X) = \text{id}_{FX}$ für jedes Objekt $X \in \mathcal{A}$.

Ich nenne in diesem Zusammenhang \mathcal{A} die **Ausgangskategorie** und \mathcal{B} die **Zielkategorie** des Funktors F.

5.6.14. Man gibt bei einem Funktor F meist nur die Abbildung $X \mapsto FX$ auf den Objekten an in der Hoffnung, daß dadurch vom Leser erraten werden kann, welche Abbildung $f \mapsto Ff$ auf den Morphismen gemeint ist.
Beispiel 5.6.15 *(Die Fundamentalgruppe als Funktor)*. Man betrachte die Kategorie Top^* der bepunktet topologischen Räume alias topologischen Räume mit einem ausgezeichneten Punkt, dem *Basispunkt*. Morphismen sind stetige Abbildungen, die den ausgezeichnetem Punkt in den ausgezeichnetem Punkt überführen. Das Bilden der Fundamentalgruppe ist dann ein Funktor

$$\pi_1 : \text{Top}^* \to \text{Grp}$$

in folgendem Sinne: Jedem bepunkteten Raum $\left(X, x \right) \in \text{Top}^*$ wird ja darunter eine Gruppe $\pi_1(X, x) \in \text{Grp}$ zugeordnet, und jeder stetigen basispunkterhalten- den Abbildung $f : (X, x) \to (Y, y)$ ein Gruppenhomomorphismus $f_\sharp = \pi_1(f) : \pi_1(X, x) \to \pi_1(Y, y)$. Daß diese Konstruktion die Eigenschaften eines Funktors hat, steht in 5.2.25. Jetzt haben wir allerdings den Ärger, daß für ein beliebig vorgegebenes Mengensystem \mathfrak{U} die Fundamentalgruppe keineswegs einen Funktor $\pi_1 : \mathfrak{U}\text{Top}^* \to \mathfrak{U}\text{Grp}$ zu induzieren braucht. Diesem Ärger kann man jedoch entgehen, indem man annimmt, daß das zugrundeliegende Mengensystem ein „Universum“ im Sinne von 9.10.3 sein soll, vergleiche auch 9.10.6. Im weiteren will ich dergleichen Feinheiten schlicht ignorieren.

Beispiel 5.6.16. Jede stetige Abbildung $f : X \to Y$ liefert einen Funktor zwischen den zugehörigen fundamentalen Gruppoiden $f_\sharp : \mathcal{W}(X) \to \mathcal{W}(Y)$, der ein Objekt $x \in X$ auf das Objekt $f(x) \in Y$ abbildet und einen Morphismus $[\gamma]$ auf den Morphismus $[f \circ \gamma]$.

Beispiel 5.6.17 *(Wegzusammenhangskomponenten als Funktor)*. Das Bilden der Menge der Wegzusammenhangskomponenten eines topologischen Raums ist ein Funktor $\pi_0 : \text{Top} \to \text{Ens}$.

Vorschau 5.6.18. Man mag die *Homotopiekategorie bepunkteter Räume* betrachten mit bepunktetem Räumen als Objekten und Homotopieklassen für basispunkterhaltende Homotopie alias Homotopie relativ zum Basispunkt im Sinne von 5.5.2 als Morphismen. Wir notieren sie hTop^*. So wird die Fundamentalgruppe, aufgefaßt als Funktor $\pi_1 : \text{hTop}^* \to \text{Ens}$, dargestellt im Sinne von 9.9.6 durch die bepunktet Kreislinie. Die bepunktet Kreislinie kann im Übrigen versehen werden mit der Struktur eines „Gruppenobjekts“ in $(\text{hTop}^*)^{\text{opp}}$ im Sinne von ??, und das liefert in diesem Kontext die Gruppenstruktur auf $\pi_1(X, x)$.

Übungen

Übung 5.6.19. Ein Morphismus $f \in \mathcal{C}(X, Y)$ in einer Kategorie ist ein Isomorphismus genau dann, wenn es Morphismen $g, h \in \mathcal{C}(Y, X)$ gibt mit $f \circ g = \text{id}_Y$ und $h \circ f = \text{id}_X$, und unter diesen Voraussetzungen gilt bereits $g = h$. Wir nennen diesen Morphismus dann den *inversen Morphismus zu f* und notieren ihn f^{-1}.
Übung 5.6.20. Gegeben Morphismen \(f \in C(X,Y) \) und \(g \in C(Y,X) \) in einer Kategorie derart, daß \(f \circ g \) und \(g \circ f \) Isomorphismen sind, müssen \(f \) und \(g \) bereits selbst Isomorphismen sein.

Übung 5.6.21. Sei \(C \) eine Kategorie und \(f : X \rightarrow Y \) ein Morphismus. Man zeige, daß \(f \) genau dann ein Isomorphismus ist, wenn das Vorsschalten von \(f \) für jedes weitere Objekt \(Z \) eine Bijektion \(C(Y,Z) \rightarrow C(X,Z) \) induziert. Man zeige dual, daß \(f \) genau dann ein Isomorphismus ist, wenn das Nachsschalten von \(f \) für jedes weitere Objekt \(Z \) eine Bijektion \(C(Z,X) \rightarrow C(Z,Y) \) induziert. Genauere Aussagen in dieser Richtung macht das sogenannte Yoneda-Lemma 9.9.2.

Übung 5.6.22. Man zeige, daß eine stetige Abbildung \(S^n \rightarrow X \) von einer Sphäre in einen topologischen Raum \(X \) genau dann nullhomotop ist, wenn sie sich stetig auf das Innere der Sphäre fortsetzen läßt.

Übung 5.6.23. Man zeige, daß eine stetige Abbildung \(f : S^1 \rightarrow \mathbb{C}^\times \) genau dann eine Homotopieäquivalenz ist, wenn sie einen Isomorphismus auf den Fundamentalgruppen \(\pi_1(S^1, 1) \rightarrow \pi_1(\mathbb{C}^\times, f(1)) \) induziert.

Übung 5.6.24. Ist \(Y \) beliebig und \(X \) zusammenziehbar, so sind je zwei Abbildungen \(f, g : Y \rightarrow X \) homotop. Ist zusätzlich \(Y \) wegzusammenhängend, so sind auch je zwei Abbildungen \(X \rightarrow Y \) homotop.

Übung 5.6.25. Jeder zusammenziehbare Raum ist wegzusammenhängend.

Übung 5.6.26. Die Einbettung \(S^n \hookrightarrow \mathbb{R}^{n+1} \setminus \{0\} \) ist eine Homotopieäquivalenz. Allgemeiner zeige man, daß für jeden Punkt \(y \in \mathbb{R}^{n+1} \) und jedes \(r \geq 0 \) mit \(r + \|y\| < 1 \) die Einbettung \(S^n \hookrightarrow \mathbb{R}^{n+1} \setminus A(y; r) \) eine Homotopieäquivalenz ist, für \(A(y; r) = \{x \mid \|x - y\| \leq r\} \) der abgeschlossene Ball. Ebenso zeige man, daß für jeden Punkt \(y \in \mathbb{R}^{n+1} \) und jedes \(r > 0 \) mit \(r + \|y\| \leq 1 \) die Einbettung \(S^n \hookrightarrow \mathbb{R}^{n+1} \setminus B(y; r) \) eine Homotopieäquivalenz ist.

Übung 5.6.27 (Funktoren erhalten Isomorphie). Ein Funktor bildet stets Isomorphismen auf Isomorphismen ab. Insbesondere haben isomorphe Objekte unter einem Funktor stets isomorphe Bilder.

5.7 Homotopie und Fundamentalgruppe

5.7.1. Wir untersuchen nun den Zusammenhang zwischen Fundamentalgruppe und Homotopie. Zunächst interessieren wir uns dafür, wie die Fundamentalgruppe vom Basispunkt abhängt. Falls es keinen Weg von \(x \) nach \(y \) gibt, haben \(\pi_1(X, x) \) und \(\pi_1(X, y) \) nichts miteinander zu tun. Gibt es aber einen Weg, so erhalten wir isomorphe Gruppen. Genauer gilt:
Satz 5.7.2 (Wechsel des Basispunkts). Gegeben Punkte \(x, y \) eines topologischen Raums \(X \) liefert jeder stetige Weg \(\gamma \) von \(x \) nach \(y \) einen Isomorphismus

\[
i_\gamma : \pi_1(X, x) \to \pi_1(X, y)
\]

\[
[\alpha] \mapsto [\gamma \ast \alpha \ast \overline{\gamma}]
\]

5.7.3. Hier und im folgenden kürzen wir \(\alpha \ast (\beta \ast \gamma) \) mit \(\alpha \ast \beta \ast \gamma \) ab, für verknüpfbare Wege \(\alpha, \beta \) und \(\gamma \). Wann immer wir diese Notation verwenden, wird es eh nicht auf die Klammern ankommen, da wir Wege nur bis auf Homotopie betrachten.

Beweis. \(\alpha \sim \alpha' \Rightarrow \gamma \ast \alpha \ast \overline{\gamma} \sim \gamma \ast \alpha' \ast \overline{\gamma} \) nach Lemma 5.2.18, also ist \(i_\gamma \) wohldefiniert. Wegen \(\overline{\gamma} \ast \gamma \sim \varepsilon_x \) und \(\gamma \ast \overline{\gamma} \sim \varepsilon_y \) ist \(i_\gamma \) invers zu \(i_\gamma \) und insbesondere \(i_\gamma \) eine Bijektion. Um zu prüfen, daß \(i_\gamma \) auch ein Gruppenhomomorphismus ist, rechnen wir

\[
i_\gamma([\alpha] \ast [\beta]) = [\gamma \ast (\alpha \ast \beta \ast \overline{\gamma})]
\]

\[
i_\gamma([\alpha]) \ast i_\gamma([\beta]) = [(\gamma \ast \alpha \ast \overline{\gamma}) \ast (\gamma \ast \beta \ast \overline{\gamma})]
\]

und sehen, daß auf der rechten Seite in der oberen und unteren Zeile dieselbe Homotopieklasse steht. \(\square \)

Alternativer Beweis in der Sprache der Kategorien. Ist \(C \) eine Kategorie und \(\gamma : A \to B \) ein Isomorphismus zwischen zwei Objekten, so erhalten wir offensichtlich einen Isomorphismus zwischen den Monoiden der Endomorphismen unserer beiden Objekte

\[
i_\gamma : C(A) \to C(B)
\]

durch die Vorschrift \(i_\gamma : \alpha \mapsto \gamma \alpha \gamma^{-1} \). Unser Satz 5.7.2 und sein Beweis spezialisieren nur diese a priori recht banale Erkenntnis auf den Fall des fundamentalen Gruppoids eines topologischen Raums. \(\square \)

Satz 5.7.4 (Homotopie und Fundamentalgruppe). Seien stetige Abbildungen \(f, g : X \to Y \) gegeben und sei \(H \) eine Homotopie von \(f \) nach \(g \). Sei \(x \in X \) ein fest gewählter Basispunkt und bezeichne \(\gamma \) den Weg \(\gamma(t) = H(x, t) \) von \(f(x) \) nach \(g(x) \). So gilt \(g_x = i_\gamma \circ f_x \), als da heißt, es kommutiert das Diagramm

\[
\begin{array}{ccc}
\pi_1(X, x) & \xrightarrow{f_x} & \pi_1(Y, f(x)) \\
\| & & \downarrow i_\gamma \\
\pi_1(X, x) & \xrightarrow{g_x} & \pi_1(Y, g(x))
\end{array}
\]

Beweis. Es gilt zu zeigen \(\overline{\gamma} \ast (g \circ \alpha) \ast \gamma \simeq (f \circ \alpha) \ast \varepsilon \) für alle \(\alpha \in \Omega(X, x) \). Es reicht dazu, eine Homotopie \(\overline{\gamma} \ast (g \circ \alpha) \ast \gamma \simeq \varepsilon \ast (f \circ \alpha) \ast \varepsilon \) anzugeben. Für \(\tau \in [0, 1] \) bezeichne \(H_\tau : X \to Y \) die Abbildung \(x \mapsto H(x, \tau) \) und \(\gamma_\tau \in \Omega(Y, (\gamma(\tau), \gamma(0))) \) das Anfangsstück \(\gamma_\tau(t) = \gamma(t \tau) \) von \(\gamma \). Die gewünschte Homotopie wird dann
geliefert von der Abbildung \(\tau \mapsto h_\tau = \tilde{\gamma}_\tau \ast (H_\tau \circ \alpha) \ast \gamma_\tau \). Unsere Zwischenwege bestehen also darin, daß wir erst \(\gamma \) ein Stück weit gehen, dann das mit der Homotopie deformierte \(f \circ \alpha \) herumgehen und anschließend wieder mit \(\gamma \) zurückgehen. Wir überlassen dem Leser den Nachweis, daß diese Familie von Zwischenwegen die von einer Homotopie geforderte Stetigkeitseigenschaft hat.

Korollar 5.7.5 (Fundamentalgruppen homotopieäquivalenter Räume). Jede Homotopieäquivalenz induziert einen Isomorphismus auf den Fundamentalgruppen. Jede nullhomotope Abbildung induziert die triviale Abbildung auf den Fundamentalgruppen. Die Fundamentalgruppe eines zusammenziehbaren Raums ist trivial.

Beweis. Ist \(u \) eine Homotopieäquivalenz, so gibt es nach Definition eine Abbildung \(v \) in die andere Richtung mit \(u \circ v \simeq \text{id} \) und \(v \circ u \simeq \text{id} \). Aus dem Satz 5.7.4 über Homotopie und Fundamentalgruppe folgt, daß dann \((u \circ v)_* = u_* \circ v_* \) und \((v \circ u)_* = v_* \circ u_* \) Isomorphismen sind. Daraus folgt aber sofort, daß auch \(u_* \) und \(v_* \) Isomorphismen sein müssen. Die anderen Aussagen des Korollars sind offensichtlich.

Beispiel 5.7.6 (Fundamentalgruppe der punktierten Ebene). Wir können nun ein weiteres Mal beweisen, daß die Fundamentalgruppe des Komplements eines Punktes in der Ebene zu \(\mathbb{Z} \) isomorph ist: Die Einbettung \(S^1 \hookrightarrow \mathbb{C}^\times \) ist nämlich nach 5.6.26 eine Homotopieäquivalenz und induziert folglich einen Isomorphismus auf den Fundamentalgruppen. In derselben Weise folgt, daß für \(x \neq y \) zwei Punkte der komplexen Zahlenebene \(\mathbb{C} \) der Weg \(t \mapsto y + x \exp(2\pi i t) \) einen Erzeuger von \(\pi_1(\mathbb{C} \setminus y, x) \) repräsentiert.

5.7.7. Ist \(\gamma : [0, 1] \rightarrow \mathbb{C} \) ein geschlossener Weg in der komplexen Zahlenebene und \(y \in \mathbb{C} \setminus \gamma([0, 1]) \) ein Punkt, der nicht auf besagtem Weg liegt, so erklären wir die **Umlaufzahl**

\[
\text{Um}(\gamma, y)
\]

von unserem Weg \(\gamma \) um unseren Punkt \(y \) als diejenige ganze Zahl \(n \in \mathbb{Z} \), für die \(\gamma \) als Weg in \(\mathbb{C} \setminus y \) homotop ist zum Weg \(t \mapsto y + (\gamma(0) - y) \exp(2\pi i n t) \). Nach dem Vorhergehenden gibt es stets genau eine solche Zahl.

Proposition 5.7.8 (Stetigkeit der Umlaufzahl). Gegeben ein geschlossener Weg \(\gamma : [0, 1] \rightarrow \mathbb{C} \) in der komplexen Zahlenebene liefert die Umlaufzahl eine stetige Abbildung \(\mathbb{C} \setminus \gamma([0, 1]) \rightarrow \mathbb{Z}, \ y \mapsto \text{Um}(\gamma, y) \), die auf der unbeschränkten Zusammenhangskomponente von \(\mathbb{C} \setminus \gamma([0, 1]) \) verschwindet.

Beweis. Gegeben eine offene Kreisseite von endlichem Radius \(D \subset \mathbb{C} \) und \(y \in D \) ist \(\mathbb{C} \setminus D \hookrightarrow \mathbb{C} \setminus y \) eine Homotopieäquivalenz und induziert folglich einen Isomorphismus auf den Fundamentalgruppen. Das zeigt, daß die Umlaufzahl von
In jede Zusammenhangskomponente aus dem Komplement des hier gezeichneten Weges habe ich hier die Umlaufzahl des besagten Weges um einen und jeden Punkt aus besagter Zusammenhangskomponente geschrieben.
γ um alle Punkte von D dieselbe sein muß, wenn D das Bild von γ nicht trifft und die Kreisscheibe mit doppeltem Radius $\gamma(0)$ nicht enthält, so daß auch die Wege $t \mapsto y + (\gamma(0) - y) \exp(2\pi i nt)$ unser D nicht treffen. Liegt schließlich y außerhalb einer Kreisscheibe K, die das Bild unseres Weges umfaßt, so ist unser Weg in K und erst recht in $\mathbb{C}\setminus y$ zusammenziehbar und muß um y die Umlaufzahl Null haben.

\begin{proof}
Repräsentiert ein Weg $\gamma : [0, 1] \to \mathbb{C}^\times$ das n-fache eines Erzeugers der Fundamentalgruppe und gilt $n \neq 0$, so können wir nach 5.3.10 einen Lift $\tilde{\gamma} : [0, 1] \to \mathbb{C}$ finden alias eine stetige Abbildung mit $\exp \circ \tilde{\gamma} = \gamma$, und dann ist $\alpha : [0, 1] \to \mathbb{C}^\times$ mit $\alpha(t) = \exp \circ \tilde{\gamma}(t/n)$ ein geschlossener Weg mit $\gamma(t) = \alpha(t)^n$ für alle t. Induzierte nun γ eine Einbettung $\hat{\gamma} : S^1 \hookrightarrow \mathbb{C}^\times$, so hätte die von α induzierte Abbildung $\hat{\alpha} : S^1 \hookrightarrow \mathbb{C}^\times$ die Eigenschaft $z \neq w \Rightarrow \hat{\alpha}(z) \neq \zeta \hat{\alpha}(w)$ für jede n-te Einheitswurzel $\zeta \neq 1$. Wir erhielten mithin für jede n-te Einheitswurzel $\zeta \neq 1$ eine stetige Abbildung

$$\varphi = \varphi_{\zeta} : S^1 \times S^1 \to \mathbb{C}^\times$$

durch die Vorschrift $\varphi(z, w) = \hat{\alpha}(z) - \zeta \hat{\alpha}(w)$. Nun betrachten wir das Diagramm

\begin{equation}
\begin{array}{ccc}
S^1 & \xrightarrow{(\text{id}, \text{id})} & S^1 \\
\downarrow & & \downarrow \\
S^1 \times S^1 & \xrightarrow{\varphi} & \mathbb{C}^\times
\end{array}
\end{equation}

Ich behaupte, daß darin alle drei Kompositionen Homotopieäquivalenzen sind alias, nach 5.6.23 gleichbedeutend, daß sie Isomorphismen auf den Fundamentalgruppen induzieren. Zunächst induziert nach Konstruktion $\hat{\alpha} : S^1 \to \mathbb{C}^\times$ einen Isomorphismus auf den Fundamentalgruppen und ist also eine Homotopieäquivalenz. Dasselbe gilt für die mittlere Komposition $z \mapsto (1 - \zeta)\hat{\alpha}(z)$, denn sie ist zu $\hat{\alpha}$ homotop. Die obere Komposition hinwiederum ist homotop zu $z \mapsto \hat{\alpha}(z) - \zeta \hat{\alpha}(w)$ für alle $w \in S^1$. Wählen wir w_0 mit $|\hat{\alpha}(w_0)|$ kleinstmöglich, so liegt $\zeta \hat{\alpha}(w_0)$ in derselben Komponente von $\mathbb{C}\setminus \hat{\alpha}(S^1)$ wie der Ursprung. Aus der Stetigkeit der Umlaufzahl 5.7.8 folgt $\text{Um}(\alpha, \zeta \hat{\alpha}(w_0)) = \text{Um}(\alpha, 0) = 1$ und

\end{proof}
Ein geschlossener Weg in der punktierten Ebene mit Umlaufzahl Drei um den als Kreuz eingezeichneten Punkt, der „so injektiv ist wie irgend möglich“.
damit ist $z \mapsto \hat{\alpha}(z) - \zeta \hat{\alpha}(w)$ eine Homotopieäquivalenz erst für $w = w_0$ und dann für alle w, insbesondere auch für $w = 1$. Für die untere Komposition argumentiert man genauso, also haben wir in der Tat drei Homotopieäquivalenzen vor uns. Das aber widerspricht der Tatsache, daß nach 5.4.7 ja für $c \in \pi_1(S^1, 1)$ gilt

$$(\text{id}, 1)_c + (1, \text{id})_c = (\text{id}, \text{id})_c$$

und damit $\varphi_2(\text{id}, 1)_c + \varphi_2(1, \text{id})_c = \varphi_2(\text{id}, \text{id})_c$ in $\pi_1(\mathbb{C}^\times, 1)$ im Widerspruch dazu, daß für jeden Erzeuger $c \in \pi_1(S^1, 1)$ alle diese drei Elemente nach dem bereits Bewiesenen Erzeuger von $\pi_1(\mathbb{C}^\times, 1)$ sein müssen. \qed

Proposition 5.7.10 (Einfacher Zusammenhang von Komplementen). Sei V ein endlichdimensionaler reeller Vektorraum und $W \subset V$ ein Teilraum der Kodimension zwei. So ist für $I \subset W$ eine echte Teilmenge das Komplement $V \setminus I$ wegwiese einfach zusammenhängend, für alle Punkte * unseres Komplements gilt also in Formeln

$$\pi_1(V \setminus I, *) = 1$$

Beweis. Den Fall $I \not\subset W$ haben Sie bereits in 5.2.27 behandelt. Um das im allgemeinen zu sehen, dürfen wir $V = \mathbb{C} \times Y$ annehmen mit einem endlichdimensionalen Vektorraum Y und $W = 0 \times Y$. Es gilt für irgendeinen Basispunkt * zu zeigen, daß gilt $\pi_1(V \setminus I, *) = 1$, etwa für den Basispunkt $* := (1, 0)$. Es reicht zu zeigen, daß jeder geschlossene Weg von * nach * homotop ist in $V \setminus W$, denn die Abbildung $\pi_1(V \setminus W, *) \to \pi_1(V \setminus I, *)$ ist sicher konstant. Es reicht also zu zeigen, daß jeder Weg $\gamma \in \Omega(V \setminus I, *)$, der W trifft, homotop ist zum konstanten Weg. Wir schreiben dazu $\gamma(t) = (z(t), y(t))$. Auf $U := \{t \in [0, 1] \mid z(t) \neq 0\}$ können wir dann $\varphi : U \to S^1$ erklären durch $\varphi(t) = z(t)/|z(t)|$. Nun gilt $U \subset [0, 1]$ und $0, 1 \in U$, aber nach Annahme $U \neq [0, 1]$. Mithin existiert ein stetiger Lift $\tilde{\varphi} : U \to \mathbb{R}$ mit $\tilde{\varphi}(0) = \varphi(1) = 0$ und $\varphi(t) = \exp(\tilde{\varphi}(t))$ für alle $t \in U$. Es gilt also $z(t) = \exp(\tilde{\varphi}(t))|z(t)|$ für alle $t \in U$. Jetzt erklären wir $h : [0, 1]^2 \to V \setminus I$ durch die Vorschrift

$$h(t, \tau) = \begin{cases} \exp(\tilde{\varphi}(\tau t))|z(t)|, y(t)) & \text{falls } t \in U, \\ (0, y(t)) & \text{sonst.} \end{cases}$$

Diese Abbildung ist sicher stetig an allen Stellen (t, τ) mit $t \in U$. An Stellen (t, τ) mit $t \not\in U$ kann man die Stetigkeit aber auch zeigen, da in einer Umgebung von $t \not\in U$ unser $|z(t)|$ sehr klein sein muß. Damit ist $h(t, \tau)$ eine Homotopie in $V \setminus I$ zwischen unserem Weg γ und dem Weg $t \mapsto (|z(t)|, y(t))$, der seinerseits offensichtlich in $V \setminus I$ zusammenziehbar ist. \qed
Übungen

Ergänzende Übung 5.7.11. Feiner liefert der Beweis von 5.7.9 bei Betrachtung aller \(n \)-ten Einheitwurzeln \(\zeta \neq 1 \), daß der in gewisser Weise die Zahl der Selbstüberkreuzungen messende Ausdruck \(\sum_{p \in \gamma \cap [0,1]} (|\gamma^{-1}(p)| - 1) \) mindestens so groß sein muß wie der Betrag der Umlaufzahl. Das mag der Leser zur Übung ausarbeiten.

Übung 5.7.12. Für die Basispunktwechselisomorphismen \(i_\gamma \) aus 5.7.2 zeige man: Homotope Wege liefern denselben Isomorphismus, in Formeln \(\gamma \simeq \delta \Rightarrow i_\gamma = i_\delta \). Außerdem gilt \(i_{\gamma \circ \delta} = i_\gamma \circ i_\delta \) für verknüpfbare Wege \(\gamma, \delta \), für \(\gamma \) ein Weg von \(x \) zu sich selbst ist \(i_{\gamma} = \text{int}\, \gamma \) die Konjugation mit \(\gamma \), und für den konstanten Weg \(\varepsilon = \varepsilon_x \) ist speziell \(i_\varepsilon \) die Identität auf \(\pi_1(X,x) \).

Übung 5.7.13 (Fundamentalsatz der Algebra). Man zeige den Fundamentalsatz der Algebra mit den hier entwickelten Methoden. Man zeige also in anderen Worten, daß jedes nichtkonstante Polynom mit komplexen Koeffizienten eine Nullstelle hat. Hinweis: Hat unsere Polynomfunktion \(P : \mathbb{C} \to \mathbb{C} \) keine Nullstelle, so sind die Abbildungen \(P_\tau : S^1 \to \mathbb{C}^\times, z \mapsto P(\tau z) \) alle homotop zur konstanten Abbildung \(P_0 \).

Übung 5.7.14. Man zeige, daß die Fundamentalgruppe des Komplements einer Gerade im \(\mathbb{R}^3 \) isomorph ist zu \(\mathbb{Z} \). Man zeige, daß die Fundamentalgruppe des Raums, der entsteht, wenn man aus dem \(\mathbb{R}^3 \) die \(z \)-Achse sowie den Einheitskreis in der \(xy \)-Ebene herausnimmt, isomorph ist zu \(\mathbb{Z} \times \mathbb{Z} \). Hinweis: 5.4.7. Eventuell benötigte Homotopien sollen anschaulich plausibel gemacht werden, eine formelhafte Ausarbeitung ist nicht gefordert.

5.8 Abelisierte Fundamentalgruppe*

Definition 5.8.1. Gegeben eine Gruppe \(G \) definiert man ihren maximalen kommutativen Quotienten, auch genannt ihre Abelisierung, als den Quotienten

\[
G^{\text{ab}} := G/(G,G)
\]

nach dem Normalteiler \((G,G) \subset G \), der von allen Kommutatoren \(ghg^{-1}h^{-1} \) mit \(g, h \in G \) erzeugt wird. Die Untergruppe \((G,G) \) heißt im übrigen die derivierte Gruppe von \(G \).

5.8.2 (Diskussion der Notation). Die Notation \((G,G) \) geht zurück auf die in der Gruppentheorie übliche Notation \(ghg^{-1}h^{-1} = : (g,h) \) für den Kommutator. Im Sinne unserer allgemeinen Konvention ??? sollte natürlich \((G,G) \) eigentlich
nur die Menge aller Kommutatoren aus G bezeichnen und der davon erzeugte Normalteiler sollte $\langle\langle (G, G) \rangle\rangle$ notiert werden. Da aber letzteres Konzept soviel häufiger vorkommt, ist es üblich, hier eine Ausnahme zu machen und mit (G, G) kurz zuhand den von den Kommutatoren erzeugten Normalteiler zu bezeichnen, der nebenbei bemerkt mit der von den Kommutatoren erzeugten Untergruppe übereinstimmt.

Lemma 5.8.3 (Universelle Eigenschaft der Abelisierung). Für jede Gruppe G ist ihre Abelisierung G^{ab} eine abelsche Gruppe, und jeder Morphismus von G in eine abelsche Gruppe faktorisiert über G^{ab}. In Formeln liefert also für jede abelsche Gruppe A das Verknüpfen mit der Projektion $G \twoheadrightarrow G^{\text{ab}}$ eine Bijektion

$$\text{Grp}(G^{\text{ab}}, A) \xrightarrow{\sim} \text{Grp}(G, A)$$

Beweis. Dem Leser überlassen. □

5.8.4. Ist X ein wegzusammenhängender Raum und sind $x, y \in X$ Punkte, so liefern nach 5.7.2 je zwei Wege γ von x nach y denselben Isomorphismus $i_{\gamma} : \pi_1(X, x)^{\text{ab}} \xrightarrow{\sim} \pi_1(X, y)^{\text{ab}}$, den wir dann auch i_{yx} nennen dürfen, und für je drei Punkte x, y, z gilt $i_{zx} = i_{zy}i_{yx}$. Folglich können wir für jeden wegzusammenhängenden Raum X die **basispunktfreie abelisierte Fundamentalgruppe** $\pi_1(X)^{\text{ab}}$ definieren als die Untergruppe

$$\pi_1(X)^{\text{ab}} \subset \prod_{x \in X} \pi_1(X, x)^{\text{ab}}$$

aller Tupel $(\alpha_x)_{x \in X}$ mit $i_{yx}(\alpha_x) = (\alpha_y)$ für alle $x, y \in X$. Die Projektion auf den entsprechenden Faktor liefert dann für jeden Punkt einen kanonischen Isomorphismus $\pi_1(X)^{\text{ab}} \xrightarrow{\sim} \pi_1(X, x)^{\text{ab}}$. Sind alle Fundamentalgruppen abelsch, so schreiben wir statt $\pi_1(X)^{\text{ab}}$ auch kürzer $\pi_1(X)$. Ist weiter $f : X \to Y$ eine stetige Abbildung von wegzusammenhängenden Räumen, so gibt es genau einen Gruppenhomomorphismus $f_* : \pi_1(X)^{\text{ab}} \to \pi_1(Y)^{\text{ab}}$, der für alle $x \in X$ mit unseren $f_* : \pi_1(X, x) \to \pi_1(Y, f(x))$ verträglich ist in der hoffentlich offensichtlichen Weise. Wir erhalten so einen Funktor $X \mapsto \pi_1(X)^{\text{ab}}$ von der Kategorie der wegzusammenhängenden topologischen Räume in die Kategorie der abelischen Gruppen.

Vorschau 5.8.5 (Umlaufzahl und Orientierung). Wir betrachten die Kategorie $\text{Mod}_{\mathbb{R}}(2)^{\times}$ mit zweidimensionalen reellen Vektorräumen als Objekten und Vektorraumisomorphismen als Morphismen. Wir erhalten einen Funktor

$$\text{dreh} : \text{Mod}_{\mathbb{R}}(2)^{\times} \to \text{Ens}$$

durch die Vorschrift, daß wir jedem zweidimensionalen reellen Vektorraum V die Menge der beiden Erzeuger der fixpunktfreien Fundamentalgruppe $\pi_1(V \setminus \{0\})$ des
Komplements des Ursprungs zuordnen. Andererseits erinnern wir den Funktor
or : Mod_R(2)^n → Ens aus ??, der jedem zweidimensionalen reellen Vektorraum
die Menge seiner beiden Orientierungen zuordnet. Es gibt nun offensichtlich ge-
nau zwei Transformationen or ⇒ dreh und ebenso offensichtlich sind sie beide
Isotransformationen. Wir vereinbaren, daß wir von nun an diejenige dieser be-
den Transformationen als die Standardtransformation auszeichnen, die unserer
Standardorientierung von C vermittels der angeordneten Basis (1, i) den durch
t ⇔ exp(2πit) repräsentierten Erzeuger der Fundamentalgruppe von C\0 zuord-
net. Mit dem durch eine Orientierung gegebenen Drehinn meinen wir den
 durch diese Standardtransformation unserer Orientierung zugeordneten Drehinn.

5.9 Selbstabbildungen der Kreislinie

Satz 5.9.1 (Selbstabbildungen der Kreislinie bis auf Homotopie). Man erhält
eine Bijektion zwischen der Menge der ganzen Zahlen und der Menge aller Ho-
motopieklassen von Selbstabbildungen der Kreislinie, indem man jeder ganzen
Zahl n ∈ Z die Homotopieklasse des n-fachen Potenzierens S^1 → S^1, z ⇔ z^n
zuordnet. In Formeln haben wir also eine Bijektion

Z ↦ hTop(S^1, S^1)
n ↦ [z ⇔ z^n]

5.9.2. Mit dem Abbildungsgrad einer stetigen Selbstabbildung der Kreislinie
meint man das Urbild ihrer Homotopieklasse unter dieser Bijektion. In anderen
Worten ist also der Abbildungsgrad einer stetigen Selbstabbildung f : S^1 → S^1
diejenige ganze Zahl n ∈ Z, für die f homotop ist zur Abbildung z ⇔ z^n. In ??
führen wir allgemeiner den Abbildungsgrad stetiger Abbildungen zwischen
„kompakten orientierten zusammenhängenden Mannigfaltigkeiten derselben Di-
mension“ ein.

Beweis. Wir konstruieren explizit eine Inverse zur Zuordnung aus unserem Satz.
Dazu erinnern wir an unsere Abbildung Exp : R → S^1, t ⇔ exp(2πit). Sei
f : S^1 → S^1 stetig. Da wir den Begriff des Abbildungsgrads eben schon vergeben
haben, erklären wir nur für diesen Beweis den Liftungsgrad oder kurz (grad f) ∈
Z von f durch die Formel grad f = ̃f(1) − ̃f(0), wo ̃f : [0, 1] → R ein beliebiger
Lift von f ◦ Exp : [0, 1] → S^1 ist, als da heißt eine Abbildung derart, daß das
folgende Diagramm kommutiert:

[0, 1] ⇓ ̃f
Exp ↓ ̃f
S^1 → S^1

144
Eine Selbstabbildung der Kreislinie vom Abbildungsgrad \((-3)\).
Nach 5.3.6 gibt es stets solch ein \tilde{f}, und es ist sogar eindeutig bis auf eine additive Konstante aus \mathbb{Z}. Folglich ist $\text{grad } f$ wohldefiniert.

Lemma 5.9.3. Genau dann sind zwei Selbstabbildungen der Kreislinie homotop, wenn sie denselben Liftungsgrad haben.

Beweis. Seien $f, g : S^1 \to S^1$ gegeben und sei $H : S^1 \times [0, 1] \to S^1$ eine Homotopie von f nach g. Nach unseren Erkenntnissen 5.3.7 zum Liften von auf dem Einheitsquadrat definierten Abbildungen finden wir $\tilde{H} : [0, 1] \times [0, 1] \to \mathbb{R}$ derart, daß folgendes Diagramm kommutiert:

\[
\begin{array}{ccc}
[0, 1] \times [0, 1] & \xrightarrow{\tilde{H}} & \mathbb{R} \\
\text{Exp} \times \text{id} \downarrow & & \downarrow \text{Exp} \\
S^1 \times [0, 1] & \xrightarrow{H} & S^1
\end{array}
\]

Es folgt $\tilde{H}(0, \tau) - \tilde{H}(1, \tau) \in \mathbb{Z} \quad \forall \tau$, mithin ist diese Abbildung konstant und wir erhalten $\text{grad } f = \text{grad } g$. Also haben homotope Selbstabbildungen der Kreislinie denselben Liftungsgrad. Seien umgekehrt $f, g : S^1 \to S^1$ zwei stetige Selbstabbildungen der Kreislinie mit demselben Liftungsgrad. Es gilt zu zeigen, daß sie homotop sind. Seien dazu $\tilde{f}, \tilde{g} : [0, 1] \to \mathbb{R}$ gewählt wie in der Definition des Liftungsgrads. Wir definieren $\tilde{H} : [0, 1] \times [0, 1] \to \mathbb{R}$ durch die Vorschrift

\[
\tilde{H}(t, \tau) = (1 - \tau)f(t) + \tau g(t)
\]

Aus $\text{grad } f = \text{grad } g$ folgt nun $\tilde{H}(0, \tau) - \tilde{H}(1, \tau) \in \mathbb{Z}$ für alle τ. Folglich gibt es eine Abbildung von Mengen H wie in der oberen Zeile des obigen Diagramms derart, daß das Diagramm kommutiert. Da $\text{Exp} \times \text{id} : [0, 1] \times [0, 1] \to S^1 \times [0, 1]$ nach ?? final ist, ist H sogar stetig. Das ist dann die gesuchte Homotopie von f nach g.

Nach Lemma 5.9.3 liefert unser Liftungsgrad eine Injektion

\[
\text{grad} : \text{hTop}(S^1, S^1) \hookrightarrow \mathbb{Z}
\]

Aus den Definitionen folgt müßelos, daß $z \mapsto z^n$ den Liftungsgrad n hat. Der Satz ist bewiesen.

Proposition 5.9.4. Jede stetige schiefsymmetrische Abbildung der Kreislinie auf sich selbst hat ungeraden Abbildungsgrad und ist mithin surjektiv.

Beweis. In Formeln gilt es zu zeigen, daß für $f : S^1 \to S^1$ stetig mit $f(-x) = -f(x) \forall x$ der Abbildungsgrad $\text{grad } f$ notwendig ungerade ist. Nach 5.3.6 finden
wir stets \(\tilde{f} : \mathbb{R} \to \mathbb{R} \) stetig derart, daß folgendes Diagramm kommutiert:

\[
\begin{array}{ccc}
\mathbb{R} & \xrightarrow{\ f\ } & \mathbb{R} \\
\text{Exp} \downarrow & & \downarrow \text{Exp} \\
S^1 & \xrightarrow{\ f\ } & S^1
\end{array}
\]

Aus \(f(-x) = -f(x) \) folgt \(\tilde{f}(t + \frac{1}{2}) \in \tilde{f}(t) + \frac{1}{2} + \mathbb{Z} \) für alle \(t \), es gibt also ein \(k \in \mathbb{Z} \) mit \(\tilde{f}(t + \frac{1}{2}) = \tilde{f}(t) + \frac{1}{2} + k \forall t \in \mathbb{R} \). Wir erhalten insbesondere

\[
\tilde{f}(1) = \tilde{f}\left(\frac{1}{2}\right) + \frac{1}{2} + k
\]

und folglich \(\text{grad} f = 1 + 2k \).

\[\square\]

Satz 5.9.5 (Borsuk-Ulam). Jede stetige schiefssymmetrische Abbildung von der Kugelschale in die Ebene hat eine Nullstelle.

Beweis. Gegeben \(f : S^2 \to \mathbb{R}^2 \) stetig mit \(f(-x) = -f(x) \forall x \in S^2 \) gilt es zu zeigen, daß ein \(x \in S^2 \) existiert mit \(f(x) = 0 \). Sonst wäre jedoch \(x \mapsto f(x)/\|f(x)\| \) eine stetige schiefssymmetrische Abbildung \(g : S^2 \to S^1 \). Die Einschränkung von \(g \) auf den Äquator \(S^1 \subset S^2 \) wäre also nicht nullhomotop nach Proposition 5.9.4, aber sie faktorisiert über die zusammenziehbare nördliche Hemisphäre \(S^2_+ \subset S^2 \). Widerspruch!

\[\square\]

Korollar 5.9.6 (Das Plattdrücken einer Kugelschale ist nie injektiv). Für jede stetige Abbildung der Kugelschale in die Ebene gibt es sogar ein Paar von gegenüberliegenden Punkten der Kugelschale, die auf denselben Punkt der Ebene abgebildet werden.

5.9.7. Daß eine stetige Abbildung von der Kugelschale in die Ebene nie injektiv sein kann, ist Ihnen hoffentlich anschaulich sofort klar. Ich kenne jedoch keinen einfacheren Beweis.

Beweis. Sei \(h : S^2 \to \mathbb{R}^2 \) unsere stetige Abbildung. Gäbe es kein \(x \in S^2 \) mit \(h(x) = h(-x) \), so wäre \(f : S^2 \to \mathbb{R}^2, f(x) = h(x) - h(-x) \) stetig und schiefssymmetrisch ohne Nullstelle, im Widerspruch zum Satz 5.9.5 Borsuk-Ulam.

\[\square\]

Korollar 5.9.8 (Satz vom Butterbrot mit Schinken). Gegeben drei kompakte Teilmengen des Raums gibt es stets eine Ebene, die sie alle drei in jeweils zwei volumengleiche Teile teilt.

5.9.9. Ist also ein Butterbrot mit Schinken gegeben und betrachtet man die Mengen der Punkte des Raums, an denen sich Schinken beziehungsweise Butter beziehungsweise Brot befindet, so kann man mit einem Schnitt das Brot so teilen, daß zwei Hungrige jeweils gleichviel sowohl vom Schinken, als auch von der Butter als auch vom Brot erhalten.
Beweis. Um dieses Korollar zu beweisen, formulieren wir es zunächst einmal um. Seien $A, B, C \subseteq \mathbb{R}^3$ unsere drei Kompakta. Sicher finden wir eine stetige Abbildung $\alpha : S^2 \to \mathbb{R}$ derart, daß für alle $x \in S^2$ die Ebene durch den Punkt $\alpha(x)x$ mit Normalenvektor x die Menge A halbiert: Hat A nicht Volumen Null, so ordnen wir zum Beispiel jedem x das maximal mögliche $\alpha(x)$ zu, sonst dürfen wir $\alpha(x)$ eh beliebig wählen. Sicher dürfen wir weiter sogar α schiefsymmetrisch annehmen, indem wir sonst α durch $(\alpha(x) - \alpha(-x))/2$ ersetzen. Ebenso finden wir stetige schief symmetrische $\beta, \gamma : S^2 \to \mathbb{R}$ für B und C, und es gilt zu zeigen, daß wir $x \in S^2$ finden mit $\alpha(x) = \beta(x) = \gamma(x)$. Nach dem Satz 5.9.5 von Borsuk-Ulam hat aber jede stetige schief symmetrische Abbildung von der Kugelschale in die Ebene eine Nullstelle, insbesondere also auch die Abbildung

$$f : S^2 \to \mathbb{R}^2$$

$$x \mapsto (\alpha(x) - \beta(x), \beta(x) - \gamma(x))$$

Korollar* 5.9.10 (Lusternik-Schnirelmann). Gegeben eine Überdeckung der Kugelschale durch drei abgeschlossene Teilmengen enthält mindestens eine unserer drei Mengen ein Paar von gegenüberliegenden Punkten.

Beweis. Wäre $S^2 = A_1 \cup A_2 \cup A_3$ ein Gegenbeispiel, so könnten wir stetige schief symmetrische Funktionen $f_i : S^2 \to \mathbb{R}$ finden mit $f_i(x) = 1$ für $x \in A_i$, zum Beispiel indem wir mit den Funktionen $d(A_i,)$ spielen, oder indem wir nach Tietze’s Erweiterungslemma eine stetige Funktion g_i finden mit $g_i(\pm x) = \pm 1$ für $x \in A_i$ und dann $f_i(y) = (g_i(y) - g_i(-y))/2$ setzen für alle y. Dann könnten wir den Satz von Borsuk-Ulam 5.9.5 anwenden auf $f = (f_1, f_2) : S^2 \to \mathbb{R}^2$ und fänden $x \in S^2$ mit $\pm x \not\in A_1, \pm x \not\in A_2$, also notwendig $x, -x \in A_3$.

Übungen

Übung 5.9.11. Sei $f : S^1 \to S^1$ stetig. Für alle $z \in S^1$ enthält $f^{-1}(z)$ mindestens $|\text{grad } f|$ Punkte.

Übung 5.9.12. Sei $f : S^1 \to S^1$ stetig, $z \in S^1$. So kommutiert das Diagramm

$$\begin{array}{c}
\pi_1(S^1, z) \xrightarrow{f_1} \pi_1(S^1, f(z)) \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
Z \quad (\text{grad } f) : \quad Z
\end{array}$$

wo in der unteren Horizontale die Multiplikation mit $(\text{grad } f)$ gemeint ist. Hinweis: Man ziehe sich auf den Fall $f(z) = z^n$ zurück.
6 Beschreibung einiger Fundamentalgruppen

6.1 Produkte und Koprodukte in Kategorien

Definition 6.1.1. Seien C eine Kategorie und X, Y Objekte von C. Ein Produkt von X und Y ist ein Datum (P, p, q) bestehend aus (1) einem Objekt $P \in C$ und (2) Morphismen $p : P \to X$ und $q : P \to Y$, den sogenannten Projektionen, derart daß gilt: Ist $Z \in C$ ein Objekt und sind $a : Z \to X$, $b : Z \to Y$ Morphismen, so gibt es genau einen Morphismus $c : Z \to P$ mit $p \circ c = a$ und $q \circ c = b$. Wir notieren diesen Morphismus dann $c = (a, b)$ oder, ganz pedantisch und wenn wir ihn von den Morphismen aus einem Koprodukt absetzen wollen, als Spalte $c = (a, b)\top$.

Beispiele 6.1.2. In der Kategorie der Mengen ist $P = X \times Y$ mit p, q den üblichen Projektionsabbildungen ein Produkt von X und Y. Dasselbe gilt in der Kategorie der topologischen Räume, wenn wir $X \times Y$ mit der Produkttopologie versehen.

6.1.3 (Eindeutigkeit von Produkten). Produkte in Kategorien sind im wesentlichen eindeutig, falls sie existieren. Sind genauer (P, p, q) und $(\tilde{P}, \tilde{p}, \tilde{q})$ zwei mögliche Produkte der Objekte X und Y, so gibt es aufgrund der universellen Eigenschaft von P genau ein $c : \tilde{P} \to P$ mit $p \circ c = \tilde{p}$ und $q \circ c = \tilde{q}$ und ebenso genau ein $d : P \to \tilde{P}$ mit $\tilde{p} \circ d = p$ und $\tilde{q} \circ d = q$. Weiter gibt es auch genau ein $f : P \to P$ mit $p \circ f = p$ und $q \circ f = q$, und da sowohl $f = \text{id}$ als auch $f = c \circ d$ diese Bedingung erfüllen, folgt $c \circ d = \text{id}$. Ebenso erhalten wir $d \circ c = \text{id}$, mithin sind c und d zueinander inverse Isomorphismen. Aufgrund dieser Eindeutigkeit sprechen wir ab jetzt meist von dem Produkt und notieren es

$$(X \times Y, \text{pr}_X, \text{pr}_Y)$$

Morphismen in das Produkt schreiben wir auch (a, b). Sind schließlich Morphismen $f : X \to X'$, $g : Y \to Y'$ gegeben und existieren die Produkte $X \times Y$ und $X' \times Y'$, so benutzen wir die Abkürzung $(f \circ \text{pr}_X, g \circ \text{pr}_Y) = f \times g$ und nennen diesen Morphismus den Produktmorphismus $f \times g : X \times Y \to X' \times Y'$.

Beispiel 6.1.5. Für jede Kategorie \mathcal{C} bildet man die opponierte Kategorie \mathcal{C}^{opp}, auch notiert als \mathcal{C}°, wie folgt: Man setzt

$${\text{Ob}}\mathcal{C}^{\text{opp}} := {\text{Ob}}\mathcal{C} \quad \text{und} \quad \mathcal{C}^{\text{opp}}(X, Y) := \mathcal{C}(Y, X)$$

und erklärt die Verknüpfung von Morphismen in \mathcal{C}^{opp} wie folgt: Man notiert einen Morphismus f als f°, wenn er in der opponierten Kategorie aufgefaßt werden soll, und setzt $g^\circ \circ f^\circ := (f \circ g)^\circ$.

149
6.1.6. Produkte in der opponierten Kategorie heißen „Koprodukte“. Im folgenden sprechen wir diese Definition gleich für Familien explizit aus.

Definition 6.1.7. Sei C eine Kategorie und $(X_i)_{i \in I}$ eine Familie von Objekten aus C. Ein **Koprodukt** der X_i ist ein Datum $(K, (in_i)_{i \in I})$ bestehend aus einem Objekt $K \in C$ und Morphismen $in_i : X_i \rightarrow K$ derart, daß gilt: Ist $Z \in C$ ein Objekt und sind $f_i : X_i \rightarrow Z$ Morphismen, so gibt es genau einen Morphismus $f : K \rightarrow Z$ mit $f \circ in_i = f_i \ \forall i \in I$. Wir notieren diesen Morphismus dann auch $(f_i)_{i \in I}$ und hoffen, daß der Leser aus dem Kontext erschließen kann, wann damit ein Morphismus aus einem Koprodukt und wann ein Morphismus in ein Produkt gemeint ist. Wenn es drauf ankommt, mag ein Morphismus in ein Produkt eben als Spalte mit einem hochgestellten \top notiert werden und ein Morphismus aus einem Koprodukt als Zeile. Wir notieren Koprodukte $\bigsqcup_{i \in I} X_i$, bei endlich vielen Faktoren auch $X_1 \sqcup \ldots \sqcup X_n$.

Beispiele 6.1.8. In der Kategorie der Mengen ist das Koprodukt die disjunkte Vereinigung $\bigsqcup_{i \in I} X_i$, vergleiche 9.6.14. In der Kategorie der topologischen Räume gilt dasselbe. Kategorie der bepunkteten topologischen Räume ist das Koprodukt die **Einpunktverbindung** $\bigvee_{i \in I} X_i = \bigsqcup X_i / \sim$, wo die Äquivalenzrelation \sim dadurch erklärt sei, daß alle Basispunkte der verschiedenen X_i unter \sim eine Äquivalenzklasse bilden und die anderen Äquivalenzklassen einelementig sind.

Definition 6.1.9. Ein Funktor $F : A \rightarrow B$ heißt **verträglich mit beliebigen Produkten** genau dann, wenn für jedes Produkt $(P, (p_i)_{i \in I})$ einer Familie $(X_i)_{i \in I}$ von Objekten von A das Datum $(F(P), (F(p_i))_{i \in I})$ ein Produkt in B der Familie $(F(X_i))_{i \in I}$ ist. Gilt das nur für Produkte endlicher Familien, so sagen wir, unser Funktor sei **verträglich mit endlichen Produkten**. Dual erklären wir die Verträglichkeit mit beliebigen beziehungsweise endlichen Koprodukten.

Beispiel 6.1.10. Der vergebbliche Funktor $\text{Grp} \rightarrow \text{Ens}$ ist verträglich mit beliebigen Produkten, aber nicht mit beliebigen, ja noch nicht einmal mit endlichen Koprodukten. Der Funktor der Fundamentalgruppe $\pi_1 : \text{Top}^* \rightarrow \text{Grp}$ ist verträglich mit endlichen Produkten nach 5.4.7, ja er ist sogar mit derselben Argumentation verträglich mit beliebigen Produkten.

Übungen

Übung 6.1.11. Gegeben Objekte X, Y, Z einer Kategorie derart, daß das iterierte Produkt $(X \times Y) \times Z$ existiert, zeige man, daß es zusammen mit den Abbildungen $pr_1 \circ pr_1$, $pr_2 \circ pr_1$ und pr_2 die universelle Eigenschaft hat, die das Produkt $X \times Y \times Z$ charakterisiert.
Definition 6.2.1. Gegeben eine Kategorie C und ein Objekt $X \in C$ definieren wir ganz allgemein die Kategorie C_X der **Objekte von C über X** wie folgt: Objekte von C_X sind Paare (Y, p) mit $Y \in C$ und $p \in C(Y, X)$, Morphismen in C_X von einem Objekt (Y, p) in ein weiteres Objekt (Z, q) sind Morphismen $f : Y \to Z$ in C mit $q \circ f = p$. Wir nennen sie auch die **Morphismen über X**.

Definition 6.2.2. Dual definieren wir die Kategorie C^X der **Objekte von C unter X** wie folgt: Objekte von C^X sind Morphismen $p : X \to Y$ von X zu einem Objekt von C und Morphismen sind die Offensichtlichen, so daß gilt $(C^{opp})_X = (C^X)^{opp}$.

Beispiele 6.2.3. Zum Beispiel ist die Kategorie der bepunkteten topologischen Räume Top^* die „Kategorie der topologischen Räume unter dem einpunktigen Raum“, und die Kategorie der Erweiterungen eines Körpers K ist die „Kategorie aller Körper unter K“.

6.2.4. Wir werden Kategorien auch für andere Bedeutungen mit oberen und unteren Indizes versehen und können nur hoffen, daß aus dem Kontext klar wird, welche Bedeutung jeweils gemeint ist. Zum Beispiel bezeichnet Mod_k stets die Kategorie aller k-Vektorräume und nie die Kategorie aller Objekte einer Kategorie Mod über ihrem Objekt k.

Definition 6.2.5. Ein Diagramm der Gestalt

\[
\begin{array}{ccc}
W & \rightarrow & Y \\
& c_y & \downarrow a \\
Z & \rightarrow & X \\
& c_z & \\
\end{array}
\]

in einer Kategorie C heißt **kartesisch** oder ein **pull-back-Diagramm**, wenn es kommutativ ist und (W, c_y, c_z) ein Produkt ist in der Kategorie C_X der Objekte von C über X, wobei wir W vermittels $b \circ c_z = a \circ c_y$ als Objekt von C_X aufzufassen haben. Ausformuliert bedeutet das: Für jedes weitere kommutative Diagramm in C der Gestalt

\[
\begin{array}{ccc}
T & \rightarrow & Y \\
& f & \downarrow a \\
Z & \rightarrow & X \\
& g & \\
\end{array}
\]

gibt es genau einen Morphismus $u : T \to W$ mit $f = c_y \circ u$ und $g = c_z \circ u$. Man
mag diese verschiedenen Daten auch zusammenfassen im Diagramm

6.2.6. Daß ein Diagramm kartesisch ist, mag man auch durch das Symbol \(\sqcup \) in seiner Mitte notieren, etwa in der Form

\[
\begin{array}{ccc}
W & \to & Y \\
\downarrow & \downarrow \, \sqcup & \downarrow \\
Z & \to & X
\end{array}
\]

Dieses Symbol deutet an, aus welchen Winkel unser Diagramm durch pullback entsteht.

6.2.7. Ein Diagramm der Gestalt

\[
\begin{array}{ccc}
Y \\
\downarrow^a \\
Z & \to^b & X
\end{array}
\]

nennt man ein Winkeldiagramm oder kurz einen Winkel. In einer beliebigen Kategorie läßt sich nicht jeder Winkel zu einem kartesischen Diagramm vervollständigen, aber wenn er sich vervollständigen läßt, dann ist diese Vervollständigung als ein Produkt in \(C_X \) im wesentlichen eindeutig. Wir erlauben uns deshalb den bestimmten Artikel, schreiben

\[W = Y \times_X Z \]

und nennen dieses Objekt den Rückzug oder den pull-back oder das Faserprodukt von \(Y \) mit \(Z \) über \(X \). Diese Terminologie hat den folgenden Hintergrund: Ist \(f : Y \to X \) eine Abbildung und \(x \in X \) ein Punkt, so nennt man ja sein Urbild \(Y_x = f^{-1}(x) \) auch die Faser von \(f \) über \(x \). Den pull-back in der Kategorie der Mengen können wir nun verstehen als ein „faserweises Produkt“, in der Kategorie der Mengen ist nämlich

\[Y \times_X Z := \{(y, z) \in Y \times Z \mid a(y) = b(z)\} \]

mit den offensichtlichen Projektionen ein Rückzug und insbesondere haben wir \((Y \times_X Z)_x = Y_x \times Z_x \) für alle \(x \in X \). Ähnlich erhalten wir auch das Faserprodukt in der Kategorie der topologischen Räume, hierzu müssen wir nur die Menge \(Y \times_X Z \) versehen mit der von der Produkttopologie auf \(Y \times Z \) induzierten Topologie.
Übungen

Übung 6.2.8 (Transitivität des Rückzugs). Sei in einer Kategorie ein kommutatives Diagramm der Gestalt

\[
X' \to Y' \to Z' \\
\downarrow \quad \downarrow \quad \downarrow \\
X \to Y \to Z
\]
gegeben mit einem kartesischen Quadrat rechts. Man zeige, daß dann das linke Quadrat genau dann kartesisch ist, wenn das einhüllende Rechteck kartesisch ist, mit den horizontalen Verknüpfungen als horizontalen Pfeilen.

Übung 6.2.9. Man zeige: Ist \(i : Z \hookrightarrow X \) die Einbettung eines Teilraums und \(f : Y \to X \) eine stetige Abbildung, so ist das folgende Diagramm kartesisch in der Kategorie der topologischen Räume:

\[
f^{-1}(Z) \hookrightarrow Y \\
\downarrow f \\
Z \hookrightarrow X
\]

Übung 6.2.10. Gegeben zwei kartesische Quadrate ist auch das „Produktquadrat“, bei dem an jeder Ecke das Produkt der zugehörigen Objekte aus unseren beiden Ausgangsquadraten steht, ein kartesisches Quadrat, wenn diese vier Produkte alle existieren.

Übung 6.2.11. Seien ein kartesisches Diagramm in einer Kategorie

\[
\begin{array}{ccc}
Z & \xrightarrow{q} & X \\
g \downarrow & & \downarrow f \\
W & \xrightarrow{p} & Y
\end{array}
\]

und ein Objekt \(V \) gegeben, dessen Produkte mit den Objekten der unteren Horizontale existieren. So erhalten wir für jeden Morphismus \(h : X \to V \) ein weiteres kartesisches Diagramm

\[
\begin{array}{ccc}
Z & \xrightarrow{q} & X \\
(g,hq) \downarrow & & \downarrow (f,h) \\
W \times V & \xrightarrow{p \times \text{id}} & Y \times V
\end{array}
\]

Übung 6.2.13. Gegeben $G \supset H$ eine topologische Gruppe mit einer Untergruppe erhalten wir ein kartesisches Diagramm von topologischen Räumen

$$
\begin{array}{ccc}
G & \times & H \\
\downarrow & & \downarrow \text{mult} \\
G & \longrightarrow & G/H
\end{array}
$$

6.3 Kokartesische Diagramme

Definition 6.3.1. Kartesische Diagramme in der opponierten Kategorie heißen kokartesische Diagramme oder auch push-out-Diagramme. Ausgeschrieben ist ein Diagramm der Gestalt

$$
\begin{array}{ccc}
X & \xrightarrow{a} & Y \\
\downarrow b & & \downarrow c_y \\
Z & \xrightarrow{c_z} & W
\end{array}
$$

also kokartesisch genau dann, wenn es kommutiert und wenn es für jedes andere kommutative Diagramm

$$
\begin{array}{ccc}
X & \xrightarrow{a} & Y \\
\downarrow b & & \downarrow f \\
Z & \xrightarrow{g} & G
\end{array}
$$

genauf einen Morphismus $u : W \rightarrow G$ gibt mit $f = u \circ c_y$ und $g = u \circ c_z$. Man mag diese verschiedenen Daten auch zusammenfassen im Diagramm

$$
\begin{array}{ccc}
X & \longrightarrow & Y \\
\downarrow & & \downarrow \text{mit} \\
Z & \longrightarrow & W \\
\downarrow & & \downarrow \text{mit} \\
& & \text{mit}
\end{array}
$$

Unsere Eindeutigkeitsaussagen 6.2.7 für kartesische Diagramme gelten entsprechend auch für kokartesische Diagramme. Winkeldiagramme in der opponierten Kategorie nennen wir Kowinkeldiagramme oder kurz Kowinkel.

6.3.2. Daß ein Diagramm kokartesisch ist, notiert man auch durch das Symbol Γ in seiner Mitte, etwa in der Form

$$
\begin{array}{ccc}
X & \longrightarrow & Y \\
\downarrow & & \downarrow \Gamma \\
Z & \longrightarrow & W
\end{array}
$$
Dies Symbol deutet an, aus welchen Kowinkel unser Diagramm durch pushout entsteht.

Übungen

Übung 6.3.3. Man beschreibe den push-out in der Kategorie der Mengen.

Übung 6.3.4. Ist in einem kartesischen oder kokartesischen Diagramm ein Ursprungspfeil ein Isomorphismus, so auch der gegenüberliegende Pfeil aus dem pull-back beziehungsweise in den push-out.

Übung 6.3.6 (Mengentheoretischer Basiswechsel). Sowohl in einem kartesischen als auch in einem kokartesischen Diagramm von Mengen

\[
\begin{array}{c}
X \xrightarrow{q} Y \\
g \downarrow \quad \downarrow f \\
Z \xrightarrow{p} W
\end{array}
\]

gilt für jede Teilmenge \(A \subset Y\) die Gleichheit \(p^{-1}(f(A)) = g(q^{-1}(A))\) von Teilmengen von \(Z\).

Übung 6.3.7 (Basiswechsel für Untergruppen). Sowohl in einem kartesischen als auch in einem kokartesischen Diagramm von abelschen Gruppen

\[
\begin{array}{c}
X \xrightarrow{q} Y \\
g \downarrow \quad \downarrow f \\
Z \xrightarrow{p} W
\end{array}
\]

gilt für jede Untergruppe \(A \subset Y\) die Gleichheit \(p^{-1}(f(A)) = g(q^{-1}(A))\) von Untergruppen von \(Z\). Hinweis: Jedes kartesische Diagramm von abelschen Gruppen ist kartesisch als Diagramm von Mengen. Jedes kokartesische Diagramm von abelschen Gruppen wird kartesisch, wenn wir seine obere linke Ecke ersetzen durch ihren Quotienten nach dem Schnitt der Kerne der von ihr ausgehenden Morphismen. So kann man sich auf 6.3.6 zurückziehen. In der größerer Allgemeinheit der „abelschen Kategorien“ diskutieren wir das in ??.

Ergänzende Übung 6.3.9 (Pushout von Kringen). Die algebraisch Gebildeten unter Ihnen mögen sich überlegen, daß in der Kategorie Kring der kommutativen Ringe alle Diagramme der Gestalt

\[
\begin{array}{ccc}
C & \xrightarrow{q} & B \\
\downarrow s & & \downarrow f \\
A & \xrightarrow{p} & A \otimes_C B
\end{array}
\]

ekokartesisch sind, mit beliebigen Ringhomomorphismen \(C \to A \) und \(C \to B \), der hoffentlich offensichtlichen Multiplikation auf dem Tensorprodukt, und den hoffentlich offensichtlichen Ringhomomorphismen in das Tensorprodukt.

Ergänzende Übung 6.3.10. In der Kategorie der Mengen ist das Faserprodukt zweier Objekte über ihrem Koprodukt stets das initiale Objekt alias die leere Menge, aber der Pushout eines Produkts ist nur dann das finale Objekt alias die einpunktige Menge, wenn keiner der beiden Faktoren die leere Menge ist.

Übung 6.3.11. Gegeben eine kommutatives Quadrat in der Kategorie der Mengen geht die Ausgangsecke surjektiv auf den Pullback genau dann, wenn der Pushout injektiv in die Zieldecke geht.

6.4 Der Satz von Seifert und van Kampen

Satz 6.4.1 (Seifert-van Kampen). Sei ein topologischer Raum \(X \) die Vereinigung zweier offener Teilmengen \(U, V \subset X \). Ist der Schnitt \(U \cap V \) wegzusammenhängend, so ist für jeden Basispunkt \(x \in U \cap V \) das folgende Diagramm von Gruppen kockartesisch:

\[
\begin{array}{ccc}
\pi_1(U \cap V, x) & \xrightarrow{\pi_1(U, x)} & \pi_1(V, x) \\
\uparrow & & \downarrow \Gamma \\
\pi_1(U, x) & \xrightarrow{\pi_1(X, x)} & \pi_1(X, x)
\end{array}
\]

6.4.2. Der Beweis dieses Satzes wird uns bis zum Ende dieses Abschnitts beschäftigen. In 6.6.4 diskutieren wir ganz allgemein, daß und wie sich jeder Kowinkel von Gruppen zu einem kockartesischen Diagramm ergänzen läßt. Wir beginnen mit einigen Vorbereitungen.

6.4.3 (Die Kategorie der Kategorien). Die Gesamtheit aller Kategorien bildet mit Funktoren als Morphismen selbst eine Kategorie

\(\text{Cat} \)
Berechnung der Fundamentalgruppe der Figur 8 mit Seifert-van Kampen. Das Symbol in der Mitte soll andeuten, daß wir ein push-out-Diagramm vor uns haben. Die Formel $\mathbb{Z} \ast \mathbb{Z}$ meint das Koprodukt von Gruppen, wie es in 6.6.2 noch ausführlicher besprochen werden wird.
Etwas sorgfältiger sollte man ein Universum \mathfrak{l} festhalten und dann die Kategorie $\mathfrak{l}\text{Cat}$ aller \mathfrak{l}-Kategorien im Sinne von 9.2.24 betrachten, aber diese Feinheiten sind hier nicht relevant.

6.4.4. Wir erinnern aus 5.6.12 das fundamentale Gruppoid $\mathcal{W}_X = \mathcal{W}(X)$ eines topologischen Raums X. Jede stetige Abbildung $f : X \to Y$ ist die Objektabbildung eines Funktors $f : \mathcal{W}(X) \to \mathcal{W}(Y)$, dessen Effekt auf Morphismen durch $[\alpha] \mapsto [f \circ \alpha]$ gegeben wird.

Satz 6.4.5 (Seifert-van Kampen für das fundamentale Gruppoid). Sei ein topologischer Raum X die Vereinigung zweier offener Teilmengen $U,V \subset X$. So ist das folgendeDiagramm von Kategorien kokartesisch:

\[
\begin{array}{ccc}
\mathcal{W}(U \cap V) & \longrightarrow & \mathcal{W}(V) \\
\uparrow & \Gamma & \downarrow \\
\mathcal{W}(U) & \longrightarrow & \mathcal{W}(X)
\end{array}
\]

Beweis. Für den Beweis verwenden wir eine andere Schreibweise und setzen $U = U_+$ und $V = U_-$ und $U_\cap = U_+ \cap U_-$. Jeder Morphismus in $\mathcal{W}(X)$ läßt sich als Verknüpfung von Morphismen schreiben, die von $\mathcal{W}(U_+)$ oder von $\mathcal{W}(U_-)$ herkommen. In der Tat gibt es für jeden Weg $\gamma : [0,1] \to X$ eine Unterteilung $0 = a_0 < a_1 < a_2 < \ldots < a_r = 1$ des Einheitsintervalls derart, daß für $1 \leq \rho \leq r$ gilt $\gamma[a_{\rho-1}, a_\rho] \subset U_+$ oder $\gamma[a_{\rho-1}, a_\rho] \subset U_-$. Das folgt etwa aus dem Überdeckungssatz von Lebesgue 2.5.9 angewandt auf die offene Überdeckung des Kompaktums $[0,1]$ durch $\gamma^{-1}(U_+)$ und $\gamma^{-1}(U_-)$. Ein Funktor $F : \mathcal{W}(X) \to \mathcal{C}$ in eine weitere Kategorie \mathcal{C} wird also bereits eindeutig festgelegt durch die Funktoren $F \circ i_+ : \mathcal{W}(U_+) \to \mathcal{C}$ und $F \circ i_- : \mathcal{W}(U_-) \to \mathcal{C}$, wobei $i_\pm : U_\pm \hookrightarrow X$ ebenso die Einbettungen wie die zugehörigen Funktoren auf den fundamentalen Gruppoiden bezeichnen. Es bleibt zu zeigen, daß es für eine weitere Kategorie \mathcal{C} und Funktoren $I_\pm : \mathcal{W}(U_\pm) \to \mathcal{C}$ derart, daß das Diagramm

\[
\begin{array}{ccc}
\mathcal{W}(U_\cap) & \longrightarrow & \mathcal{W}(U_-) \\
\downarrow & \uparrow \mathcal{I}_- \quad & \downarrow \\
\mathcal{W}(U_+) & \longrightarrow & \mathcal{C}
\end{array}
\]

kommutiert, auch in der Tat einen Funktor $F : \mathcal{W}(X) \to \mathcal{C}$ gibt mit $F \circ i_\pm = I_\pm$. Konstruieren wir also einen derartigen Funktor F. Auf Objekten ist klar, welche Abbildungsvorschrift wir nehmen können und müssen. Es ist auch klar, daß der Funktor F, wenn es ihn denn gibt, auf einem Morphismus $g \in \mathcal{W}_X(x,y)$ wie folgt berechnet werden kann: Man wählt einen Weg $\gamma : [0,1] \to X$ von x nach y mit $g = [\gamma]$, wählt dazu eine Unterteilung $0 = a_0 < a_1 < a_2 < \ldots < a_r = 1$ wie
oben, wählt für jedes ρ ein Vorzeichen $\varepsilon(\rho)$ mit $[a_{\rho-1}, a_\rho] \subset U_{\varepsilon(\rho)}$, bezeichnet mit $\gamma_\rho : [0, 1] \to U_{\varepsilon(\rho)}$ den zugehörigen auf das Einheitsintervall umparametrisierten Weg, bezeichnet mit $[\gamma_{\rho}]_{\varepsilon(\rho)}$ den zugehörigen Morphismus in $\mathcal{W}(U_{\varepsilon(\rho)})$, und hat dann
\[F(g) = (I_{\varepsilon(1)}[\gamma_{\rho}]_{\varepsilon(\rho)}) \circ \ldots \circ (I_{\varepsilon(2)}[\gamma_2]_{\varepsilon(2)}) \circ (I_{\varepsilon(1)}[\gamma_1]_{\varepsilon(1)}) \]

Es ist schließlich klar, daß wir einen Funktor F mit den gesuchten Eigenschaften durch diese Vorschrift konstruieren können, wenn es gelingt zu zeigen, daß $F(g)$ unabhängig ist von allen diesen Wahlen. Daß es auf die Wahl der jeweiligen Vorzeichen $\varepsilon(\rho)$ nicht ankommt, folgt aus unserer Annahme der Kommutativität des letzten Diagramms. Daß es auf die Wahl der Unterteilung von γ nicht ankommt, erkennt man, indem man bei zwei Wahlen zu einer gemeinsamen Verfeinerung übergeht und die Annahme ausnutzt, daß unsere I_\pm Funktoren sind. Damit liefert jeder Repräsentant γ von g schon mal ein wohldefiniertes $F_\gamma(g)$. Bleibt zu zeigen, daß es auch auf die Wahl des Repräsentanten γ der Homotopieklasse g nicht ankommt. Aber sei sonst ψ ein weiterer Repräsentant und $h : \gamma \simeq \psi$ eine Homotopie mit festen Endpunkten. Wieder nach dem Überdeckungssatz von Lebesgue gibt es Unterteilungen $0 = a_0 < a_1 < a_2 < \ldots < a_r = 1$ und $0 = b_0 < b_1 < b_2 < \ldots < b_s = 1$ derart, daß jedes Feld $[a_{\rho-1}, a_\rho] \times [b_{\rho-1}, b_\rho]$ unter unserer Homotopie h ganz nach U_+ oder ganz nach U_- abgebildet wird. Sind p, q benachbarte Ecken eines Feldes, so bezeichnen wir mit $d_{p,q}(0) = q$, $d_{p,q}(1) = p$ und setzen $\gamma_{p,q} = h \circ d_{p,q}$. Für ein von h ganz nach U_+ abgebildetes Feld mit Ecken
\[
\begin{pmatrix} y \\ z \\ x \\ w \end{pmatrix}
\]
sind die Wege $\gamma_{z,w} * \gamma_{w,x}$ und $\gamma_{z,y} * \gamma_{y,x}$ dann in U_+ homotop. In der Tat folgt aus 5.2.8 sofort die Homotopie $d_{z,w} * d_{w,x} \simeq d_{z,y} * d_{y,x}$ in $\Omega(F\text{eld}, z, x)$. Betrachten wir nun irgendeinen Weg ϕ im Einheitsquadrat, der mit konstanter absoluter Geschwindigkeit auf den Kanten unserer Felder von $(0, 0)$ nach $(1, 1)$ läuft und dabei immer nach rechts oder nach oben läuft. Nach dem Vorhergehenden ist $F_{h \circ \phi}(g)$ unabhängig von ϕ. Andererseits gilt, jetzt mit der Notation ε für konstante Wege, offensichtlich $\varepsilon * \gamma = h \circ \phi_1$ für ϕ_1 das ϕ, das erst die Unterkante entlangläuft und dann die rechte Seite hoch, und $\psi * \varepsilon = h \circ \phi_2$ für ϕ_2 das ϕ, das erst die linke Seite hochläuft und dann die Oberkante entlang. So aber folgt
\[F_\gamma(g) = F_{\varepsilon \gamma}(g) = F_{h \circ \phi_1}(g) = F_{h \circ \phi_2}(g) = F_{\psi \varepsilon}(g) = F_\psi(g) \]

Beweis von Seifert-van Kampen. Gegeben ein Monoid M bezeichne $[M]$ die zugehörige Ein-Objekt-Kategorie mit einem einzigen Objekt, dessen Monoid von Endomorphismen gerade M ist. Gegeben eine Kategorie \mathcal{C} und ein Objekt $A \in \mathcal{C}$
haben wir stets einen mehr oder weniger tautologischen Funktor \([\mathcal{C}(A)] \to \mathcal{C}\), der das einzige Objekt auf das Objekt \(A\) abbildet. Ein Gruppoid heißt \textbf{zusammenhängend} genau dann, wenn es zwischen je zwei seiner Objekte mindestens einen Morphismus gibt. Ist \(\mathcal{W}\) ein zusammenhängendes Gruppoid und wählen wir ein Objekt \(x \in \mathcal{W}\) und für jedes \(y \in \mathcal{W}\) einen ausgezeichneten Morphismus \(g_y : x \to y\), so erhalten wir umgekehrt einen Funktor \(\mathcal{W} \to [\mathcal{W}(x)]\) durch die Vorschrift \(f \mapsto g_y^{-1} \circ f \circ g_y\) für alle Morphismen \(f : y \to z\). Ist dabei speziell \(g_x = \text{id}_x\), so ist die Verknüpfung

\[
[\mathcal{W}(x)] \to \mathcal{W} \to [\mathcal{W}(x)]
\]

unserer beiden oben diskutierten Funktoren der Identitätsfunktor. Beim Beweis des Satzes von Seifert-van Kampen dürfen wir nun ohne Beschränkung der Allgemeinheit außer \(U \cap V\) auch \(U\) und \(V\) und damit auch \(X\) wegzusammenhängend annehmen, indem wir andernfalls jeweils zur Wegzusammenhangskomponente unseres Basispunkts \(x\) übergehen. Dann können wir für jeden Punkt \(y \in X\) einen Weg von \(x\) nach \(y\) wählen so, daß unser Weg der konstante Weg ist im Fall \(y = x\) und ganz in \(U\) beziehungsweise \(V\) verläuft, falls \(y\) in \(U\) beziehungsweise \(V\) liegt. Mit diesen Wahlen erhalten wir nach dem Vorhergehenden Funktoren von allen vier Ecken des linken in alle vier Ecken des rechten Diagramms in folgendem Schaubild:

\[
\begin{array}{ccc}
\mathcal{W}(U \cap V) & \longrightarrow & \mathcal{W}(V) \\
\downarrow & & \downarrow \\
\mathcal{W}(U) & \longrightarrow & \mathcal{W}(X)
\end{array} \quad \begin{array}{ccc}
[\pi_1(U \cap V, x)] & \longrightarrow & [\pi_1(V, x)] \\
\downarrow & & \downarrow \\
[\pi_1(U, x)] & \longrightarrow & [\pi_1(X, x)]
\end{array}
\]

Sie lassen sogar einen kommutativen Würfel entstehen und sind halbinvers zu den offensichtlichen Einbettungen. Da das linke Diagramm kokartesisch ist, folgt daselbe für das rechte Diagramm. Ist genauer \(G\) eine Gruppe, so liefert jede Ergänzung des Kowinkels im rechten Diagramm zu einem kommutativen Quadrat mit \([G]\) als rechter unterer Ecke eine Ergänzung des Kowinkels im linken Diagramm zu einem kommutativen Quadrat mit \([G]\) als rechter unterer Ecke. Diese Ergänzung muß von einem Funktor \(\mathcal{W}(X) \to [G]\) herkommen, der dann hinwiederum einen möglichen Funktor \([\pi_1(X, x)] \to [G]\) liefert, der zu dem ursprünglichen kommutativen Quadrat führt. Jeder derartige Funktor hinwiederum kommt von einem eindeutig bestimmten Funktor \(\mathcal{W}(X) \to [G]\) her und ist damit auch selbst eindeutig bestimmt. \(\square\)

\textbf{Übungen}

\textit{Übung 6.4.6.} Ist \(M\) eine zusammenhängende \(d\)-Mannigfaltigkeit der Dimension \(d \geq 3\) und \(E \subset M\) eine endliche Teilmenge, so induziert die Einbettung \(M \setminus E \to \)
M einen Isomorphismus auf den Fundamentalgruppen.

Übung 6.4.7. Man zeige, daß die Fundamentalgruppe des Komplements einer Kreislinie im \(\mathbb{R}^3 \) isomorph ist zu \(\mathbb{Z} \). Hinweis: Die Fundamentalgruppe ändert sich nach 6.4.6 nicht, wenn wir den \(\mathbb{R}^3 \) durch Hinzufügen eines Punktes zur \(S^3 \) machen. Dann kann man 5.7.14 anwenden.

6.5 Freie Monoide und freie Gruppen

Satz 6.5.1. 1. Gegeben eine Menge \(X \) existiert ein Paar \((W, \tau) \) bestehend aus einem Monoid \(W \) und einer Abbildung \(\tau \in \text{Ens}(X, W) \) derart, daß für jedes weitere Monoid \(M \) das Vorschalten von \(\tau \) eine Bijektion

\[
(\circ \tau) : \text{Mon}(W, M) \to \text{Ens}(X, M)
\]

zwischen der Menge aller Monoidhomomorphismen \(W \to M \) und der Menge aller Abbildungen \(X \to M \) induziert. Wir nennen solch ein \(\tau \) eine universelle Mengen-Monoid-Abbildung.

2. Gegeben zwei universelle Mengen-Monoid-Abbildungen \(\tau : X \to W \) und \(\sigma : X \to V \) existiert genau ein Monoidhomomorphismus \(c : W \to V \) mit \(c \circ \tau = \sigma \) und genau ein Monoidhomomorphismus \(d : V \to W \) mit \(d \circ \sigma = \tau \), und diese Abbildungen \(c \) und \(d \) sind zueinander inverse Isomorphismen.

6.5.2. Unsere Paare \((W, \tau) \) sind nach Teil 2 „eindeutig bestimmt bis auf eindeutigen Isomorphismus“, wenn sie existieren. Eine universelle Mengen-Monoid-Abbildung \(\tau : X \to W \) verdient damit den bestimmten Artikel. Man nennt \((W, \tau) \) oder auch einfach nur \(W \) das freie Monoid über \(X \). Wir notieren es auch \(\text{Mon}^0 X \).

6.5.3. Die charakterisierende Eigenschaft einer universellen Mengen-Monoid-Abbildung \(\tau : X \to W \) bedeutet in anderen Worten: Ist \(M \) ein Monoid und \(\varphi : X \to M \) eine Abbildung von Mengen, so soll es genau einen Monoidhomomorphismus \(\hat{\varphi} : W \to M \) geben mit \(\hat{\varphi} \circ \tau = \varphi \), im Diagramm

\[
\begin{array}{ccc}
X & \xrightarrow{\tau} & W \\
\downarrow{\varphi} & & \downarrow{\exists! \hat{\varphi}} \\
\ & M \\
\end{array}
\]

Beispiele 6.5.4. Für das einelementige Monoid \(\{1\} \) ist die Einbettung \(\emptyset \to \{1\} \) universell. Das freie Monoid über der leeren Menge besteht in anderen Worten nur aus dem neutralen Element. Für das additive Monoid \((\mathbb{N}, +) \) ist die Einbettung \(\{1\} \to \mathbb{N} \) universell. Das freie Monoid über der einelementigen Menge ist in anderen Worten das additive Monoid der natürlichen Zahlen.
Beweis. Gegeben eine Menge X konstruieren wir eine universelle Abbildung von X in ein Monoid W wie folgt: Für $n = 0, 1, 2, \ldots$ betrachten wir zunächst die Mengen $W_n := \text{Ens}(\{1, \ldots, n\}, X)$. Wir notieren unsere Abbildungen $a : \{1, \ldots, n\} \to X$ als $a : i \mapsto a_i$ und interpretieren Elemente $a \in W_n$ als endliche Wörter $a_1a_2\ldots a_n$ aus Elementen von X. Die Menge W_0 besteht insbesondere nur aus einem Wort, dem „leeren“ Wort, notiert e. Wir betrachten dann die „Menge aller Wörter“ $W := \bigsqcup_{n \geq 0} W_n$ und erklären darauf die Verknüpfung des „Hintereinanderschreibens von Wörtern“

$$W \times W \to W \quad (a, b) \mapsto ab$$

Satz 6.5.5. 1. Gegeben eine Menge X existiert ein Paar (F, τ) bestehend aus einer Gruppe F und einer Abbildung $\tau \in \text{Ens}(X, F)$ derart, daß für jede weitere Gruppe G das Vorschalten von τ eine Bijektion

$$(\circ \tau) : \text{Grp}(F, G) \to \text{Ens}(X, G)$$

zwischen der Menge aller Gruppenhomomorphismen $F \to G$ und der Menge aller Abbildungen $X \to G$ induziert. Wir nennen solch ein τ eine universelle Mengen-Gruppen-Abbildung.

2. Gegeben zwei universelle Mengen-Gruppen-Abbildungen $\tau : X \to F$ und $\sigma : X \to H$ existiert genau ein Gruppenhomomorphismus $c : F \to H$ mit $c \circ \tau = \sigma$ und genau ein Gruppenhomomorphismus $d : H \to F$ mit $d \circ \sigma = \tau$, und diese Abbildungen c und d sind zueinander invers.

6.5.6. Unsere Paare (F, τ) sind nach Teil 2 „eindeutig bestimmt bis auf eindeutigen Isomorphismus“, wenn sie existieren. Eine universelle Mengen-Gruppen-Abbildung $\tau : X \to F$ verdient damit den bestimmten Artikel. Man nennt (F, τ) oder auch einfach nur F die freie Gruppe über X. Wir notieren sie auch $\text{Grp} X$.

6.5.7. Die charakterisierende Eigenschaft einer universellen Mengen-Gruppen-Abbildung $\tau : X \to F$ bedeutet in anderen Worten: Ist G eine Gruppe und
φ : X → G eine Abbildung von Mengen, so soll es genau einen Gruppenhomomorphismus \(\hat{\varphi} : F \rightarrow G \) geben mit \(\hat{\varphi} \circ \tau = \varphi \), im Diagramm

\[
\begin{array}{ccc}
X & \xrightarrow{\tau} & F \\
\downarrow{\varphi} & & \downarrow{\exists \hat{\varphi}} \\
\emptyset & \rightarrow & G
\end{array}
\]

Beispiele 6.5.8. Für die einelementige Gruppe \{1\} ist die Einbettung \(\emptyset \rightarrow \{1\} \) universell. Die freie Gruppe über der leeren Menge besteht in anderen Worten nur aus dem neutralen Element. Für die additive Gruppe \((\mathbb{Z}, +)\) ist sowohl die Einbettung \(\{1\} \rightarrow \mathbb{Z} \) als auch die Einbettung \(\{-1\} \rightarrow \mathbb{Z} \) universell.

Beweis. Gegeben eine Menge \(X \) konstruieren wir eine universelle Mengen-Gruppen-Abbildung \(\tau : X \rightarrow F \) wie folgt: Wir beginnen mit dem freien Monoid

\[
W^\pm := \text{Mon}^\dagger(X \times \{+1, -1\})
\]

über dem kartesischen Produkt \(X \times \{+1, -1\} \). Wir interpretieren Elemente \(a \) dieses Monoids als endliche Wörter \(a_1^{\varepsilon_1}a_2^{\varepsilon_2} \ldots a_n^{\varepsilon_n} \) mit \(a_i \in X \) und \(\varepsilon_i \in \{+1, -1\} \). Ein typisches Element unseres Monoids wäre etwa das Wort \(xyx^{-1}xy^{-1} \) mit \(x, y \in X \). Sei nun \(\sim \) die kleinste Äquivalenzrelation auf \(W^\pm \) derart, daß mit unserer Notation \(e \) für das leere Wort gilt:

1. \(xx^{-1} \sim e \sim x^{-1}x \ \forall x \in X \);
2. \(a \sim b \implies ca \sim cb \) und \(ac \sim bc \ \forall a, b, c \in W^\pm \).

Bezeichne \(F := W^\pm / \sim \) die Menge der Äquivalenzklassen. Die Klasse von \(a \in W^\pm \) heißt \([a]\). Offensichtlich definiert die Verknüpfung auf \(W^\pm \) eine Verknüpfung auf \(F \). Das Assoziativgesetz gilt schon in \(W^\pm \), also erst recht in \(F \). Das leere Wort \(e \) ist schon neutral in \(W^\pm \), also ist erst recht \([e]\) neutral in \(F \). Um die Existenz von Inversen nachzuweisen, betrachte man zu \(a = a_1^{\varepsilon_1}a_2^{\varepsilon_2} \ldots a_n^{\varepsilon_n} \) das Wort \(b = a_n^{-\varepsilon_n} \ldots a_2^{-\varepsilon_2}a_1^{-\varepsilon_1} \) oder in Formeln zu \(a : \{1, \ldots, n\} \rightarrow (X \times \{+1, -1\}) \) das Wort \(b \) gegeben durch \(b(i) = (a_{n-i}, -\varepsilon_{n-i}) \). Ist zum Beispiel \(a = xyx^{-1}yx \), so nehmen wir \(b = x^{-1}x^{-1}y^{-1}x^{-1}x^{-1}y^{-1}x^{-1} \). Dann gilt offensichtlich \([b][a] = [a][b] = [e]\). Mithin ist \(F \) eine Gruppe. Wir betrachten nun die Abbildung \(\tau : X \rightarrow F \) gegeben durch \(x \mapsto [x] \) und zeigen sie universell ist. Seien dazu \(G \) eine Gruppe und \(\varphi : X \rightarrow G \) eine Abbildung. Man definier \(\hat{\varphi} : W^\pm \rightarrow G \) durch

\[
\hat{\varphi}(a_1^{\varepsilon_1} \ldots a_n^{\varepsilon_n}) = \varphi(a_1)^{\varepsilon_1} \ldots \varphi(a_n)^{\varepsilon_n}
\]

Betrachten wir auf \(W^\pm \) die Äquivalenz-Relation \(a \sim_\varphi b \iff \hat{\varphi}(a) = \hat{\varphi}(b) \), so erfüllt \(\sim_\varphi \) sicher die Bedingungen 1 und 2 an unsere Äquivalenzrelation auf \(W^\pm \).
Also ist $\hat{\varphi}$ konstant auf den Äquivalenzklassen zu \sim und definiert eine Abbildung $\hat{\varphi} : F \to G$ mit $\hat{\varphi}([a]) = \hat{\varphi}(a)$. Damit ist die Existenz von $\hat{\varphi}$ gezeigt. Die Eindeutigkeit ist klar, unsere Abbildung $\tilde{\varphi} : F \to G$ ist also in der Tat universell. Die Argumentation ist beim Beweis von Teil 2 sehr ähnlich wie beim Nachweis der Eindeutigkeit von Produkten bis auf eindeutigen Isomorphismus 6.1.3 und bleibe dem Leser überlassen. Formal sind alle diese Aussagen Spezialfälle der Eindeutigkeit darstellender Objekte 9.9.14.

Vorschau 6.5.9. Die Notationen $\text{Mon} \backslash X$ und $\text{Grp} \backslash X$ werden in 8.8.5 verallgemeinert auf beliebige Kategorien C mit einem ausgezeichneten Funktor in die Kategorie der Mengen.

Beispiel 6.5.10 (Fundamentalgruppe koendlicher Teilmengen der Ebene). Gegeben $E \subset \mathbb{C}$ eine endliche Teilmenge und $* \in \mathbb{C} \setminus E$ ein Basispunkt derart, daß keine zwei Punkte aus E mit $*$ kollinear sind, erhalten wir einen Isomorphismus

$$\text{Grp} \backslash E \xrightarrow{\sim} \pi_1(\mathbb{C} \setminus E, *)$$

durch die Vorschrift $p \mapsto [\alpha_p]$ mit α_p einem Weg, der erst auf geradem Wege von $*$ so nah an p herangeht, daß man näher bei p ist als bei allen anderen $q \in E$, dann einmal im Gegenurzeigersinn um p herum, und dann wieder auf geradem Wege zu $*$ zurück". Das folgert man induktiv mit Seifert-van Kampen und Übung 6.5.15 und der offenen Überdeckung, die wir erhalten, indem wir erst die Ebene von $*$ ausgehend so in Kuchenstücke aufschneiden, daß in jedem Kuchenstück genau ein Punkt von E liegt, und dann diese Kuchenstücke etwas aufdicken, indem wir alle Punkte mit einem Abstand $< \varepsilon$ vom gegebenen Kuchenstück mit dazunehmen und dabei $\varepsilon > 0$ so klein wählen, daß auch in jedem dieser aufgedickten Kuchenstücke nur genau ein Punkt von E liegt. Im Fall eines allgemeinen Basispunktes können wir uns mit unseren Erkenntnissen zum Wechsel des Basispunktes 5.7.2 unschwer auf den bereits behandelten Fall zurückziehen.

Ergänzung 6.5.11. Gegeben eine Menge X kann man die abelsche Gruppe $\mathbb{Z}X$ aller derjenigen Abbildungen $X \to \mathbb{Z}$ betrachten, die an höchstens endlich vielen Stellen von Null verschiedene Werte annehmen. Da die Vorschrift $X \mapsto \mathbb{Z}X$ einen kovarianten Funktor $\text{Ens} \to \text{Ab}$ liefert, ist es richtiger, die Elemente von $\mathbb{Z}X$ als eine Art kompakt getragener Maße auf X aufzufassen. Wenn wir diesen Gesichtspunkt betonen wollen, verwenden wir die Notation $\mathbb{Z}X = \text{Maß}_0(X)$. Die Abbildung $\tau : X \to \mathbb{Z}X$, die jedem Element von X seine charakteristische Funktion oder besser das Dirac-Maß δ_x zuordnet, hat dann die universelle Eigenschaft, daß das Vorschalten dieser Abbildung für jede abelsche Gruppe A eine Bijektion

$$(\circ \tau) : \text{Ab}(\mathbb{Z}X, A) \xrightarrow{\sim} \text{Ens}(X, A)$$
Ein geschlossener nicht zusammenziehbarer Weg im Komplement einer zweielementigen Teilmenge der komplexen Zahlenebene. Denken wir uns das Mittelkreuz als Basispunkt und bezeichnet α beziehungsweise β in der Fundamentalgruppe das Umrunden gegen den Uhrzeigersinn von a beziehungsweise b, so ist unser Fundamentalgruppe nach 6.5.10 frei erzeugt von α und β und unser Weg repräsentiert das Element $\alpha^{-1} \beta^{-1} \alpha \beta$ in der Fundamentalgruppe. Denken wir uns an den beiden Kreuzen je einen Nagel in die Wand geschlagen, bleibt unsere Schnur hängen, weil sie eben ein nichttriviales Element der Fundamentalgruppe repräsentiert. Sobald wir einen der beiden Nägel herausziehen, wird jedoch die Fundamentalgruppe des Komplements des verbleibenden Nagels kommutativ und die Schnur fällt herunter.
zwischen der Menge aller Gruppenhomomorphismen von abelschen Gruppen \(\mathbb{Z}X \rightarrow A \) und der Menge aller Abbildungen \(X \rightarrow A \) induziert. Aufgrund dieser universellen Eigenschaft heißt \(\mathbb{Z}X \) die freie abelsche Gruppe über \(X \) und wir notieren sie auch \(\text{Ab}_X \). Wieder legt diese universelle Eigenschaft unser Paar \((\tau, \mathbb{Z}X) \) bereits bis auf eindeutigen Isomorphismus eindeutig fest. So erkennen wir, daß die durch \(\tau \) induzierte universelle Abbildung \(\text{Grp}_X \rightarrow \text{Ab}_X \) einen Isomorphismus

\[(\text{Grp}_X)^{\text{ab}} \rightarrow \text{Ab}_X\]

von der Abelisierung im Sinne von 5.8.1 der freien Gruppe über \(X \) in die freie abelsche Gruppe über \(X \) induzieren muß. Das hinwiederum zeigt, daß die freien Gruppen über zwei Mengen \(X, Y \) nur dann isomorph sein können, wenn gilt \(|X| = |Y| \), denn für freie abelsche Gruppen \(A \) können wir das leicht aus der Wohldefiniertheit der Dimension ?? beziehungsweise ?? folgern, angewandt auf den \(\mathbb{F}_2 \)-Vektorraum \(A/2A \). Wir nennen die Kardinalität von \(X \) den Rang der freien Gruppe \(\text{Grp}_X \).

Ergänzung 6.5.12 (Schottky-Gruppen). Man kann sich anschaulich leicht klar machen, daß die Gruppe \(\text{PGL}(2; \mathbb{C}) \) freie Untergruppen von beliebigem endlichem Rang besitzt. Dazu betrachtet man ihre Operation auf der Zahlenkugel \(\mathbb{P}^1 \mathbb{C} \). Für jedes Paar von disjunkten abgeschlossenen Kreisscheiben \(K_i, L_i \subset \mathbb{P}^1 \mathbb{C} \) findet man \(\gamma \in \text{PGL}(2; \mathbb{C}) \) mit \(\gamma(\mathbb{P}^1 \mathbb{C}\setminus K_i) = L_i \). Wählt man nun endlich viele solche Paare \(K_i, L_i \) von abgeschlossenen Kreisscheiben, die auch untereinander paarweise disjunkt sind, und betrachtet das Untergruppenerzeugnis \(\Gamma := \langle \gamma_1, \ldots, \gamma_r \rangle \) der zugehörigen \(\gamma_i \), so erhält man eine freie Gruppe vom Rang \(r \). In der Tat, betrachtet man die Menge \(A \) aller Translate der Randkreise \(A := \Gamma(\partial K_1 \cup \partial L_1 \cup \ldots \cup \partial L_r) \), so ist ihr Komplement offen. Betrachtet man dann die Menge \(Z := \text{Zus}(\mathbb{P}^1 \mathbb{C}\setminus A) \) aller Zusammenhangskomponenten des Komplements und verbindet zwei Komponenten \(z, t \in Z \) durch eine Kante, wenn ihre Abschlüsse nichtleeren Schnitt haben, so erhält man einen zyklischen eindimensionalen Simplizialkomplex alias Baum, bei dem von jeder Ecke \(2r \) Kanten ausgehen. Die induzierte Operation von \(\Gamma \) auf diesem Simplizialkomplex geschieht in der Weise, daß unsere Erzeuger und ihre Inversen jede Ecke allen ihren \(2r \) Nachbarn schieben. So kann man zumindest anschaulich gut einsehen, daß \(\Gamma \) eine freie Gruppe vom Rang \(r \) sein muß.

Übungen

Übung 6.5.13. Sei \(X \) eine Menge. Man zeige, daß jedes Element der freien Gruppe \(\text{Grp}_X \) über \(X \) genau einen Repräsentanten kürzester Länge im freien Monoid \(\text{Mon}_X(X \times \{+1, -1\}) \) hat, und daß diese Repräsentanten genau die „unkürzbaren Worte“ aus diesem freien Monoid sind. Hinweis: Man konstruiere eine Operation der Gruppe \(\text{Grp}_X \) auf der Menge aller unkürzbaren Worte.
Übung 6.5.14. Man zeige, daß \(x \) und \(a := xyx^{-1}y^{-1} \) in der freien Gruppe über den beiden Symbolen \(x, y \) eine echte Untergruppe erzeugen, die surjektiv auf die Abelianisierung unserer freien Gruppe abbildet. Hinweis: 6.5.13.

Übung 6.5.15. Jede Abbildung von Mengen \(\varphi : X \to Y \) setzt sich auf genau eine Weise fort zu einer Abbildung von Gruppen \(\text{Grp} \backslash X \to \text{Grp} \backslash Y \), und unser \(\text{Grp} \backslash \) ist so in natürlicher Weise ein Funktor von den Mengen in die Gruppen. Man zeige, daß dieser Funktor \(\text{Grp} \backslash \) kokartesische Diagramme von Mengen zu kokartesischen Diagrammen von Gruppen macht. Das wird später zu 8.8.23 verallgemeinert. Sind insbesondere \(X \) und \(Y \) zwei Mengen, so ist das folgende Diagramm kokartesisch in der Kategorie der Gruppen:

\[
\begin{array}{ccc}
\text{Grp} \backslash (X \cap Y) & \to & \text{Grp} \backslash X \\
\downarrow & & \downarrow \\
\text{Grp} \backslash Y & \to & \text{Grp} \backslash (X \cup Y)
\end{array}
\]

Übung 6.5.16. Man zeige, daß wir einen Isomorphismus zwischen der freien Gruppe über einer endlichen Menge \(I \) und der Fundamentalgruppe der Einpunktverbindung \(\bigvee_{i \in I} S^1 \) von Kopien der bepunkteteten Räume \((S^1, 1) \) erhalten, wenn wir jedem \(i \in I \) das „einfache Durchlaufen der \(i \)-ten Kreislinie“ zuordnen.

Übung 6.5.17 (Verschlungene und nicht verschlungene Kreislinien). Die Fundamentalgruppe des Komplements zweier „nicht ineinander verschlungener“ Kreislinien in \(\mathbb{R}^3 \) ist isomorph zur freien Gruppe in zwei Erzeugern. Hinweis: 6.4.7. Die Fundamentalgruppe des Komplements von zwei „ineinander verschlungenen“ Kreislinien in \(\mathbb{R}^3 \) ist isomorph zur freien abelschen Gruppe in zwei Erzeugern. Hinweis: \(\mathbb{R}^3 \) mithilfe von 6.4.6 zu \(S^3 \) ergänzen, 5.7.14 anwenden.

Übung 6.5.18. Man bestimme die Fundamentalgruppe des Komplements einer Acht im \(\mathbb{R}^3 \).

6.6 Push-out von Gruppen

6.6.1. Schon beim Satz von Seifert und van Kampen wird sich der Leser gefragt haben, ob sich eigentlich jedes Kowinkeldiagramm von Gruppen zu einem kokartesischen Diagramm vervollständigen läßt. Das ist in der Tat der Fall und soll nun bewiesen werden. Wir beginnen mit einem besonders einfachen Fall.

Satz 6.6.2 (Koprodukte von Gruppen). *In der Kategorie der Gruppen existiert zu je zwei Gruppen ein Koprodukt.*

Ergänzung 6.6.3. Man zeigt ähnlich, daß für eine beliebige Familie von Gruppen ein Koprodukt in der Kategorie der Gruppen existiert.
Beweis. Das Koprodukt von zwei Gruppen G_1 und G_2 heißt auch das **freie Produkt** der Gruppen G_1 und G_2 und wird notiert als

$$G_1 * G_2$$

Nach der universellen Eigenschaft der freien Gruppe $\text{Grp}^0 G$ über der Menge G haben wir ja für jede Gruppe G genau einen Gruppenhomomorphismus $\text{Grp}^0 G \to G$, dessen Verknüpfung mit $\tau : G \to \text{Grp}^0 G$ die Identität auf G ist. Den Kern $RG \subset \text{Grp}^0 G$ von diesem Gruppenhomomorphismus nennen wir die „Relationen von G“. Wir definieren die Gruppe $G_1 * G_2$ als den Quotienten der freien Gruppe über der disjunkten Vereinigung unserer beiden Gruppen nach dem von den Relationen in beiden Gruppen erzeugten Normalteiler, in Formeln

$$G_1 * G_2 := \text{Grp}^0 (G_1 \sqcup G_2) / \langle \langle RG_1 \cup RG_2 \rangle \rangle$$

Hier haben wir der Einfachheit halber das Bild von RG_i unter der von der Inklusion induzierten Abbildung $\text{Grp}^0 G_i \to \text{Grp}^0 (G_1 \sqcup G_2)$ auch mit RG_i bezeichnet. Wir behaupten nun, daß diese Gruppe $G_1 * G_2$ mit den offensichtlichen Abbildungen $\text{can}_i : G_i \to G_1 * G_2$ ein Koprodukt ist. In der Tat, ist irgendeine Gruppe H gegeben mitsamt Abbildungen $f_1 : G_1 \to H$ und $f_2 : G_2 \to H$, so erhalten wir einen Gruppenhomomorphismus $f : \text{Grp}^0 (G_1 \sqcup G_2) \to H$. Ist zusätzlich f_i ein Gruppenhomomorphismus, so liegt RG_i im Kern von f. Sind f_1, f_2 Gruppenhomomorphismen, so definiert f mithin einen Gruppenhomomorphismus $\tilde{f} : G_1 * G_2 \to H$.

Korollar 6.6.4. Jedes Kowinkeldiagramm von Gruppen läßt sich zu einem push-out-Diagramm vervollständigen.

6.6.5. Man nennt so einen push-out auch ein **amalgamiertes Produkt** und bezeichnet ihn mit $G_1 *_G G_2$.

Beweis. Sei

$$G \xrightarrow{\varphi_1} G_2$$

unser Kowinkeldiagramm. Wir konstruieren dann unseren Pushout als den Quotienten $G_1 * G_2 / \langle \langle \varphi_1(x)^{-1} \varphi_2(x) \mid x \in G \rangle \rangle$ und überlassen es dem Leser, die universelle Eigenschaft zu prüfen.

Übungen

Übung 6.6.7 (Explizite Beschreibung des freien Produkts). Seien G_1, G_2 Gruppen. Man zeige, daß sich jedes Element des freien Produkts $G_1 \ast G_2$ in eindeutiger Weise als ein Produkt $g_1 g_2 \ldots g_n$ schreiben läßt mit $n \geq 0$ und $g_k \in G_{\varepsilon(k)}$ nicht das neutrale Element und $\varepsilon(k) \neq \varepsilon(k+1)$ für $1 \leq k < n$. Wie üblich soll hier das leere Produkt mit $n = 0$ das neutrale Element von $G_1 \ast G_2$ darstellen. Hinweis: Man orientiere sich am Beweis von Übung 6.5.13.

6.7 Simplizialkomplexe und triangulierbare Flächen

6.7.1. Ist V ein reeller Raum und $M \subset V$ eine Teilmenge, so definiert man die konvexe Hülle von M wie in ?? als den Schnitt aller konvexen Teilmengen von V, die M umfassen. Explizit wird die konvexe Hülle einer nichtleeren Menge im Fall eines Vektorraums gegeben durch die Vorschrift

\[\text{konv}(M) := \{ \sum_{i=0}^{n} t_i p_i \mid n \geq 0, \ p_i \in M, \ t_i \geq 0, \ \sum_{i=0}^{n} t_i = 1 \} \]

Im Fall eines affinen Raums gilt dieselbe Formel, wenn man die Summe interpretiert als $q + \sum_{i=0}^{n} t_i (p_i - q)$ für irgendeinen Punkt q.

Definition 6.7.2. Eine nichtleere endliche Familie (p_0, \ldots, p_n) von Punkten eines reellen affinen Raums heißt affin unabhängig, wenn es keinen $(n - 1)$-dimensionalen affinen Teilraum gibt, der sie alle enthält. Dann nennt man ihre konvexe Hülle $\text{konv}(p_0, \ldots, p_n)$ den vollen Simplex mit Ecken p_0, \ldots, p_n.

Beispiele 6.7.3. Ein einziger Punkt p ist stets affin unabhängig und wir haben $\text{konv}(p) = \{p\}$. Zwei Punkte p, q sind affin unabhängig genau dann, wenn sie verschieden sind, und in diesem Fall ist $\text{konv}(p, q)$ das „abgeschlossene Streckenstück zwischen p und q“, das wir manchmal auch $[p, q]$ notieren. Drei Punkte p, q, r sind affin unabhängig genau dann, wenn sie nicht auf einer affinen Gerade liegen, und in diesem Fall ist $\text{konv}(p, q, r)$ die „abgeschlossene Fläche des Dreiecks mit den Ecken p, q und r“.

Definition 6.7.5. Ein Simplizialkomplex $K = (E, \mathcal{K})$ ist eine Menge E mit samt einem System $\mathcal{K} \subset \mathcal{P}(E)$ von nichtleeren endlichen Teilmengen von E, das unter dem Bilden von nichtleeren Teilmengen stabil ist und alle einelementigen Teilmengen von E enthält. In Formeln ausgedrückt fordern wir von unserem Mengensystem $\mathcal{K} \subset \mathcal{P}(E)$ also:
Eine endliche Teilmenge der Ebene, dargestellt durch fette Punkte, und ihre konvexe Hülle, dargestellt als schraffierter Bereich.
1. $0 < |K| < \infty \forall K \in \mathcal{K}$;

2. $(K \in \mathcal{K} \text{ und } \emptyset \neq L \subset K) \Rightarrow L \in \mathcal{K}$;

3. $\{e\} \in \mathcal{K} \forall e \in E$.

Wir nennen die Elemente von E die **Ecken** und die Elemente von \mathcal{K} die **Simplizes** unseres Simplizialkomplexes. Die Simplizes der Kardinalität $(n + 1)$ nennen wir **n-Simplizes** und die Menge aller n-Simplizes notieren wir \mathcal{K}_n. Wir identifizieren oft stillschweigend die Menge E der Ecken mit der Menge \mathcal{K}_0 der 0-Simplizes.

6.7.6 *(Diskussion der Terminologie)*. Wenn in der Literatur von einem Simplizialkomplex die Rede ist, ist oft auch ein „abstrakter augmentierter Simplizialkomplex“ im Sinne von Übung 6.7.19 gemeint.

Beispiel 6.7.7. Für jede Menge E ist das System all ihrer nichtleeren endlichen Teilmengen ein Simplizialkomplex. Ich nenne ihn den **maximalen Simplizialkomplex mit Eckenmenge** E.

Definition 6.7.8. Wir ordnen jedem Simplizialkomplex (E, \mathcal{K}) einen topologischen Raum $\Delta(\mathcal{K})$ zu, den wir seinen **Polyeder** oder auch seine **geometrische Realisierung** nennen. Als zugrundeliegende Menge nehmen wir

$$\Delta(\mathcal{K}) := \left\{ t : E \to \mathbb{R}_{\geq 0} \mid \text{Es gibt einen Simplex } \sigma \in \mathcal{K} \text{ mit } (\text{supp } t) = \sigma \text{ und es gilt } \sum_{e \in E} t(e) = 1 \right\}$$

Hier verwenden wir die übliche Notation $\text{supp } t := \{ e \in E \mid t(e) \neq 0 \}$ für den Träger oder englisch und französisch „support“ von t. Unsere Menge $\Delta(\mathcal{K})$ ist enthalten im Vektorraum $\mathbb{R}E$ aller Abbildungen $E \to \mathbb{R}$ mit endlichem Träger. Für $\sigma \in \mathcal{K}$ betrachten wir nun die Teilmenge $\Delta(\sigma) \subset \Delta(\mathcal{K})$ aller t mit Träger in σ. Bezeichnen wir für $e \in E$ mit $e \in \mathbb{R}E$ das zugehörige Element der Standardbasis und besteht σ aus den $n + 1$ Ecken $e_0, \ldots, e_n \in E$, so ist $\Delta(\sigma)$ gerade die konvexe Hülle der e_i, in Formeln

$$\Delta(\sigma) = \text{konv}(e_0, \ldots, e_n)$$

Unser Polyeder ist die Vereinigung aller dieser vollen Simplizes. Ist E endlich, so nehmen wir als Topologie auf $\Delta(\mathcal{K})$ schlicht die Topologie, die induziert wird von der natürlichen Topologie auf dem endlichdimensionalen reellen Vektorraum $\mathbb{R}E$ aus 2.4.14. Im allgemeinen versehen wir $\Delta(\mathcal{K})$ mit der Finaltopologie bezüglich aller Inklusionen $\Delta(L) \subset \Delta(\mathcal{K})$ von Polyedern endlicher Unterkomplexe $L \subset \mathcal{K}$ oder gleichbedeutend der Finaltopologie bezüglich aller Inklusionen $\Delta(\sigma) \subset \Delta(\mathcal{K})$ der vollen Simplizes zu $\sigma \in \mathcal{K}$. In Übung 6.7.17 wird erklärt,
Versuch der graphischen Darstellung des Polyeders eines Simplizialkomplexes mit acht Ecken $E = \{a, b, \ldots, h\}$, einem 3-Simplex $\{a, b, c, d\}$, sechs 2-Simplizes $\{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, \{b, d, e\}, \{f, g, h\}$, und dreizehn 1-Simplizes.
warum wir unsere Menge nicht mit der Kofinaltopologie zur Familie der Auswertungen an allen Ecken \(E \) unseres Komplexes versehen wollen. Den Polyeder des maximalen Simplizialkomplexes zu einer Menge \(E \) von Ecken nennen wir den **vollen Simplex mit Eckenmenge** \(E \).

Ergänzung 6.7.9. Für den Polyeder eines Simplizialkomplexes \(K \) ist statt \(\Delta(K) \) auch die Notation \(|K| \) gängig. Ob im Zweifelsfall die Kardinalität der Menge \(K \) oder der Polyeder des Simplizialkomplexes \(K \) gemeint ist, muß der Leser dann aus dem Kontext erschließen.

Ergänzung 6.7.10. Ein grundlegendes und weitgehend ungelöstes Problem der Topologie ist die Klassifikation aller endlichen Polyeder bis auf Homotopie, vergleiche zum Beispiel den Artikel von Baues in [Jam95].

6.7.11 (**Sparsame Realisierung von Polyedern**). Wir können den Polyeder \(\Delta(K) \) eines Simplizialkomplexes \((E, K) \) oft auch in reellen Vektorräumen \(V \) einer Dimension \(\dim V < |E| \) realisieren. Ist genauer \(E \to V, e \mapsto \bar{e} \) irgendeine Abbildung der Ecken unseres Simplizialkomplexes in einen reellen Vektorraum \(V \), so gibt es genau eine lineare Abbildung \(\mathbb{R}^E \to V \) mit \(e \mapsto \bar{e} \). Ist diese Abbildung darüber hinaus injektiv auf \(\Delta(K) \) und ist unser Vektorraum endlichdimensional und unser Simplizialkomplex endlich, so induziert unsere Abbildung nach 3.5.12 einen Homöomorphismus von unserem Polyeder mit seinem Bild. Notwendig und hinreichend für die Injectivität ist hier, daß (1) für jeden Simplex \(\sigma \in K \) seine Bildmenge \(\bar{\sigma} \subset V \) affin unabhängig ist in \(V \) und daß (2) gegeben zwei Simplizes \(\sigma, \tau \in K \) für die vollen Simplizes \(\text{konv}(\bar{\sigma}) \subset V \) gilt \(\text{konv}(\bar{\sigma}) \cap \text{konv}(\bar{\tau}) = \text{konv}(\bar{\sigma} \cap \bar{\tau}) \). Unter diesen Voraussetzungen (1) und (2) liefert unsere Abbildung also einen Homöomorphismus zwischen dem Polyeder \(\Delta(K) \) eines endlichen Simplizialkomplexes und der Vereinigung von vollen Simplizes \(\bigcup_{\sigma \in K} \text{konv}(\bar{\sigma}) \) im endlichdimensionalen Vektorraum \(V \).

Definition 6.7.12. Eine **simpliziale Abbildung** \(\varphi \) von einem Simplizialkomplex \((E, K) \) in einen Simplizialkomplex \((F, L) \) ist eine Abbildung auf den Ecken \(\varphi : E \to F \) derart, daß gilt \(\sigma \in K \Rightarrow \varphi(\sigma) \in L \). So eine simpliziale Abbildung liefert eine stetige Abbildung \(\Delta(\varphi) : \Delta(K) \to \Delta(L) \) zwischen den zugehörigen topologischen Räumen durch „affine Fortsetzung auf das Innere der Simplizes“, in Formeln \(\Delta(\varphi) : t \mapsto s \) mit

\[
\begin{align*}
s(f) &:= \sum_{\varphi(e)=f} t(e) \quad \forall f \in F
\end{align*}
\]

Wir schreiben oft einfacher \(\varphi \) statt \(\Delta(\varphi) \).

Definition 6.7.13. Eine **kombinatorische Fläche** ist ein endlicher Simplizialkomplex \(F \) derart, daß gilt:
Dieser Simplizialkomplex ist keine kombinatorische Fläche, da im „mittleren Punkt“ die dritte Bedingung unserer Definition 6.7.13 verletzt ist.
1. Jeder Simplex liegt in einem 2-Simplex;
2. Jeder 1-Simplex liegt in höchstens zwei 2-Simplizes;
3. Alle 2-Simplizes, die einen gegebenen 0-Simplex enthalten, lassen sich so
durchnummernieren als \(\sigma_1, \sigma_2, \ldots, \sigma_r \), daß jeweils \(\sigma_i \) und \(\sigma_{i+1} \) eine Kante
gemeinsam haben, in Formeln \(|\sigma_i \cap \sigma_{i+1}| = 2 \) für \(1 \leq i < r \).

Diejenigen 1-Simplizes, die nur zu einem einzigen 2-Simplex gehören, nennen wir
die Randkanten unserer kombinatorischen Fläche. Gehört sogar jeder 1-Simplex
tozu genau zwei 2-Simplizes, so nennen wir unseren Simplizialkomplex eine
geschlossene kombinatorische Fläche oder auch eine **kombinatorische Fläche ohne Rand**.

6.7.14. Es ist leicht zu sehen und auch nicht schwer zu beweisen, daß der zu ei-
er geschlossenen kombinatorischen Fläche \(F \) gehörige Polyeder \(\Delta(F) \) eine
geschlossene Fläche alias eine kompakte 2-Mannigfaltigkeit im Sinne unserer Defi-
nition 5.1.5 ist.

Definition 6.7.15. Eine **Triangulierung** einer geschlossenen Fläche \(X \) ist ein
Paar bestehend aus einer geschlossenen kombinatorischen Fläche \(F \) und einem
Homöomorphismus \(\Delta(F) \to X \).

Ergänzung 6.7.16. Rado \([?, ?]\) hat gezeigt, daß jede geschlossene Fläche eine Tri-
angulierung besitzt. Der Beweis ist nicht ganz einfach. In höheren Dimensionen
gibt es übrigens auch durchaus kompakte topologische Mannigfaltigkeiten, die
nicht homöomorph sind zu Polyedern, die also „nicht triangulierbar“ sind.

Übungen

Übung 6.7.17. Der Polyeder \(\Delta(K) \) zu einem Simplizialkomplex \((E, K) \) ist stets
Hausdorff und jede kompakte Teilmenge \(A \subset \Delta(K) \) ist schon enthalten in einer
Vereinigung von endlich vielen Simplizes. Hinweis: Eine Teilmenge von \(\Delta(K) \),
die jeden Simplex in höchstens endlich vielen Punkten trifft, ist stets abgeschlos-
sen und diskret. Besteht unser Simplizialkomplex aus abzählbar vielen Kanten,
bei denen zentralen Punkt hereinlaufen, so gäbe diese Aussage nicht für die von
den Auswertungen an allen Ecken induzierte Initialtopologie.

Übung 6.7.18. Ein Simplizialkomplex heißt **lokal endlich**, wenn jede seiner Ecken
nur zu endlich vielen Simplizes gehört. Man zeige, daß ein Simplizialkomplex ge-

Übung 6.7.19. Ein **abstrakter augmentierter Simplizialkomplex** ist eine nicht-
leere teilgeordnete Menge derart, daß (1) jede zweielementige Teilmenge eine
größte untere Schranke besitzt und (2) die Menge aller Elemente kleiner gleich einem beliebig vorgegebenen Element als teilgeordnete Menge isomorph ist zum System aller Teilmengen einer endlichen Menge. Gegeben ein Simplicialkomplex \((E, K)\) setzen wir \(\bar{K} := K \sqcup \{\emptyset\}\) und nennen diese Menge seine **Augmentierung**. Dann ist für jeden Simplicialkomplex im Sinne von 6.7.5 seine Augmentierung \(\bar{K}\) mit der durch die Inklusion gegebenen Teilordnung ein abstrakter augmentierter Simplicialkomplex. Man zeige, daß umgekehrt auch jeder abstrakte augmentierte Simplicialkomplex isomorph ist zur Augmentierung eines bis auf eindeutigen Isomorphismus eindeutig bestimmten Simplicialkomplexes im Sinne von 6.7.5.

Ergänzende Übung 6.7.20. Für eine beliebige Menge \(E\) ist die Menge \(K\) aller endlichen Teilmengen von \(E\) ein Simplicialkomplex. Den zugehörigen Polyeder schreiben wir \(\Delta(E)\) und nennen ihn den **vollen Simplex mit Ecken** \(E\). Man zeige, daß für \(E \neq \emptyset\) der volle Simplex \(\Delta(E)\) zusammenziehbar ist.

6.8 Klassifikation der geschlossenen Flächen

6.8.1. Wir werden im folgenden den in 5.1.7 formulierten Satz unter der Zusatzannahme der „Triangulierbarkeit“ beweisen, wir klassifizieren also die triangulierbaren geschlossenen Flächen bis auf Homöomorphie. Dieser Abschnitt nimmt insofern eine Sonderstellung ein, als die Argumentation nicht so weit in die formalen Details getrieben wird wie in den anderen Abschnitten.

Definition 6.8.2. Sei \(F\) eine kombinatorische Fläche. Eine **Zerschneidung von** \(F\) ist eine kombinatorische Fläche \(Z\) mit einer simplicialen Abbildung \(\phi : Z \to F\), die auf den 2-Simplizes eine Bijektion \(\phi : Z_2 \to F_2\) induziert. Umgekehrt sagen wir in dieser Situation auch, \(F\) entstehe durch **Verklebung von** \(Z\).

Definition 6.8.3. Eine kombinatorische Fläche \(Z\) heiße ein **Vieleck**, wenn der zugehörige Polyeder \(\Delta(Z)\) homöomorph ist zur abgeschlossenen Kreisscheibe \(D^2 = \{z \in \mathbb{C} \mid |z| \leq 1\}\).

Lemma 6.8.4. Ist eine kombinatorische Fläche \(Z\) ein Vieleck und \(\phi : D^2 \to \Delta(Z)\) ein Homöomorphismus, so ist das Bild der Kreisslinie \(\phi(S^1)\) die Vereinigung der Randkanten von \(Z\) im Sinne von 6.7.13.

Beweis. Das Komplement von \(S^1\) kann man in der Kreisscheibe \(D^2\) charakterisieren als die Menge aller Punkte \(z\), die eine zusammenziehbare Umgebung \(U\) besitzen derart, daß \(U \setminus z\) nichttriviale Fundamentalgruppe hat. Das Komplement der Vereinigung der Randkanten in \(\Delta(Z)\) kann man genauso charakterisieren.

Lemma 6.8.5. Jede zusammenhängende kombinatorische Fläche besitzt eine Zerschneidung zu einem Vieleck.
Dieses Bild zeigt eine Zerschneidung des Schwimmrings alias Torus zu einem Viereck. In der demnächst eingeführten Terminologie wird es auch die Definition der Fläche $F(aba^{-1}b^{-1})$ anschaulich machen. Verkleben wir nur längs der b-Kanten, so entsteht eine Klopapierrolle. Verkleben weiter längs der b-Kanten, so entsteht ein Schwimmring alias Torus.
Beweis. Sei \(\mathcal{F} \) unsere kombinatorische Fläche. Sicher gibt es eine Zerschneidung von \(\mathcal{F} \) in eine disjunkte Vereinigung endlich vieler Vielecke. Sei \(Z \rightarrow \mathcal{F} \) eine solche Zerschneidung mit der kleinstmöglichen Zahl von Zusammenhangskomponenten. Nehmen wir einmal an, es gäbe hier mehr als eine Komponente. Dann könnten wir also 2-Simplizes \(\sigma, \tau \in \mathcal{F}_2 \) finden, die von verschiedenen Zusammenhangskomponenten von \(Z \) herkommen. Da \(\mathcal{F} \) zusammenhängend ist, könnten wir \(\sigma, \tau \) in \(\mathcal{F} \) durch eine Kette von 2-Simplizes \(\sigma = \sigma_0, \sigma_1, \ldots, \sigma_r = \tau \) verbinden derart, daß gilt \(\sigma_i \cap \sigma_{i+1} \neq \emptyset \). Aufgrund unserer Annahmen an eine kombinatorische Fläche können wir sogar annehmen, daß \(\sigma_i \cap \sigma_{i+1} \) jene von verschiedenen Zusammenhangskomponenten von \(Z \) herkommen. Verkleben wir nun diese beiden Zusammenhangskomponenten entlang der Randkante \(\sigma_i \cap \sigma_{i+1} \), so erhalten wir eine Zerschneidung von \(\mathcal{F} \) in weniger Vielecke, im Widerspruch zur angenommenen Minimalität.

6.8.6. Seien \(\mathcal{F} \) eine geschlossene kombinatorische Fläche und \(\varphi : Z \rightarrow \mathcal{F} \) eine Zerschneidung zu einem Vieleck. Sicher werden unter \(\varphi \) die Randkanten von \(Z \) paarweise identifiziert. Insbesondere ist also die Zahl der Randkanten unseres Vielecks gerade. Im folgenden wird erklärt, wie wir diese Identifizierungsvorschrift wir formal aufschreiben können.

Definition 6.8.7. Sei \(A \) eine endliche Menge, die wir in diesem Zusammenhang unser „alphabet“ nennen, mit \(|A| = r \geq 0 \) Elementen, den „Buchstaben“. Ein Flächenwort im Alphabet \(A \) ist eine Abbildung

\[
\begin{align*}
\{1, 2, 3, \ldots, 2r\} & \rightarrow A \times \{1, -1\} \\
i & \mapsto (a(i), \varepsilon(i))
\end{align*}
\]

derart, daß jeder Buchstabe genau zweimal als ein \(a(i) \) vorkommt.

6.8.8. Wir schreiben Flächenworte in der Form \(a(1)\varepsilon(1) \ldots a(2r)\varepsilon(2r) \) und nennen \(2r \) die „Länge“ so eines Flächenworts. Beispiele für Flächenworte im Alphabet \(A = \{a, b\} \) sind etwa die Ausdrücke \(aabb^{-1} \) und \(aba^{-1}b \).

6.8.9. Gegeben ein Flächenwort \(w \) in \(r \geq 2 \) Buchstaben konstruieren wir einen topologischen Raum

\[
F(w)
\]
wie folgt: Wir betrachten ein regelmäßiges \(2r \)-Eck, mit \(2r \) der Länge unseres Flächenworts, und schreiben die Buchstaben unseres Flächenworts der Reihe nach an seine Kanten. Weiter versehen jede Kante mit einem Pfeil im Gegenuhrzeigersinn beziehungsweise im Uhrzeigersinn, je nachdem ob der Exponent ihres Buchstaben 1 beziehungsweise \(-1\) ist. Dann verkleben wir jeweils die Kanten mit den
Dieses Bild soll die Definition der Fläche $F(aabb)$ anschaulich machen. Statt die zu jeweils zu verklebenden Randkanten mit denselben Buchstaben zu benennen, habe ich sie jeweils mit demselben Typ von Pfeilen, hier Doppelpfeilen beziehungsweise einfachen Pfeilen, gekennzeichnet. Verklebt wird eigentlich nur das fett eingezeichnete Viereck. Ich finde, man erkennt in der Mitte recht gut, wie das Verkleben eine Fläche liefert, in der alle vier Eckpunkte unseres Quadrats dasselbe Bild haben. Es ist jedoch nicht so leicht zu sehen, daß diese Fläche homöomorph ist zur Klein’schen Flasche. Um sich das zu überlegen, sollte man wohl am besten die Klein’sche Flasche zerschneiden: einmal rund um den Flachenhals, ein zweites Mal in Längsrichtung Flasche und Hals.
gleichen Buchstaben so, daß die Spitzen der Pfeile identifiziert werden. Im Fall \(r = 1 \) erlauben wir dem 2-Eck krumme Kanten und erhalten so zum Beispiel \(F(aa) \cong \mathbb{P}^2 \mathbb{R} \) und \(F(aa^{-1}) \cong S^2 \). Im Fall \(r = 0 \) definieren wir \(F(\) = S^2 \).

Lemma 6.8.10 (Fläche zu einem Flächenwort). Der auf diese Weise zu einem Flächenwort \(w \) konstruierte topologische Raum \(F(w) \) ist stets eine geschlossene Fläche.

Beweis. Die größte Schwierigkeit scheint mir hierbei der Nachweis, daß auch die Bilder der Ecken unseres Vielecks im verklebten Raum \(F(w) \) eine zu einer offenen Kreisscheibe homöomorphe offene Umgebung besitzen. Um das zu sehen, muß man sich überlegen, daß lokal um das Bild einer Ecke schlicht „mehrere Winkelsegmente zu einer Kreisscheibe verklebt werden“. Wir überlassen die Details dem Leser.

Satz 6.8.11 (Klassifikation der geschlossenen Flächen). Jede zusammenhängende triangulierbare geschlossene Fläche ist homöomorph zur Fläche \(F(w) \) für genau ein Flächenwort \(w \) aus der folgenden Liste:

1. \(a_1b_1a_1^{-1}b_1^{-1}a_2b_2a_2^{-1}b_2^{-1}\ldots a_gb_ga_g^{-1}b_g^{-1} \) mit \(g \geq 0 \);
2. \(a_1a_2a_2\ldots a_ga_g \) mit \(g \geq 1 \).

Beweis. Zunächst einmal listen wir einige fundamentale Operationen auf der Menge aller Flächenwörter auf, die offensichtlich den Homöomorphietyp der zugehörigen Fläche nicht ändern. In den folgenden Formeln bedeuten \(a, b, c, d \) mit und ohne Hut stets Buchstaben unseres Alphabets \(A \), dahingegen bedeuten \(u, v, w, z \) Abschnitte von Flächenwörtern.

1. „Zyklisches Vertauschen“ und „von hinten nach vorne Lesen“, in Formeln \(F(vw) \cong F(wv) \) und \(F(w) \cong F(w^{-1}) \);
2. „Substituieren“ von \(a^{-1} \) für \(a \), in Formeln \(F(va^\varepsilon wa^n) \cong F(va^{-\varepsilon}wa^{-n}) \);
3. „Aufschneiden des Vielecks längs der Gerade zwischen zwei Ecken und Zusammenkleben längs einer äußeren Kante“ wie im nebenstehenden Bild dargestellt, in Formeln

\[
F(uavza^{-1}w) \cong F(wwb^{-1}zvb) \\
F(uavzw) \cong F(uz^{-1}bw^{-1}vb)
\]

180
Dieses Bild soll die zweite Regel $F(uavzaw) \cong F(uz^{-1}bw^{-1}vb)$ zum Aufschneiden und Verkleben anschaulich machen. Kleben wir das darin enthaltene achteckige „Stopschild“ zu einer Fläche zusammen, so entsteht dieselbe Fläche wie beim Zusammenkleben des mit gestricheltem Rand gezeichneten „Schmetterlings“. Hierbei könnten wir etwa konkret an ein Flächenwort in vier Buchstaben a, c, d, e denken und etwa $u = c, v = c^{-1}e, z = d^{-1}$ und $w = ed$ setzen, dieser Fall ist als Beispiel eingezeichnet.
Zu jedem Flächenwort w definieren wir seine **Eckenzahl** als die Zahl der Punkte in der zugehörigen Fläche $F(w)$, die Bilder von Ecken unseres Vielecks sind. Kombinatorisch betrachtet man auf der Menge der Ecken die kleinste Äquivalenzrelation, unter der je zwei Ecken mit einer Ausgangskante zum selben Buchstaben oder einer Eingangskante zum selben Buchstaben äquivalent sind, und kann dann die Eckenzahl verstehen als die Kardinalität der Äquivalenzklassen. Mit dieser Terminologie haben wir eine letzte fundamentale Operation:

4. „Kürzen“, in Formeln $F(uava^{-1}) \sim F(uv)$ unter der Annahme, daß die Enden der a-Kanten verschiedene Bilder in der verklebten Fläche haben. Sind hier u oder v leer, so haben die Enden der a-Kanten automatisch verschiedene Bilder und die Formel scheint mir offensichtlich. Sind u und v nicht leer, so betrachten wir in unserem Vieleck das Viereck mit den beiden a-Kanten als gegenüberliegenden Seiten. Sein Bild in der verklebten Fläche ist ein Zylinder, den wir zu einer Kreislinie identifizieren können, ohne den Homöomorphietyp der verklebten Fläche zu ändern.

Lemma 6.8.13 (Eckenreduktion). Für jedes vorgegebene Flächenwort w ist entweder $F(w)$ eine Sphäre, oder es gibt ein Flächenwort v mit Eckenzahl Eins und $F(w) \sim F(v)$.

Beweis. Sei w ein Flächenwort mit Eckenzahl ≥ 2 und mehr als einem Buchstaben. Wir wählen einen Punkt P in $F(w)$, der das Bild einer Ecke unseres Vielecks ist, und nennen diejenigen Ecken unseres Vielecks „gut“, die nach P gehen. Die übrigen Ecken nennen wir „schlecht“ und geben ein Verfahren an, das entweder die Zahl der Ecken überhaupt oder die Zahl der schlechten Ecken unseres Eckenworts verringert, ohne die zugehörige Fläche zu ändern. Sei in der Tat a eine Kante von einer guten Ecke zu einer schlechten Ecke. Zwei Fälle sind möglich:

2. Die beiden a-Kanten unseres Vielecks erscheinen mit verschiedenen Exponenten. In diesem Fall können wir sie kürzen und so die Zahl der Ecken verringern.

Das zeigt das Lemma.

Jede triangulierbare Fläche ist also homöomorph zur Sphäre oder zu einer Fläche $F(w)$ für ein Flächenwort w mit Eckenzahl 1. Wir bemerken für das folgende,
Dieses Bild soll die vierte Regel zum „Kürzen“ anschaulich machen.
daß sich die Eckenzahl beim Aufschneiden und Verkleben nicht ändert. Wir kön-
nen uns also im Weiteren auf Worte der Eckenzahl 1 beschränken und werden
von nun an nur solche Worte betrachten. Man beachte nun als Spezialfälle des
Aufschneidens und Verklebens die beiden folgenden Regeln:

Kreuzhaubennormierung: Man findet $F(ubvbw) \cong F(uv^{-1}b\hat{b}bw)$ durch Auf-
schneiden zwischen den Enden von b und Verkleben längs b. Die Bezeich-
nung rührt daher, daß wir wie auf Seite 185 erklärt ein Möbiusband auch als
eine sogenannte Kreuzhaube realisieren können.

Henkelnormierung: Man findet $F(ubvdwb^{-1}zd^{-1}x) \cong F(uzw\hat{b}d\hat{b}^{-1}d^{-1}vx)$ durch Auf-
schneiden zwischen den Enden von b und Verkleben längs d kommt man
zu $ubd\hat{b}^{-1}zwd^{-1}vx$, gefolgt von erneutem Aufschneiden zwischen den
Enden von d und Verkleben längs b.

Unter Verwendung der ersten Regel normieren wir zunächst Kreuzhauben, bis wir
ein Wort erreicht haben, bei dem jeder Buchstabe entweder als normierte Kreuz-
haube aa beziehungsweise $a^{-1}a^{-1}$ oder in der Form $\ldots a \ldots a^{-1} \ldots$ vorkommt.
Im letzteren Fall finden wir ein b derart, daß unser Wort feiner sogar die Form

$$\ldots a \ldots b \ldots a^{-1} \ldots b^{-1} \ldots$$

hat, denn sonst müßten alle Buchstaben entweder doppelt oder gar nicht zwischen
a und a^{-1} vorkommen, und dann hätten Anfangs- und Endpunkt der a-Kanten
verschiedene Bilder in der Fläche, im Widerspruch zu unserer Annahme, daß die
Eckenzahl 1 ist. Mit sukzessiven Henkelnormierungen landen wir also bei einem
Wort, das eine Verkettung von Kreuzhauben cc und Henkeln $aba^{-1}b^{-1}$ ist. Hen-
kelnormierung rückwärts und dann mehrfaches Anwenden der Kreuzhaubennor-
mierung liefert aber auch die sogenannte Henkelelimination, in Formeln

$$F(uccaba^{-1}b^{-1}v) \cong F(uabca^{-1}cb^{-1}v)$$
$$\cong F(uaba\hat{c}\hat{b}^{-1}v)$$
$$\cong F(ub^{-1}a\hat{a}\hat{c}c\hat{b}^{-1}v)$$
$$\cong F(u\hat{c}^{-1}\hat{c}^{-1}a^{-1}\hat{a}^{-1}b^{-1}\hat{b}^{-1}v)$$

Folglich liefert jede Verkettung von Kreuzhauben und Henkeln, in der mindest-
tens eine Kreuzhaube auftritt, dieselbe Fläche wie ein reines Produkt von Kreuz-
hauben. Damit ist gezeigt, daß jede triangulierbare Fläche homöomorph ist zu
mindestens einer Fläche, die durch ein Flächenwort aus unserer Liste beschrieben
wird. Wir zeigen in 6.10, daß diese Flächen paarweise nichtisomorphe Funda-
mentalgruppen haben. Daraus folgt, daß sie paarweise nicht homöomorph sind,
und das beendet dann den Beweis des Klassifikationssatzes. □
Man erhält eine stetige Abbildung des Möbiusbands nach $\mathbb{R}^3 \cong \mathbb{C} \times \mathbb{R}$ vermittels der Formel $(t, \tau) \mapsto (\tau e^{\pi t}, \sqrt{1 - \tau^2 \cos^2 \pi t})$. Anschaulich gesprochen verbindet man je zwei gegenüberliegende Punkte des Einheitskreises durch einen Bogen mit variierender mittlerer Höhe. Das Bild ist eine sich selbst durchdringende räumliche Fläche, bei der man sich die Selbstdurchdringung leicht wegdenken kann. Man nennt sie auch die **Kreuzhaube**. In dieser Anschauung für das Möbiusband bezahlt man in gewisser Weise mit der Selbstdurchdringung für die gute Sichtbarkeit des Randkreises.
6.9 Gruppen durch Erzeugende und Relationen

6.9.1. Ist G eine Gruppe und $T \subset G$ eine Teilmenge, so hatten wir in ?? den Schnitt über alle Untergruppen von G, die T umfassen, die „von T erzeugte Untergruppe“ genannt und mit $\langle T \rangle$ bezeichnet.

Definition 6.9.2. Seien G eine Gruppe und $T \subset G$ eine Teilmenge. Der Schnitt über alle Normalteiler von G, die T umfassen, heißt der von T in G erzeugte Normalteiler $\langle\langle T \rangle\rangle_G = \langle\langle T \rangle\rangle$. Er kann auch beschrieben werden als die Untergruppe $\langle\langle T \rangle\rangle = \langle gtg^{-1} \mid g \in G, t \in T \rangle$, die von den Elementen $t \in T$ und allen ihren Konjugierten erzeugt wird.

6.9.3 (Schwierigkeiten der Terminologie). Hier treffen wir auf die semantische Schwierigkeit, daß „der von T erzeugte Normalteiler“ ja auch bedeuten könnte, daß wir die von T erzeugte Untergruppe nehmen und daß diese zusätzlich ein Normalteiler ist. In Formelsprache sollte jedoch klar werden, was jeweils gemeint ist.

Lemma 6.9.4. Seien $\varphi : G \to G'$ ein Gruppenhomomorphismus und $T \subset G$ eine Teilmenge mit $\varphi(T) \subset \{e\}$. So gibt es genau einen Gruppenhomomorphismus $\tilde{\varphi} : G/\langle\langle T \rangle\rangle \to G'$ mit $\tilde{\varphi} \circ \pi = \varphi$, im Diagramm

$$
\begin{array}{ccc}
G & \longrightarrow & G/\langle\langle T \rangle\rangle \\
\downarrow & & \downarrow \\
G' & &
\end{array}
$$

Beweis. Nach Annahme gilt $T \subset \ker \varphi$. Da $\ker \varphi$ stets ein Normalteiler ist, folgt $\langle\langle T \rangle\rangle \subset \ker \varphi$. Jetzt folgt die Aussage aus der universellen Eigenschaft der Restklassengruppe ??.

Definition 6.9.5. Sei X eine Menge und $R \subset \Grp^\wedge X$ eine Teilmenge der freien Gruppe über X. Der Quotient $\Grp^\wedge X/\langle\langle R \rangle\rangle$ der freien Gruppe über X nach dem von R erzeugten Normalteiler heißt die von der Menge X mit den Relationen R erzeugte Gruppe. Meist werden die Relationen in der Form $a_i = b_i$ mit Wörtern $a_i, b_i \in \Mon^\wedge X$ angegeben. Gemeint ist dann $R = \{[a_i][b_i]^{-1}\}$.

Beispiel 6.9.6. Die von zwei Elementen x und y mit der Relation $xy = yx$ erzeugte Gruppe ist isomorph zu $\Z \times \Z$.

6.9.7. Die Darstellung einer Gruppe durch Erzeugende und Relationen ist nicht „effektiv“: Es gibt nachweislich keinen Algorithmus, der bestimmt, ob so eine Gruppe trivial ist, also nur aus einem Element besteht.
Übungen

Übung 6.9.8. Sei eine Menge X die Vereinigung zweier Teilmengen $X = X_1 \cup X_2$ mit Schnitt $X_0 = X_1 \cap X_2$. Seien $R_i \subset \text{Grp}^\downarrow X_i$ Relationen, $i = 0, 1, 2$. Gilt zusätzlich $R_0 \subset \langle\langle R_i \rangle\rangle$ für $i = 1, 2$, so ist das folgende Diagramm ein Pushout:

$$\begin{array}{c}
\text{Grp}^\downarrow X_0/\langle\langle R_0 \rangle\rangle \to \text{Grp}^\downarrow X_1/\langle\langle R_1 \rangle\rangle \\
\downarrow \\
\text{Grp}^\downarrow X_2/\langle\langle R_2 \rangle\rangle \to \text{Grp}^\downarrow X/\langle\langle R_1 \cup R_2 \rangle\rangle
\end{array}$$

Übung 6.9.9. Die symmetrische Gruppe S_n kann beschrieben werden als die Gruppe mit Erzeugern s_1, \ldots, s_{n-1} und den Relationen $s_i^2 = 1$, $s_is_j = s_js_i$ für $|i-j| > 1$, $(s_is_{i+1})^3 = 1$. Die Tetraedergruppe alias die alternierende Gruppe A_4 kann beschrieben werden als die Gruppe erzeugt von zwei Elementen s, t mit Relationen $s^2 = t^3 = (st)^3 = 1$. Die Ikosaedergruppe alias die die alternierende Gruppe A_5 kann beschrieben werden als die Gruppe erzeugt von zwei Elementen u, v mit Relationen $u^2 = v^3 = (uv)^5 = 1$.

Übung 6.9.10. Die Abelisierung der freien Gruppe über einer Menge ist kanonisch isomorph zur freien abelschen Gruppe über besagter Menge.

6.10 Die Fundamentalgruppen geschlossener Flächen

Satz 6.10.1 (Fundamentalgruppen geschlossener Flächen). Gegeben ein Flächenwort w im Alphabet A mit Eckenzahl Eins wird die Fundamentalgruppe der zugehörigen Fläche $F(w)$ erzeugt von der Menge A mit dem Flächenwort w als einziger Relation. Bezeichnet genauer $* \in F(w)$ das Bild der Ecken unseres Vielzeichens, so erhalten wir einen Isomorphismus

$$(\text{Grp}^\downarrow A)/\langle\langle w \rangle\rangle \xrightarrow{\sim} \pi_1(F(w), *)$$

dadurch, daß wir jedem Buchstaben das Bild der entsprechenden Kante mit der durch den Exponenten unseres Buchstabens gegebenen Durchlaufrichtung zuordnen.

Beweis. Sei $p : Z \to F$ die Projektion unseres Vielzeichens $Z \subset \mathbb{R}^2$ auf unsere Fläche $F = F(w)$. Das Bild $p(\partial Z)$ vom Rand unseres Vielzeichens in unserer Fläche F besteht aus $|A|$ Kreislinien, die alle in einem Punkt zusammengeklebt sind. Solch einen Raum nennt man auch ein **Bouquet von Kreislinien**. Bezeichne nun Z^o das Innere unseres Vielzeichens und sei $z \in Z$ sein Mittelpunkt. Unter p geht Z^o homöomorph auf eine offene Teilmenge unserer Fläche F und wir vereinfachen die Notation und tun so, als ob Z^o schlicht eine Teilmenge von F wäre. Wir betrachten
dann für unser Vieleck Z die offene Überdeckung $\bar{Z} = (Z \setminus z) \cup Z^o$ und wenden den Satz von Seifert und van Kampen 6.4.1 an auf die offene Überdeckung

$$F = (F \setminus z) \cup Z^o$$

unserer Fläche durch die Bilder dieser Mengen. Nehmen wir nun als Basispunkt das Bild eines Punktes aus $e \in Z^o$, der auf dem offenen Geradensegment von z zur „Ausgangsecke a unseres Flächenworts w“ liegt, so liefert Seifert-van-Kampen 6.4.1 ein kokartesisches Diagramm von Gruppen

$$\pi_1(Z^o \setminus z, e) \to \pi_1(Z^o, e)$$

Nun benutzen wir den Weg, der radial von e nach a läuft, oder genauer sein Bild in F, um die Fundamentalgruppen in der unteren Zeile mit den entsprechenden Fundamentalgruppen zum Basispunkt $*$ zu identifizieren. Weiter zeigt das „radial nach außen schieben“ von Punkten aus $Z \setminus z$, daß die Einbettung unseres Bouquets von Kreislinien $p(\partial Z) \hookrightarrow F \setminus z$ eine Homotopieäquivalenz ist und folglich einen Isomorphismus auf die Fundamentalgruppen zum Basispunkt $*$ induziert. Die Fundamentalgruppe solch eines Bouquets haben Sie bereits in 6.5.16 mit der freien Gruppe über A identifiziert. Nun muß man sich überzeugen, daß unter den beschriebenen Identifikationen

$$\pi_1(F \setminus z, e) \to \pi_1(F \setminus z, *) \cong \pi_1(p(\partial Z), *) \cong \text{Grp}\setminus A$$

das Bild eines der beiden Erzeuger von $\pi_1(Z^o \setminus z, e)$ gerade auf das Wort w geht, aufgefaßt als Element der freien Gruppe $\text{Grp}\setminus A$. So ergibt sich ein kokartesisches Diagramm von Gruppen

$$\begin{array}{ccc}
Z & \to & 1 \\
\downarrow & & \downarrow \\
\text{Grp}\setminus A & \to & \pi_1(F, *)
\end{array}$$

wobei die Abbildung $Z \to \text{Grp}\setminus A$ die $1 \in Z$ auf das Flächenwort w unserer Fläche in $\text{Grp}\setminus A$ abbildet, und wir erhalten den gesuchten Isomorphismus $\pi_1(F, *) = \text{Grp}\setminus A/\langle\langle w\rangle\rangle$. Nun wird offensichtlich ein push-out-Diagramm in der Kategorie der Gruppen unter der Abelsisierung 5.8.1 ein push-out-Diagramm in der Kategorie der abelschen Gruppen, und die Abelsierung einer freien Gruppe $\text{Grp}\setminus A$ ist die freie abelsche Gruppe $\text{Ab}\setminus A = ZA$ aller endlichen formalen Linearkombinationen von Elementen von A mit ganzzahligen Koeffizienten. Für den maximalen kommutativen Quotienten π_1^{ab} erhalten wir damit $\pi_1^{ab}(F(w)) = ZA \cong Z^{2g}$ im Fall von g Henkeln und

$$\pi_1^{ab}(F(w)) = ZA/2Z(c_1 + \ldots + c_g) \cong Z/2Z \times Z^{g-1}$$

188
im Fall von g Kreuzhauben. Da diese Gruppen paarweise nicht isomorph sind, nach ?? oder auch elementar mit Zählen der Elemente endlicher Ordnung und Berechnung der Dimensionen der Vektorräume aller Gruppenhomomorphismen nach \mathbb{Q}, sind auch die zugehörigen Flächen paarweise nicht homöomorph. Das beendet den Beweis des Klassifikationssatzes.

Übungen

Übung 6.10.2. Ist X eine zusammenhängende geschlossene Fläche vom Geschlecht g und $E \subset X$ eine endliche nichtleere Teilmenge, so ist $\pi_1(X \setminus E, \ast)$ frei in $2g + |E| - 1$ Erzeugern.
7 Überlagerungstheorie

7.1 Überlagerungen

Definition 7.1.1. Eine stetige Abbildung \(p : \tilde{U} \to U \) heißt eine triviale Überlagerung, wenn es einen diskreten Raum \(F \) mitsamt einem Homöomorphismus \(\varphi : F \times U \to \tilde{U} \) gibt derart, daß das Diagramm

\[
\begin{array}{ccc}
F \times U & \xrightarrow{\varphi} & \tilde{U} \\
pr_2 \downarrow & & \downarrow p \\
U & \xrightarrow{p} & U
\end{array}
\]

kommutiert. Solch ein Homöomorphismus heißt dann eine Trivialisierung unserer trivialen Überlagerung.

Definition 7.1.2. Eine stetige Abbildung \(p : \tilde{X} \to X \) heißt eine Überlagerungsabbildung oder auch einfach Überlagerung, wenn jeder Punkt \(x \in X \) eine Umgebung \(U \) besitzt derart, daß die induzierte Abbildung \(p : p^{-1}(U) \to U \) eine triviale Überlagerung ist. Wir nennen \(U \) dann eine trivial überlagerte Umgebung von \(x \). Der Definitionsraum \(\tilde{X} \) von \(p \) heißt der Totalraum unserer Überlagerung.

7.1.3 (Diskussion der Terminologie). Wir fordern von einer Überlagerung nicht, daß sie surjektiv sein muß. Insbesondere ist für uns \(\emptyset \to X \) stets eine Überlagerung. Wir fordern auch nicht, daß die Fasern konstante Kardinalität haben sollen. Eine Überlagerung mit dieser Eigenschaft nennen wir eine Faserung mit diskreter Faser. In der Funktionentheorie arbeitet man oft mit einem etwas allgemeineren Überlagerungsbegriff, in dem etwa die Abbildung \(\mathbb{C} \to \mathbb{C}, z \mapsto z^2 \) auch noch als Überlagerung, genauer als „im Ursprung verzweigte Überlagerung“ durchgehen würde. Die Überlagerungen im Sinne der obigen Definition heißen in der in der Funktionentheorie üblichen Terminologie unverzweigte Überlagerungen.

Beispiele 7.1.4. Die Abbildung \(\text{Exp} : \mathbb{R} \to S^1, t \mapsto \exp(2\pi it) = \cos(2\pi t) + i \sin(2\pi t) \) aus dem Beweis von 5.3.1, die die Zahlengerade auf den Einheitskreis aufwickelt, ist eine Überlagerung. Ebenso sind \(\text{exp} : \mathbb{C} \to \mathbb{C}^\times \) und die Projektion \(S^n \to \mathbb{R}^n \) Überlagerungen, und für jeden diskreten Raum \(F \) ist die Projektion \(\text{pr}_2 : F \times X \to X \) eine Überlagerung. Als weiteres Beispiel betrachte man \(\text{Exp} \times \text{Exp} : \mathbb{R}^2 \to S^1 \times S^1 \). Sind allgemeiner \(f : \tilde{X} \to X \) und \(g : \tilde{Y} \to Y \) Überlagerungen, so auch \(f \times g : \tilde{X} \times \tilde{Y} \to X \times Y \).

7.1.5 (Kardinalität der Fasern einer Überlagerung). Ist \(p : \tilde{X} \to X \) eine Überlagerung, so ist die Kardinalität der Fasern \(p^{-1}(x) \) konstant auf den Zusammenhangskomponenten von \(X \). Genauer sind für jede Menge \(E \) die Mengen \(\{x \in X \mid |p^{-1}(x)| = |E|\} \) beziehungsweise \(\{x \in X \mid |p^{-1}(x)| \neq |E|\} \) aller
Eine zweifache Überlagerung der Kreislinie.
Punkte \(x \in X \), deren Fasern \(p^{-1}(x) \) dieselbe beziehungsweise nicht dieselbe Kardinalität wie \(E \) haben, offen in \(X \), da sie mit jedem Punkt auch jede trivial überlagerte Umgebung des besagten Punktes umfassen. Ist \(X \) zusammenhängend, so nennt man die Zahl der Elemente einer und gleichbedeutend jeder Faser auch die Blätterzahl der Überlagerung.

Definition 7.1.6. Eine stetige Abbildung \(p : E \to X \) heißt étale, wenn jeder Punkt \(e \in E \) eine offene Umgebung \(U \subset E \) besitzt, die von \(p \) homöomorph auf eine offene Teilmenge \(p(U) \subset X \) abgebildet wird. Das Wort „étale“ kommt aus dem Französischen und bedeutet „ausgebreitet“.

Beispiele 7.1.7. Jede Überlagerungsabbildung ist étale. Die Projektion unserer Gerade mit verdoppeltem Nullpunkt \(\mathbb{R} \sqcup \{0\} \) aus 3.4.8 auf die Gerade \(\mathbb{R} \) ist étale. Jede Einbettung einer offenen Teilmenge ist étale. Jede Verknüpfung étaler Abbildungen ist étale. Eine Abbildung auf einen Punkt ist genau dann étale, wenn sie von einem Raum mit diskreter Topologie ausgeht.

Übungen

Übung 7.1.8 (Eigenschaften étaler Abbildungen). Jede étale Abbildung ist offen, jede surjektive étale Abbildung ist nach 3.6.19 also final. Sind \(f : X \to Y \) und \(g : Y \to Z \) stetige Abbildungen und sind \(g \) und \(fg \) étale, so ist auch \(f \) étale.

Ergänzende Übung 7.1.9. Ist \(\tilde{X} \to X \) etale und \(Y \to X \) eine stetige Abbildung, so ist auch der pullback \(\tilde{X} \times_X Y \to Y \) étale.

Übung 7.1.10. Sind \(\tilde{X} \to X \) und \(\hat{X} \to X \) Überlagerungen, so auch ihr Faserprodukt \(\tilde{X} \times_X \hat{X} \to X \).

Übung 7.1.11. Sind \(p : X \to Y \) und \(q : Y \to Z \) Überlagerungen und sind die Fasern von \(q \) endlich, so ist auch \(q \circ p \) eine Überlagerung.

Übung 7.1.12. Ist ein Raum lokal zusammenhängend, so ist jede Zusammenhangskomponente einer Überlagerung dieses Raums auch selbst eine Überlagerung des besagten Raums. Diese Aussage wird bei Beweis des Liftbarkeitskriteriums 8.2.4 benötigt werden.

Ergänzende Übung 7.1.14. Sei \(f : X \to Y \) eine Überlagerung mit endlichen Fasern und \(X = U \sqcup V \) eine Zerlegung von \(X \) in zwei offene Teilmengen. So sind auch die Restriktionen von \(f \) auf \(U \) und \(V \) Überlagerungen.
7.2 Kategorien von Mengen mit Operation

Definition 7.2.2. Sei G ein Monoid. Eine Abbildung $\phi : X \rightarrow Y$ von einer G-Menge X in eine G-Menge Y heißt ein G-Morphismus oder auch G-äquivariant, wenn gilt $\phi(gx) = g\phi(x) \forall g \in G, x \in X$. Mit den äquivarianten Abbildungen als Morphismen bilden die G-Mengen eine Kategorie, die wir mit G-Ens oder Ens_G bezeichnen. In derselben Weise bilden auch die G-Rechtsmengen eine Kategorie, die wir mit Ens_G bezeichnen, oder auch Ens_G, wenn wir vom Leser erwarten, daß er aus dem Kontext erschließt, ob Linksoperationen oder Rechtsoperationen gemeint sind.

Ergänzung 7.2.3. Im Rahmen der Kategorientheorie könnten wir diese Kategorie auch beschreiben als die Kategorie aller Funktoren von der Ein-Objekt-Kategorie $[G]$ aus 9.1.5 in die Kategorie der Mengen.

Übungen

Ergänzende Übung 7.2.4. Ich erinnere daran, daß wir unter einem „homogenen Raum“ für eine vorgegebene Gruppe eine Menge mit einer transitiven Wirkung unserer Gruppe verstehen. Man zeige: Genau dann stimmen für einen gegebenen homogenen Raum alle Standgruppen überein, wenn er isomorph ist zum Quotienten der Gruppe nach einem Normalteiler. Wir sagen dann auch, der homogene Raum sei normal. Hinweis: ??.

Übung 7.2.5. Jede Gruppe operiert auf der Menge aller ihrer Untergruppen durch Konjugation. Die Bahnen dieser Operation nennt man Konjugationsklassen von Untergruppen. Man zeige, daß für jede Gruppe G das Bilden der Gesamtheit aller Standgruppen eine Bijektion liefert

\[
\left\{ \text{Transitive } G \text{-Mengen, bis auf Isomorphismus} \right\} \xrightarrow{\sim} \left\{ \text{Konjugationsklassen von Untergruppen von } G \right\}
\]

\[
X \quad \mapsto \quad \{G_x \mid x \in X\}
\]

Übung 7.2.6. Man zeige, daß die Linksoperation eines Monoids G auf sich selbst einen Isomorphismus induziert zwischen dem Monoid G und dem Monoid der
Endomorphismen der \(G \)-Rechtsmenge \(G \), in Formeln also einen Isomorphismus \(G \cong (\text{Ens-}G)(G), \ g \mapsto (g \cdot) \). Ebenso haben wir \(G^{\text{opp}} \cong (G\text{-Ens})(G), \ g^o \mapsto (\cdot g) \).

Übung 7.2.7. Der **Normalisator** einer Untergruppe \(H \) in einer Gruppe \(G \) ist definiert als die Untergruppe \(N_G(H) := \{ g \in G \mid gHg^{-1} = H \} \) von \(G \). Man zeige, daß die Zuordnung \(g \mapsto (g^{-1}) \), die also jedem \(g \in G \) die Multiplikation von rechts mit \(g^{-1} \) zuordnet, einen Isomorphismus

\[
N_G(H)/H \cong (G/\text{Ens})(G/H)
\]

induziert zwischen der Quotientengruppe \(N_G(H)/H \) und der Automorphismenmenge der \(G \)-Menge \(G/H \). In derselben Weise erhält man durch die Abbildung \(g \mapsto (\cdot g) \), immer noch für \(G \supseteq H \) eine Gruppe mit einer Untergruppe einen Isomorphismus

\[
(\{ g \in G \mid Hg \subseteq gH \})^{\text{opp}} \cong (G\text{-Ens})(G/H)
\]

von Monoiden. Betrachtet man in \(G = \text{SL}(2; \mathbb{Q}) \) die Untergruppe \(H \) aller oberen Dreiecksmatrizen mit Einsen auf der Diagonale und einem ganzzahligen Eintrag in der oberen rechten Ecke, und nimmt als \(g \) eine geeignete Diagonalmatrix, so erhält man ein Beispiel mit \(Hg \subsetneq gH \).

Ergänzende Übung 7.2.8 (Die Untergruppenkategorie). Sei \(G \) eine Gruppe. Wir machen die Menge \(U\text{Gr}_G \) aller Untergruppen von \(G \) zu einer Kategorie durch die Vorschrift

\[
U\text{Gr}_G(H, K) := \{ gK \in G/K \mid HgK = gK \}
\]

mit der Verknüpfung \(U\text{Gr}_G(H, K) \times U\text{Gr}_G(K, M) \rightarrow U\text{Gr}_G(H, M) \) gegeben durch \((gK, fM) \mapsto gKfM = gfM \). Man zeige, daß wir eine Äquivalenz von Kategorien

\[
U\text{Gr}_G \cong \{ \text{Transitive } G\text{-Mengen} \}^{\text{opp}}
\]

erhalten, indem wir jeder Untergruppe \(H \subseteq G \) den homogenen Raum \(G/H \) zuordnen und jedem Morphismus \(gK \in U\text{Gr}_G(H, K) \) die \(G \)-äquivariante Abbildung \(G/H \rightarrow G/K, aH \mapsto aHgK = agK \).

Ergänzende Übung 7.2.9. Gegeben Gruppen \(H, G \) bezeichne \(H \text{-Ens-} G \) die Kategorie aller Mengen \(X \) mit einer Linksoperation von \(H \) und einer Rechtsoperation von \(G \) derart, daß gilt \((hx)g = h(xg) \) für alle \(h \in H, x \in X \) und \(g \in G \). Man erkläre, in welcher Weise diejenigen Objekte dieser Kategorie, auf denen die Rechtsoperation von \(G \) frei und transitiv ist, klassifiziert werden durch \(G \)-Konjugationsklassen von Gruppenhomomorphismen \(H \rightarrow G \).

Übung 7.2.10. Ist \(C \) eine Kategorie, \(A \in C \) ein Objekt und \(G = C(A) \) das Monoid seiner Endomorphismen, so erhalten wir stets einen Funktor \(C(A) : C \rightarrow \text{Ens-}G \), indem wir setzen \(fg = f \circ g \) für \(B \in C, f \in C(A, B) \) und \(g \in C(A) \).
7.3 Quotientenabbildungen als Überlagerungen

Definition 7.3.1. Unter einer **Operation einer Gruppe auf einem Objekt einer Kategorie** versteht man einen Homomorphismus von besagter Gruppe in die Automorphismengruppe von besagtem Objekt.

7.3.2. Reden wir zum Beispiel von einer Operation einer Gruppe G auf einem topologischen Raum X, so fordern wir implizit, daß für alle $g \in G$ die Abbildung $X \to X$, $x \mapsto gx$ stetig sein soll. Gemeint ist hier die Operation einer abstrakten Gruppe.

7.3.3. Ich erinnere daran, daß eine Operation einer Gruppe auf einer Menge **frei** heißt, wenn außer dem neutralen Element kein Element unserer Gruppe irgendeinen Punkt unserer Menge festhält.

Definition 7.3.4. Eine Operation einer Gruppe G auf einem topologischen Raum X heißt **topologisch frei**, wenn jeder Punkt $x \in X$ eine Umgebung U besitzt, für die die Operation eine Injektion $G \times U \hookrightarrow X$ liefert.

7.3.5. In der Literatur werden unsere topologisch freien Operationen meist als **freie eigentlich diskontinuierliche Operationen** bezeichnet.

Beispiele 7.3.6. Die Gruppe \mathbb{Z}^n operiert topologisch frei durch Addition auf \mathbb{R}^n. Die Gruppe $\{-1, +1\}$ operiert topologisch frei durch Multiplikation auf S^n und $\mathbb{R}^n \setminus 0$. Für festes k operiert die Gruppe $\{z \in \mathbb{C}^n \mid z^k = 1\}$ der k-ten Einheitswurzeln topologisch frei auf $\mathbb{C}^n \setminus 0$. Die Operation von \mathbb{Q} auf \mathbb{R} durch Addition ist frei, aber nicht topologisch frei.

Ergänzung 7.3.7. Ist G eine topologische Gruppe und $H \subset G$ eine diskrete Untergruppe, so ist die Operation von H auf G durch Linkstranslation topologisch frei. Dasselbe gilt dann natürlich auch für die Operation durch Rechtstranslation. Sie durften das im Zusammenhang mit topologischen Gruppen als Übung 4.1.25 zeigen.

Ergänzung 7.3.8. Seien G eine Hausdorffgruppe und $K \subset G$ eine kompakte Untergruppe und $\Gamma \subset G$ eine diskrete Untergruppe. So bilden nach 4.5.15 die Punkte $\bar{x} \in G/K$ des Quotienten mit trivialer Standgruppe $\Gamma_{\bar{x}} = 1$ eine offene Teilmenge $V \subset G/K$, auf der Γ topologisch frei operiert.

7.3.9. Ist X ein topologischer Raum mit einer Operation einer Gruppe G, so geben wir dem Bahnenraum X/G die Quotiententopologie bezüglich der Surjektion $X \rightarrow X/G$. Wie wir in 4.2.2 gesehen haben, ist in diesem Fall sogar für einen beliebigen weiteren Raum Y die Abbildung $Y \times X \rightarrow Y \times (X/G)$ final und die offensichtliche Abbildung liefert mithin einen Homöomorphismus $(Y \times X)/G \rightarrow Y \times (X/G)$.

195
Satz 7.3.10 (Quotientenabbildungen als Überlagerungen). Ist X ein topologischer Raum mit einer topologisch freien Operation einer Gruppe G, so ist die Surjektion auf den Bahnenraum $p : X \twoheadrightarrow X/G$, $x \mapsto Gx$ eine Überlagerung.

Beweis. Gegeben $x \in X$ und U eine offene Umgebung von x mit $G \times U \hookrightarrow X$ sind sowohl $p : U \twoheadrightarrow p(U)$ als auch $G \times U \twoheadrightarrow p^{-1}(p(U))$ Homöomorphismen, da diese Abbildungen beide bijektiv, offen und stetig sind. Folglich ist $p(U)$ eine trivial überlagerte Umgebung von Gx.

Beispiel 7.3.11. Die Klein’sche Flasche kann realisiert werden als der Quotient der Ebene nach einer topologisch frei operierenden Gruppe, wie nebenstehendes Bild illustriert.

Übungen

Übung 7.3.13. Allgemeiner als in 7.3.10 formuliert zeige man: Ist X ein topologischer Raum mit einer topologisch freien Operation einer Gruppe G und ist $H \subset G$ eine Untergruppe, so ist auch $X/H \twoheadrightarrow X/G$ eine Überlagerung.

$$\text{Top}_Y^G \xrightarrow{\cong} \text{Top}_{Y/G}$$

7.4 Lifts und Decktransformationen

Definition 7.4.1. Seien $p : \tilde{X} \rightarrow X$ und $f : Y \rightarrow X$ stetige Abbildungen. Eine stetige Abbildung $\tilde{f} : Y \rightarrow \tilde{X}$ mit $p \circ \tilde{f} = f$ heißt ein Lift oder eine Liftung oder eine Hochhebung von f. In der Kategorientheorie hatten wir so einen Lift einen „Morphismus über X“ genannt. Der Begriff Lift ist insbesondere dann gebräuchlich, wenn $p : \tilde{X} \rightarrow X$ eine Überlagerung ist. Man mag sich einen Lift durch
das folgende kommutative Diagramm veranschaulichen, das gleichzeitig auch die Terminologie erklärt:

\[
\begin{array}{ccc}
\tilde{X} & \xrightarrow{\tilde{f}} & X \\
\downarrow & & \downarrow \\
Y & \xrightarrow{f} & X
\end{array}
\]

Satz 7.4.2 (Eindeutigkeit von Lifts). Seien \(p : \tilde{X} \to X \) eine Überlagerung und \(f : Y \to X \) stetig und \(\tilde{f}, \hat{f} : Y \to \tilde{X} \) zwei Lifts von \(f \). Ist \(Y \) zusammenhängend und gibt es \(z \in Y \) mit \(\tilde{f}(z) = \hat{f}(z) \), so gilt \(\tilde{f} = \hat{f} \).

Ergänzung 7.4.3. Dasselbe gilt mit demselben Beweis, wenn wir von \(f \) nur fordern, daß es étale und separiert sein soll.

Beweis. Wir zeigen: Die Mengen \(Y_g := \{ y \in Y \mid \tilde{f}(y) = \hat{f}(y) \} \) und \(Y_u := \{ y \in Y \mid \tilde{f}(y) \neq \hat{f}(y) \} \) sind beide offen. Aus \(z \in Y_g \) und \(Y \) zusammenhängend folgt dann \(Y_u = \emptyset \). Sei also \(y \in Y \) ein Punkt. Man wähle eine trivial überlagerte Umgebung \(U \) von \(f(y) \) und eine Trivialisierung \(\tau : p^{-1}(U) \to F \times U \) von \(p \) auf \(U \). Gegeben \(i \in F \) kürzen wir \(\{ i \} \times U \) als \(i \times U \) ab. Seien nun \(i, i \in F \) gegeben durch \(\tau \tilde{f}(y) \in i \times U \) und \(\tau f(y) \in i \times U \). Dann ist

\[
W := \tilde{f}^{-1} \tau^{-1}(i \times U) \cap \hat{f}^{-1} \tau^{-1}(i \times U)
\]

eine Umgebung von \(y \), und es gilt \(W \subset Y_g \) falls \(y \in Y_g \) und \(W \subset Y_u \) falls \(y \in Y_u \). Mithin sind \(Y_g \) und \(Y_u \) beide offen.

Definition 7.4.4. Sind \(p : \tilde{X} \to X \) und \(q : \hat{X} \to X \) Überlagerungen eines topologischen Raums \(X \), so heißt ein Lift von \(p \) alias eine stetige Abbildung \(d : \tilde{X} \to \hat{X} \) mit \(q \circ d = p \) auch eine **Decktransformation** zwischen unseren Überlagerungen. Wir erhalten so die Kategorie

\[\tilde{\text{Ub}}_X \]

aller Überlagerungen von \(X \), mit Überlagerungen als Objekten und Decktransformationen als Morphismen. Wir bezeichnen die Menge aller Decktransformationen zwischen zwei Überlagerungen \(\tilde{X} \) und \(\hat{X} \) eines Raums \(X \) nach unseren Konventionen mit \(\text{Top}_X(\tilde{X}, \hat{X}) \). Die Automorphismen einer Überlagerung heißen auch ihre **Deckbewegungen**. Wir schreiben nach unseren Konventionen \(\text{Top}_X(\tilde{X}) \) für die Gruppe der Deckbewegungen von \(\tilde{X} \) über \(X \).

Beispiele 7.4.5. Die Deckbewegungen unserer Überlagerung \(\text{Exp} : \mathbb{R} \to S^1 \) sind genau die Abbildungen \(\mathbb{R} \to \mathbb{R}, x \mapsto x + n \) für \(n \in \mathbb{Z} \). Ist allgemeiner \(X \) zusammenhängend und operiert die Gruppe \(G \) topologisch frei auf \(X \), so sind die Abbildungen \(x \mapsto gx \) für \(g \in G \) genau die Deckbewegungen der Überlagerung \(X \to G \setminus X \). Das folgt unmittelbar aus der Eindeutigkeit von Lifts auf zusammenhängenden Räumen 7.4.2.
7.4.6. Eine Decktransformation einer Überlagerung auf sich selber muß keine Deckbewegung sein, vergleiche etwa 8.3.9 für ein Gegenbeispiel. Etwas allgemeiner nenne ich Morphismen in Top_X auch dann Decktransformationen, wenn die beteiligten Räume über X keine Überlagerungen sind.

7.4.7. Da jede Überlagerungsabbildung étale ist, muß nach 7.1.8 auch jede Decktransformation étale sein. Insbesondere ist also jede Decktransformation offen und jede bijektive Decktransformation ein Isomorphismus von Überlagerungen.

Ergänzung 7.4.8. Mir ist nicht klar, ob jede Decktransformation bereits selbst eine Überlagerungsabbildung sein muß. Das gilt jedoch für lokal zusammenhängende Räume.

Definition 7.4.9. Eine zusammenhängende Überlagerung $p : \tilde{X} \rightarrow X$ derart, daß die Gruppe der Deckbewegungen transitiv auf der Faser $p^{-1}(x)$ über jedem Punkt $x \in X$ operiert, nennt man auch normal oder Galois oder regulär.

7.4.10 (Diskussion der Terminologie). Ich finde diese der Galoistheorie nachempfundene Begriffsbildung hier ebenso ungeschickt wie in der Algebra: Normalerweise ist eine Überlagerung nämlich keineswegs normal im mathematischen Sinne, oder um es anders auszudrücken: Normal zu sein ist für Überlagerungen etwas ganz Besonderes.

Übungen

Übung 7.4.11. Sei $\tilde{X} \rightarrow X$ eine Überlagerung mit zusammenhängendem Totalraum \tilde{X} und $G = \text{Top}_{\tilde{X}}(\tilde{X})$ ihre Deckbewegungsgruppe. Man zeige, daß G topologisch frei auf \tilde{X} operiert. Nach 7.3.10 ist also $\tilde{X} \rightarrow (G \setminus \tilde{X})$ eine Überlagerung.

7.5 Universelle Überlagerungen

Definition 7.5.1. Eine bepunktete Überlagerung $(\tilde{X}, \tilde{x}) \rightarrow (X, x)$ von bepunkteten Räumen heißt eine bepunktet universelle Überlagerung, wenn es für jede
Versuch der bildlichen Darstellung einer dreiblättrigen Überlagerung der Acht, die keine nichttrivialen Decktransformationen zuläßt. Diese Überlagerung ist also nicht normal.
weitere bepunktete Überlagerung \((\tilde{X}, \tilde{x}) \rightarrow (X, x)\) ihres Wertebereichs genau eine basispunkterhaltende Decktransformation \((\tilde{X}, \tilde{x}) \rightarrow (\hat{X}, \hat{x})\) gibt.

7.5.2. In kategorientheoretischer Terminologie ist eine universelle Überlagerung eines bepunkteten Raums also ein initiales Objekt in der Kategorie aller seiner bepunkteten Überlagerungen. Insbesondere ist eine universelle Überlagerung eines bepunkteten Raums eindeutig bis auf eindeutigen Isomorphismus, weshalb sie den bestimmten Artikel verdient und wir guten Gewissens von der universellen Überlagerung reden dürfen. Universelle Überlagerungen in der basispunktfreien Situation, wie wir sie gleich im Anschluß definieren, haben meines Wissens keine vernünftige universelle Eigenschaft und sind auch nur eindeutig bis auf nicht-eindeutigen Isomorphismus. Wir erlauben uns dennoch auch in dieser Situation den bestimmten Artikel.

Definition 7.5.3. Eine Überlagerung \(p : \tilde{X} \rightarrow X\) heißt universell, wenn sie (1) surjektiv ist, wenn (2) beide Räume nicht leer sind, und wenn (3) für alle \(\tilde{x} \in \tilde{X}\) die Überlagerung von bepunkteten Räumen \((\tilde{X}, \tilde{x}) \rightarrow (X, p(\tilde{x}))\) bepunktet universell ist im Sinne der vorhergehenden Definition 7.5.1.

7.5.4 (Decktransformationen einer universellen Überlagerung). Aus unseren Annahmen folgt, daß jede Decktransformation von einer universellen Überlagerung zu sich selber bereits eine Deckbewegung ist und daß die Deckbewegungsgruppe auf jeder Faser frei und transitiv operiert. Weiter folgt, daß die Deckbewegungsgruppe topologisch frei auf unserer Überlagerung operiert. Ist genauer
\[
u : \tilde{X} \rightarrow X
\]
unsere universelle Überlagerung und \(G\) ihre Deckbewegungsgruppe und \(U \subset \tilde{X}\) eine offene Teilmenge mit trivial überlagertem Bild \(u(U) \subset X\), so induziert die Operation eine offene Einbettung \(G \times U \hookrightarrow \tilde{X}\). Insbesondere muß \(u\) einen Homöomorphismus \(G \setminus \tilde{X} \rightarrow X\) induzieren, denn diese Abbildung ist bijektiv und nach 7.3.10 wie jeder Quotient nach einer topologisch freien Operation eine Überlagerungsabbildung.

Beispiel 7.5.5. Die Überlagerung \(\operatorname{Exp} : \mathbb{R} \rightarrow S^1\) ist universell, wie 7.5.10 und 7.5.14 zeigen werden. Allgemeiner wird aus 8.2.4 folgen, daß eine surjektive Überlagerung durch einen zusammenhängenden lokal wegzusammenhängenden Raum mit trivialer Fundamentalgruppe stets universell ist.

Definition 7.5.6. Ein topologischer Raum heißt einfach zusammenhängend, wenn er nicht leer ist und jede Überlagerung unseres Raums trivial ist.

7.5.7. Jeder einfach zusammenhängende Raum ist zusammenhängend, da eine disjunkte Vereinigung zweier nichtleerer offener Teilmengen stets nichttriviale Überlagerungen besitzt.
Versuch der graphischen Darstellung einer universellen Überlagerung einer bepunktetem Kreislinie. Gemeint ist eine nach oben und unten unendliche Spirale, die vertikal auf die Kreislinie projiziert wird.

Lemma 7.5.9. Ein Raum ist einfach zusammenhängend genau dann, wenn die Identität auf unserem Raum eine universelle Überlagerung ist.

Beweis. Daß die Identität auf jedem einfach zusammenhängenden Raum eine universelle Überlagerung ist, folgt aus dem Eindeutigkeitssatz für Lifts auf zusammenhängenden Räumen 7.4.2, da ja jeder einfach zusammenhängende Raum nach 7.5.7 zusammenhängend ist. Ist umgekehrt die Identität auf einem Raum Y eine universelle Überlagerung, so ist nach unseren Definitionen Y nicht leer. Ist dann $p : \hat{Y} \to Y$ eine Überlagerung und wählen wir $y \in Y$, so können wir unter unseren Annahmen eine Abbildung

$$p^{-1}(y) \times Y \to \hat{Y}$$

definieren, indem wir jedem Paar (\hat{y}, z) das Bild von z unter dem eindeutig bestimmten Lift $(Y, y) \to (\hat{Y}, \hat{y})$ der Identität zuordnen. Sicher ist unsere Abbildung stetig und als Decktransformation nach 7.4.7 auch offen, ja sogar étale. Wenden wir die Annahme des Lemmas auch auf die anderen Punkte von Y an, so erkennen wir unschwer, daß unsere Abbildung zusätzlich injektiv und surjektiv ist und damit die Überlagerung $\hat{Y} \to Y$ trivial. □

Lemma 7.5.10. Nichtleere reelle Intervalle sind einfach zusammenhängend.

Beweis. Wir zeigen das nur für kompakte Intervalle, der allgemeine Fall bleibt dem Leser zur Übung. Wir benutzen das Kriterium aus Lemma 7.5.9. Sei also $p : U \to [a, b]$ eine Überlagerung. Aus Kompaktheitsgründen finden wir eine Unterteilung $a = a_0 \leq a_1 \leq \ldots \leq a_n = b$ derart, daß jedes der Teilintervalle $[a_{i-1}, a_i]$ trivial überlagert ist. Gegeben ein Punkt $u \in U$ finden wir zunächst ein i mit $p(u) \in [a_{i-1}, a_i]$, dann einen Lift $l : [a_{i-1}, a_i] \to U$ der Einbettung $[a_{i-1}, a_i] \hookrightarrow [a, b]$, dessen Bild unseren Punkt u enthält, und diesen Lift können wir schließlich induktiv auf ganz $[a, b]$ erweitern. □

Satz 7.5.11 (Liften bei einfachem Zusammenhang des Ausgangsraums). Sei $f : (Y, y) \to (X, x)$ eine stetige Abbildung und sei $(\hat{X}, \hat{x}) \to (X, x)$ eine Überlagerung ihres Wertebereichs. Ist Y einfach zusammenhängend, so besitzt f genau einen Lift $\hat{f} : (Y, y) \to (\hat{X}, \hat{x})$. 203
Graphische Darstellung eines Teils einer universellen Überlagerung der Figur 8. Jede vertikale Kante dieses Bildes geht unter der Überlagerungsabbildung homöomorph auf die obere Schlaufe der 8, jede horizontale Kante auf die untere Schlaufe der 8, und zwar soll das Durlaufen von unten nach oben beziehungsweise von rechts nach links dabei jeweils dem Durchlaufen im Uhrzeigersinn entsprechen. Es gilt also salopp gesagt, „sich alle Kanten dieses Bildes gleich lang zu denken“. Die Kreuzungspunkte sind nach 8.3.3 in Bijektion zu den Elementen der freien Gruppe in zwei Erzeugern x und y, indem man etwa von der Mitte ausgehend jedes x interpretiert als „gehe nach rechts zum nächsten Kreuzungspunkt“, jedes x^{-1} als „gehe nach links“, jedes y als „gehe nach oben“ und y^{-1} als „gehe nach unten“.
Beispiel 7.5.12. Ist \(U \subset \mathbb{C} \) einfach zusammenhängend und \(f : U \to \mathbb{C} \) stetig ohne Nullstelle, so gibt es für jedes \(n \in \mathbb{Z} \setminus 0 \) eine stetige Funktion \(g : U \to \mathbb{C}^\times \) mit \(g(z)^n = f(z) \) für alle \(z \in U \). Weiter gibt es \(g : U \to \mathbb{C} \) stetig mit \(\exp(g(z)) = f(z) \) für alle \(z \in U \). Sind wir in der Funktionentheorie und ist \(U \) offen und \(f \) holomorph, so zeigt der Umkehr- satz für holomorphe Funktionen, daß auch \(g \) holomorph sein muß.

Beweis. Die Eindeutigkeit folgt aus dem Satz 7.4.2 über die Eindeutigkeit von Lifts, da ja \(Y \) zusammenhängend ist nach 7.5.7. Die wesentliche neue Aussage betrifft die Existenz. Wir betrachten dazu das pull-back-Diagramm

\[
\begin{array}{ccc}
Y \times_X \hat{X} & \to & \hat{X} \\
\downarrow & & \downarrow \\
Y & \to & X
\end{array}
\]

Nach 7.5.13 ist auch die linke Vertikale eine Überlagerung. Da \(Y \) einfach zusammenhängend ist, muß die linke Vertikale eine triviale Überlagerung sein. Wir finden also eine stetige Abbildung \(Y \to Y \times_X \hat{X} \) mit \(y \mapsto (y, \hat{x}) \). Verknüpfen wir diese stetige Abbildung mit der oberen Horizontale, so ergibt sich der gesuchte Lift.

7.5.13 (Pullback von Überlagerungen). Ist \(\hat{X} \to X \) eine Überlagerung und \(Y \to X \) eine stetige Abbildung, so ist auch der pull-back \(\hat{X} \times_X Y \to Y \) eine Überlagerung. In der Tat folgt das für triviale Überlagerungen daraus, daß Diagramme der Gestalt

\[
\begin{array}{ccc}
F \times Y & \to & F \times X \\
\downarrow & & \downarrow \\
Y & \to & X
\end{array}
\]

in jeder Kategorie kartesisch sind. Im allgemeinen folgt es dann aus der Transitivity des Pullback 6.2.8.

Ergänzung 7.5.15. Ich weiß nicht, ob umgekehrt jede universelle Überlagerung durch einen einfach zusammenhängenden Raum geschehen muß. Sind unsere Räume jedoch lokal einfach zusammenhängend, so folgt das aus der Erkenntnis, daß die Verknüpfung von zwei Überlagerungsabbildungen zwischen lokal einfach zusammenhängenden Räumen wieder eine Überlagerungsabbildung sein muß.

Beispiel 7.5.16. Die Klein’sche Flasche hat nach 7.3.11 als universelle Überlagerung die Ebene. Dasselbe gilt im Übrigen für alle unsere kompakten zusammenhängenden Flächen mit Ausnahme der Kugelschale \(S^2 \) und des zweidimensionalen reell-projektiven Raums \(\mathbb{P}^2 \mathbb{R} \).
Übungen

Übung 7.5.17. Das Quadrat $[0, 1]^2$ und allgemeiner alle Hyperkuben $[0, 1]^n$ sind einfach zusammenhängend. Hinweis: Man orientiere sich am Beweis von 7.5.10.

Vorschau 7.5.18. Später wird uns 8.2.5 ein Kriterium für einfachen Zusammenhang liefern, dessen Beweis aber bereits die Erkenntnis verwendet, daß das Quadrat $[0, 1]^2$ einfach zusammenhängend ist. In ?? zeigen wir, daß ganz allgemein das Produkt zweier einfach zusammenhängender Räume wieder einfach zusammenhängend ist, falls einer der Faktoren zusätzlich lokal zusammenhängend ist.

Übung 7.5.19. Für $n \geq 1$ betrachte man den Kreis $K_n \subset \mathbb{R}^2$ mit Radius $1/n$, der rechts von der y-Achse liegt und diese im Ursprung berührt. Man zeige, daß der Raum $X = \bigcup_{n \geq 1} K_n$ keine universelle Überlagerung besitzt. Dieser sogenannte Kreisraum dient oft als Gegenbeispiel.

Übung 7.5.20. Ist G eine topologische Gruppe und $\pi : \tilde{G} \to G$ eine universelle Überlagerung, so bilden alle stetigen Abbildungen $\tilde{G} \to \tilde{G}$, die Rechtsmultiplikationen $(\cdot y) : G \to G$ hochheben, ein Untermonoid von $\text{Top}_G \tilde{G}$ und sogar eine Untergruppe von $\text{Top}_G^G G$, die frei und transitiv auf G operiert. Ist weiter \tilde{e} ein Urbild von e, so gibt es höchstens eine stetige Verknüpfung

$$\tilde{G} \times \tilde{G} \to \tilde{G}$$

mit neutralem Element \tilde{e}, die mit π verträglich ist, und mit dieser Verknüpfung wird dann \tilde{G} eine topologische Gruppe. Wir nennen diese Gruppe die universelle Überlagerung der topologischen Gruppe G. Kriterien für die Existenz derartiger universeller Überlagerungen diskutieren wir in 8.9.1 folgende.

7.6 Eigenschaften von Funktoren

7.6.1. Ich erinnere einige Begriffe zu Funktoren aus 9.2.20.

Definition 7.6.2. 1. Ein Funktor $F : \mathcal{A} \to \mathcal{B}$ heißt treu, wenn er Injektionen $F : \mathcal{A}(A, A') \hookrightarrow B(FA, FA')$ auf den Morphismen induziert, für alle $A, A' \in \mathcal{A}$.

2. Ein Funktor $F : \mathcal{A} \to \mathcal{B}$ heißt volltreu, wenn er Bijektionen $F : \mathcal{A}(A, A') \to B(FA, FA')$ auf den Morphismen induziert. Ich notiere volltreue Funktoren \sim.

3. Ein Funktor $F : \mathcal{A} \to \mathcal{B}$ heißt eine Äquivalenz von Kategorien, wenn er volltreu ist und zusätzlich eine Surjektion auf Isomorphieklassen von Objekten induziert, wenn es also in Formeln für alle $B \in \mathcal{B}$ ein $A \in \mathcal{A}$ gibt.
Versuch der graphischen Darstellung des Kreisraums. Man muß sich dabei allerdings noch unendlich viele immer kleinere Kreise hinzudenken.
mit $FA \cong B$. Ich notiere Äquivalenzen von Kategorien $\sim \rightarrow$. Die doppelte Schlinge soll andeuten, daß dieser Begriff schwächer ist als der Begriff eines Isomorphismus von Kategorien, wie er im Anschluß eingeführt wird.

4. Ein Funktor $F : A \to B$ heißt ein **Isomorphismus von Kategorien**, wenn er bijektiv ist auf Objekten und auf Morphismen, wenn er also ein Isomorphismus ist in der Kategorie der Kategorien aus 8.7.1. Ich notiere Isomorphismen von Kategorien $\cong \rightarrow$.

Beispiel 7.6.3. Sei k ein Körper. Wir betrachten die Kategorie Modf_k aller endlichdimensionalen alias endlich erzeugten k-Vektorräume mit linearen Abbildungen als Morphismen. Das Kürzel steht für „finitely generated k-Module“, eine andere Bezeichnung für dasselbe Objekt. Weiter betrachten wir, und zwar sogar für einen beliebigen Ring k, die **Matrixkategorie** $\text{Mat} = \text{Mat}_k$ mit Objekten $\text{Ob}(\text{Mat}) := \mathbb{N}$ und Matrizen mit Einträgen in k des entsprechenden Formats als Morphismen, in Formeln $\text{Mat}(m,n) := \text{Mat}(n \times m; k)$. Die Verknüpfung von Morphismen in Mat schließlich sei die Matrixmultiplikation. Im Fall eines Körpers k ist dann der offensichtliche Funktor $n \mapsto k^n$ eine Äquivalenz von Kategorien $\text{Mat}_k \sim \rightarrow \text{Modf}_k$ zwischen unserer Matrixkategorie Mat_k und der Kategorie der endlich erzeugten k-Vektorräume, aber ist natürlich kein Isomorphismus von Kategorien. Diese Aussage faßt eine Vielzahl von Aussagen der linearen Algebra zusammen und illustriert meines Erachtens recht gut die Kraft und Eleganz der Sprache der Kategorientheorie. Wenn unser Ring k selbst durch einen größeren Ausdruck gegeben ist, schreiben wir für unsere Matrixkategorie statt Mat_k auch manchmal $\text{Mat}(k)$.

Übungen

Übung 7.6.4. Jede Äquivalenz von Kategorien induziert eine Bijektion zwischen den zugehörigen Isomorphieklassen von Objekten. Zum Beispiel werden die endlichdimensionalen k-Vektorräume klassifiziert durch ihre Dimension, alias durch Elemente von \mathbb{N}, alias durch Isomorphieklassen der Matrixkategorie.

7.7 Transformationen

7.7.1. Ich erinnere nun an das Konzept der Transformation von Funktoren, wie es in 9.3 ausführlicher besprochen wird.

Definition 7.7.2. Seien A, B Kategorien und $F, G : A \to B$ Funktoren. Eine **Transformation** $\tau : F \Rightarrow G$ ist eine Vorschrift, die jedem Objekt $X \in A$ einen
Morphismus $\tau_X \in B(FX, GX)$ zuordnet derart, daß für jeden Morphismus $f : X \rightarrow Y$ in A das folgende Diagramm in B kommutiert:

$$
\begin{array}{ccc}
FX & \tau_X & GX \\
\downarrow Ff & & \downarrow Gf \\
FY & \tau_Y & GY \\
\end{array}
$$

In Formeln meint dies „Kommutieren“ die Gleichheit $(Gf) \circ \tau_X = \tau_Y \circ (Ff)$ in der Morphismenmenge $B(FX, GY)$. Ob ein Doppelpfeil eine Transformation von Funktoren oder vielmehr eine Implikation meint, muß der Leser aus dem Kontext erschließen. Sind alle τ_X Isomorphismen, so nenne ich τ eine Isotransformation und notiere sie $\sim \Rightarrow$. Gibt es zwischen zwei Funktoren eine Isotransformation, so heißen sie isomorph.

7.7.3 (Diskussion der Terminologie). In der Literatur heißen unsere Transformationen meist „natürliche Transformationen“. Diese Terminologie schien mir jedoch unnötig umständlich und entspricht auch nicht meinem Sprachempfinden: Ich möchte zum Beispiel unter der „natürlichen“ Transformation des Identitätsfunktors auf der Kategorie aller \mathbb{R}-Vektorräume in den Bidualraumfunktor gerne die in 7.7.4 gegebene Transformation verstehen, die zwar keineswegs die einzige Transformation zwischen diesen Funktoren ist, aber wohl schon die „natürlichste“. In der Literatur heißen unsere Isotransformationen auch und sogar meist Isomorphismen von Funktoren oder Äquivalenzen von Funktoren.

Beispiel 7.7.4 (Bidualraum und Identitätsfunktor). Sei k ein Körper und $B : \text{Mod}_k \rightarrow \text{Mod}_k$ der Funktor, der jedem k-Vektorraum V seinen Bidualraum $BV := V^{\vee\vee}$ zuordnet. So liefern die Evaluationen $e_V : V \rightarrow V^{\vee\vee}$, $v \mapsto (f \mapsto f(v))$ eine Transformation $e_V : \text{Id} \Rightarrow B$ und eine Isotransformation zwischen den Restriktionen dieser Funktoren auf die Kategorie der endlichdimensionalen k-Vektorräume, vergleiche ???. Oft formalisiert man Situationen dieser Art nicht bis ins Letzte aus und spricht etwa von kanonischen Abbildungen oder kanonischen Isomorphismen, wenn bei formaler Betrachtung Abbildungen oder Isomorphismen $\tau_X : FX \rightarrow GX$ gemeint sind, die in ihrer Gesamtheit eine Transformation beziehungsweise Isotransformation von Funktoren $\tau : F \sim \Rightarrow G$ bilden.

Beispiel 7.7.5 (Dualraum und Transponieren). Sei k ein Körper und $D : \text{Mod}_k \rightarrow \text{Mod}^{opp}_k$ der Funktor, der jedem Raum seinen Dualraum zuordnet. Sei weiter Mat_k die Matrizenkategorie aus 7.6.3 und $T : \text{Mat}_k \rightarrow \text{Mat}^{opp}_k$ der Funktor, der die Objekte festhält und Matrizen transponiert. Sei schließlich $R : \text{Mat}_k \rightarrow \text{Mod}_k$ unser „Realisierungsfunktor“ $n \mapsto k^n$ aus 7.6.3 und bezeichne R auch den entsprechenden Funktor zwischen den jeweils opponierten Kategorien. So erhalten wir eine Isotransformation

$$
\tau : RT \sim \Rightarrow DR
$$

209
indem wir jeder natürlichen Zahl alias jedem Objekt \(n \in \text{Mat}_k \) den offensichtlichen Isomorphismus \(\tau_n : k^n \cong (k^n)^\top \) zuordnen. Es kann hilfreich sein, durch Doppelpfeile in Diagrammen von Kategorien und Funktoren klarzumachen, zwischen welchen Funktoren eine Transformation gemeint ist. So wäre etwa in diesem Beispiel unser \(\tau \) ein möglicher Doppelpfeil im Diagramm

\[
\begin{array}{c}
\text{Mat}_k \\
\downarrow R \\
\text{Mod}_k
\end{array}
\begin{array}{c}
\overset{T}{\rightarrow} \\
\overset{\downarrow R}{\tau} \\
\overset{D}{\rightarrow}
\begin{array}{c}
\text{Mat}^\text{opp}_k \\
\text{Mod}^\text{opp}_k
\end{array}
\end{array}
\]

Beispiel 7.7.6. Sind \(\tau : F \Rightarrow G \) und \(\sigma : G \Rightarrow H \) Transformationen, so ist auch \(\sigma \circ \tau : F \Rightarrow H \) durch \(\sigma \circ \tau \) gegeben, für jedes Objekt \(X \) der Ausgangskategorie von \(F \) eine Transformation. Des weiteren gibt es für jeden Funktor \(F \) die **identische Transformation** \(\text{id} = \text{id}_F \) von besagtem Funktor zu sich selber, gegeben durch \(\text{id}_F(X) := \text{id}_{FX} \) für jedes Objekt \(X \) der Ausgangskategorie unseres Funktors. Sind \(A, B \) Kategorien, so bilden die Funktoren \(A \rightarrow B \) selbst eine Kategorie, mit Funktoren als Objekten und Transformationen als Morphismen. Ich verwende für diese **Funktorkategorie** die beiden Notationen \(\text{Cat}(A, B) = B^A \), so daß etwa für Funktoren \(F, G : A \rightarrow B \) die Menge der Transformationen

\[
\text{Cat}(A, B)(F, G) = B^A(F, G)
\]

notiert werden kann. Werden die Kategorien selber durch größere Ausdrücke gegeben, so sind für die Menge der Transformationen auch abkürzende Notationen wie etwa \(\text{Trans}(F, G) \) sinnvoll und üblich. Unsere Isotransformationen sind genau die Isomorphismen der Funktorkategorie.

Beispiel 7.7.7. Seien \(F, G : A \rightarrow B \) Funktoren und \(\tau : F \Rightarrow G \) eine Transformation. Gegeben ein weiterer Funktor \(H : B \rightarrow C \) erhalten wir in offensichtlicher Weise eine Transformation \(H \tau : HF \Rightarrow HG \). Gegeben ein weiterer Funktor \(K : D \rightarrow A \) erhalten wir in offensichtlicher Weise eine Transformation \(\tau K : FK \Rightarrow GK \). Offensichtlich liefern diese Konstruktionen ihrerseits Funktoren \(\text{Cat}(A, B) \rightarrow \text{Cat}(A, C) \) und \(\text{Cat}(A, B) \rightarrow \text{Cat}(D, B) \) zwischen den entsprechenden Funktorkategorien, die wir als das **Nachschalten von** \(H \) bezeichnen.

7.7.8 (Schwierigkeiten der Notation). Die Notationen \(\tau_K \) und \(H \tau \) führen leicht zu Verwirrung, sobald nicht aus der Art der Symbole klar ist, welche Symbole Funktoren und welche Transformationen darstellen. Ich kenne keine generelle Lösung für diese Schwierigkeiten der Notation. Hier versuche ich, eine gewisse Übersichtlichkeit dadurch zu erreichen, daß ich systematisch lateinische Großbuchstaben für Funktoren und kleine griechische Buchstaben für Transformationen verwende.
Übungen

Übung 7.7.9. Sind zwei Funktoren isomorph und ist der Eine eine Äquivalenz von Kategorien, so auch der Andere.

$$G$-Ens $\mathfrak{\rightarrow} \text{Cat}([G],\text{Ens})$$

Übung 7.7.11. Man zeige: Ein Funktor $F : A \rightarrow B$ ist genau dann eine Äquivalenz von Kategorien, wenn es eine Äquivalenz von Kategorien in die Gegenrichtung $G : B \rightarrow A$ gibt nebst einer Isotransformation $\tau : \text{Id}_A \mathfrak{\Rightarrow} GF$. Die Äquivalenz G oder genauer das Paar (G, τ) heißt dann ein quasiinverser Funktor zu F. Man zeige weiter: Zu jedem Paar (G, τ) wie eben gibt es genau eine Isotransformation $\eta : FG \mathfrak{\Rightarrow} \text{Id}_A$ mit $(\eta F) \circ (F \tau) = \text{id}_F$.

Übung 7.7.12. Man zeige: Genau dann ist ein Funktor $F : A \rightarrow B$ eine Äquivalenz von Kategorien, wenn es einen Funktor $G : B \rightarrow A$ gibt derart, daß FG isomorph ist zum Identitätsfunktor auf B und GF isomorph zum Identitätsfunktor auf A.

Übung 7.7.13. Man zeige: Gegeben eine Äquivalenz von Kategorien $F : A \mathfrak{\Rightarrow} B$ und ein Funktor $G : B \rightarrow A$ nebst einer Isotransformation $\tau : FG \mathfrak{\Rightarrow} \text{Id}_A$ ist auch G eine Äquivalenz von Kategorien und (G, τ) quasiinvers zu F.

Übung 7.7.14 (Äquivalenzen von Funktorkategorien). Sind A, B Kategorien und ist $K : A' \mathfrak{\Rightarrow} A$ eine Äquivalenz von Kategorien, so liefert das Vorschalten von K eine Äquivalenz von Funktorkategorien

$$\text{Cat}(A, B) \mathfrak{\Rightarrow} \text{Cat}(A', B)$$

Ist ähnlich $H : B \mathfrak{\Rightarrow} B'$ eine Äquivalenz von Kategorien, so liefert das Nachschalten von H eine Äquivalenz von Funktorkategorien

$$\text{Cat}(A, B) \mathfrak{\Rightarrow} \text{Cat}(A, B')$$

Ergänzende Übung 7.7.15 (Exponentialgesetz für Kategorien). Man zeige, daß man für je drei Kategorien A, B, C einen Isomorphismus von Kategorien

$$\text{Cat}(A, \text{Cat}(B, C)) \mathfrak{\Rightarrow} \text{Cat}(A \times B, C)$$

erhält durch die Vorschrift $F \mapsto \tilde{F}$ mit $\tilde{F}(A, B) = (F(A))(B)$ auf Objekten und eine vom Leser zu spezifizierende Vorschrift auf Morphismen.
8 Überlagerungen und Fundamentalgruppe

8.1 Transport durch Wegeliften

Definition 8.1.1. Seien \(p : \tilde{X} \to X\) eine Überlagerung, \(x, y \in X\) Punkte der Basis und \(\gamma \in \Omega(X, y, x)\) ein Weg von \(x\) nach \(y\). So definieren den **Transport durch Wegeliften**, eine Abbildung

\[
\langle \gamma \rangle : p^{-1}(x) \to p^{-1}(y)
\]

von der Faser bei \(x\) in die Faser bei \(y\), wie folgt: Da nach 7.5.10 das Intervall \([0, 1]\) einfach zusammenhängend ist, gibt es nach 7.5.11 für jeden Punkt \(\tilde{x} \in p^{-1}(x)\) genau einen Lift \(\tilde{\gamma}_{\tilde{x}}\) unseres Weges \(\gamma\) mit Anfangspunkt \(\tilde{\gamma}_{\tilde{x}}(0) = \tilde{x}\). Wir definieren \(\langle \gamma \rangle(\tilde{x})\) als seinen Endpunkt, in Formeln

\[
\langle \gamma \rangle(\tilde{x}) := \tilde{\gamma}_{\tilde{x}}(1).
\]

Lemma 8.1.2 (Eigenschaften des Transports durch Wegeliften). Sei \(p : \tilde{X} \to X\) eine Überlagerung.

1. Homotope Wege in der Basis liefern dieselbe Abbildung auf den Fasern, in Formeln folgt aus \(\gamma \simeq \beta\) also \(\langle \gamma \rangle = \langle \beta \rangle\). Insbesondere ist also auch für jede Homotopielasse \(\gamma\) von Wegen die Abbildung \(\langle \gamma \rangle\) wohldefiniert;

2. Der konstante Weg \(\varepsilon\) bei \(x \in X\) definiert auf der Faser \(p^{-1}(x)\) die identische Abbildung \(\langle \varepsilon \rangle = \text{id}\);

3. Sind \(\beta\) und \(\gamma\) verknüpfbare Wege in \(X\), so gilt \(\langle \beta \rangle \circ \langle \gamma \rangle = \langle \beta \ast \gamma \rangle\);

4. Ist \(q : \tilde{Y} \to Y\) eine weitere Überlagerung und sind \(f : X \to Y\) und \(\tilde{f} : \tilde{X} \to \tilde{Y}\) stetige Abbildungen mit \(q \circ \tilde{f} = f \circ p\) und ist \(\gamma\) ein Weg in \(X\), so gilt \(\tilde{f} \circ \langle \gamma \rangle = \langle f \gamma \rangle \circ \tilde{f}\).

Ergänzung 8.1.3. Man mag die beiden mittleren Punkte dahingehend zusammenfassen, daß jede Überlagerung \(p : \tilde{X} \to X\) einen Funktor \([\tilde{X}] : \mathcal{W}_X \to \text{Ens}\) des fundamentalen Gruppoids von \(X\) in die Kategorie der Mengen liefert vermittels der Vorschrift \(x \mapsto p^{-1}(x)\) auf Objekten und \(\gamma \mapsto \langle \gamma \rangle\) auf Morphismen. Der letzte Punkt besagt in dieser Sprache, daß die von \(\tilde{f}\) auf den Fasern induzierte Abbildung eine Transformation unseres Funktors \([\tilde{Y}] : \mathcal{W}_Y \to \text{Ens}\) zur Verknüpfung des Funktors Funktor \(f_\sharp : \mathcal{W}_Y \to \mathcal{W}_X\) mit dem Funktor \([\tilde{X}] : \mathcal{W}_X \to \text{Ens}\) ist, in Formeln also eine Transformation \([\tilde{Y}] \Rightarrow [\tilde{X}] \circ f_\sharp\).

Beweis. Wir zeigen nur die erste Aussage, die anderen sind klar nach den Definitionen. Sei \(h : [0, 1]^2 \to X\) eine Homotopie mit festen Endpunkten zwischen unseren Wegen. Auf der vorderen beziehungsweise hinteren Kante unseres Quadrats
Eine dreiblättrige Überlagerung der Acht, ein Punkt unten und die drei Punkte der Faser darüber, ein geschlossener Weg unten und die zugehörige Operation auf der Faser am Beispiel des „untersten“ Punktes der Faser, der in diesem Fall auf den „obersten“ Punkt der Faser geschoben wird.
haben wir also \(h(0, t) = \gamma(t) \) beziehungsweise \(h(1, t) = \beta(t) \), und auf der oberen und der unteren Kante ist \(H \) konstant. Da unser Quadrat nach 7.5.17 einfach zusammenhängend ist, gibt es für alle \(\tilde{x} \in p^{-1}(x) \) einen Lift \(\tilde{h} : [0, 1]^2 \to \tilde{X} \) von \(h \) mit \(\tilde{h}(0, 0) = \tilde{x} \). Nach dem Satz über die Eindeutigkeit von Lifts ist dieser Lift konstant \(\tilde{x} \) auf der unteren Kante, folglich ist er auf der vorderen beziehungsweise hinteren Kante der Lift mit Anfangspunkt \(\tilde{x} \) von \(\gamma \) beziehungsweise \(\beta \). Da aber unser Lift auch konstant sein muß auf der oberen Kante, folgt \(\langle \gamma \rangle(\tilde{x}) = \langle \beta \rangle(\tilde{x}) \).

8.1.4. Gegeben eine Menge \(F \) notieren wir die Gruppe aller Permutationen von \(F \) als \(\text{Ens}^\times(F) \). In der Tat ist das genau die Menge der invertierbaren Elemente des Monoids \(\text{Ens}(F) \) aller Abbildungen von \(F \) in sich selber.

Satz 8.1.5 (Faserfunktor).

1. Ist \(p : \tilde{X} \to X \) eine Überlagerung und \(x \in X \) ein Punkt, so liefert der Transport durch Wegelift \(\gamma \mapsto \langle \gamma \rangle \) einen Gruppenhomomorphismus \(\pi_1(X, x) \to \text{Ens}^\times(p^{-1}(x)) \) alias eine Operation der Fundamentalgruppe \(\pi_1(X, x) \) auf der Faser \(p^{-1}(x) \) über dem Basispunkt, die Wegeliftungsoperation;

2. Ist \(q : \hat{X} \to X \) eine weitere Überlagerung und \(d : \tilde{X} \to \hat{X} \) eine Decktransformation, so ist die Einschränkung \(d : p^{-1}(x) \to q^{-1}(x) \) auf die Fasern über \(x \) eine \(\pi_1(X, x) \)-äquivariante Abbildung.

8.1.6. Für einen bepunkteten topologischen Raum \((X, x)\) erhalten wir also einen Funktor von der Kategorie seiner Überlagerungen in die Kategorie der Mengen mit Operation der Fundamentalgruppe, indem wir jeder Überlagerung von \(X \) ihre Faser bei \(x \) zuordnen. Dieser sogenannte **Faserfunktor** \(F = F_x \) wird in Formeln gegeben durch die Vorschrift

\[
F : \text{Üb}_X \to \pi_1(X, x) \cdot \text{Ens}
\]

\[
p \mapsto p^{-1}(x)
\]

Beweis. Das folgt alles sofort aus dem vorhergehenden Lemma 8.1.2.

Satz 8.1.7 (Fundamentalgruppe einer Überlagerung).

1. Jede Überlagerung bepunkteter Räume \(p : (\tilde{X}, \tilde{x}) \to (X, x) \) induziert eine Injektion \(p_\sharp : \pi_1(\tilde{X}, \tilde{x}) \to \pi_1(X, x) \) auf den Fundamentalgruppen, und das Bild dieser Injektion ist die Standgruppe von \(\tilde{x} \) unter der Wegeliftungsoperation, in Formeln

\[
\text{im } p_\sharp = \{ \gamma \in \pi_1(X, x) \mid \langle \gamma \rangle(\tilde{x}) = \tilde{x} \}
\]

2. Ist zusätzlich unsere Überlagerung \(\tilde{X} \) wegzusammenhängend, so operiert die Fundamentalgruppe \(\pi_1(\tilde{X}, \tilde{x}) \) transitiv auf der Faser über dem Basispunkt \(p^{-1}(x) \).
Beweis. Seien \(\tilde{x}, \tilde{y} \in \tilde{X} \) beliebig und \(x, y \in X \) ihre Bilder. So liefert nach unseren Definitionen und wegen der Eindeutigkeit von Lifts 7.4.2 das Nachschalten von \(p \) eine Bijektion

\[
\Omega(\tilde{X}, \tilde{y}, \tilde{x}) \xrightarrow{\sim} \{ \gamma \in \Omega(X, y, x) \mid \langle \gamma \rangle(\tilde{x}) = \tilde{y} \}
\]

Diese Bijektion induziert dann eine Bijektion auf Homotopieklassen. Setzen wir \(\tilde{y} = \tilde{x} \), so ergibt sich Teil 1. Läßt sich jeder Punkt \(\tilde{y} \) aus der Faser \(p^{-1}(x) \) in \(\tilde{X} \) durch einen Weg \(\alpha \) mit \(\tilde{x} \) verbinden, so liegt die Homotopieklasse von \(\gamma = p \circ \alpha \) in \(\pi_1(X, x) \) und wir haben \(\tilde{y} = \langle \gamma \rangle(\tilde{x}) \).

Proposition 8.1.9. Sei \(X \) ein Raum mit einer topologisch freien Operation einer Gruppe \(G \). So erhalten wir für jeden Punkt \(x \in X \) mit der Notation \(\bar{x} \) für sein Bild im Bahnenraum einen Gruppenhomomorphismus

\[
c_x : \pi_1(X/G, \bar{x}) \to G
\]

durch die Vorschrift \(c_x(\gamma)^{-1}x = \langle \gamma \rangle x \). Wir nennen \(c_x \) den durch \(x \) gegebenen Faserwirkungsvergleich.

Beweis. Bezeichne \(p : X \to X/G \) die Quotientenabbildung. Nach 7.3.10 ist sie eine Überlagerung. Per definitionem operiert \(G \) frei und transitiv auf der Faser \(p^{-1}(\bar{x}) \) und nach 8.1.5 kommutiert diese Operation mit der Operation von \(\pi_1(X/G, \bar{x}) \) durch Wegeliften. Das anschließende algebraische Lemma 8.1.10 beendet den Beweis.

Lemma 8.1.10 (Homomorphismen durch Torsoren). Sei \(F \) eine Menge mit einer Linksoperation einer Gruppe \(H \) und einer freien transitiven Rechtsoperation einer Gruppe \(G \), die in dem Sinne kommutieren, daß gilt \((hf)g = h(fg) \) für alle \(h \in H \), \(f \in F \), \(g \in G \). So liefert jedes Element \(f \in F \) einen Gruppenhomomorphismus

\[
c_f : H \to G
\]

durch die Vorschrift \(hf = fc_f(h) \). Ist die Operation von \(H \) frei, so ist \(c_f \) injektiv. Ist die Operation von \(H \) transitiv, so ist \(c_f \) surjektiv.

8.1.11. Analoges gilt für Monoide, wenn wir zusätzlich \(f \) so wählen, daß die Operation von \(G \) eine Bijektion \(G \xrightarrow{\sim} X, g \mapsto fg \) liefert.
Beweis. Wir überlassen die formale Rechnung dem Leser und versuchen stattdessen eher informell, die Aussage transparent zu machen. Da G frei und transitiv operiert, ist die Abbildung

$$G \rightarrow F$$

$$g \mapsto fg$$

eine G-äquivariante Bijektion. Die G-äquivarianten Abbildungen $\phi : G \rightarrow G$, also die Abbildungen ϕ mit $\phi(xg) = \phi(x)g$ $\forall x, g \in G$, sind nun genau die Linksmultiplikationen mit Elementen $e \in G$ und entsprechen unter unserer Bijektion $G \mapsto F$ den Abbildungen $fg \mapsto fcg$. Insbesondere gilt das für die Abbildungen $\phi = (h \cdot)$. Das ist der strukturelle Grund für unser Lemma, das sich so als unmittelbare Konsequenz der Übung 7.2.6 erweist.

Korollar 8.1.12 (Fundamentalgruppe eines Bahnenraums). Operiert eine Gruppe topologisch frei auf einem wegeweise einfach zusammenhängenden Raum, so hat der zugehörige Bahnenraum besagte Gruppe als Fundamentalgruppe.

Beispiele 8.1.13. Aus unserem Korollar 8.1.12 folgt insbesondere $\pi_1(\mathbb{P}^n \mathbb{R}) = \pi_1(S^n/\{\pm 1\}) = \{\pm 1\}$ für $n \geq 2$ und $\pi_1(S^1) \cong \pi_1(\mathbb{R}/\mathbb{Z}) = \mathbb{Z}$.

8.1.14. Eine Variante für nicht notwendig wegeweise einfach zusammenhängende Räume wird in Übung 8.1.20 besprochen.

Beweis. Sei X unser Raum und G unsere Gruppe. Nach 8.1.7 operiert für jeden Basispunkt $\bar{x} \in X/G$ die Fundamentalgruppe $\pi_1(X/G, \bar{x})$ frei und transitiv auf der Faser über \bar{x}. Nach 8.1.10 ist also der Faserwirkungsvergleich aus 8.1.9 für jedes Element x der Faser ein Isomorphismus $c_x : \pi_1(X/G, \bar{x}) \rightarrow G$.

Ergänzung 8.1.15 (Tate-Twist). Ist ganzzahlig K ver gleicher Körper von komplexen Zahlen im Sinne von ?? mit seiner natürlichen Topologie als endlichdimensionaler \mathbb{R}-Vektorraum, so erklären wir $\mathbb{Z}_K(-1) := \ker(\exp : K \rightarrow K^\times)$ als die Faser bei $1 \in K$ der durch die Exponentialabbildung gegebenen Überlagerung. Diese Faser ist selbst eine additive Untergruppe von K und operiert durch Addition als die Gruppe von Deckbewegungen unserer Überlagerung. Unsere Konstruktionen liefern so einen von der Wahl eines Punktes der Faser unabhängigen Isomorphismus

$$\pi_1(K^\times) \rightarrow \mathbb{Z}_K(-1)$$

Für unsere üblichen komplexen Zahlen $K = \mathbb{C}$ erhalten wir $\mathbb{Z}_{\mathbb{C}}(-1) = 2\pi i \mathbb{Z}$ und unser allgemeiner Isomorphismus spezialisiert zu einem Isomorphismus $\pi_1(\mathbb{C}^\times) \rightarrow 2\pi i \mathbb{Z}$, der insofern „natürlicher“ ist als die schlichte Identifikation besagter Fundamentalgruppe mit \mathbb{Z}, als er äquivariant ist für die offensichtliche Wirkung der komplexen Konjugation $\mathbb{C} \rightarrow \mathbb{C}$ auf beiden Seiten.

216
Anschaulich gesprochen kann es passieren, daß man bei einem Rundweg auf $\mathbb{P}^2\mathbb{R}$ „mit dem Kopf nach unten wieder am Ausgangspunkt ankommt“. Diese Rundwege sind genau die nichtzusammenziehbaren Rundwege auf $\mathbb{P}^2\mathbb{R}$. Um wieder in sein Auto einsteigen zu können, muß man sie noch ein zweites Mal gehen. Um das zu sehen, mag man sich $\mathbb{P}^2\mathbb{R}$ vorstellen als Kugelschale, in die ein Kreisrundes Loch geschnitten wurde, um dort ein Möbiusband alias eine Kreuzhabe einzukleben, wie ich sie hier gezeichnet habe.
Beispiel 8.1.16. Das nebenstehende Bild zeigt eine Überlagerung der Figur 8. Die Fundamentalgruppe dieser Überlagerung ist offensichtlich eine nicht endlich erzeugte Untergruppe der Fundamentalgruppe der Figur 8, die ihrerseits durchaus endlich erzeugt ist.

Definition 8.1.17. Seien F und X topologische Räume. Ein **Faserbündel mit Faser F auf X** ist ein topologischer Raum $p : E \to X$ über X derart, daß jeder Punkt von X eine Umgebung U besitzt, für die $p : p^{-1}(U) \to U$ als topologischer Raum über U isomorph ist zu $pr_U : U \times F \to U$. Unser Raum X heißt dann die **Basis** des Faserbündels. Ein derartiger Isomorphismus heißt eine **Bündelkarte auf U**. Ein System von Bündelkarten auf offenen Teilmengen der Basis, die eine Überdeckung unserer Basis bilden, heißt ein **Bündelatlas** unseres Faserbündels.

Beispiel 8.1.18. Ein Faserbündel mit diskreter endlicher Faser F der Kardinalität n ist dasselbe wie eine n-blättrige Überlagerung.

Übungen

Übung 8.1.19. Man erkläre die Operation der Fundamentalgruppe auf den Fasern im Fall der auf Seite 200 dargestellten Überlagerung der Acht.

Übung 8.1.20 (Fundamentalgruppe eines Bahnenraums, Variante). Operiert eine Gruppe G topologisch frei auf einem Raum X, so erhalten wir eine linksexakte Sequenz

$$\pi_1(X, x) \hookrightarrow \pi_1(X/G, \bar{x}) \to G$$

mit dem Faserwirkungsvergleich 8.1.9 als zweiter Abbildung. Ist $y \in X$ ein weiterer Punkt derselben Faser und ist $\beta \in \pi_1(X/G, \bar{x})$ ein Weg mit $\langle \beta \rangle(x) = y$, so gilt $c_x = c_y \circ \text{int}(\beta)$ alias $c_x(\gamma) = c_y(\beta \gamma \beta^{-1})$. Ist X wegzusammenhängend, so ist der Faserwirkungsvergleich sogar surjektiv und unsere Sequenz ist damit eine kurze exakte Sequenz.

Übung 8.1.21 (Funktionalität des Faserwirkungsgleichs). Seien X ein Raum mit einer topologisch freien Operation einer Gruppe G und Y ein weiterer Raum mit einer topologisch freien Operation einer Gruppe H. Sei weiter (f, φ) ein Paar bestehend aus einer stetigen Abbildung $f : X \to Y$ und einem Gruppenhomomorphismus $\varphi : G \to H$ mit $f(gx) = \varphi(g)f(x)$ für alle $x \in X$ und $g \in G$. So kommutiert für jedes $x \in X$ mit Bild $y \in Y$ das Diagramm

$$\begin{array}{ccc}
\pi_1(X/G, \bar{x}) & \xrightarrow{f_*} & \pi_1(Y/H, \bar{y}) \\
c_x & \downarrow & c_y \\
G & \xrightarrow{\varphi} & H
\end{array}$$

218
Eine Überlagerung der Figur 8 mit nicht endlich erzeugter Fundamentalgruppe.
für die durch Faserwirkungsvergleich erklärten Gruppenhomomorphismen in den Vertikalen.

Ergänzende Übung 8.1.22. Nach ?? ist für die Operation von $\text{PSL}(2; \mathbb{Z})$ auf der offenen oberen Halbebene die Menge aller Punkte mit nichttrivialer Standgruppe diskret und abgeschlossen, auf deren Komplement operiert $\text{PSL}(2; \mathbb{Z})$ nach 7.3.8 topologisch frei, und der Quotientenraum ist homöomorph zum Komplement von zwei Punkten in der Ebene. Wenden wir auf diese Situation Übung 8.1.20 an, so erhalten wir einen Gruppenisomorphismus

$$\left(\mathbb{Z}/2\mathbb{Z}\right) \ast \left(\mathbb{Z}/3\mathbb{Z}\right) \xrightarrow{\sim} \text{PSL}(2; \mathbb{Z})$$

Übung 8.1.23. Seien $f : E \to X$ ein Faserbündel und $e \in E$ ein Punkt mit Bild $x := f(e) \in X$. Ist die Faser $F = f^{-1}(x)$ wegzusammenhängend, so folgt aus $\pi_1(E, e) = 1$ bereits $\pi_1(X, x) = 1$. Später werden Sie diese Aussage als Spezialfall der sogenannten „langen exakten Homotopiesequenz“ verstehen lernen.

8.2 Klassifikation von Überlagerungen

8.2.1. Gemäß unserer allgemeinen Konventionen 4.4.7 heißt ein topologischer Raum X **lokal zusammenziehbar** beziehungsweise lokal **wegzusammenhängend**, wenn sich jede Umgebung eines beliebigen Punkts von X verkleinern läßt zu einer zusammenziehbaren beziehungsweise wegzusammenhängenden Umgebung desselben Punktes. Letzteres impliziert insbesondere, daß jede Wegzusammenhangskomponente jeder offenen Teilmengen unseres Raums auch selbst offen ist, und daß jede Umgebung jedes Punktes zu einer offenen wegzusammenhängenden Umgebung verkleinert werden kann, nämlich der Wegzusammenhangskomponente des besagten Punktes.

Satz 8.2.2 (Klassifikation von Überlagerungen). Sei (X, x) ein zusammenhängender lokal zusammenziehbarer bepunkteter Raum. So gilt:

1. Wir erhalten eine Bijektion zwischen der Menge der Isomorphieklassen zusammenhängender bepunkteter Überlagerungen $p : (\tilde{X}, \tilde{x}) \to (X, x)$ unseres bepunkteten Raums (X, x) und der Menge der Untergruppen seiner Fundamentalgruppe $\pi_1(X, x)$ vermittels der Zuordnung

$$p \mapsto \text{im} \left(p_{\tilde{x}} : \pi_1(\tilde{X}, \tilde{x}) \to \pi_1(X, x) \right)$$

Beweis. Der Beweis des ersten Teils wird eine Weile brauchen. Der Zweite folgt dann aus der Erkenntnis, daß unter unseren Voraussetzungen die Fundamentalgruppe \(\pi_1(X, x) \) nach 8.1.7 transitiv auf der Faser über \(x \) operiert und das Bild der Fundamentalgruppe der Überlagerung zu einem Basispunkt \(\hat{x} \) in der Faser gerade die Standgruppe von \(\hat{x} \) unter der Wegliftingsoperation ist. Wann immer aber eine Gruppe \(G \) transitiv auf einer Menge \(F \) operiert, bilden die Standgruppen \(G_f \) für \(f \in F \) eine Konjugationsklasse von Untergruppen von \(G \) nach Übung 7.2.5.

Für Teil 1 müssen wir zeigen, daß unsere Zuordnung sowohl injektiv als auch surjektiv ist. Wir beginnen mit der Injektivität und unterbrechen an dieser Stelle den Beweis, um einige Ingredienzen bereitzustellen.

Satz 8.2.4 (Liftbarkeitskriterium). Sei \(p : (\tilde{X}, \tilde{x}) \rightarrow (X, x) \) eine Überlagerung, \((Y, y) \) ein zusammenhängender und lokal wegzusammenhängender bepunkter Raum und \(f : (Y, y) \rightarrow (X, x) \) stetig. Genau dann existiert ein Lift \(\tilde{f} \) von \(f \), wenn in \(\pi_1(X, x) \) die Inklusion \(\text{im} f_\# \subset \text{im} p_\# \) gilt.

8.2.5. Insbesondere ist jeder wegweise einfach zusammenhängende und lokal wegzusammenhängende Raum einfach zusammenhängend, denn in diesem Fall lassen sich alle Abbildungen liften.

Beweis. Wir veranschaulichen uns die Situation mit dem Diagramm

\[
\begin{array}{c}
(\tilde{X}, \tilde{x}) \\
\downarrow p \\
(Y, y) \xrightarrow{f} (X, x)
\end{array}
\]

Existiert ein Lift \(\tilde{f} \), so folgt \(p_\# \circ \tilde{f}_\# = f_\# \) und damit im \(f_\# \subset \text{im} p_\# \). Um die andere Richtung zu zeigen, bilden wir das kartesische Diagramm

\[
\begin{array}{c}
(\tilde{Y}, \tilde{y}) \\
\downarrow q \\
(Y, y) \xrightarrow{f} (X, x)
\end{array}
\]

221
und behaupten, daß unter unseren Annahmen \(q_2 : \pi_1(\tilde{Y}, \tilde{y}) \to \pi_1(Y, y) \) surjektiv ist. Sonst gäbe es nämlich nach unserer Beschreibung 8.1.7 der Fundamentalgruppe einer Überlagerung als Standgruppe einen geschlossenen Weg \(\gamma \in \Omega(Y, y) \) mit \(\langle \gamma \rangle(\tilde{y}) \neq \tilde{y} \). Es folgte \(f \circ \gamma)(\tilde{x}) \neq \tilde{x} \), da ja die obere Horizontale in unserem Quadrat eine Bijektion \(q^{-1}(y) \rightarrow p^{-1}(x) \) induziert, nochmal nach 8.1.7 also \([f \circ \gamma] \notin \text{im } p \) im Widerspruch zur Annahme. Da wir \(Y \) lokal wegzusammenhängend angenommen hatten, folgt andererseits mit 7.1.12, daß die Zusammenhangskomponenten von \(\tilde{Y} \) selbst schon Überlagerungen von \(Y \) und darüberhinaus wegzusammenhängend sind. Nach 8.1.7 bildet dann die Zusammenhangskomponente von \(\tilde{y} \) in \(\tilde{Y} \) eine einblättrige Überlagerung von \(Y \), und die schenkt uns dann schließlich den gesuchten Lift.

\[\Box\]

Beweis der Injektivität im Klassifikationssatz 8.2.2. Sind \((\tilde{X}, \tilde{x})\) und \((\hat{X}, \hat{x})\) zusammenhängende bepunktete Überlagerungen derart, daß die Bilder ihrer Fundamentalgruppen in \(\pi_1(X, x) \) zusammenfallen, so liefert uns unser Liftbarkeitskriterium 8.2.4 Decktransformationen hin und zurück, deren Komposition aufgrund der Eindeutigkeit von Lifts jeweils die Identität sein muß. Das zeigt die Injektivität im Klassifikationssatz. Die Surjektivität wird nach einigen Vorbereitungen im nächsten Abschnitt als 8.3.5 bewiesen.

\[\Box\]

8.3 Existenz universeller Überlagerungen

Satz 8.3.1 *(Existenz universeller Überlagerungen).* Jeder zusammenhängende lokal zusammenziehbare Raum besitzt eine universelle Überlagerung, und diese ist auch seine einzige wegweise einfach zusammenhängende Überlagerung.

Bemerkung 8.3.2. Insbesondere ist ein zusammenhängender lokal zusammenziehbarer Raum einfach zusammenhängend genau dann, wenn er wegweise einfach zusammenhängend ist.

Beweis. Wir brauchen nur zu zeigen, daß unser Raum eine wegweise einfach zusammenhängende Überlagerung besitzt, denn diese ist dann nach 8.2.5 automatisch einfach zusammenhängend und dann nach 7.5.14 auch universell. Um das also zu zeigen, wählen wir \(x \in X \) fest und betrachten die Menge \(\tilde{X} \) aller Homotopieklassen von Wegen mit Anfangspunkt \(x \) unter Homotopie mit festen Randpunkten, in Formeln,

\[\tilde{X} := \{ \gamma : [0, 1] \to X \mid \gamma \text{ ist stetig}, \gamma(0) = x \}/\sim \]

Äquivalent und vielleicht suggestiver aber auch wieder etwas komplizierter könnten wir \(\tilde{X} \) auch definieren als die Menge aller Paare \((g, y)\) bestehend aus einem Punkt \(y \in X \) und einer Homotopieklasse von Wegen \(g \in \mathcal{W}(x, y) \). Die Homotopieklasse von \(\gamma \) heiße wieder \([\gamma]\). Insbesondere haben wir also eine Abbildung
\[u : \tilde{X} \to X, [\gamma] \mapsto \gamma(1), \] die jeder Homotopieklasse von Wegen ihren gemeinsamen Endpunkt zuordnet. Sie ist surjektiv, da \(X \) wegzusammenhängend ist. Wir erklären nun auf \(\tilde{X} \) eine Topologie. Für jeden stetigen Weg \(\gamma \) mit Anfangspunkt \(x \) und jede offene Umgebung \(V \) seines Endpunktes \(\gamma(1) \) setzen wir dazu
\[
U(\gamma, V) := \{ [\beta * \gamma] \mid \beta : [0, 1] \to V \text{ ist stetig mit } \beta(0) = \gamma(1) \}
\]
und betrachten auf \(\tilde{X} \) die von allen \(U(\gamma, V) \) erzeugte Topologie. Offensichtlich ist \(u : \tilde{X} \to X \) stetig, das Urbild von \(V \) ist ja gerade die Vereinigung der \(U(\gamma, V) \) über alle Wege \(\gamma \) mit Endpunkt in \(V \). Wir müssen zeigen, daß \(u \) eine Überlagerung ist. Für \(z \in X \) wählen wir dazu eine offene wegzusammenhängende Umgebung \(V \) von \(z \), die ganz in einer zusammenziehbaren Umgebung enthalten ist. Natürlich wäre es auch in Ordnung, hier schlicht eine offene zusammenziehbare Umgebung von \(z \) zu nehmen, aber die Existenz einer Umgebung mit diesen beiden Eigenschaften wird von unseren Bedingungen nicht sichergestellt. Betrachten wir nun die Abbildung
\[
\Phi : u^{-1}(z) \times V \to \tilde{X}, \quad ([\gamma], v) \mapsto [\beta * \gamma]
\]
Hier meint \(\beta : [0, 1] \to V \) irgendeinen stetigen Weg von \(z \) nach \(v \), der ganz in \(V \) verläuft. Aufgrund unserer Voraussetzungen an \(V \) ist \(\Phi \) wohldefiniert und eine Injektion mit Bild \(u^{-1}(V) \). Wir zeigen, daß \(\Phi \) ein Homöomorphismus auf sein Bild ist.

1. \(\Phi \) ist stetig. In der Tat, liegt \(\Phi([\gamma], v) \) in \(U(\alpha, W) \), so auch \(\Phi([\gamma] \times V_1) \) für jede offene wegzusammenhängende Umgebung \(V_1 \) von \(v \) in \(V \cap W \);

2. \(\Phi \) ist offen. In der Tat, für wegzusammenhängendes offenes \(V_1 \subset V \) gilt
\[
\Phi([\gamma] \times V_1) = U(\beta * \gamma, V_1) \quad \text{für jeden Weg } \beta : [0, 1] \to V \text{ mit } \beta(0) = z, \quad \beta(1) \in V_1.
\]
Also ist \(u : \tilde{X} \to X \) eine Überlagerung und wir müssen nur noch zeigen, daß \(\tilde{X} \) wegzweise einfach zusammenhängend ist. Bezeichne \(\tilde{x} \in \tilde{X} \) die Klasse des konstanten Weges \(x \). Jeder Weg \(\omega : ([0, 1], 0) \to (X, x) \) mit Anfangspunkt \(x \) hat als Lift zum Anfangspunkt \(\tilde{x} \) den Weg \(\tilde{\omega} : ([0, 1], 0) \to (\tilde{X}, \tilde{x}) \) gegeben durch \(\tilde{\omega}(s) = [\omega_s] \) mit \(\omega_s(t) = \omega(st) \). Die Wege \(\omega_s : [0, 1] \to X \) sind also Anfangsstücke von \(\omega \), die so langsam durchlaufen werden, daß gilt \(\omega_s(1) = \omega(s) \). Offensichtlich hat \(\tilde{\omega} \) den Endpunkt \([\omega] \). Mit \(X \) ist also auch \(\tilde{X} \) wegzusammenhängend, und für die Wegliftungsoperation gilt \([\omega](\tilde{x}) = [\omega] \). Die Standgruppe von \(\tilde{x} \) alias nach 8.1.7 die Fundamentalgruppe von \(\pi_1(\tilde{X}, \tilde{x}) \) ist folglich trivial.

\[\square \]

Satz 8.3.3 (Deckbewegungsgruppe der universellen Überlagerung). \(\text{Die Fundamentalgruppe eines zusammenhängenden lokal zusammenziehbaren Raums ist isomorph zur Deckbewegungsgruppe seiner universellen Überlagerung.} \]
8.3.4. Ist \((\tilde{X}, \tilde{x}) \to (X, x)\) unsere universelle Überlagerung und \(G\) ihre Deckbewegungsgruppe, so erhalten wir genauer und in Formeln einen Isomorphismus \(c = c_{\tilde{x}} : \pi_1(X, x) \to G\) vermittels der Regel \(c(\gamma)^{-1}\tilde{x} = \langle \gamma \rangle \tilde{x}\). Das ist genau unser Faserwirkungsvergleich aus 8.1.9.

Beweis. Nach 7.5.4 operiert die Deckbewegungsgruppe auf dem Totalraum jeder universellen Überlagerung topologisch frei mit dem ursprünglichen Raum als Quotienten. Nach 8.3.1 ist unter unseren Voraussetzungen die universelle Überlagerung wegeweise einfach zusammenhängend. Der Satz folgt nun aus Korollar 8.1.12 über die Fundamentalgruppe von Quotienten wegeweise einfach zusammenhängender Räume nach topologisch freien Gruppenoperationen.

Proposition 8.3.5 (Konstruktion von Überlagerungen). Seien \((X, x)\) ein zusammenhängender lokal zusammenziehbarer Raum, \(p : (\tilde{X}, \tilde{x}) \to (X, x)\) eine universelle Überlagerung und \(c = c_{\tilde{x}} : \pi_1(X, x) \to \text{Top}_{\tilde{X}}(\tilde{X})\) der natürliche Isomorphismus aus 8.3.4. Gegeben eine Untergruppe \(H \subset \pi_1(X, x)\) und der Quotient \(\hat{X} := \tilde{X}/c(H)\) ist dann \(q : \hat{X} \to X\) eine zusammenhängende Überlagerung und für \(\hat{x} \in \hat{X}\) gilt

\[
H = \text{im} \left(q_{\tilde{x}} : \pi_1(\tilde{X}, \tilde{x}) \to \pi_1(X, x) \right)
\]

8.3.6. Diese Proposition zeigt im Klassifikationssatz 8.2.2 die Surjektivität. Die Injektivität hatten wir bereits gezeigt, der Klassifikationssatz ist damit also vollständig bewiesen. Mich verwirren allerdings diese Identifikationen zwischen der Deckbewegungsgruppe der universellen Überlagerung und der Fundamentalgruppe immer wieder auf’s neue. Ich ziehe deshalb die Fassung 8.5.3 vor, in der die Fundamentalgruppe nicht mehr explizit vorkommt.

Beweis. Nach 7.5.4 operiert die Deckbewegungsgruppe auf dem Totalraum jeder universellen Überlagerung topologisch frei mit dem ursprünglichen Raum als Quotienten. Nach Übung 7.3.13 ist also auch unser \(q\) eine Überlagerung, und offensichtlich ist \(\hat{X}\) zusammenhängend. Dann ist \(\text{im}(q_{\tilde{x}})\) nach 8.1.7 die Standgruppe von \(\tilde{x}\) unter der Wegeliftungsoperation zu \(\tilde{X} \to X\) und besteht demnach aus allen \(g \in \pi_1(X, x)\) mit \(\langle g \rangle(\tilde{x}) \in c(H)\tilde{x}\) alias allen \(g \in H\).

Satz 8.3.7 (über den Faserfunktor). Ist \(X\) ein zusammenhängender lokal zusammenziehbarer topologischer Raum und \(x \in X\) ein Punkt, so liefert der Faserfunktor \(p \mapsto p^{-1}(x)\) eine Äquivalenz zwischen der Kategorie der Überlagerungen von \(X\) und der Kategorie der \(\pi_1(X, x)\)-Mengen

\[
\text{Üb}_X \xrightarrow{\sim} \pi_1(X, x)\text{-Ens}
\]
8.3.8. Unter diesem Funktor entsprechen die zusammenhängenden Überlagerungen von X nach 8.1.7 genau den transitiven $\pi_1(X, x)$-Mengen. Unsere Klassifikation von Überlagerungen 8.2.2 wird in Anbetracht der Klassifikation von homogenen Räumen 7.2.5 durch Konjugationsklassen von Untergruppen damit ein Korollar zum vorhergehenden Satz.

Ergänzung 8.3.9. Eine Decktransformation einer zusammenhängenden Überlagerung auf sich selber muß keine Deckbewegung sein. Um ein Gegenbeispiel zu konstruieren, sucht man zunächst Gruppen $G \supset H$ derart, daß die G-Menge G/H nicht-bijektive G-äquivariante Selbstabbildungen besitzt, daß es also $a \in G$ gibt mit $H \subset aHa^{-1}$. Hier kann man zum Beispiel in $G = SL(2, \mathbb{Q})$ die Untergruppe H aller oberen Dreiecksmatrizen betrachten mit Einsen auf der Diagonale und einem ganzzahligen Eintrag in der oberen rechten Ecke, und als a eine geeignete Diagonalmatrix nehmen. Nun kann man zu jeder Gruppe einen zusammenhängenden lokal zusammenziehbaren Raum konstruieren, der besagte Gruppe als Fundamentalgruppe hat. Diese Konstruktion will ich hier nicht vorführen, aber mit ihrer Hilfe liefert der vorhergehende Satz dann das gesuchte Gegenbeispiel.

8.4 Adjungierte Funktoren

8.4.1. Das Konzept adjungierter Funktoren gehört zu den Grundbegriffen der Kategorientheorie. Die Terminologie kommt vermutlich vom Fall der Restriktions- und Induktionsfunktoren aus der Darstellungstheorie endlicher Gruppen her, deren Effekte auf Charakteren nach ?? adjungierte lineare Abbildungen im Sinne der linearen Algebra sind.

Definition 8.4.2. Seien A, B Kategorien und $L : A \to B$ sowie $R : B \to A$ Funktoren. Eine Adjunktion α von L mit R oder in Kurzschreibweise $\alpha : L \dashv R$ ist eine Isotransformation

$$\alpha : B(L-, -) \xrightarrow{\sim} A(-, R-)$$

von Funktoren $A^{\text{opp}} \times B \to \text{Ens}$, d.h. eine Sammlung von „natürlichen“ Isomorphismen $\alpha_{X,Y} : B(LX, Y) \xrightarrow{\sim} A(X, RY)$ für $X \in A, Y \in B$.

Beispiel 8.4.3 (Freie Gruppen als adjungierter Funktor). Der Vergißfunktor von den Gruppen in die Mengen hat als Linksadjungierten den Funktor, der jeder Menge die freie Gruppe über besagter Menge zuordnet, wie sie in 6.5.6 eingeführt
wird. Mit der Notation \(v : \text{Grp} \to \text{Ens} \) für den vergesslichen Funktor haben wir für jede Gruppe \(G \) und jede Menge \(X \) eine natürliche Bijektion

\[
\text{Grp}(\text{Grp}^\uparrow X, G) \cong \text{Ens}(X, vG)
\]

Der Vergißfunktor von den abelschen Gruppen in die Mengen hat ähnlich als Linksadjungierten den Funktor, der jeder Menge die freie abelsche Gruppe über besagter Menge zuordnet. Für diese Gruppe verwenden wir die Notation \(\text{Ab}^\wedge X = \mathbb{Z}X \).

Beispiel 8.4.4 (Das Exponentialgesetz als Adjunktion). Gegeben eine Menge \(Z \) ist der Funktor \((Z \times) : \text{Ens} \to \text{Ens} \) linksadjungiert zum Funktor \(\text{Ens}(Z,) : \text{Ens} \to \text{Ens} \) vermittels der kanonischen Bijektionen

\[
\text{Ens}(Z \times X, Y) \cong \text{Ens}(X, \text{Ens}(Z, Y))
\]

aus ???. Weiter ist der Funktor \(\text{Ens}(\ , Z) : \text{Ens} \to \text{Ens}^{\text{opp}} \) linksadjungiert zum Funktor \(\text{Ens}(\ , Z) : \text{Ens}^{\text{opp}} \to \text{Ens} \) vermittels der in derselben Weise konstruierten kanonischen Bijektionen

\[
\text{Ens}^{\text{opp}}(\text{Ens}(X, Z), Y) = \text{Ens}(Y, \text{Ens}(X, Z)) \cong \text{Ens}(X, \text{Ens}(Y, Z))
\]

8.4.5 (Einheit und Koeinheit einer Adjunktion). Seien \(\mathcal{A}, \mathcal{B} \) Kategorien und \(L : \mathcal{A} \to \mathcal{B} \) sowie \(R : \mathcal{B} \to \mathcal{A} \) Funktoren. Gegeben eine beliebige Transformation \(\alpha : \mathcal{B}(L-,-) \Rightarrow \mathcal{A}(-,R-) \) von Funktoren \(\mathcal{A}^{\text{opp}} \times \mathcal{B} \to \text{Ens} \) erhalten wir für jedes Objekt \(X \in \mathcal{A} \) einen Morphismus

\[
\hat{\alpha}_X := \alpha_{X,LX}(\text{id}_{LX}) : X \to RLX
\]

als das Bild der Identität unter der durch \(\alpha_{X,LX} : \mathcal{B}(LX, LX) \to \mathcal{A}(X, RLX) \). Diese Morphismen bilden sogar in ihrer Gesamtheit eine Transformation \(\hat{\alpha} : \text{Id}_{\mathcal{A}} \Rightarrow RL \) vom Identitätsfunktor auf \(\mathcal{A} \) zum Funktor \(RL \). Genauer behaupten wir für alle Morphismen \(f : X \to Y \) in \(\mathcal{A} \) die Identitäten

\[
\hat{\alpha}_Y \circ f = \alpha_{X,LY}(Lf) = RLf \circ \hat{\alpha}_X
\]

In der Tat kommutiert für \(B \in \mathcal{B} \) beliebig nach Annahme das Diagramm

\[
\begin{align*}
\mathcal{B}(LY, B) \xrightarrow{\alpha_{LY}} \mathcal{B}(LX, B) \\
\alpha_{Y,B} & \quad \alpha_{X,B} \\
\mathcal{A}(Y, RB) \xrightarrow{\alpha f} \mathcal{A}(X, RB)
\end{align*}
\]
Spezialisieren wir diese Erkenntnis zu \(B = LY \) und vergleichen das Bild der Identität auf \(LY \) unter unseren Abbildungen, so folgt \(\hat{\alpha}_Y \circ f = \alpha_{X,LY}(Lf) \). Andererseits kommutiert nach Annahme für einen beliebigen Morphismus \(g : B \to C \) in \(B \) das Diagramm

\[
\begin{array}{ccc}
\mathcal{B}(LX, B) & \xrightarrow{\alpha_{X,B}} & \mathcal{B}(LX, C) \\
g & \downarrow & \downarrow \alpha_{X,C} \\
\mathcal{A}(X, RB) & \xrightarrow{Rg} & \mathcal{A}(X, RC)
\end{array}
\]

Spezialisieren wir diese Erkenntnis zum Morphismus \(Lf : LX \to LY \) und vergleichen das Bild der Identität auf \(LX \) unter unseren Abbildungen, so folgt \(RLf \circ \hat{\alpha}_X = \alpha_{X,LY}(Lf) \) wie behauptet. Ist \(\alpha \) sogar eine Isotransformation alias eine Adjunktion von Funktoren, so heißt \(\hat{\alpha} \) die \textbf{Einheit der Adjunktion} und wir erhalten in derselben Weise für jedes Objekt \(Y \in B \) auch einen Morphismus

\[
\hat{\alpha}_Y := \alpha_{RY,Y}^{-1} \circ (\text{id}_{RY}) : LR_Y \to Y
\]

Man zeigt analog, daß die \(\hat{\alpha}_Y \) eine Transformation \(\hat{\alpha} : LR \Rightarrow \text{Id}_B \) zum Identitätsfunktor auf \(B \) bilden. Sie heißt die \textbf{Koeinheit der Adjunktion}.

\textit{Beispiel 8.4.6 (Einheit und Koeinheit im Fall freier Gruppen).} Unsere Adjunktion \(\text{Grp}(\text{Grp}^1 X, G) \to \text{Ens}(X, vG) \) hat als Einheit die kanonischen Abbildungen \(X \to v \text{Grp}^1 X \) und als Koeinheit die kanonischen Gruppenhomomorphismen \(\text{Grp}^1(vG) \to G \) aus dem Beweis von 6.6.2.

\textbf{Lemma 8.4.7 (Äquivalenz durch Adjunktion).} Seien \(L : A \to B \) und \(R : B \to A \) Funktoren und \(\alpha : L \dashv R \) eine Adjunktion.

1. Genau dann besteht die Einheit \(\hat{\alpha} \) der Adjunktion aus Isomorphismen \(\hat{\alpha}_X : X \to RLX \), wenn der Funktor \(L \) volltreu ist;

2. Genau dann besteht die Koeinheit \(\check{\alpha} \) der Adjunktion aus Isomorphismen \(\check{\alpha}_Y : LRY \to Y \), wenn der Funktor \(R \) volltreu ist;

3. Genau dann bestehen \(\hat{\alpha} \) und \(\check{\alpha} \) beide aus Isomorphismen, wenn \(L \) und \(R \) Äquivalenzen von Kategorien sind. Man nennt \(L \) und \(R \) dann zueinander \textbf{quasiinverse Funktoren} und versteht dabei die Adjunktion als \textbf{Teil des Datums}. In diesem Fall liefern \(\hat{\alpha}^{-1} \) und \(\check{\alpha}^{-1} \) auch eine Adjunktion \((R, L)\).

\textbf{Beweis.} Aus unseren Erkenntnissen zu Einheiten und Koeinheiten von Adjunktionen 8.4.5 folgt die Kommutativität des Diagramms

\[
\begin{array}{ccc}
\mathcal{A}(X, Y) & \xrightarrow{L} & \mathcal{B}(LX, LY) \\
\downarrow \hat{\alpha}_Y & & \downarrow \alpha_{X,LY} \\
\mathcal{A}(X, RLY) & \xrightarrow{=} & \mathcal{A}(X, RLY)
\end{array}
\]

227
Das zeigt die erste Aussage. Die zweite Aussage zeigt man genauso. Für die dritte Aussage bemerkt man, daß unter der Annahme \(\hat{\alpha}_B : LRB \to B \) jedes \(B \in B \) isomorph ist zu einem Objekt der Gestalt \(LX \).

Übungen

Übung 8.4.8 (Bestimmung einer Adjunktion aus ihrer Einheit). Seien \(A, B \) Kategorien und \(L : A \to B \) sowie \(R : B \to A \) Funktoren. Jede Transformation \(\alpha : B(L-, -) \Rightarrow A(-, R-) \) von Funktoren \(A^{\text{opp}} \times B \to \text{Ens} \) liefert eine Transformation \(\hat{\alpha} : \text{Id} \Rightarrow RL \) durch die Vorschrift \(\hat{\alpha}_X = \alpha_{X,LX}(\text{id}_{LX}) \), d.h. \(\hat{\alpha}_X : X \to RLX \) ist das Bild der Identität unter der durch \(\alpha \) gegebenen Abbildung \(B(LX, LX) \to A(X, RLX) \). Jede Transformation \(\tau : \text{Id} \Rightarrow RL \) liefert umgekehrt eine Transformation \(\hat{\tau} : B(L-, -) \Rightarrow A(-, R-) \) von Funktoren \(A^{\text{opp}} \times B \to \text{Ens} \) als die Komposition von hoffentlich offensichtlichen Abbildungen

\[
\hat{\tau}_{X,Y} : B(LX, Y) \to A(R LX, RY) \to A(X, RY)
\]

für \(X \in A, Y \in B \). Man zeige, daß wir auf diese Weise zueinander inverse Bijektionen zwischen den fraglichen Räumen von Transformationen erhalten.

Übung 8.4.9 (Beziehungen zwischen Einheit und Koeinheit). Gegeben eine Adjunktion von Funktoren \(\alpha : L \dashv R \) mit Einheit \(\hat{\alpha} \) und Koeinheit \(\check{\alpha} \) zeige man, daß die Verknüpfung \((\check{\alpha}L) \circ (L\hat{\alpha}) : L \to LRL \Rightarrow L \) die identische Transformation des Funktors \(L \) zu sich selber ist. Ebenso ist \((R\check{\alpha}) \circ (\hat{\alpha}R) \) die Identität auf \(R \). Diese Beziehungen werden manchmal als die Dreiecksidentitäten bezeichnet. Sind umgekehrt Funktoren \(L : A \to B \) und \(R : B \to A \) gegeben und Transformationen \(\varepsilon : \text{Id} \Rightarrow RL \) und \(\eta : LR \Rightarrow \text{Id} \) mit der Eigenschaft \((R\eta) \circ (\varepsilon R) = \text{id} \) und \((\eta L) \circ (L\varepsilon) = \text{id} \), so gibt es genau eine Adjunktion von Funktoren \(\alpha : L \dashv R \) mit \(\hat{\alpha} = \varepsilon \) und \(\check{\alpha} = \eta \). Hinweis: Man betrachte das kommutative Diagramm

\[
\begin{array}{ccc}
B(LX, Y) & \to & A(X, RY) \\
\circLf \downarrow & & \downarrow f \\
B(LZ, Y) & \to & A(Z, RY)
\end{array}
\]

mit \(Y = LA \) und \(Z = A \) und \(X = MLA \) und verfolge das Bild der Identität auf \(MLA \) für \(f : A \to MLA \) die Koeinheit.

Beispiel 8.4.10 (Der Dualraumfunktor als sein eigener Adjungierter). Der Rechtsadjungierte des Dualraumfunktors \(D : k\text{-Mod} \to k\text{-Mod}^{\text{opp}} \) ist der Funktor \(D^{\text{opp}} : k\text{-Mod}^{\text{opp}} \to k\text{-Mod} \), der durch dieselbe Abbildungsvorschrift gegeben wird, vermittels der Adjunktion, die gegeben wird durch die kanonischen Identifikationen

\[
\text{Hom}_k(V, DW) \overset{\sim}{\to} \text{Hom}_k^{(2)}(V, W ; k) \overset{\sim}{\to} \text{Hom}_k(DW, V)
\]

228
Ergänzende Übung 8.4.11 (Adjunktionen auf Funktorkategorien). Seien Kategorien \(A, B, C\) gegeben. Man zeige mithilfe von 8.4.9, daß jedes Paar \((L, R)\) von adjungierten Funktoren \(L : A \to B\) und \(R : B \to A\) auch ein adjungiertes Paar von Funktoren \((L\circ, R\circ)\) zwischen den Funktorkategorien \((L\circ) : A^C \to B^C\) und \((R\circ) : B^C \to A^C\) liefert.

Übung 8.4.12 (Opponierte Adjunktionen). Seien \(A, B\) Kategorien und \(L : A \to B\) sowie \(R : B \to A\) Funktoren. Jede Adjunktion \(\alpha : L \dashv R\) kann auch als Adjunktion \(\alpha^{opp} : R^{opp} \dashv L^{opp}\) der zugehörigen Funktoren \(L^{opp} : A^{opp} \to B^{opp}\) und \(R^{opp} : B^{opp} \to A^{opp}\) zwischen den jeweiligen opponierten Kategorien aufgefaßt werden. Ich nenne \(\alpha^{opp}\) die opponierte Adjunktion.

Übung 8.4.13. Linksadjungierte vertauschen mit Pushouts und Koprodukten, Rechtsadjungierte mit Pullback und Produkten. Noch viel stärkere Aussagen finden Sie in ??.

8.5 Der abstrakte Faserfunktor

8.5.1. Wir wollen nun unsere Überlagerungstheorie unter einem noch abstrakteren Blickwinkel verstehen, einerseits als Modellfall und Anwendungsbeispiel für kategorientheoretische Methoden, andererseits um die Verwandtschaft zur Galois-theorie herauszuarbeiten. Ist \(C\) eine Kategorie, \(A \in C\) ein Objekt und \(G := C(A)\) das Monoid seiner Endomorphismen, so erhalten wir stets einen Funktor in die Kategorie der \(G\)-Rechtsmengen

\[C(A,) : C \to \text{Ens-} G\]

Wir setzen dazu schlicht \(fg = f \circ g\) für alle \(B \in C, f \in C(A, B)\) und \(g \in C(A)\). Unser Satz 8.3.7 über den Faserfunktor läßt sich in dieser Sprache noch allgemeiner und konzeptioneller fassen. Man beachte für das Folgende, daß das Monoid der Endomorphismen einer universellen Überlagerung stets eine Gruppe ist.

Satz 8.5.2 (über den abstrakten Faserfunktor). Ist \(u : \tilde{X} \to X\) eine universelle Überlagerung und \(G = \text{Top}_X(\tilde{X})\) ihre Deckbewegungsgruppe, so liefert der Funktor \(\text{Top}_X(\tilde{X},)\) eine Äquivalenz zwischen der Kategorie der Überlagerungen von \(X\) und der Kategorie der \(G\)-Rechtsmengen

\[T = \text{Top}_X(\tilde{X},) : \text{Üb}_X \to \text{Ens-} G\]

8.5.3. Ist \(X\) lokal zusammenhängend, so schränkt der abstrakte Faserfunktor ein zu einer Äquivalenz zwischen der Kategorie der zusammenhängenden Überlagerungen von \(X\) und der Kategorie der transitiven \(G\)-Rechtsmengen, und der im Beweis konstruierte quasiinverse Funktor wird der \(G\)-Rechtsmenge \(H\setminus G\) die Überlagerung \(\tilde{X}/H \to X\) zuordnen. An dieser Stelle wir vielleicht statt \(\tilde{X}/H\) sogar
besser $H\backslash\tilde{X}$ schreiben, da der Bahnenraum ja zu einer Linksoperation von H auf \tilde{X} gebildet wird.

8.5.4 (Beziehung zwischen abstraktem und konkretem Faserfunktor). Unser bisheriger Faserfunktor $F = F_x : \text{Üb}_X \to \text{Ens}$ ist isomorph zu T gefolgt vom vergeßlichen Funktor. Genauer liefert jeder Punkt \tilde{x} aus der Faser über x eine Isotransformation $\tau = \tau_{\tilde{x}} : T \Rightarrow F$ bestehend aus den Morphismen $\tau_{\tilde{x}} : TX \to FX$, $d \mapsto d(\tilde{x})$. Aufgrund dieser Isotransformationen nenne ich T den abstrakten Faserfunktor. Ist X zusammenhängend und lokal zusammziehbar, so hatten wir in 8.3.4 einen Isomorphismus $c_{\tilde{x}} : \pi_1(X,x) \Rightarrow G$ konstruiert. Fassen wir dann T als Funktor nach Ens auf und F als Funktor nach $\pi_1(X,x) \Rightarrow \text{Ens}$ und betrachten darüber hinaus den Funktor $C = C_{\tilde{x}}$, der die G-Rechtsoperation durch Inversenbildung in eine Linksoperation verwandelt und diese G-Linksoperation dann mithilfe von $c_{\tilde{x}}$ in eine Linksoperation von $\pi_1(X,x)$, so liefert τ sogar eine Isotransformation $C \circ T \Rightarrow F$ von Funktoren $\text{Üb}_X \to \pi_1(X,x) \Rightarrow \text{Ens}$. In Formeln ausgedrückt haben wir also unter diesen Umständen ein wie durch den Doppelpfeil angedeutet „bis auf eine Isotransformation kommutterendes“ Diagramm von Funktoren.

$$\begin{array}{ccc}
\text{Üb}_X & \xrightarrow{T} & \text{Ens} - G \\
\downarrow & \sim & \downarrow C \\
\text{Üb}_X & \xrightarrow{F} & \pi_1(X,x) \Rightarrow \text{Ens}
\end{array}$$

Da C offensichtlich eine Äquivalenz von Kategorien ist, wird T hier eine Äquivalenz von Kategorien sein genau dann, wenn dasselbe gilt für F. Mithin folgt der Satz 8.3.7 über den Faserfunktor aus dem Satz 8.5.2 über den abstrakten Faserfunktor und ist dazu äquivalent im Fall eines zusammenhängenden lokal zusammenziehbaren Basisraums X.

Beweis von 8.5.2. Wir konstruieren zunächst einen Funktor in die Rückrichtung. Ist F eine Menge mit einer Rechtsoperation von G, so bilden wir eine Überlagerung $F \times_G \tilde{X} \to X$ von X wie folgt: Wir betrachten auf $F \times \tilde{X}$ die Operation von G gegeben durch $g(m,\tilde{x}) = (mg^{-1}, g\tilde{x})$ und bezeichnen mit $F \times_G \tilde{X}$ den Bahnenraum $F \times_G \tilde{X} := G \backslash (F \times \tilde{X})$, also unser balanciertes Produkt im Sinne von Übung 8.8.16. Bezeichne $[m,\tilde{x}] \in F \times_G \tilde{X}$ die Bahn von (m,\tilde{x}). Da G topologisch frei operiert auf \tilde{X} nach 7.4.11, erkennt man ähnlich wie beim Beweis von 7.3.10 leicht, daß $F \times_G \tilde{X} \to X$, $[m,\tilde{x}] \mapsto u(\tilde{x})$ eine Überlagerungsabbildung sein muß. Den in
dieser Weise konstruierten Funktor in die Rückrichtung bezeichnen wir mit \(A \), in Formeln

\[
A = \left(\times_{/G} \bar{X} \right) : \text{Ens} \to \text{Üb}_X
\]

Als nächstes erklären wir eine Adjunktion \(A \dashv T \). Gegeben eine \(G \)-Rechtsmenge \(F \) und eine Überlagerung \(\hat{p} : \hat{X} \to X \) gilt es, eine natürliche Bijektion

\[
\text{Ens}_{/G}(F, \text{Top}_X(\bar{X}, \hat{X})) \to \text{Top}_X(F \times_{/G} \bar{X}, \hat{X})
\]

zwischen der Menge der \(G \)-äquivarianten Abbildungen links und der Menge der stetigen Abbildungen über \(X \) rechts anzugeben. Man erhält sie durch Einschränken der offensichtlichen Bijektion

\[
\text{Ens}(F, \text{Top}(\bar{X}, \hat{X})) \to \text{Top}(F \times \bar{X}, \hat{X})
\]

auf die Fixpunkte einer geeigneten \(G \)-Operation auf beiden Seiten. Jetzt müssen wir nach 8.4.7 nur noch zeigen, daß die durch unsere Adjunktion definierten Transformationen \(\text{Id} \Rightarrow TA \) und \(AT \Rightarrow \text{Id} \) Isotransformationen sind. Die erste Transformation spezialisiert auf einer \(G \)-Menge \(F \) zur Abbildung \(F \to \text{Top}_X(\bar{X}, F \times_{/G} \bar{X}) \) gegeben durch \(f \mapsto (z \mapsto [f, z]) \) und ist eine Bijektion aufgrund der universellen Eigenschaft der universellen Überlagerung. Die Zweite spezialisiert auf einer Überlagerung \(\hat{X} \) zur Abbildung \(\text{Top}_X(\bar{X}, \hat{X}) \times_{/G} \bar{X} \to \hat{X} \) gegeben durch \([d, z] \mapsto d(z)\) und ist bijektiv aufgrund der universellen Eigenschaft der universellen Überlagerung. Als bijektive Decktransformation muß sie aber dann sogar ein Homöomorphismus sein, denn jede Decktransformation ist offen.

\(\square \)

Ergänzung 8.5.5 (Beziehung zur Galoistheorie). Die hier vorgestellte Theorie ist strukturell eng verwandt mit der Galoistheorie. Ist \(\hat{K}/K \) eine endliche Galoisweiterung, so kann man den Hauptsatz der Galoistheorie, nämlich dahingehend interpretieren, daß der Funktor \(\text{Kringe}_K(\bar{K}) \) der \(K \)-linearen Körperhomomorphismen nach \(\hat{K} \) eine Äquivalenz von Kategorien

\[
\{ \text{Körpererweiterungen von } K, \text{ die sich in } \hat{K} \text{ einbetten lassen} \} \overset{\text{opp}}{\approx} \{ \text{transitive } \text{Gal}(\hat{K}/K)\text{-Mengen} \}
\]

lieft, für \(\text{Gal}(\hat{K}/K) = (\text{Kringe}_K)^*(\hat{K}) \) die Galoisgruppe. Die Kategorie der zusammenhängenden Überlagerungen kann im Licht von 8.5.2 also aufgefaßt werden als ein geometrisches Analogon zur opponierten Kategorie unserer Kategorie von Körpererweiterungen. Noch besser würde die Analogie, wenn wir auch nur alle zusammenhängenden Überlagerungen betrachten würden, die eine Decktransformation von einer fest gewählten Galois-Überlagerung empfangen können.
Ergänzung 8.5.6 (Die Kategorie der G-Mengen bestimmt die Gruppe G). Gegeben eine Gruppe \(G \) kennt die Kategorie der \(G \)-Mengen bereits die Gruppe \(G \) bis auf Isomorphismus. Wir betrachten genauer eine Menge \(C \) von \(G \)-Mengen, die die Gruppe \(G \) selbst enthält und mindestens je eine ein- und zweielementige Menge mit der trivialen \(G \)-Operation, und fassen sie als eine Kategorie auf. Darin gibt es nach unseren Annahmen ein finales Objekt \(pt \) und ein Koprodukt \(pt \sqcup pt \) dieses finalen Objekts mit sich selbst. Sicher ist unsere Kategorie \(C \) eine \(\mathcal{U} \)-Kategorie für ein geeignetes Mengensystem \(\mathcal{U} \). Man überzeugt sich leicht, daß ein Objekt \(X \in C \) genau dann ein homogener Raum ist, wenn für den dadurch dargestellten Funktor \(F := C(X, -) : C \to \mathcal{U} \text{Ens} \) die kanonische Abbildung eine Bijektion

\[F(pt) \sqcup F(pt) \xrightarrow{\sim} F(pt \sqcup pt) \]

lieft. Weiter ist die \(G \)-Operation auf \(X \) genau dann frei, wenn besagter Funktor treu ist. Die \(G \)-Torsoren können somit als Objekte der Kategorie \(C \) unter alleiniger Verwendung der Struktur dieser Kategorie charakterisiert werden. Die Gruppe \(G \) erhält man dann bis auf Isomorphismus als die Opponierte der Automorphismengruppe eines jeden solchen Torsors.

Übungen

Übung 8.5.7. Ist \(X \) ein zusammenhängender und lokal zusammenziehbarer topologischer Raum und \((\hat{X}, \hat{x}) \to (X, x)\) eine zusammenhängende Überlagerung, so ist die Gruppe der Deckbewegungen \(\text{Top}_X(X) \) isomorph zu \(N/\pi_1(\hat{X}, \hat{x}) \) mit \(N \subset \pi_1(X, x) \) dem Normalisator von \(\pi_1(\hat{X}, \hat{x}) \). Hinweis: 7.2.7.

8.6 Die Zopfgruppe

Definition 8.6.1. Sei \(X_n \) die Menge aller Teilmengen von \(\mathbb{C} \) mit genau \(n \) Elementen. Wir geben \(X_n \) die Finaltopologie für die die Reihenfolge vergessende Abbildung \(\mathbb{C}^n \setminus \Delta \to X_n \) mit \(\Delta \subset \mathbb{C}^n \) der großen Diagonale alias der Menge aller \(n \)-Tupel komplexer Zahlen, in denen mindestens eine Zahl doppelt vorkommt. Die Fundamentalgruppe von \(X_n \) heißt die Zopfgruppe in \(n \) Strängen, englisch braid group, französisch groupe de tresses. Als Basispunkt nehmen wir meist \(* = \{1, 2, \ldots, n\} \).

8.6.2. Die Elemente der Zopfgruppe kann man durch Bilder darstellen wie etwa das nebenstehende Bild für ein Element \(\gamma \in \pi_1(X_3) \). Dies Bild stellt im Raum \(\mathbb{C} \times \mathbb{R} \xrightarrow{\sim} \mathbb{R}^3 \) die Menge \(\{(z, t) \mid z \in \gamma(t)\} \) dar, mit \(t \) als senkrechter Koordinate und mit der Konvention, daß Punkte mit größerem Imaginärteil weiter hinten liegen mögen. Die Verknüpfung in unserer Zopfgruppe bedeutet in dieser Anschauung das „Aneinanderhängen“ solcher „Zöpfe“. 232
Notation 8.6.3. Bezeichne $s_\nu \in \pi_1(X_n,*)$ für $1 \leq \nu \leq n-1$ die Klasse des Weges, unter dem der Punkt ν durch die untere Halbebene nach $\nu + 1$ wandert und gleichzeitig der Punkt $\nu + 1$ durch die obere Halbebene nach ν. Alle anderen Punkte sollen unter s_ν auf ihren Plätzen bleiben. Ein Repräsentant dieser Klasse wäre etwa der Weg

$$s_\nu(t) = \{1, \ldots, \nu - 1, (\nu + 1/2 - e^{\pi i t}/2), (\nu + 1/2 + e^{\pi i t}/2), \nu + 2, \ldots, n\}$$

Satz 8.6.4 (Erzeuger und Relationen der Zopfgruppe). Die Zopfgruppe in n Strängen wird dargestellt durch die Erzeuger s_1, \ldots, s_{n-1} mit den sogenannten Zopfrelationen

$$s_is_j = s_js_i \quad \text{falls } |i - j| > 1;$$
$$s_is_js_i = s_js_is_j \quad \text{falls } |i - j| = 1.$$

8.6.5. In der Anschauung überzeugt man sich leicht, daß die s_i die Zopfgruppe erzeugen und die Zopfrelationen erfüllen. Hier versteht das formale Argument eher den Blick. Das eigentliche Problem besteht darin, zu zeigen, daß nicht noch weitere Relationen benötigt werden.

Beweis des Satzes. Wir beginnen mit dem Fall $n = 3$ und berechnen zunächst die Fundamentalgruppe $\pi_1(C^3\setminus \Delta)$ einer Überlagerung von X_3. Wir interpretieren Elemente von $C^3\setminus \Delta$ als die Angabe von drei paarweise verschiedenen Punkten in der Ebene C, wobei wir jedoch im Unterschied zu X_3 noch wissen, welcher Punkt hier der Erste beziehungsweise der Zweite beziehungsweise der Dritte ist. Wir ändern die Fundamentalgruppe von $C^3\setminus \Delta$ nicht, wenn wir den zweiten Punkt festhalten, formal ist genauer die Einbettung

$$\begin{align*}
\{(x,y) \in (C^*)^2 \mid x \neq y\} & \xrightarrow{} C^3\setminus \Delta \\
(x,y) & \xmapsto{} (x,0,y)
\end{align*}$$

eine Homotopieäquivalenz. Wir geben der linken Seite den Namen M und betrachten die Überdeckung $M = M_+ \cup M_-$ durch die offenen Teilmengen

$$M_+ := M\setminus\{(x, \lambda x) \mid 0 < \lambda < 1\}$$
$$M_- := M\setminus\{(\lambda y, y) \mid 0 < \lambda < 1\}$$

mit Schnitt $M_+ \cap M_- = \{(x, y) \in M \mid \mathbb{R}_{>0}x \neq \mathbb{R}_{>0}y\}$. Stellen wir uns den festen Punkt als die Sonne vor und x beziehungsweise y als die Erde beziehungsweise den Mond, die sich jedoch in einer Ebene völlig unabhängig voneinander bewegen dürfen, so ist M_+ die Menge aller Konstellationen „ohne Sonnenfinsternis“ und M_- die Menge aller Konstellationen „ohne Mondfinsternis“. Jetzt haben wir Homotopieäquivalenzen

$$S^1 \times S^1 \xrightarrow{} M_+, \quad (z,w) \xmapsto{} (z,2w)$$
$$S^1 \times S^1 \xrightarrow{} M_-, \quad (z,w) \xmapsto{} (2z,w)$$
$$S^1 \xrightarrow{} M_+ \cap M_-, \quad z \xmapsto{} (z,0)$$

233
Illustration der Zopfrelation $s_1s_2s_1 = s_2s_1s_2$. In der Tat geht bei beiden Bildern der Faden von links oben nach rechts unten „auf der obersten Ebene“, der Faden von rechts oben nach links unten „auf der untersten Ebene“, und der Faden von der Mitte zur Mitte auf einer „mittelten Ebene“.
Wenn wir Basispunkte $1 \in S^1$, $(1, 1) \in S^1 \times S^1$ und $(-1, 1) \in M$ wählen, erhalten wir mit etwas komplizierteren Ausdrücken auch basispunkterhaltende Homotopieäquivalenzen, indem „wir Erde um Mond um geeignete Punkte p auf der reellen Achse kreisen lassen“, in Formeln

$S^1 \times S^1 \rightarrow M_+$, $(z, w) \mapsto (-p - z(1 - p), \ -p + w(1 + p))$
$S^1 \times S^1 \rightarrow M_-$, $(z, w) \mapsto (p - z(1 + p), \ p + w(1 - p))$

für beliebig fest gewähltes p mit $0 < p < 1/2$. Unsere dritte Homotopieäquivalenz $S^1 \rightarrow M_+ \cap M_-$ von oben erhält schon die Basispunkte. Wie man anschaulich schnell einsieht und unschwer formalisiert, kommutieren mit unserer Wahl von Basispunkten nun die beiden nur durch ein V oder minuszeichen unterschiedenen Diagramme

und wir erhalten isomorphe pushout-Diagramme:

Man sieht so, daß $\pi_1(C^3\backslash\Delta)$ erzeugt wird von den Klassen g, u_+, u_- der drei Wege

$\tilde{g} : \ t \mapsto (-e^{2\pi it}, 0, e^{2\pi it})$
$\tilde{u}_+ : \ t \mapsto (1, 0, p + (1 - p)e^{2\pi it})$
$\tilde{u}_- : \ t \mapsto (-p - (1 - p)e^{2\pi it}, 0, 1)$

für beliebiges festes p mit $0 < p < 1/2$, wo wir nur die beiden Kommutationsrelationen $gu_+ = u_+g$ und $gu_- = u_-g$ fordern müssen. Wir behaupten, daß die Bilder unserer drei Wege in der Zopfgruppe $\pi_1(X_3)$ gegeben werden durch

$u_+ \mapsto s_1^2$
$u_- \mapsto s_2^2$
$g \mapsto (s_1s_2)^3 = (s_2s_1)^3$

Das scheint mir anschaulich evident. Formal kann man zum Beispiel in $C^3\backslash\Delta$ den Weg $\tilde{g}_{1/2}$ von $(-1, 0, 1)$ nach $(1, 0, -1)$ betrachten mit $\tilde{g}_{1/2}(t) = \tilde{g}(2t)$ sowie die
Wege \tilde{s}_1 und \tilde{s}_2 gegeben durch

\[
\tilde{s}_1 : t \mapsto \left(-1/2 - e^{\pi it}/2 , -1/2 + e^{\pi it}/2 , 1 \right) \\
\tilde{s}_2 : t \mapsto \left(-1 , 1/2 - e^{\pi it}/2 , 1/2 + e^{\pi it}/2 \right)
\]

und linear interpolieren zwischen den Wegen $\tilde{g}_{1/2}$ und $(\tau \circ \tilde{s}_1) * (\sigma \circ \tilde{s}_2) * \tilde{s}_1$ für Permutationen $\sigma, \tau \in S_3$ der drei Koordinaten derart, daß die Wege verknüpfbar sind. Dasselbe gilt symmetrisch, wenn wir die Indizes 1 und 2 vertauschen. Drücken wir diese linearen Homotopien dann herunter auf X_3 und verknüpfen, so ergibt sich die Dritte und komplizierteste der obigen Behauptungen, d.h. $g \mapsto (s_1s_2)^3 = (s_2s_1)^3$. Jetzt betrachten wir formal die Gruppe B_3, die erzeugt wird von zwei Elementen s und t mit den Relationen $sts = tst$, und nenne sie für die Dauer dieses Beweises die abstrakte Zopfgruppe. Es tut mir leid, den Buchstaben t erst als Parameter eines Weges und nun gleich darauf in dieser völlig anderen Bedeutung zu verwenden. Beide Notationen sind jedoch derart gebräuchlich, daß diese Kollision mir ein kleineres Übel scheint, als es eine gänzlich unübliche Wahl der Bezeichnungen wäre. Mit unseren Erkenntnissen zur Fundamentalgruppe von Bahnenräumen 8.1.20 und den Formeln $t^2(st)^3 = (st)^3t^2$ und $s^2(st)^3 = (st)^3s^2$ in der abstrakten Zopfgruppe B_3 erhalten wir ein kommutatives Diagramm von Gruppen

\[
\begin{array}{ccc}
\pi_1(C^3\setminus \Delta) & \to & B_3 \\
\| & \downarrow & \| \\
\pi_1(C^3\setminus \Delta) & \leftrightarrow & \pi_1(X_3) \\
\| & \to & \| \\
& S_3 & \to \end{array}
\]

mit $s \mapsto s_1$ und $t \mapsto s_2$ in der mittleren Vertikale und hoffentlich sonst offensichtlichen Morphismen. Als erstes folgt, daß die Horizontale oben links eine Injektion ist. Weiter ist klar, daß die Verknüpfung in der oberen Horizontale trivial ist. Als nächstes überlegt man sich explizit, daß in der oberen Horizontale das Bild des linken Pfeils genau der Kern von $B_3 \to S_3$ ist. Um zu erkennen, ob die Klasse eines Gruppenworts in $\ker(B_3 \to S_3)$ liegt, müssen wir nur alle Potenzen s^m für $m \in \mathbb{Z}$ reduzieren zu s beziehungsweise e falls $m \in 2\mathbb{Z}$ beziehungsweise $m \notin 2\mathbb{Z}$ und analog für t, bis wir bei einem Wort ankommen, bei dem keine negativen Potenzen auftreten und bei dem die Buchstaben s und t alternieren. Unser ursprüngliches Wort war im Kern genau dann, wenn dieses alternierende Wort eine durch 6 teilbare Länge hat. Nun zeigen wir erst einmal, daß unser Bild normal ist. Dazu reicht es zu zeigen, daß die Konjugierten von Erzeugers des Bildes unter Erzeugern der abstrakten Zopfgruppe wieder im Bild liegen. Das hinwiederum zeigen die Identitäten

\[
t^2s^2t^{-1} = (st)^3s^{-2}t^{-2} \quad \text{und} \quad t(st)^3t^{-1} = (ts)^3 = (st)^3
\]
und ihre Varianten mit s und t vertauscht. Also ist das Bild normal. Jetzt beachten wir, daß für einen Normalteiler N einer Gruppe G und $a, b \in G, x \in N$ gilt

$$axb \in N \iff ax^{-1}ab \in N \iff ab \in N$$

Unsere Beschreibung des Kerns zeigt dann, da eben das Bild normal ist, die schwierige Inklusion \supset und damit die Gleichheit

$$\pi_1(C^3\setminus \Delta) = \ker(B_3 \to S_3)$$

So folgt durch Diagrammjagd in der Tat $B_3 \sim \pi_1(X_3)$ und der Fall $n = 3$ ist erledigt. Jetzt unterbrechen wir den Beweis durch einige allgemeine Überlegungen zu Fundamentalgruppen von Mannigfaltigkeiten, die im Fall von allgemeinem n benötigt werden.

Definition 8.6.6. Seien $n \leq d$ natürliche Zahlen. Eine Teilmenge N einer d-Mannigfaltigkeit M heißt eine n-dimensionale Untermannigfaltigkeit genau dann, wenn es für jeden Punkt $y \in N$ eine offene Umgebung $U \subset M$ gibt und einen Homöomorphismus $U \to \mathbb{R}^d$ mit $U \cap N \to \mathbb{R}^n \times 0$. Ein derartige offene Menge U nennen wir eine plättbare Ball-Umgebung von $y \in N$. Die Differenz $d - n$ heißt die Kodimension der Untermannigfaltigkeit N in M.

Satz 8.6.7 (Fundamentalgruppe von Mannigfaltigkeitskomplement). Seien $M \supset N \supset A$ eine Mannigfaltigkeit mit einer abgeschlossenen Untermannigfaltigkeit einer Kodimension ≥ 3 und einer abgeschlossenen Teilmenge derselben. So induziert für beliebiges $p \in M \setminus A$ die Einbettung einen Isomorphismus

$$\pi_1(M\setminus A, p) \to \pi_1(M, p)$$

Im Fall einer abgeschlossenen Untermannigfaltigkeit $N \subset M$ der Kodimension 2 ist diese Abbildung zumindest noch eine Surjektion $\pi_1(M\setminus A, p) \to \pi_1(M, p)$.

Ergänzung 8.6.8. Stützt man sich beim Beweis statt auf 5.2.27 auf die etwas allgemeinere aber mühsamer zu beweisende Aussage 5.7.10, so zeigt der hier gegebene Beweis die Behauptung des Satzes sogar für $A \subset N$ eine beliebige Teilmenge unserer abgeschlossenen Untermannigfaltigkeit.

Beweis. Ohne Beschränkung der Allgemeinheit können wir unsere Mannigfaltigkeit M zusammenhängend annehmen. Wir beginnen mit einer Vorüberlegung. Seien $A \subset N$ eine abgeschlossene Teilmenge, $U \subset M$ eine plättbare Ball-Umgebung eines Punktes von N, und $p \in U \setminus A$. So haben wir nach Seifert-van-Kampen 6.4.1 ein kokartesisches Diagramm

$$
\begin{array}{ccc}
\pi_1(U \setminus A, p) & \to & \pi_1(U, p) \\
\downarrow & & \downarrow \\
\pi_1(M \setminus A, p) & \to & \pi_1((M \setminus A) \cup U, p)
\end{array}
$$
Da nach 5.2.27 die obere Horizontale ein Isomorphismus beziehungsweise im Fall der Kodimension 2 eine Surjektion ist, muß dasselbe nach 6.3.4 beziehungsweise 6.6.6 auch für die untere Horizontale gelten. Da unsere Räume wegzusammenhängend sind, gilt das dann auch für einen beliebigen Basispunkt \(p \) aus \(M \setminus A \). Man beachte für das folgende auch, daß gilt \((M \setminus A) \cup U = M \setminus B \) für \(B \not\subset U \). Jetzt zeigen wir die Surjektivität von \(\pi_1(M \setminus A, p) \to \pi_1(M, p) \) im allgemeinen. Ist in der Tat \(\gamma \in \Omega(M, p) \) ein Weg, so wird \(\gamma[0,1] \cap N \) überdeckt von endlich vielen plättbaren Ball-Umgebungen \(U_1, \ldots, U_r \). Nach unserer Vorüberlegung haben wir dann für \(p \in M \setminus A \) eine Surjektion

\[
\pi_1(M \setminus A, p) \to \pi_1((M \setminus A) \cup U_1 \cup \ldots \cup U_r, p)
\]

Unser \([\gamma] \in \pi_1(M, p)\) liegt aber sicher im Bild der rechten Seite unter der von der Inklusion induzierten Abbildung der Fundamentalgruppen. Also liegt \([\gamma]\) auch im Bild von \(\pi_1(M \setminus A, p) \). Ähnlich zeigen wir die Injectivität im Fall einer Kodimension \(\geq 3 \). Dann ist ja unsere Surjektion sogar ein Isomorphismus. Ist nun \(\gamma \in \Omega(M \setminus A, p) \) nullhomotop in \(M \), sagen wir vermittels \(h : [0,1] \times [0,1] \to M \), so läßt sich eine Homotopie mit dem konstanten Weg sicher in einem geeigneten \((M \setminus A) \cup U_1 \cup \ldots \cup U_r\) realisieren, mit plättbaren Ball-Umgebungen \(U_i \) von Punkten von \(N \), und dann ist \(\gamma \) nach unserem Isomorphismus sogar nullhomotop in \(M \setminus A \).

Beweis des Satzes über Zopfgruppen 8.6.4. Wir halten nun \(n \) fest, schreiben kurz \(X_n = X \), und betrachten die Abbildung

\[
k : X \to \mathbb{N} \\
E \mapsto n - |\text{Re}(E)|
\]

für \(|\text{Re}(E)| \) die Kardinalität der Projektion von \(E \) auf die reelle Achse. In \(X \) betrachten wir die Teilmenge \(Z_{\nu} = k^{-1}(\nu) \) sowie \(Z_{\leq \nu} = k^{-1}(\{0, 1, \ldots, \nu\}) \). Zum Beispiel besteht \(Z_0 \) aus allen \(n \)-elementigen Teilmengen von \(\mathbb{C} \) derart, daß die Realteile ihrer Elemente paarweise verschieden sind, und \(Z_1 \) besteht aus allen \(n \)-elementigen Teilmengen, in denen es genau zwei Punkte gibt mit demselben Realteil. Offensichtlich ist \(Z_0 \) zusammenziehbar, alle \(Z_{\leq \nu} \) sind offen, und \(Z_{\nu} \) ist eine abgeschlossene Untermannigfaltigkeit der Kodimension \(\nu \) in \(Z_{\leq \nu} \). Proposition 8.6.7 liefert uns damit für einen beliebigen Basispunkt in \(Z_0 \) eine Surjektion und viele Isomorphismen

\[
\pi_1(Z_{\leq 1}) \to \pi_1(Z_{\leq 2}) \to \ldots \to \pi_1(Z_{\leq n-1}) = \pi_1(X)
\]

Wir untersuchen nun zunächst \(\pi_1(Z_{\leq 1}) \). Sicher zerfällt \(Z_1 \) in Zusammenhangskomponenten

\[
Z_1 = Z_1^1 \sqcup Z_1^2 \sqcup \ldots \sqcup Z_1^{n-1}
\]

238
mit Z_i^1 dem System aller n-elementigen Teilmengen $E \in Z_1$ derart, daß bei einer Aufzählung x_1, \ldots, x_n von E mit wachsenden Realteilen gilt $\text{Re}(x_i) = \text{Re}(x_{i+1})$. Bezeichnen wir ganz allgemein mit $X^{[a,b]}_n$ den Raum aller n-elementigen Teilmengen von $\{z \in \mathbb{C} \mid a \leq \text{Re}(z) \leq b\}$, so haben wir offensichtlich Homotopieäquivalenzen

$$X_2 \leftrightarrow X^{[i,i+1]}_2 \leftrightarrow Z_0 \cup Z_1^i$$
$$\{x, y\} \mapsto \{1, \ldots, i-1, x, y, i+2, \ldots, n\}$$

Folglich ist $\pi_1(Z_0 \cup Z_1^i)$ frei erzeugt von s_i. Mit Induktion und dem Satz von Seifert-van-Kampen folgt, daß für jede Teilmenge $T \subset \{1, \ldots, n-1\}$ die Fundamentalgruppe $\pi_1(Z_0 \cup \bigcup_{i \in T} Z_i^1)$ frei erzeugt ist von den s_i mit $i \in T$. Insbesondere erzeugen die s_i schon mal unsere Zopfgruppe, und wir müssen uns nur noch um die Relationen kümmern. Sicher zerfällt auch Z_2 in Zusammenhangskomponenten

$$Z_2 = \bigcup_{1 \leq i < j < n} Z_{2}^{i,j}$$

mit $Z_{2}^{i,j}$ dem System aller n-elementigen Teilmengen $E \in Z_2$ derart, daß bei einer Aufzählung x_1, \ldots, x_n von E mit wachsenden Realteilen gilt $\text{Re}(x_i) = \text{Re}(x_{i+1})$ und $\text{Re}(x_j) = \text{Re}(x_{j+1})$. Wir setzen $Z_{2}^{i,j} = Z_0 \cup Z_1^i \cup Z_1^j \cup Z_{2}^{i,j}$ und bemerken, daß diese Menge offen ist in X_n. Im Fall $i < j-1$ haben wir eine Homotopieäquivalenz

$$X^{[i,i+1]}_2 \times X^{[j,j+1]}_2 \leftrightarrow Z_{2}^{i,j}$$
$$\{(x, y), (z, w)\} \mapsto \{1, 2, \ldots, i-1, x, y, \ldots, j-1, z, w, \ldots, n\}$$

Sie zeigt, daß $\pi_1(Z_{2}^{i,j})$ erzeugt wird von s_i und s_j mit der einzigen Relation $s_is_j = s_js_i$. Im Fall $i = j-1$ haben wir Homotopieäquivalenzen

$$X^{[i,i+2]}_3 \leftrightarrow X^{[i,i+1]}_3 \leftrightarrow Z_{2}^{i,j+1}$$
$$\{x, y, z\} \mapsto \{1, \ldots, i-1, x, y, z, i+3, \ldots, n\}$$

Mit dem bereits behandelten Fall $n = 3$ zeigen sie, daß $\pi_1(Z_{2}^{i,i+1})$ erzeugt wird von s_i und s_{i+1} mit der einzigen Relation $s_is_{i+1}s_i = s_{i+1}s_is_{i+1}$. Sei nun eine beliebige Teilmenge $R \subset \{(i,j) \mid 1 \leq i < j < n\}$ gegeben. Wir behaupten, daß $\pi_1(Z_{\leq 1} \cup \bigcup_{(i,j) \in R} Z_{2}^{i,j})$ erzeugt ist von s_1, \ldots, s_{n-1} mit den Zopfrelationen für alle $(i,j) \in R$. In der Tat folgt das nun mit Seifert-van-Kampen 6.4.1 und vollständiger Induktion über $|R|$. Der Satz ergibt sich, wenn wir R maximal möglich wählen.\[\square\]
Ergänzung 8.6.9. Ähnlich überlegt man sich, wie die Fundamentalgruppe des Raums aller n-elementigen Teilmengen von \mathbb{C}^\times durch Erzeuger und Relationen dargestellt werden kann. Hier ist der Trick, zunächst die stetige Abbildung nach \mathbb{C}^\times zu betrachten, die durch Aufmultiplizieren unserer Punkte gegeben wird, und den Kern der von ihr auf der Fundamentalgruppe induzierten Abbildung. Die Fundamentalgruppe selber stellt man dann als semidirektes Produkt dieses Kerns mit \mathbb{Z} dar.

8.7 Das Yoneda-Lemma

8.7.1. Gegeben ein Mengensystem \mathfrak{U} verstehen wir unter einer \mathfrak{U}-Kategorie wie in 9.2.24 eine Kategorie \mathcal{C}, bei der für alle Objekte $X, Y \in \mathcal{C}$ die Morphismenmenge zu unserem Mengensystem \mathfrak{U} gehört, in Formeln $\mathcal{C}(X, Y) \in \mathfrak{U}$, und bei der die Menge der Objekte unserer Kategorie eine Teilmenge von \mathfrak{U} ist, in Formeln $\mathcal{C} \subset \mathfrak{U}$. Die letzte Forderung ist nicht wesentlich, da wir ja andernfalls schlicht unsere Objekte mit ihren Identitätsmorphismen identifizieren können.

8.7.2. Ich wiederhole 9.9.1 folgende. Einen Funktor von einer Kategorie \mathcal{C} in eine Kategorie von Mengen nennen wir kurz einen Mengenfunktor auf \mathcal{C}. Jedes Objekt $X \in \mathcal{C}$ definiert einen derartigen Mengenfunktor $\tilde{X} : Y \mapsto \mathcal{C}(X, Y)$. Gegeben ein Mengensystem \mathfrak{U} und eine \mathfrak{U}-Kategorie \mathcal{C} bildet die Menge aller Funktoren $\mathcal{C} \to \mathfrak{U}\text{Ens}$ mit den Transformationen als Morphismen wieder eine Kategorie $\text{Cat}(\mathcal{C}, \mathfrak{U}\text{Ens})$.

Proposition 8.7.3 (Yoneda-Lemma). Seien \mathfrak{U} ein Mengensystem, \mathcal{C} eine \mathfrak{U}-Kategorie, $X \in \mathcal{C}$ ein Objekt und $F : \mathcal{C} \to \mathfrak{U}\text{Ens}$ ein Mengenfunktor auf \mathcal{C}. So liefert die Abbildungsvorschrift $\tau \mapsto \tau_X (\text{id}_X)$ eine Bijektion

$$\text{Cat}(\mathcal{C}, \mathfrak{U}\text{Ens})(\tilde{X}, F) \simeq F(X)$$

zwischen der Menge aller Transformationen $\tilde{X} \Rightarrow F$ und der Menge $F(X)$.

8.7.4. Die zur Kategorie dieser Mengenfunktionen auf \mathcal{C} opponierte Kategorie

$$\mathcal{C}' = \mathcal{C}_\mathfrak{U}' := \text{Cat}(\mathcal{C}, \mathfrak{U}\text{Ens})^{opp}$$

kann man als eine Art „Vervollständigung“ von \mathcal{C} interpretieren. In der Tat liest sich unser Yoneda-Lemma in dieser geschickt abgekürzten Notation als eine Bijektion $\mathcal{C}'(F, \tilde{X}) \to F(X)$. Spezialisieren wir zu $F = \tilde{Y}$, so erhalten wir eine Bijektion $\mathcal{C}'(\tilde{Y}, \tilde{X}) \to \mathcal{C}(Y, X)$, von der man leicht zeigt, daß sie die Inverse zur offensichtlichen Abbildung $\mathcal{C}(Y, X) \to \mathcal{C}'(\tilde{Y}, \tilde{X})$ ist. So folgt, daß die Vorschrift $X \mapsto \tilde{X}$ einen volltreuen Funktor $\mathcal{C} \simeq \mathcal{C}'$ induziert.

240
8.7.5 (Ergänzung). Die hier verwendeten Notationen C^\vee und das später eingeführte C^\wedge sind genau umgekehrt wie in [KS90]. Dafür stimmt die Notation C^\wedge dann mit der in [Gro72] verwendeten Notation überein.

8.7.6 (Das Yoneda-Lema im Fall einer Ein-Objekt-Kategorie). Im Spezialfall einer Ein-Objekt-Kategorie $\mathcal{C} = [G]$ mit einzigem Objekt X ist diese Aussage besonders leicht einzusehen: Sie besagt dann im Lichte von 7.7.10, daß die äquivarianten Abbildungen von einem Monoid G in eine beliebige G-Menge F festgelegt sind und festlegbar sind durch das Bild des neutralen Elements. Im weiteren lassen wir das Mengensystem \mathcal{U} wieder in den Hintergrund treten und ignorieren es meist in unserer Notation.

Beweis. Wir konstruieren zunächst eine Abbildung in die andere Richtung. Für beliebiges $a \in F(X)$ betrachten wir dazu die Abbildungen

$$\tau_Y : \mathcal{C}(X,Y) \to F(Y)$$

$$f \mapsto (Ff)(a)$$

Man prüft ohne Schwierigkeiten, daß sie eine Transformation $\tau : X \Rightarrow F$ bilden, die wir mit $\hat{\tau}(a)$ bezeichnen. Jetzt gilt es nur noch zu zeigen, daß die Abbildung $a \mapsto \hat{\tau}(a)$ invers ist zu unserer Abbildung $\tau \mapsto \hat{a}(\tau) := \tau_X(\text{id}_X)$ aus der Proposition. Dafür müssen wir also prüfen, daß gilt $a = \hat{a}(\hat{\tau}(a))$ für alle $a \in F(X)$ und $\tau = \hat{\tau}(\hat{a}(\tau))$ für alle Transformationen $\tau : X \Rightarrow F$. Das überlassen wir dem Leser.

Definition 8.7.7. Diejenigen Mengenfunktoren auf \mathcal{C}, die isomorph sind zu Mengenfunktoren im Bild von $\mathcal{C} \to C^\vee$, heißen **darstellbare Funktoren**. Ist ein Mengenfunktor $F : \mathcal{C} \to \text{Ens}$ isomorph zu $\tilde{X} = \mathcal{C}(X, _)$ für ein $X \in \mathcal{C}$, so sagen wir, der **Funktor F werde dargestellt durch das Objekt X**. Ist noch genauer $F : \mathcal{C} \to \text{Ens}$ ein Mengenfunktor und $X \in \mathcal{C}$ ein Objekt und $a \in F(X)$ ein Element, das unter der Bijektion aus dem Yoneda-Lemma einer Isotransformation $\mathcal{C}(X, _) \Rightarrow F$ entspricht, so sagen wir, der **Funktor F werde strikt dargestellt durch das Paar (X, a)**. Ausgeschrieben bedeutet das, daß die Vorschrift $f \mapsto (Ff)(a)$ für alle $Y \in \mathcal{C}$ eine Bijektion $\mathcal{C}(X,Y) \Rightarrow F(Y)$ liefert. Oft lassen wir das „strikt“ aber auch weg.

Beispiel 8.7.8. Der Vergißfunktor $\text{Mod}_k \to \text{Ens}$ von den k-Vektorräumen in die Mengen wird dargestellt durch das Paar $(k, 1)$ oder auch durch jedes andere eindimensionale Vektorraum zusammen mit einem beliebigen von Null verschiedenen Element.

Beispiel 8.7.9. Der Vergißfunktor $\text{Grp} \to \text{Ens}$ von den Gruppen in die Mengen wird dargestellt durch das Paar $(\mathbb{Z}, 1)$ oder auch durch jedes andere Paar (\mathbb{Z}, e) bestehend aus einer unendlich zyklischen Gruppe und einem Erzeuger.
8.7.10. In derselben Weise kann man für jede \mathfrak{U}-Kategorie C auch die Kategorie
\[C^\wedge = C^\wedge_{\mathfrak{U}} := \text{Cat}(C^{\text{opp}}, \mathfrak{U}\text{Ens}) \]
anz. aller kontravarianten Funktoren $C \to \mathfrak{U}\text{Ens}$ betrachten und erhält mit $X \mapsto \hat{X} := C(\cdot, X)$ eine volltreue Einbettung $C \hookrightarrow C^\wedge$. Wieder heißen die Funktoren im Bild dieser Einbettung darstellbare Funktoren. Die Objekte von C^\wedge werden Ihnen sehr viel später vielleicht einmal unter der Bezeichnung als „mengenwertige Prägarben auf C“ wieder begegnen. Diesmal liefert das Auswerten auf id_X eine Bijektion $C^\wedge(\hat{X}, F) \cong F(X)$.

Ergänzung 8.7.11. Gegeben eine Kategorie C kann man leicht Isomorphismen von Kategorien $(C')^{\text{opp}} \rightarrow (C^{\text{opp}})^\wedge$ und $(C^\wedge)^{\text{opp}} \rightarrow (C^{\text{opp}})'$ angeben. In diesem Sinne sind unsere beiden Konzepte zueinander dual.

8.8 Mehr zu adjungierten Funktoren*

8.8.1 (Eindeutigkeit der Adjungierten). Gegeben Funktoren L und R kann es durchaus verschiedene Adjunktionen α von L mit R im Sinne unserer Definition 8.4.2 geben. Gegeben zwei Adjunktionen $\alpha : L \dashv R$ und $\alpha' : L \dashv R'$ wie oben mit demselben L gibt es jedoch nach dem Yoneda-Lemma 8.7.3 stets genau eine Isotransformation $R \Rightarrow R'$ derart, daß das Diagramm
\[
\begin{array}{ccc}
B(LX, Y) & \xrightarrow{\alpha} & A(X, RY) \\
\| & & \downarrow \\
B(LX, Y) & \xrightarrow{\alpha'} & A(X, R'Y)
\end{array}
\]
mit der durch diese Isotransformation induzierten rechten Vertikale kommutiert. In der Tat, fassen wir für festes Y unser Diagramm auf als Diagramm von Funktoren in X, so sagt uns das Yoneda-Lemma 8.7.3 gerade, daß die a priori durch die Kommutativität des Diagramms erklärte Transformation von Mengenfunktoren in der rechten Vertikale bereits von einem eindeutig bestimmten Morphismus $RY \rightarrow R'Y$ herkommen muß, und daß diese eindeutig bestimmten Morphismen eine Isotransformation $R \Rightarrow R'$ liefern, ist dann nicht mehr schwer zu sehen. Das Paar (α, R) ist also, wenn es denn existiert, durch den Funktor L im wesentlichen eindeutig bestimmt. Man benutzt deshalb meist den bestimmten Artikel und nennt R den rechtsadjungierten Funktor zu L, wobei eigentlich nicht nur der Funktor R gemeint ist, sondern das Paar (α, R). Ebenso wird auch das Paar (α, L) durch R im wesentlichen eindeutig festgelegt und man nennt L den linksadjungierten Funktor zu R. Spricht man von einem adjungierten Paar $L \dashv R$, so ist der Leser gefordert, die vom Autor gemeinte Adjunktion α von L und R aus dem Kontext zu erschließen.
8.8.2. Zu jedem Funktor $F : \mathcal{A} \to \mathcal{B}$ können wir den \textbf{partiellen linksadjungierten Funktor} bilden, der eben nur auf der vollen Unterkategorie derjenigen Objekte $B \in \mathcal{B}$ erklärt ist, für die der Mengenfunktor $\mathcal{A} \to \mathbf{Ens}$, $X \mapsto \mathcal{B}(B, FX)$ darstellbar ist im Sinne von 8.7.7. Wir sagen dann auch, der „linksadjugierte Funktor sei bei B definiert” und lassen das Wörtchen „partiell” weg. Wollen wir speziell betonen, daß ein linksadjungierter Funktor überall definiert ist, so sprechen wir von einem \textbf{globalen Linksadjungierten}. Jede Restriktion eines maximalen partiellen Linksadjungierten nennen wir einen \textbf{partiellen Linksadjungierten}. Analog Begriffsbildungen vereinbaren wir für Rechtsadjungierte.

8.8.3. Seien \mathcal{A}, \mathcal{B} Kategorien. Unter einem \textbf{partiell definierten Funktor} verstehe ich einen Funktor von einer vollen Unterkategorie von \mathcal{A} nach \mathcal{B}. Ich notiere partiell definierte Funktoren auch $F : \mathcal{A} \to \mathcal{B}$. Zum Beispiel ist der partielle Linksadjungierte eines beliebigen Funktors $F : \mathcal{A} \to \mathcal{B}$ ein partiell definiert Funktor $\mathcal{B} \to \mathcal{A}$.

\textbf{Vorschau 8.8.4.} Betrachten wir wie in 8.7.10 die Yoneda-Einbettung $\mathcal{C} \hookrightarrow \mathcal{C}^{\mathbf{Ens}} := \mathbf{Cat}(\mathcal{C}^{\mathbf{op}}, \mathbf{Ens})$. Ein Funktor im Bild heißt ein „darstellbarer Funktor“. Auch wenn ein Funktor $F \in \mathcal{C}^{\mathbf{Ens}}$ nicht darstellbar ist, kann immerhin der Rechtsadjungierte der Einbettung $\mathcal{C} \hookrightarrow \mathcal{C}^{\mathbf{Ens}}$ bei F definiert sein. Das entsprechende Objekt $\mathcal{R}(F) \in \mathcal{C}$ mag man dann als eine „bestmögliche Approximation an ein darstellendes Objekt“ verstehen. Ein Beispiel für solche Konstruktionen sind die sogenannten \textbf{großen Modulräume}.

\textbf{Definition 8.8.5.} Ist allgemein \mathcal{C} eine Kategorie mit einem ausgezeichneten Funktor in die Kategorie der Mengen, als da heißt eine Kategorie über \mathbf{Ens}, so nennen wir den Wert des möglicherweise partiellen Linksadjungierten auf einer Menge X das \textbf{freie Objekt von \mathcal{C} über X} und notieren dies freies Objekt im allgemeinen \mathcal{C}^X.

\textbf{Beispiel 8.8.6 (Freie Gruppen und freie abelsche Gruppen).} Der Vergißfunktor von den Gruppen in die Mengen hat als Linksadjungierten den Funktor, der jeder Menge die freie Gruppe über besagter Menge zuordnet, wie sie in 6.5.6 eingeführt wird. Der Vergißfunktor von den abelschen Gruppen in die Mengen hat als Linksadjungierten den Funktor, der jeder Menge die freie abelsche Gruppe über besagter Menge zuordnet. Für diese Gruppe verwenden wir die Notation $\mathbf{Ab}^X = \mathbb{Z}^X$.

\textbf{Beispiel 8.8.7 (Es gibt keine freien Körper).} Der Vergißfunktor von den Körpern in die Mengen hat keinen Linksadjungierten, es gibt also salopp gesprochen keine sinnvolle Definition eines „freien Körpers über einer gegebenen Menge“.

\textbf{Beispiel 8.8.8.} Der Vergißfunktor von den k-Vektorräumen in die Mengen hat als Linksadjungierten den Funktor, der jeder Menge X den freien k-Vektorraum über
der Menge X zuordnet, d.h. den Vektorraum aller Abbildungen $X \to k$, die nur an endlich vielen Stellen $x \in X$ verschieden sind von Null. Wir verwenden für diesen Vektorraum die abkürzende Notation

$$ k\text{-Mod}\, X = k\langle X \rangle $$

Ist allgemeiner k ein Ring, so verwenden wir dieselbe Notation auch für den freien k-Modul über X. Gegeben ein kommutativer Ring k ist der freie k-Kring über einer Menge von Veränderlichen schlicht der Polynomring in diesen Veränderlichen, in Formeln gilt also zum Beispiel

$$ \text{Kring}^k \backslash \{T_1, \ldots, T_n\} = k[T_1, \ldots, T_n] $$

Beispiele 8.8.9. Der Funktor $\text{Spek} : \text{Ralg}_{\text{opp}} \to \text{Top}$ aus ?? ist rechtsadjungiert zum Funktor $\mathcal{C} : \text{Top} \to \text{Ralg}_{\text{opp}}$. Diese Aussage ist der Kern der Argumentation in ??, wie wir gleich näher ausführen werden.

Beispiele 8.8.10 (Adjunktionen mit Hom und \otimes). Gegeben ein Körper k und ein k-Vektorraum E ist der Funktor $E \otimes_k : \text{Mod}_k \to \text{Mod}_k$ linksadjungiert zu $\text{Hom}_k(E, \) : \text{Mod}_k \to \text{Mod}_k$ und der Funktor $\text{Hom}_k(\ , E) : \text{Mod}_k \to \text{Mod}_k^{\text{opp}}$ hat als Rechtsadjungierten den Funktor $\text{Hom}_k(\ , E)^{\text{opp}} : \text{Mod}_k^{\text{opp}} \to \text{Mod}_k$. Ausgezeichnete derartige Adjunktionen werden in ?? und ?? angegeben.

Übungen

Ergänzende Übung 8.8.11 (Partielle Dreiecksidentitäten). Sei $L : \mathcal{A} \to \mathcal{B}$ ein Funktor. Man zeige: Gegeben ein Objekt $A \in \mathcal{A}$ derart, daß der partielle Rechtsadjungierte R bei LA definiert ist, ist die Verknüpfung $LA \to LRLA \to LA$ der von der Einheit $A \to RLA$ und der Identität $RLA \to RLA$ herrührenden Morphismen die Identität auf LA. Gegeben ein Objekt $B \in \mathcal{B}$ derart, daß der partielle Rechtsadjungierte R bei B und LRB definiert ist, ist weiter die entsprechende Verknüpfung $RB \to RLRB \to RB$ die Identität auf RB.

Übung 8.8.12. Sei $L : \mathcal{A} \to \mathcal{B}$ ein Funktor und R sein Rechtsadjungierter. So ist die Restriktion von R auf die volle Unterkategorie $L(\mathcal{A}) \subset \mathcal{B}$ der Rechtsadjungierten von $L : \mathcal{A} \to L(\mathcal{A})$. Analoges gilt für Linksadjungierte.

Ergänzende Übung 8.8.13 (Äquivalenzen durch Adjunktionen). Gegeben ein Funktor $L : \mathcal{A} \to \mathcal{B}$ betrachte man seinen partiellen Rechtsadjungierten R und die vollen Unterkategorien

$$ \mathcal{A}_0 := \{ A \in \mathcal{A} \mid RLA \text{ definiert und die Einheit ist ein } \text{Iso} \ A \xrightarrow{\sim} RLA \} $$

$$ \mathcal{B}_0 := \{ B \in \mathcal{B} \mid RB \text{ definiert und die Koeinheit ist ein } \text{Iso} \ LRB \xrightarrow{\sim} B \} $$

Man zeige, daß L eine Äquivalenz von Kategorien $\mathcal{A}_0 \xrightarrow{\sim} \mathcal{B}_0$ mit Quasiinversem R induziert. Hinweis: 8.8.11.

$$B(X, FRY) \rightarrow A(LX, RY) \rightarrow B(FLX, Y) \rightarrow B(X, Y)$$

In ?? werden wir diese Aussage als Konsequenz einer größeren Theorie verstehen können: Jeder Funktor mit einem volltreuen Linksadjungierten oder volltreuen Rechtsadjungierten ist ein „Lokalisierungsfunktor“, und die beiden partiellen Adjungierten eines Lokalisierungsfunktors sind stets volltreu.

Übung 8.8.15 (Adjungierte zur Restriktion von Gruppenwirkungen). Ist $\varphi : H \rightarrow G$ ein Gruppenhomomorphismus, so besitzt der offensichtliche Funktor $res^H_G : G-\text{Ens} \rightarrow H-\text{Ens}$ einen Linksadjungierten, den wir prod^G_H notieren und der einer H-Menge X die G-Menge $G \times H X$ aller H-Bahnen in $G \times X$ unter der Operation $h(g, x) = (gh^{-1}, hx)$ zuordnet. Ebenso besitzt er einen Rechtsadjungierten $\text{ind}_H^G : X \mapsto \text{Ens}_{H \setminus G}(G, X)$.

8.8.16 (Diskussion der Terminologie). In der Literatur heißt $G \times_H X$ meist die „von X induzierte G-Menge“. Wir werden jedoch von der von X koinduzierten G-Menge reden, um mit anderen Begriffsbildungen kompatibel zu bleiben. Ist etwas allgemeiner H eine Gruppe und X eine H-Menge und Y eine H-Rechtsmenge, so erklärt man analog ihr balanciertes Produkt

$$Y \times_H X$$

als die Menge aller H-Bahnen in $Y \times X$ unter der Operation $h(y, x) = (yh^{-1}, hx)$. Oft werden balancierte Produkte statt $Y \times_H X$ einfacher $Y \times_H X$ notiert. Das kann leider auch ein Faserprodukt bedeuten, und der Leser muß aus dem Kontext erschließen, welche Bedeutung jeweils gemeint ist.

Übung 8.8.17. Ist G eine Gruppe mit Untergruppen H, K und ist $S = H \cap K$ ihr Schnitt, so induziert die Multiplikation eine Bijektion $H \times_S K \rightarrow HK$.

Ergänzende Übung 8.8.18. Ist G eine Gruppe und $H \subset G$ eine Untergruppe und $y \in G$ ein Element und $S = H \cap yHy^{-1}$, so erhalten wir einen Isomorphismus $H \times_S H \rightarrow H_y H$ von $(H \times H)$-Mengen mit der Rechtsoperation von $s \in S$ auf H durch Rechtsmultiplikation und der Linksoperation von $s \in S$ auf H durch Linksmultiplikation mit $y^{-1} sy$ vermittels der Abbildung $[h, k] \rightarrow hyk$. Hinweis: Man wende 8.8.17 an mit $K = yHy^{-1}$.

245
Ergänzende Übung 8.8.19. Sei \(\varphi : H \to G \) ein Homomorphismus topologischer Gruppen. Bezeichnet \(\text{Top}^G \) die Kategorie der topologischen Räume mit einer stetigen \(G \)-Operation, so besitzt der offensichtliche Funktor \(\text{Top}^G \to \text{Top}^H \) einen Linksadjungierten, den wir \(\text{prod}_H^G \) notieren und der einem \(H \)-Raum \(X \) den \(G \)-Raum \(G \times /_HX \) mit seiner Quotiententopologie zuordnet. Die Stetigkeit der Operation von \(G \) folgt hier zum Beispiel mit 7.3.9.

Übung 8.8.20 (Adjungierter einer Verknüpfung). Der Adjungierte einer Verknüpfung ist die Verknüpfung der Adjungierten, als da heißt: Gegeben Funktoren \(R_* : \mathcal{A} \to \mathcal{B} \) und \(S_* : \mathcal{B} \to \mathcal{C} \) mit Linksadjungierten \(R^* \) und \(S^* \) erhalten wir eine Adjunktion \((R^* \circ S^*) \dashv (S_* \circ R_*) \) in kanonischer Weise.

Übung 8.8.22 (Transformationen zwischen Adjungierten, Variante). Gegeben adjungierte Paare \((L,R) \) und \((L',R') \) von Funktoren zwischen Kategorien \(\mathcal{A}, \mathcal{B} \) beziehungsweise \(\mathcal{A}', \mathcal{B}' \) und Funktoren \(F : \mathcal{A} \to \mathcal{A}' \) sowie \(G : \mathcal{B} \to \mathcal{B}' \) konstruiere man eine natürliche Bijektion
\[
\text{Cat}(\mathcal{A}, \mathcal{B}')(L'F, GL) \to \text{Cat}(\mathcal{B}, \mathcal{A}')(FR, R'G)
\]

Übung 8.8.23. Besitzt ein Funktor einen Rechtsadjungierten, so macht er kokartessische Diagramme zu kokartessischen Diagrammen. Besitzt ein Funktor einen Linksadjungierten, so macht er kartessische Diagramme zu kartessischen Diagrammen.

Ergänzung 8.8.24 (Adjunktionen einiger Funktoren von \(G \)-Mengen). Gegeben \(H \subset G \) eine Untergruppe und \(X \) eine \(H \)-Menge bezeichne \([g,x] \in G \times /_HX \) die Bahn von \((g,x)\). Ist \(X \) die Restriktion einer \(G \)-Menge, so definiert die Abbildung \([g,x] \mapsto (gH,gx)\) eine \(G \)-äquivariante Bijektion
\[
G \times /_HX \xrightarrow{\sim} (G/H) \times X
\]
Hier ist auf der rechten Seite das Produkt des \(G \)-Mengen \((G/H)\) und \(X \) in der Kategorie der \(G \)-Mengen gemeint, also mit der „diagonalen“ \(G \)-Operation. Allgemeiner ist für jede \(G \)-Menge \(E \) der Funktor \((E \times) : G \text{-Ens} \to G \text{-Ens}\) linksadjungiert zum Funktor \(\text{Ens}(E,) : G \text{-Ens} \to G \text{-Ens} \) vermittels der kanonischen Bijektionen aus ??, wenn wir die \(G \)-Operation auf einem Raum von Abbildungen \(\text{Ens}(E, M) \) erklären durch die Konjugation, so daß in Formeln \(gf \) erklärt sei durch \((gf)(x) = g(f(g^{-1}x))\). Gegeben \(M \in H \text{-Ens} \) und \(E \in G \text{-Ens} \) haben wir
kanonische Isomorphismen von G-Mengen

\[
\begin{align*}
\text{prod}_H^G (E \times M) & \xrightarrow{\sim} E \times (\text{prod}_H^G M) \\
\text{ind}_H^G \text{Ens}(E, M) & \xrightarrow{\sim} \text{Ens}(E, \text{ind}_H^G M) \\
\text{ind}_H^G \text{Ens}(M, E) & \xrightarrow{\sim} \text{Ens}(\text{prod}_H^G M, E)
\end{align*}
\]

Ganz allgemein ist nach 8.8.20 der Adjungierte einer Verknüpfung von Funktoren die Verknüpfung der Adjungierten, wenn sie existieren. Diese Erkenntnis gilt es nun anzuwenden auf die kommutativen Diagramme von Funktoren

\[
\begin{array}{ccc}
G \text{-Ens} & \xrightarrow{E \times} & G \text{-Ens} \\
\downarrow & & \downarrow \\
H \text{-Ens} & \xrightarrow{E \times} & H \text{-Ens}
\end{array}
\begin{array}{ccc}
G \text{-Ens} & \xrightarrow{\text{Ens}(E, \cdot)} & G \text{-Ens} \\
\downarrow & & \downarrow \\
H \text{-Ens} & \xrightarrow{\text{Ens}(E, \cdot)} & H \text{-Ens}
\end{array}
\begin{array}{ccc}
G \text{-Ens} & \xrightarrow{\text{Ens}(\cdot, E)} & G \text{-Ens}^{\text{opp}} \\
\downarrow & & \downarrow \\
H \text{-Ens} & \xrightarrow{\text{Ens}(\cdot, E)} & H \text{-Ens}^{\text{opp}}
\end{array}
\]

mit den Restriktionen als Vertikalen und der Adjunktion $(E \times, \text{Ens}(E, \cdot))$ beziehungsweise der Tatsache, daß der Rechtsadjungierte der Horizontalen $\text{Ens}(\cdot, E)$ im Diagramm ganz rechts wieder $\text{Ens}(\cdot, E)$ ist, nur diesmal aufgefaßt als Funktor in der Gegenrichtung, also präziser der Funktor $\text{Ens}(\cdot, E)^{\text{opp}}$.

8.9 Überlagerungen topologischer Gruppen*

Satz 8.9.1 (Überlagerungen topologischer Gruppen). Gegeben $p : \tilde{G} \to G$ eine zusammenhängende Überlagerung einer lokal zusammenziehbaren topologischen Gruppe G gilt:

1. Es gibt für jeden Punkt $\tilde{e} \in p^{-1}(e)$ über dem neutralen Element von G genau eine stetige Verknüpfung auf \tilde{G}, die mit p verträglich ist und die Eigenschaft $(\tilde{e}, \tilde{e}) \mapsto \tilde{e}$ hat;

2. Diese Verknüpfung macht \tilde{G} zu einer topologischen Gruppe mit neutralem Element \tilde{e}, der Kern $p^{-1}(e) = \ker p$ ist darin eine zentrale Untergruppe, und wir erhalten eine kurze exakte Sequenz von abelschen Gruppen

\[\pi_1(\tilde{G}, \tilde{e}) \hookrightarrow \pi_1(G, e) \twoheadrightarrow \ker p\]

mit der von p induzierten Abbildung links und der durch die Operation auf der Faser $\gamma \mapsto \langle \gamma \rangle \tilde{e}$ gegebenen Abbildung rechts.
8.9.2. Mir ist nicht klar, ob es sinnvoller ist, für den zweiten Pfeil die angegebene Abbildung zu wählen oder vielmehr ihr Negatives. Letzteres wäre der Faserwirkungsvergleich 8.1.9 für die Linksoperation von $\ker p$. Erstere wäre der Faserwirkungsvergleich für die Rechtsoperation.

\textit{Beweis.} Die Eindeutigkeit der Verknüpfung folgt aus Satz 7.4.2 über die Eindeutigkeit von Lifts, angewandt auf das Diagramm

\[
\begin{array}{c}
\hat{G} \times \hat{G} \to \hat{G} \\
\downarrow \quad \downarrow \\
G \times G \to G
\end{array}
\]

Für das weitere dürfen wir ohne Beschränkung der Allgemeinheit G zusammenhängend annehmen. Da wir G lokal zusammenziehbar angenommen hatten, besitzt G nach 8.3.1 eine wegweise einfach zusammenhängende Überlagerung $q : (U, 1) \to (G, e)$.

Auch $U \times U$ ist dann wegweise einfach zusammenhängend. Auf $\hat{G} = U$ folgt die Existenz eines Lifts der Verknüpfung auf G mit $(1, 1) \mapsto 1$ dann aus demselben Diagramm mit dem Satz über die Existenz von Lifts 8.2.4. Die Assoziativität der Verknüpfung folgt mit dem Satz über die Eindeutigkeit von Lifts, desgleichen die Aussage, daß 1 dafür ein neutrales Element ist. Die Existenz des Inversen folgt wieder mit dem Satz über die Existenz von Lifts. Also ist U mit der gelifteten Verknüpfung in der Tat eine topologische Gruppe mit 1 als neutralem Element.

Nun ist der Kern $K := \ker q$ diskret und damit nach 4.1.21 zentral, und die Abbildung $k \mapsto (k \cdot -)$ bettet K als Untergruppe in die Deckbewegungsgruppe unserer universellen Überlagerung ein. Da aber K bereits transitiv auf sich selber alias der Faser über e operiert, muß diese Einbettung bereits ein Gruppenisomorphismus $K \xrightarrow{\sim} \text{Top}_G U$

mit der Deckbewegungsgruppe sein. Weiter operiert K topologisch frei auf U und die kanonische Abbildung ist ein Isomorphismus von topologischen Gruppen $U/K \xrightarrow{\sim} G$.

Die Klassifikation zusammenhängender Überlagerungen nach 8.5.3 oder alternativ nach 8.2.2 und 8.3.5 sagt uns dann, daß jede bepunkte zusammenhängende Überlagerung $(\hat{G}, \hat{e}) \to (G, e)$ isomorph ist zu $(U/H, 1) \to (G, e)$ für genau eine Untergruppe $H \subset K$, und das zeigt die Existenz eines stetigen Lifts der Verknüpfung zu einer Gruppenstruktur auf \hat{G} mit neutralem Element \hat{e}. Übung 8.1.20 liefert dann unsere exakte Sequenz. Daß dabei der rechte Pfeil auch ein Gruppenhomomorphismus ist, folgt aus der am Ende von 8.1.2 diskutierten Funktorialität oder kann vielleicht einfacher vom Leser zur Übung direkt gezeigt werden. \Box
Satz 8.9.3 (Überlagerungen topologischer Gruppen, Klassifikation). Gegeben eine lokal zusammenziehbare topologische Gruppe \(G \) liefert die Vorschrift \((p : G \to G) \mapsto \text{im}(p : \pi_1(G, \tilde{e}) \to \pi_1(G, e))\) eine Äquivalenz von Kategorien

\[
\begin{align*}
\left\{ \text{Zusammenhängende topologische Gruppen über } G, \text{ die } G \text{ überlagern} \right\} ^{\text{opp}} \cong \{ \text{Untergruppen von } \pi_1(G, e) \}
\end{align*}
\]

mit der Maßgabe, daß rechts die Kategorie der teilgeordneten Menge der Untergruppen der Fundamentalgruppe mit den Inklusionen als Morphismen gemeint sei.

Beweis. Daß jede Untergruppe der Fundamentalgruppe von einer zusammenhängenden Überlagerung herkommt, wissen wir bereits. Der Rest des Satzes folgt aus der Bescheidung dieser Überlagerungen als Quotienten der universellen Überlagerung der Einskomponente \(G^e \) von \(G \).

Übungen

Übung 8.9.4. Man zeige: Jede topologische Gruppe, die homöomorph ist zur Kreislinie \(S^1 \), ist bereits als topologische Gruppe isomorph zur multiplikativen Gruppe \(S^1 \) aller komplexen Zahlen vom Betrag Eins. Hinweis: 4.1.24.
9 Kategorien und Funktoren

9.1 Kategorien

Definition 9.1.1. Eine **Kategorie** \(C \) ist ein Datum bestehend aus

a. einer Menge \(\text{Ob}\ C \) von **Objekten**;

b. einer Menge \(C(X,Y) \) von **Morphismen** für je zwei Objekte \(X, Y \in \text{Ob}\ C \);

c. einer Abbildung \(C(X,Y) \times C(Y,Z) \to C(X,Z) \), \((f,g) \mapsto g \circ f \) für je drei Objekte \(X, Y, Z \in C \), genannt die **Verknüpfung** von Morphismen,

derart, daß folgende Axiome erfüllt sind:

1. Die Morphismenmengen sind paarweise disjunkt;

2. Die Verknüpfung ist **assoziativ**, es gilt also \((f \circ g) \circ h = f \circ (g \circ h) \) für Morphismen \(f, g \) und \(h \), wann immer diese Verknüpfungen sinnvoll sind;

3. Für jedes Objekt \(X \in \text{Ob}\ C \) gibt es einen Morphismus \(\text{id}_X \in C(X,X) \), die **Identität auf** \(X \), so daß gilt \(\text{id}_X \circ f = f \) und \(g \circ \text{id}_X = g \) für Morphismen \(f \)
und \(g\) wann immer diese Verknüpfungen sinnvoll sind. Die üblichen Argumente zeigen, daß es für jedes \(X\) höchstens einen derartigen Morphismus geben kann, womit auch die Verwendung des bestimmten Artikels gerechtfertigt wäre.

9.1.2. Seien \(C\) eine Kategorie und \(X, Y \in \text{Ob } C\) Objekte. Statt \(f \in C(X, Y)\) sagen wir auch, \(f\) sei ein **Morphismus von \(X\) nach \(Y\)** und schreiben kurz

\[
f : X \to Y
\]

Statt \(\text{id}_X\) schreiben wir oft nur \(\text{id}\). Statt \(X \in \text{Ob } C\) schreiben wir oft kürzer \(X \in C\).

Beispiel 9.1.3 (Kategorie der Mengen). Als erstes Beispiel hätte ich gerne die Kategorie \(C := \text{Ens}\) aller Mengen eingeführt. Das ist jedoch nicht ohne weiteres möglich, da die „Gesamtheit aller Mengen“ ja nach ?? nicht als Menge angesehen werden darf. Um diese Untiefen der Logik zu umschiffen, betrachten wir feiner ein Mengensystem \(\mathfrak{U}\) alias eine Menge \(\mathfrak{U}\) von Mengen und erklären die Kategorie \(\mathfrak{U}\text{Ens}\) aller Mengen \(X \in \mathfrak{U}\). Ihre Objekte sind beliebige Mengen \(X \in \mathfrak{U}\), in Formeln

\[
\text{Ob}(\mathfrak{U}\text{Ens}) := \mathfrak{U}
\]

Für je zwei Objekte alias je zwei Mengen \(X, Y \in \mathfrak{U}\) erklären wir die Morphismenmenge als die Menge aller Abbildungen von \(X\) nach \(Y\), in Formeln

\[
\mathfrak{U}\text{Ens}(X, Y) := \text{Ens}(X, Y)
\]

Die Verknüpfung ordnet jedem Paar \((f, g)\) von Abbildungen ihre Komposition \(g \circ f\) zu. Daß diese Daten unsere Axiome erfüllen, scheint mir offensichtlich. Unser \(\text{id}_X \in \mathfrak{U}\text{Ens}(X, X)\) ist die identische Abbildung \(\text{id}_X(x) = x \quad \forall x \in X\).

Beispiel 9.1.5. Zu jedem Monoid \(M\) können wir die Kategorie mit einem einzigen Objekt \(*\) bilden, deren Morphismen eben genau die Elemente von besagtem
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Morphismen</th>
<th>Kürzel</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Mengen}</td>
<td>alle Abbildungen</td>
<td>Ens</td>
</tr>
<tr>
<td>{teilgeordnete Mengen}</td>
<td>monoton wachsende Abbildungen</td>
<td>Ord</td>
</tr>
<tr>
<td>{Monoide}</td>
<td>Morphismen von Monoiden</td>
<td>Mon</td>
</tr>
<tr>
<td>{Gruppen}</td>
<td>Gruppenhomomorphismen</td>
<td>Grp</td>
</tr>
<tr>
<td>{abelsche Gruppen}</td>
<td>Gruppenhomomorphismen</td>
<td>Ab</td>
</tr>
<tr>
<td>{topologische Räume}</td>
<td>stetige Abbildungen</td>
<td>Top</td>
</tr>
<tr>
<td>{bepunktete Mengen}</td>
<td>Abbildungen, die den Basispunkt erhalten</td>
<td>Ens*</td>
</tr>
<tr>
<td>{bepunktete Räume}</td>
<td>stetige Abbildungen, die den Basispunkt erhalten</td>
<td>Top*</td>
</tr>
<tr>
<td>{K-Vektorräume}</td>
<td>(K)-lineare Abbildungen</td>
<td>(K)-Mod, Mod(_K)</td>
</tr>
<tr>
<td>{Affine Räume über (K)}</td>
<td>affine Abbildungen</td>
<td>(K)-Aff, Aff(_K)</td>
</tr>
<tr>
<td>{nicht unitäre Ringe}</td>
<td>Rng-Homomorphismen</td>
<td>Rng</td>
</tr>
<tr>
<td>{Ringe}</td>
<td>Ringhomomorphismen</td>
<td>Ring</td>
</tr>
<tr>
<td>{kommutative Ringe}</td>
<td>Ringhomomorphismen</td>
<td>Kring</td>
</tr>
<tr>
<td>{(K)-Algebren}</td>
<td>(K)-Algebren-Homomorphismen</td>
<td>(K)-Alg, Alg(_K)</td>
</tr>
<tr>
<td>{(K)-Ringalgebren}</td>
<td>(K)-Ringalgebren-Homomorphismen</td>
<td>(K)-Ralg, Ralg(_K)</td>
</tr>
<tr>
<td>{(K)-Kringalgebren}</td>
<td>(K)-Kringalgebren-Homomorphismen</td>
<td>(K)-Kralg, Kralg(_K)</td>
</tr>
</tbody>
</table>

Hier einige Beispiele von Kategorien. Als Verknüpfung von Morphismen ist für die Kategorien dieser Liste stets die Komposition von Abbildungen gemeint. Um logische Abstürze zu vermeiden, müssen wir uns genauer stets ein Mengensystem \(\mathfrak{U}\) dazudenken, aus dem die zugrundeliegende Menge der jeweiligen Struktur kommen muß und das wir in der Notation meist unterschlagen. Wenn wir es doch notieren wollen, schreiben wir

\[\mathfrak{U}\text{Mod}_{\(K\)}\]

und dergleichen. Wir denken uns das Mengensystem \(\mathfrak{U}\) meist als ziemlich riesig und fordern zumindest implizit für gewöhnlich, daß es unter dem Bilden von Teilmengen stabil sein möge und die reellen Zahlen enthält. Etwas genauer werden wir zu gegebener Zeit fordern, daß es ein „Universum“ sein soll.

$$C(X) := C(X, X)$$

Beispiel 9.1.6. Sei K ein Körper oder allgemeiner ein Ring. Wir erklären die **Matrixkategorie** $\text{Mat} = \text{Mat}_K = \text{Mat}(K)$ über K durch die Vorschriften

$$\text{Ob}(\text{Mat}_K) := \mathbb{N} \quad \text{und} \quad \text{Mat}_K(m, n) := \text{Mat}(n \times m; K)$$

mit der Matrixmultiplikation als Verknüpfung von Morphismen. Die Axiome sind erfüllt aufgrund unserer Rechenregeln für die Matrixmultiplikation.

Beispiel 9.1.7 (Teilgeordnete Menge als Kategorie). Jede teilgeordnete Menge (A, \leq) kann als Kategorie aufgefaßt werden wie folgt: Objekte sind die Elemente von A; Morphismen gibt es jeweils einen von einem Element zu jedem kleineren und zu sich selber; und die Verknüpfung von Morphismen ist die einzige Mögliche.

Beispiel 9.1.8 (Kategorie der Vektorräume). Als nächstes Beispiel hätte ich gerne die Kategorie $C = \text{Mod}_K$ aller Vektorräume über einem Körper K eingeführt. Die Notation Mod_K für Vektorräume über K steht dabei für ihre alternative Bezeichnung als K-**Moduln**. Wieder gerät man dabei in Untiefen der Logik. Um diese zu umschiffen betrachten wir wieder ein Mengensystem \mathcal{U} und erklären dazu eine Kategorie

$$\mathcal{U}\text{Mod}_K$$

Als Objekte dieser Kategorie nehmen wir alle K-Vektorräume, deren Grundmenge zu unserem Mengensystem \mathcal{U} gehört. Für je zwei Vektorräume $V, W \in \mathcal{U}\text{Mod}_K$ erklären wir die Morphismenmenge als die Menge aller linearen Abbildungen, in Formeln

$$\mathcal{U}\text{Mod}_K(V, W) := \text{Hom}_K(V, W)$$

Die Verknüpfung ordnet wieder jedem Paar (f, g) von Abbildungen ihre Komposition $g \circ f$ zu. Die Axiome sind offensichtlich erfüllt.

9.1.9 (Verwendung des Symbols Hom). Das Symbol „Hom“ für Morphismenräume versuche ich nach Möglichkeit zu vermeiden: Ich will es reservieren für die sogenannten „internen Hom-Räume“. Darunter versteht man Vorschriften, die in sehr speziellen Situationen zwei Objekten einer Kategorie ein Drittes zuordnen,
im Fall der Vektorräume etwa die Morphismenmenge mit ihrer natürlichen Vektorraumstruktur. Wenn die Morphismenmenge als Menge gemeint ist, sollte ich $\text{Mod}_K(V,W)$ schreiben, aber das halte ich im Fall der Vektorräume nicht durch. Das Kürzel „Mod“ mit etwelchen oberen und unteren Indizes wird stets für Kategorien von abelschen Gruppen mit Zusatzstrukturen stehen, meist Operationen von Ringen oder Gruppen. Gehen diese Zusatzstrukturen aus dem Kontext hervor, so lasse ich die entsprechenden Indizes auch manchmal weg. Für abelsche Gruppen ohne Zusatzstrukturen benutze ich stets das Kürzel „Ab“.

Definition 9.1.10.

1. Ein Morphismus $f \in C(X,Y)$ in einer Kategorie heißt ein **Isomorphismus** oder **Iso** und als Adjektiv **iso**, wenn es einen Morphismus $g \in C(Y,X)$ gibt mit $f \circ g = \text{id}_Y$ und $g \circ f = \text{id}_X$. Wir notieren Isomorphismen oft $f : X \rightarrow Y$;

2. Zwei Objekte X und Y einer Kategorie heißen **isomorph**, wenn es einen Iso $f : X \rightarrow Y$ gibt. Man schreibt dann auch kurz $X \cong Y$.

9.1.13. Viele mathematische Fragestellungen lassen sich in der Sprache der Kategorientheorie dahingehend formulieren, daß man einen Überblick über alle Objekte einer Kategorie gewinnen will, wobei man zwischen isomorphen Objekten nicht unterscheidet. Formal will man also für eine gegebene Kategorie C die Menge aller Äquivalenzklassen von Objekten

$$C/\cong$$

unter der Äquivalenzrelation der Isomorphie beschreiben. Man spricht dann auch von **Isomorphieklassen** von Objekten und nennt Fragestellungen dieser Art **Klassifikationsprobleme**. Zum Beispiel werden die endlich erzeugten Vektorräume
über einem fest vorgegebenen Körper klassifiziert durch ihre Dimension, die endlich erzeugten abelschen Gruppen durch die Sätze ?? und ??, die endlichen Mengen durch ihre Kardinalität ??, und beliebige Mengen, vorsichtshalber aus einem vorgegebenen Mengensystem, ebenfalls durch ihre Kardinalität ??.

9.1.15. Zu jeder Kategorie \(C \) erklären wir eine Unterkategorie, die Isomorphismenmenkategorie \(C^\times \) von \(C \), durch die Vorschrift, daß sie dieselben Objekte haben soll, aber nur die Isomorphismen von \(C \) als Morphismen. Die Menge aller Isomorphismen von einem Objekt \(X \) einer Kategorie \(C \) in ein Objekt \(Y \) derselben Kategorie notieren wir folgerichtig \(C^\times(X, Y) \). Die Isomorphismen von einem Objekt \(X \) einer Kategorie \(C \) auf sich selber heißen die Automorphismen von \(X \). Sie bilden stets eine Gruppe, die Automorphismengruppe \(C^\times(X) \) von \(X \). Für die Automorphismengruppe \(\text{Mod}_k(V) \) eines \(k \)-Vektorraums \(V \) hatten wir die Notation \(\text{GL}(V) \) vereinbart, für die Automorphismengruppe \(\text{Ens}^\times(X) \) einer Menge \(X \) die Bezeichnung als „Gruppe der Permutationen von \(X \“.

Definition 9.1.16. Ein Objekt \(F \) einer Kategorie \(C \) heißt final, wenn es für alle \(X \in C \) genau einen Morphismus von \(X \) nach \(F \) gibt, in Formeln

\[
|C(X, F)| = 1 \quad \forall X \in C
\]

Definition 9.1.17. Ein Objekt \(K \) einer Kategorie \(C \) heißt kofinal oder gleichbedeutend initial, wenn es für alle \(Y \in C \) genau einen Morphismus von \(K \) nach \(Y \) gibt, in Formeln

\[
|C(K, Y)| = 1 \quad \forall Y \in C
\]

Beispiele 9.1.18 (Finale und kofinale Objekte in Kategorien von Mengen). Ist \(\emptyset \) ein Mengensystem, das nicht nur aus der leeren Menge besteht, so sind die finalen Objekte von \(\emptyset \text{Ens} \) genau die einpunktfachen Mengen aus \(\emptyset \). Ist \(\emptyset \) ein Mengensystem, das nicht nur aus einelementigen Mengen besteht, so ist die leere Menge das einzige kofinale Objekt von \(\emptyset \text{Ens} \), wenn sie denn zu unserem Mengensystem \(\emptyset \) dazugehört.

9.1.19. Zwischen je zwei finalen beziehungsweise kofinalen Objekten gibt es offensichtlich genau einen Isomorphismus. Wir erlauben uns deshalb, etwas lax von dem finalen beziehungsweise dem kofinalen Objekt zu reden, und bezeichnen „das“ finale Objekt gerne mit \(\text{pt} = \text{pt}(C) \) für „Punkt“ oder \(\text{fin} = \text{fin}(C) \) und
Morphismen dahin mit fin für „final“. Manchmal verwenden wir als Bezeichnung des finalen Objekts auch die kleingeschriebene Bezeichnung der Kategorie, etwa top für den einelementigen topologischen Raum oder ens für die einelementige Menge. Morphismen vom finalen Objekt zu einem beliebigen Objekt notieren wir gerne em wie „embedding“ mit einem Index, der angibt, welcher Morphismus genau gemeint ist. Gegeben eine Menge X und ein Element $x \in X$ meint etwa $em_x : ens \to X$ die Einbettung der einelementigen Menge mit Bild x. Wir bezeichnen mit ini = ini(C) das initiale Objekt einer Kategorie C, wenn es denn ein solches gibt.

Übungen

Übung 9.1.20. Ein Morphismus $f \in C(X,Y)$ in einer Kategorie ist ein Isomorphismus genau dann, wenn es Morphismen $g, h \in C(Y,X)$ gibt mit $f \circ g = id_Y$ und $h \circ f = id_X$, und unter diesen Voraussetzungen gilt bereits $g = h$. Wir nennen diesen Morphismus dann den inversen Morphism zu f und notieren ihn f^{-1}.

Übung 9.1.21. Kann ein Morphismus $f \in C(X,Y)$ in einer Kategorie sowohl durch Vorschalten eines Morphismus $g \in C(W,X)$ als auch durch Nachschalten eines Morphismus $h \in C(Y,Z)$ zu einem Isomorphismus gemacht werden, so muß er bereits selbst ein Isomorphismus gewesen sein.

9.2 Funktoren

Definition 9.2.1. Ein Funktor $F : \mathcal{A} \to \mathcal{B}$ von einer Kategorie \mathcal{A} in eine Kategorie \mathcal{B} ist ein Datum bestehend aus

a. einer Abbildung $F = F_{\text{Ob}} : \text{Ob}\mathcal{A} \to \text{Ob}\mathcal{B}, X \mapsto FX$;

b. einer Abbildung $F = F_{X,Y} : \mathcal{A}(X,Y) \to \mathcal{B}(FX,FY), f \mapsto Ff$ für je zwei Objekte $X, Y \in \text{Ob}\mathcal{A}$,

derart, daß gilt:

256
1. \(F(f \circ g) = (Ff) \circ (Fg) \) für beliebige verknüpfbare Morphismen \(f \) und \(g \) aus der Kategorie \(\mathcal{A} \);

2. \(F(\text{id}_X) = \text{id}_{FX} \) für jedes Objekt \(X \in \mathcal{A} \).

Ich nenne in diesem Zusammenhang \(\mathcal{A} \) die Ausgangskategorie und \(\mathcal{B} \) die Zielkategorie des Funktors \(F \).

Beispiel 9.2.2. Gegeben ein Körper \(K \) erhalten wir einen Funktor

\[
\begin{align*}
\text{Mat}_K & \to \text{Mod}_K \\
\begin{array}{c}
n \\
A \\
m
\end{array} & \mapsto \\
\begin{array}{c}
K^n \\
(A \circ) \\
K^m
\end{array}
\end{align*}
\]

von der Matrixkategorie über \(K \) in die Kategorie der \(K \)-Vektorräume, indem wir wie angedeutet jedem Objekt \(n \) der Matrixkategorie den Vektorraum \(K^n \) zuordnen und jeder Matrix die durch diese Matrix gegebene lineare Abbildung. Wir nennen ihn den **Realisierungsfunktor**.

Beispiel 9.2.3 (Der Richtungsraum als Funktor). Wir erklären die Kategorie \(\text{Aff} = \text{Aff}_K \) aller affinen Räume über einem gegebenen Körper \(K \). Als Objekte nehmen wir unsere affinen Räume \(E \), als Morphismen affine Abbildungen. Das Bilden des Richtungsraums \(\text{Richt} : E \mapsto \vec{E} \) ist dann zusammen mit der Vorschrift auf Morphismen, daß \(\text{Richt} \) jeder affinen Abbildung \(\varphi : E \to F \) ihren linearen Anteil \(\vec{\varphi} : \vec{E} \to \vec{F} \) zuordnen soll, in kategorientheoretischer Sprache ein Funktor

\[
\text{Richt} : \text{Aff}_K \to \text{Mod}_K
\]

Beispiel 9.2.4 (Die Längengerade als Funktor). Wir erklären die Kategorie \(\text{Euk} \) der euklidischen Vektorräume mit den in ?? erklärten Objekten und den in ?? erklärten Morphismen. Unsere Konstruktion ?? einer Längengerade ist dann in kategorientheoretischer Sprache ein Funktor

\[
\text{L} : \text{Euk} \to \text{Mod}_\mathbb{R}
\]

9.2.5. Man gibt bei einem Funktor \(F \) meist nur die Abbildung \(X \mapsto FX \) auf den Objekten an in der Hoffnung, daß vom Leser erraten werden kann, welche Abbildung \(f \mapsto Ff \) auf den Morphismen gemeint ist.

9.2.6. Für jede Kategorie \(\mathcal{C} \) haben wir den **Identitätsfunktor** \(\text{Id} = \text{Id}_\mathcal{C} \) von besagter Kategorie zu sich selber. Sind \(F : \mathcal{A} \to \mathcal{B} \) und \(G : \mathcal{B} \to \mathcal{C} \) Funktoren, so ist auch \(G \circ F : \mathcal{A} \to \mathcal{C} \) ein Funktor.

257
Lemma 9.2.7 (Funktoren erhalten Isomorphie). Ein Funktor bildet stets Isomorphismen auf Isomorphismen ab. Insbesondere haben isomorphe Objekte unter einem Funktor stets isomorphe Bilder.

9.2.8. Hat ein Funktor sogar die Eigenschaft, daß alle Morphismen, die er auf Isomorphismen abbildet, bereits zuvor Isomorphismen gewesen sein müssen, so nennt man ihn **konserativ**. Zum Beispiel ist der Vergißfunktor $\text{Grp} \to \text{Ens}$ konservativ.

Beweis. Sei F unser Funktor. Mithilfe unserer Bedingung $F(id) = id$ schließen wir:

f ist Isomorphismus \Rightarrow Es gibt g mit $f \circ g = id$ und $g \circ f = id$

$\Rightarrow (Ff) \circ (Fg) = id$ und $(Fg) \circ (Ff) = id$

$\Rightarrow Ff$ ist Isomorphismus.

Beispiel 9.2.9. Für jede Kategorie C bildet man die **opponierte Kategorie** C^{opp} wie folgt: Man setzt

$$\text{Ob} C^{\text{opp}} := \text{Ob} C$$

und erklärt die Verknüpfung von Morphismen in C^{opp} als die vertauschte Verknüpfung. Wir notieren einen Morphismus f als f°, wenn er in der opponierten Kategorie aufgefaßt werden soll, und haben also in Formeln $g^\circ \circ f^\circ := (f \circ g)^\circ$.

Beispiel 9.2.10 (Bilden des Dualraums als Funktor). Sei K ein Körper. Das Bilden des Dualraums mit dem Bilden der transponierten Abbildung auf dem Niveau der Homomorphismen ist auf den ersten Blick ein Funktor

$$\text{Mod}_K \to \text{Mod}_K^{\text{opp}}$$

$$V \leftrightarrow V^\top$$

$$f \downarrow \leftrightarrow \uparrow f^\top$$

$$W \leftrightarrow W^\top$$

von der Kategorie der K-Vektorräume in ihre eigene opponierte Kategorie, vergleiche ??.

Wenn wir es allerdings genau nehmen und ein Mengensystem \mathcal{U} festhalten, so werden wir auf diese Weise im allgemeinen nur einen Funktor

$$\mathcal{U}\text{Mod}_K \to \mathcal{U}\text{Mod}_K^{\text{opp}}$$

für ein eventuell größeres Mengensystem \mathcal{U} erhalten. Als konkretes Beispiel beachte man, daß über einem endlichen Körper der Dualraum eines abzählbaren Vektorraums im allgemeinen nicht mehr abzählbar ist. Ist jedoch unser Mengensystem \mathcal{U} ein „Universum“ im Sinne von 9.10.3 und gehört die Grundmenge unseres Körpers K zu \mathcal{U}, so ist $\mathcal{U}\text{Mod}_K$ sogar stabil unter dem Dualraumfunktor.
Definition 9.2.11. Ein Funktor \(F : \mathcal{A} \to \mathcal{B}^{\text{opp}} \) heißt auch ein **kontravarianter Funktor von \(\mathcal{A} \) nach \(\mathcal{B} \).

9.2.12. Ausgeschrieben besteht ein kontravarianter Funktor von \(\mathcal{A} \) nach \(\mathcal{B} \) dann nach aus einer Abbildung \(F : \text{Ob}\mathcal{A} \to \text{Ob}\mathcal{B} \) sowie für je zwei Objekte \(X, Y \in \mathcal{A} \) einer Abbildung \(F : \mathcal{A}(X,Y) \to \mathcal{B}(FY,FX) \) derart, daß gilt \(F(\text{id}) = \text{id} \) und \(F(f \circ g) = Fg \circ Ff \) für alle verknüpfbaren Morphismen \(f,g \).

Beispiel 9.2.13. Gegeben Kategorien \(\mathcal{A}, \mathcal{B} \) bildet man ihr **Produkt**, eine weitere Kategorie \(\mathcal{A} \times \mathcal{B} \), wie folgt: Man setzt \(\text{Ob}(\mathcal{A} \times \mathcal{B}) := \text{Ob}\mathcal{A} \times \text{Ob}\mathcal{B} \), erklärt Morphismen in der Produktkategorie als Paare von Morphismen in den Ausgangskategorien, und erklärt die Verknüpfung von Morphismen in der Produktkategorie in der offensichtlichen Weise.

Beispiel 9.2.14. Das Bilden des Homomorphismenraums ist ein Funktor

\[
\text{Mod}_{\text{K}}^{\text{opp}} \times \text{Mod}_{\text{K}} \to \text{Mod}_{\text{K}}
\]

\[
(V,W) \iff \text{Hom}_{\text{K}}(V,W) \ni h
\]

\[
(f',g) \downarrow \iff \downarrow \downarrow \downarrow
\]

\[
(V',W') \iff \text{Hom}_{\text{K}}(V',W') \ni g \circ h \circ f
\]

Hier sollte der ganz rechte vertikale Pfeil eigentlich ein \(\to \) sein, was ich aber mit meinem Schreibprogramm nicht hingekriegt habe. Die Notation \(\text{Hom}_{\text{K}}(V,K) \) betont, daß wir besagte Menge von Morphismen mit ihrer Vektorraumstruktur betrachten wollen.

Ergänzendes Beispiel 9.2.15. Das Bilden des Tensorprodukts ist ein Funktor

\[
\text{Mod}_{\text{K}} \times \text{Mod}_{\text{K}} \to \text{Mod}_{\text{K}}
\]

\[
(V,W) \to V \otimes W
\]

\[
(f,g) \downarrow \to f \otimes g \downarrow
\]

\[
(V',W') \to V' \otimes W'
\]

Ergänzendes Beispiel 9.2.16. Das Bilden der \(r \)-ten Tensorpotenz nach \(?? \) ist ein Funktor \(\text{Mod}_{\text{K}} \to \text{Mod}_{\text{K}} \), \(V \mapsto V^{\otimes r}, \ f \mapsto f^{\otimes r} \). Das Bilden der \(r \)-ten äußeren Potenz nach \(?? \) ist ein Funktor \(\text{Mod}_{\text{K}} \to \text{Mod}_{\text{K}}, \ V \mapsto \bigwedge^{r} V \) mit \(f \mapsto \bigwedge^{r} f \) nach \(?? \).

Beispiel 9.2.17. Das „Vergessen der Gruppenstruktur“ definiert einen Funktor \(\text{Grp} \to \text{Ens} \) von der Kategorie der Gruppen in die Kategorie der Mengen. Es gibt noch viele weitere derartige **Vergiß-Funktoren**.

Beispiel 9.2.18. Jeder Funktor \(F : \mathcal{A} \to \mathcal{B} \) liefert in offensichtlicher Weise einen Funktor \(F^{\text{opp}} : \mathcal{A}^{\text{opp}} \to \mathcal{B}^{\text{opp}} \) zwischen den zugehörigen opponierten Kategorien. Oft notiert man ihn auch einfach \(F \).
Beispiel 9.2.19. Gegeben ein Körper \(K \) bezeichne \(\text{Modfg}_K \) mit \(\text{fg} \) für „finitely generated“ die Kategorie der endlich erzeugten \(K \)-Vektorräume und \(\text{Modfg}_K^\times \) die zugehörige Isomorphismenkategorie. Gegeben ein angeordneter Körper \(K \) ist das Bild der Orientierungsmenge nach ?? ein Funktor

\[
\text{or} : \text{Modfg}_K^\times \to \text{Ens}_K^\times
\]

Definition 9.2.20.
1. Ein Funktor \(F : \mathcal{A} \to \mathcal{B} \) heißt \textit{treu}, wenn er Injektionen \(F : \mathcal{A}(A, A') \hookrightarrow \mathcal{B}(FA, FA') \) auf den Morphismen induziert, für alle \(A, A' \in \mathcal{A} \).

2. Ein Funktor \(F : \mathcal{A} \to \mathcal{B} \) heißt \textit{voll}, wenn er auf den Morphismenmengen Surjektionen \(F : \mathcal{A}(A, A') \twoheadrightarrow \mathcal{B}(FA, FA') \) induziert, für alle \(A, A' \in \mathcal{A} \).

3. Ein Funktor \(F : \mathcal{A} \to \mathcal{B} \) heißt \textit{volltreu}, wenn er voll und treu ist, wenn er also er Bijektionen \(F : \mathcal{A}(A, A') \leftrightarrow \mathcal{B}(FA, FA') \) auf den Morphismenmengen induziert. Ich notiere volltreue Funktoren gerne \(\sim \).

4. Ein Funktor \(F : \mathcal{A} \to \mathcal{B} \) heißt \textit{essentiell surjektiv}, wenn er eine Surjektion auf Isomorphieklassen von Objekten induziert, wenn es also in Formeln für alle \(B \in \mathcal{B} \) ein \(A \in \mathcal{A} \) gibt mit \(FA \cong B \).

5. Ein Funktor \(F : \mathcal{A} \to \mathcal{B} \) heißt eine \textit{Äquivalenz von Kategorien}, wenn er volltreu und essentiell surjektiv ist. Ich notiere Äquivalenzen von Kategorien \(\sim \). Die doppelte Schlange soll andeuten, daß dieser Begriff schwächer ist als der Begriff eines Isomorphismus von Kategorien, wie er im Anschluß eingeführt wird.

6. Ein Funktor \(F : \mathcal{A} \to \mathcal{B} \) heißt ein \textit{Isomorphismus von Kategorien}, wenn er bijektiv ist auf Objekten und auf Morphismen, wenn er also ein Isomorphismus ist in der Kategorie der Kategorien aus 9.2.24. Ich notiere Isomorphismen von Kategorien \(\sim \).

Beispiel 9.2.21. Gegeben eine Kategorie \(\mathcal{C} \) und ein Objekt \(X \in \mathcal{C} \) erhalten wir einen Isomorphismus von Kategorien \([\mathcal{C}(X)] \to \{X\} \) zwischen der Ein-Objekt-Kategorie des Monoids der Endomorphismen von \(X \) und der vollen Unterkategorie von \(\mathcal{C} \) mit dem einzigen Objekt \(X \), indem wir die Identität auf den Morphismenmengen und die einzigen möglichen Abbildung auf den Objektmenge nehmen.

Beispiel 9.2.22. Sei \(K \) ein Körper. Wir betrachten die Kategorie \(\text{Modfg}_K \) aller endlichdimensionalen \(K \)-Vektorräume mit linearen Abbildungen als Morphismen. Dann ist unser Funktor \(n \mapsto K^n \) eine Äquivalenz von Kategorien

\[
\text{Mat}_K^\sim \to \text{Modfg}_K
\]

Ergänzendes Beispiel 9.2.23 (Die Matrixkategorie eines Mengensystems). Gegeben ein Körper K und ein Mengensystem \mathfrak{U} bilden wir die abstrakte Matrixkategorie $\mathfrak{U}\text{Mat}_K$ wie folgt: Objekte sind alle Mengen aus \mathfrak{U}, in Formeln $\text{Ob}(\mathfrak{U}\text{Mat}) := \mathfrak{U}$. Die Morphismenmengen erklären wir durch die Vorschrift

$$\mathfrak{U}\text{Mat}_K(M, N) := \left\{ T : M \times N \to K \middle| \begin{array}{l}
\text{Für jedes } m \in M \text{ gilt } T(m, n) = 0 \text{ für fast alle } n \in N
\end{array} \right\}$$

Zumindest im Fall, daß \mathfrak{U} keine überabzählbaren Mengen enthält, mag man sich als Elemente dieser Morphismenmengen Matrizen mit möglicherweise unendlich vielen Zeilen und Spalten aber höchstens endlich vielen von Null verschiedenen Einträgen in jeder Spalte denken. Die Verknüpfungen werden in der hoffentlich offensichtlichen Weise durch Summation über gleiche Indizes erklärt. Wir erhalten dann einen Funktor $\mathfrak{U}\text{Mat}_K \to \text{Mod}_K$, der auf Objekten durch die Konstruktion freier Vektorräume $N \mapsto K \langle N \rangle$ über den entsprechenden Mengen gegeben wird und auf Morphismen leicht vom Leser erraten werden kann. Ist \mathfrak{U} ein „Universum“ im Sinne von 9.10.3, das den Körper K enthält, so erweist sich dieser Funktor sogar als eine Äquivalenz von Kategorien

$$\mathfrak{U}\text{Mat}_K \xrightarrow{\sim} \mathfrak{U}\text{Mod}_K$$

9.2.24. Gegeben ein Mengensystem \mathfrak{U} verstehen wir unter einer \mathfrak{U}-Kategorie eine Kategorie \mathcal{C}, bei der für alle Objekte $X, Y \in \mathcal{C}$ die Morphismenmenge zu unserem Mengensystem \mathfrak{U} gehört, in Formeln $\mathcal{C}(X, Y) \in \mathfrak{U}$, und bei der die Menge der Objekte unserer Kategorie eine Teilmenge von \mathfrak{U} ist, in Formeln $\mathcal{C} \subset \mathfrak{U}$. Die letzte Forderung ist nicht wesentlich, da wir ja andernfalls schlicht unsere Objekte mit ihren Identitätsmorphismen identifizieren können. Gegeben ein Mengensystem \mathfrak{U} bildet die Gesamtheit aller \mathfrak{U}-Kategorien selbst eine Kategorie

$$\mathfrak{U}\text{Cat}$$

mit den \mathfrak{U}-Kategorien als Objekten und Funktoren als Morphismen. Die Menge aller Funktoren von einer Kategorie \mathcal{A} in eine Kategorie \mathcal{B} notieren wir dement sprechend

$$\text{Cat}(\mathcal{A}, \mathcal{B})$$

Formal verwenden wir die Notation $\text{Mor} \mathcal{C} := \bigsqcup_{X,Y} \mathcal{C}(X, Y)$ für die Menge aller Morphismen einer Kategorie \mathcal{C}, und die Menge der Funktoren ist für uns eine Teilmenge $\text{Cat}(\mathcal{A}, \mathcal{B}) \subset \text{Ens} (\text{Ob} \mathcal{A}, \text{Ob} \mathcal{B}) \times \text{Ens} (\text{Mor} \mathcal{A}, \text{Mor} \mathcal{B})$. In 9.3.10 werden
wir eine Kategorie erklären, deren Objekte gerade die Funktoren $A \to B$ alias die Elemente von $\text{Cat}(A, B)$ sind, aber alles zu seiner Zeit.

Beispiel 9.2.25. Gegeben ein Mengensystem \mathcal{U} und eine \mathcal{U}-Kategorie \mathcal{C} und ein Objekt $X \in \mathcal{C}$ ist die Zuordnung $Y \mapsto \mathcal{C}(X, Y)$ ein Funktor $\mathcal{C}(X,) : \mathcal{C} \to \mathcal{U}\text{Ens}$ und die Zuordnung $Y \mapsto \mathcal{C}(Y, X)$ ein Funktor $\mathcal{C}(, X) : \mathcal{C} \to \mathcal{U}\text{Ens}^{\text{opp}}$.

Beispiel 9.2.26 (Funktoren zwischen Einobjektkategorien). Gegeben Monoide G, H und die zugehörigen Einobjektkategorien $[G], [H]$ nach 9.1.5 erhalten wir in der offensichtlichen Weise eine Bijektion zwischen der Menge aller Monoidhomomorphismen $G \to H$ und der Menge aller Funktoren $[G] \to [H]$, in Formeln also eine Bijektion

$$\text{Mon}(G, H) \xrightarrow{\sim} \text{Cat}([G], [H])$$

Übungen

Übung 9.2.27. Jede Äquivalenz von Kategorien induziert eine Bijektion zwischen den zugehörigen Isomorphieklassen von Objekten. Zum Beispiel werden die endlichdimensionalen k-Vektorräume klassifiziert durch ihre Dimension, alias durch Elemente von \mathbb{N}, alias durch Isomorphieklassen der Matrixkategorie.

Übung 9.2.28 (Zwei aus Drei). Seien $F : A \to B$ und $G : B \to C$ Funktoren. Sind zwei der drei Funktoren F, G, GF Äquivalenzen von Kategorien, so auch der Dritte.

Übung 9.2.29. Bilden wir zu einer Kategorie eine volle Unterkategorie, indem wir aus jeder Isomorphieklasse von Objekten ein Objekt willkürlich auswählen, so ist der Einbettungsfunktor eine Äquivalenz von Kategorien.

Übung 9.2.30. Sind in einer Kategorie \mathcal{C} je zwei Objekte isomorph, so ist für jedes Objekt $X \in \mathcal{C}$ der offensichtliche Funktor eine Äquivalenz von Kategorien

$$[\mathcal{C}(X)] \xrightarrow{\sim} \mathcal{C}$$

zwischen der Ein-Objekt-Kategorie des Endomorphismenmonoids $\mathcal{C}(X)$ von X und unserer Kategorie.

Übung 9.2.31. Gegeben Kategorien $\mathcal{A}, \mathcal{B}, \mathcal{C}$ liefert jedes Paar (F, G) von Funktoren $F : \mathcal{A} \to \mathcal{B}$ und $G : \mathcal{A} \to \mathcal{C}$ einen wohlbestimmten Funktor in die Produktkategorie $(F, G) : \mathcal{A} \to \mathcal{B} \times \mathcal{C}$.

Übung 9.2.32. Gegeben ein treuer Funktor $v : S \to \mathcal{C}$ und ein Objekt $C \in \mathcal{C}$ erklärt man ganz allgemein eine (S, v)-**Struktur auf \mathcal{C}** als eine Äquivalenzklasse von Paaren (S, φ) bestehend aus einem Objekt $S \in S$ und einem Isomorphismus $\varphi : v(S) \xrightarrow{\sim} C$ mit der Maßgabe, daß (S, φ) äquivalent ist zu (T, ψ), wenn es einen Isomorphismus $i : S \xrightarrow{\sim} T$ gibt mit $\varphi \circ v(i) = \psi$. Gegeben ein Morphismus
$f : C \rightarrow D$ von Objekten mit (S, v)-Struktur sagen wir, unser Morphismus **erhält die (S, v)-Struktur**, wenn für beliebige Wahlen von Repräsentanten (S, φ) und (T, ψ) der jeweiligen (S, v)-Strukturen auf C und D das Bild unter v eines Morphismus $F : S \rightarrow T$ ist, genauer $f = \psi \circ v(F) \varphi^{-1}$. Die so erklärte Kategorie der **Objekte von B mit (S, v)-Struktur** notieren wir

$$\mathcal{C}_{(S, v)}$$

und erhalten eine Äquivalenz von Kategorien $S \rightarrow \mathcal{C}_{(S, v)}$ durch die Vorschrift $(S, \text{id}_{v(S)})$. Zum Beispiel erhalten wir für jede Menge X eine offensichtliche Bijektion zwischen der Menge aller Verknüpfungen auf X, die X zu einer abelschen Gruppe machen, und der Menge aller (Ab, v)-Strukturen auf X für $v : \text{Ab} \rightarrow \text{Ens}$ der Vergißfunktor. Ein Analogon für multilineare Abbildungen diskutieren wir in ???.

9.3 Transformationen

Definition 9.3.2. Seien A, B Kategorien und $F, G : A \rightarrow B$ Funktoren. Eine **Transformation** $\tau : F \Rightarrow G$ ist eine Vorschrift, die jedem Objekt $X \in A$ einen Morphismus $\tau_X \in B(FX, GX)$ zuordnet derart, daß für jeden Morphismus $f : X \rightarrow Y$ in A das Rechteck

$$
\begin{array}{ccc}
FX & \xrightarrow{\tau_X} & GX \\
Ff \downarrow & & \downarrow Gf \\
FY & \xrightarrow{\tau_Y} & GY
\end{array}
$$

in B kommutiert. In Formeln meint das die Gleichheit $(Gf) \circ \tau_X = \tau_Y \circ (Ff)$ in der Morphismenmenge $B(FX, GX)$. Ob ein Doppelpfeil eine Transformation von Funktoren oder vielmehr eine Implikation meint, muß der Leser aus dem Kontext erschließen. Sind alle τ_X Isomorphismen, so nenne ich τ eine **Isotransformation** und notiere sie \Rightarrow, aber diese Terminologie ist nicht gebräuchlich. In
der Literatur spricht man eher von einem **Isomorphismus von Funktoren** oder auch von einer **Äquivalenz von Funktoren**. Gibt es zwischen zwei Funktoren eine Isomorphie, so heißen sie **isomorph**.

9.3.3 (**Diskussion der Terminologie**). In der Literatur heißen unsere Transformationen meist „natürliche Transformationen“. Diese Terminologie schien mir jedoch unnötig umständlich und entspricht auch nicht meinem Sprachempfinden: Ich möchte zum Beispiel unter der „natürlichen“ Transformation des Identitätsfunktors auf der Kategorie aller \(\mathbb{R}\)-Vektorräume in den Bidualraumfaktor gerne die in 9.3.7 gegebene Transformation verstehen, die zwar keineswegs die einzige Transformation zwischen diesen Funktoren ist, aber vielleicht schon die „natürlichste“.

Beispiel 9.3.4 (Die Länge als Transformation**). Ich betrachte den Vergißfunktor und den Längengeradenfaktor 9.2.4 von der Kategorie der euklidischen Vektorräume in die Kategorie der reellen Vektorräume. Schalten wir noch einen weiteren Vergißfunktor nach, so werden sie zu Funktoren \(\text{Euk} \to \text{Ens}\). Unsere in ?? erklärten Längenabbildungen \(\|\|_V : V \to L(V)\) bilden dann in ihrer Gesamtheit eine Transformation \(\text{verg} \Rightarrow L\) zwischen Funktoren \(\text{Euk} \to \text{Ens}\). Ob ich nämlich erst einen Vektor vermittels eines Homomorphismus von euklidischen Vektorräumen in einen weiteren euklidischen Vektorraum abilde und dann seine Länge in Bezug auf den Bildraum nehme, oder erst seine Länge nehme und diese vermittels des auf den Längengeraden induzierten Homomorphismus zu einer Länge in Bezug auf den Bildraum mache, es kommt beidesmal dasselbe heraus.

Beispiel 9.3.5 (Winkelmaße als Transformationen**). Wir betrachten den Funktor \(W : \text{KongEb} \to \text{Grp}\), der jeder Kongruenzebene \((E, K)\) ihre Winkelgruppe \(W(E) := \tilde{K}^+\) zuordnet, also die Gruppe ihrer orientierungserhaltenden Richtungskongruenzen. Unsere Winkelmaße aus ?? können wir auffassen als Transformationen

\[
or_R \circ \text{Richt} \Rightarrow W
\]

alias natürliche Gruppenhomomorphismen \(\or_E(\tilde{E}) \to W(E)\) von der Orientierungsgerade in die Winkelgruppe. Winkelmaße sind damit etwas grundsätzlich anderes als Einheiten: Ein Winkelmaß in einer Kongruenzebene anzugeben bedeutet, ein Winkelmaß in allen Kongruenzebenen anzugeben. Eine Längeneinheit in einer Kongruenzebene anzugeben bedeutet dahingegen keineswegs, eine Längeneinheit in allen Kongruenzebenen anzugeben.

Beispiel 9.3.6 (Das kanonische Skalarprodukt als Transformation**). Unsere kanonischen Skalarprodukte \(\langle \ , \rangle_V : V \otimes V \to L(V)^{\otimes 2}\) für euklidische Vektorräume aus ?? bilden in ihrer Gesamtheit eine Transformation

\[
\text{verg}^{\otimes 2} \Rightarrow L^{\otimes 2}
\]
zwischen Funktoren Euk → Modₚ von der Kategorie der euklidischen Vektor-
räume in die Kategorie der ℜ-Vektorräume.

Beispiel 9.3.7 (Evaluation als Transformation). Gegeben ein Körper K bezeich-
ne E : Modₓ → Modₓ den Bidualraumfunktor, der jedem K-Vektorraum V seine
en Bidualraum BV := V ⊤ ⊤ zuordnet. So bilden die Evaluationsabbildungen
evᵥ : V → V ⊤ ⊤, v ↦ (f ↦ f(v)) in ihrer Gesamtheit eine Transformation

ev : Id ⇒ E

und eine Isotransformation zwischen den Restriktionen dieser Funktoren auf die
Kategorie der endlichdimensionalen K-Vektorräume, vergleiche ??.

Beispiel 9.3.8 (Dualraum und Transponieren). Seien K ein Körper und D : Modₓ → Modₓ den Dualraumfunktor, der jedem Raum seinen Dualraum zu-
ordnet. Sei weiter Matₓ die Matrixkategorie aus 9.1.6 und T : Matₓ → Matₓ der
Funktor, der die Objekte festhält und Matrizen transponiert. Sei schließlich
R : Matₓ → Modₓ unser Realisierungsfunktor n ↦ Kⁿ aus 9.2.2 und bezeichne
R opp den entsprechenden Funktor zwischen den jeweils opponierten Kategorien.
So erhalten wir eine Isotransformation

τ : R opp T ⇒ DR

durch die Vorschrift, die jeder natürlichen Zahl alias jedem Objekt n ∈ Matₓ den
offensichtlichen Isomorphismus τₙ : Kⁿ = (Kⁿ) ⊤ zuordnet. Es kann hilfreich
sein, durch Doppelpfeile in Diagrammen von Kategorien und Funktoren klarzu-
machen, zwischen welchen Funktoren eine Transformation gemeint ist. So wäre
eben in diesem Beispiel unser τ ein möglicher Doppelpfeil im Diagramm

![Diagramm]

Beispiel 9.3.9 (Tensor und Hom). Die natürlichen Abbildungen
can : V ⊤ ⊗ₓ K W → Homₓ(V, W)
aus ?? für K-Vektorräume V, W liefern eine Transformation zwischen den durch
diese Vorschriften gegebenen Funktoren

Modₓ opp × Modₓ → Modₓ

265
9.3.10 (Kategorien von Funktoren). Sind $\tau : F \Rightarrow G$ und $\sigma : G \Rightarrow H$ Transformationen, so ist auch $\sigma \circ \tau : F \Rightarrow H$ gegeben durch $(\sigma \circ \tau)_X := \sigma_X \circ \tau_X$ für jedes Objekt X der Ausgangskategorie von F eine Transformation. Des weite-
eren gibt es für jeden Funktor F die identische Transformation $id = id_F$ von besagtem Funktor zu sich selber, gegeben durch $(id_F)_X := id_{FX}$ für jedes Ob-
ject X der Ausgangskategorie unseres Funktors. Sind A, B Kategorien, so bilden die Funktoren $A \to B$ sogar selbst eine Kategorie, mit Funktoren als Objek-
ten und Transformationen als Morphismen und der eben erklärten Verknüpfung von Transformationen als Verknüpfung von Morphismen. Ich verwende für diese Funktorkategorie die Notation $\text{Cat}(A, B)$ und alternativ die exponentielle Nota-
tion B^A, so daß etwa für Funktoren $F, G : A \to B$ die Menge der Transformati-
onen auf die beiden Weisen

$$\text{Cat}(A, B)(F, G) = B^A(F, G)$$

notiert werden kann. Wenn die Kategorien selber durch größere Ausdrücke gege-
ben werden, sind für die Menge der Transformationen auch abkürzende Notatio-
nen wie etwa $\text{Trans}(F, G)$ sinnvoll und üblich. Unsere Isotransformationen sind
genau die Isomorphismen der Funktorkategorie.

Beispiel 9.3.11. Seien $F, G : A \to B$ Funktoren und $\tau : F \Rightarrow G$ eine Transfor-
mation. Gegeben ein weiterer Funktor $H : B \to C$ erhalten wir in offensichtlicher
Weise eine Transformation $H\tau : HF \Rightarrow HG$. Gegeben ein weiterer Funktor
$K : D \to A$ erhalten wir in offensichtlicher Weise ebenso eine Transformation
$\tau K : FK \Rightarrow GK$. Offensichtlich liefern diese Konstruktionen ihrerseits Funkto-
ren $\text{Cat}(A, B) \to \text{Cat}(A, C)$ und $\text{Cat}(A, B) \to \text{Cat}(D, B)$ zwischen den entspre-
chenden Funktorkategorien, die wir als das Nachschalten von H beziehungswei-
se Vorschalten von K bezeichnen. Das Nachschalten liefert offensichtlich einen Funktor

$$\text{Cat}(A, B) \to \text{Cat}(\text{Cat}(C, A), \text{Cat}(C, B))$$

9.3.12 (Schwierigkeiten der Notation). Die Notationen τK und $H\tau$ führen leicht zu Verwirrung, sobald nicht aus der Art der Symbole heraus klar ist, welche Sym-
bole Funktoren und welche Transformationen darstellen. Ich kenne keine generel-
le Lösung für diese Schwierigkeiten der Notation. In diesem Abschnitt habe ich
versucht, eine gewisse Übersichtlichkeit dadurch zu erreichen, daß ich systema-
tisch lateinische Großbuchstaben für Funktoren und kleine griechische Buchsta-
ben für Transformationen verwende.

Übungen

Übung 9.3.13. Gegeben ein Körper K zeige man, daß der Funktor $\text{Modfg}_K^\times \to \text{Modfg}_K^\times$ von der Isomorphiekategorie der endlichdimensionalen K-Vektorräume
zu sich selber, der jedem Raum seinen Dualraum zuordnet und jedem Isomorphismus die Inverse der transponierten Abbildung $\varphi \mapsto (\varphi^\top)^{-1}$, nicht isomorph ist zum Identitätsfunktor. Hinweis: Man passe im Fall des Körpers mit zwei Elementen besonders gut auf.

Übung 9.3.14. Seien K ein Körper und $\text{Id} : \text{Mod}_K \to \text{Mod}_K$ der Identitätsfunktor. Man bestimme alle Transformationen von diesem Funktor zu sich selber. Ebenso bestimme man alle Transformationen von diesem Funktor zum Bidualraumfunktor.

Übung 9.3.15. Sind zwei Funktoren isomorph, und ist der Eine eine Äquivalenz von Kategorien, so auch der Andere.

Übung 9.3.16. Man diskutiere, inwiefern die in ?? für jeden Vektorraum V konstruierten kanonischen Isomorphismen $(\wedge^n V)^\top \to \text{Alt}^n(V)$ eine Isotransformation bilden. Idem für die in ?? für jeden endlichdimensionalen Vektorraum V konstruierten kanonischen Isomorphismen $\wedge^n (V^\top) \to \text{Alt}^n(V)$.

Übung 9.3.17. Gegeben ein Monoid G heißt eine Abbildung $\phi : X \to Y$ von G-Mengen äquivariant, wenn gilt $\phi(gx) = g\phi(x)$ für alle $g \in G$ und $x \in X$. Die G-Mengen mit den äquivarianten Abbildungen als Morphismen bilden dann eine Kategorie, für die ich die beiden Notationen G-Ens = Ens_G verwenden. Bilden wir zu unserem Monoid G die Ein-Objekt-Kategorie $\mathcal{[G]}$, so liefert der hoffentlich offensichtliche Funktor einen Isomorphismus von Kategorien

$$G\text{-Ens} \cong \text{Cat}(\mathcal{[G]}, \text{Ens})$$

Ergänzende Übung 9.3.18 (Komplexifizierung einer Reellifizierung). Wir erhalten eine Isotransformation zwischen Funktoren $\text{Mod}_C \to \text{Mod}_C$ vermittels der Abbildungen $i_V : C \otimes_R V \to V \oplus \overline{V}$ gegeben durch $\alpha \otimes v \mapsto (\alpha v, \alpha \bar{v})$ in den Notationen ??. Die inverse Isotransformation wird beschrieben durch die Abbildungsvorschrift

$$(v, \bar{w}) \mapsto (1/2) \otimes (v + w) - (i/2) \otimes (iv - iw)$$

Im übrigen bildet unser Isomorphismus oben den Eigenraum $\text{Eig}(1 \otimes i|C \otimes_R V)$ isomorph auf V ab und den Eigenraum $\text{Eig}(1 \otimes i|C \otimes_R V)$ isomorph auf \overline{V}. Der schieflinare Automorphismus $\alpha \otimes v \mapsto \bar{\alpha} \otimes v$ von $C \otimes_R V$ entspricht unter unserem Isomorphismus dem schieflinaren Automorphismus $(v, \bar{w}) \mapsto (w, \bar{v})$ von $V \oplus \overline{V}$.

Ergänzende Übung 9.3.19. Wir erhalten eine Isotransformation zwischen Funktoren $\text{Mod}_C \to \text{Mod}_C^{opp}$ vermittels der Abbildungen $\overline{V^\top} \to \overline{V^\top}$ gegeben durch $\bar{\varphi} \mapsto \overline{\bar{c}} \circ \varphi$ in den Notationen ??, mit $\bar{c} : C \to C$ der komplexen Konjugation. Diese Identifikation scheint mir so kanonisch, daß ich auch oft $\bar{\varphi}$ statt $\overline{\overline{\varphi}}$ schreiben werde.

267
Ergänzung 9.3.20 (Dualraum und Restriktion der Skalare). Gegeben ein komplexer Vektorraum V erklären wir einen natürlichen Isomorphismus

$$\text{res}_\mathbb{R}^\mathbb{C}(V^\top) \xrightarrow{\sim} (\text{res}_\mathbb{R}^\mathbb{C} V)^\top$$

zwischen der Reellifizierung seines Dualraums und dem Dualraum seiner Reellifizierung durch die Vorschrift $\lambda \mapsto 2\text{Re}\lambda$. Es kommutiert dann das Diagramm

$$\begin{array}{ccl}
\mathbb{C} \otimes \mathbb{R} \text{ res}_\mathbb{R}^\mathbb{C}(V^\top) & \sim & \mathbb{C} \otimes \mathbb{R} (\text{res}_\mathbb{R}^\mathbb{C} V)^\top \\
\downarrow i_{V^\top} & & \downarrow i_{i^k_V} \\
V^\top \oplus V^\top & \sim & V^\top \oplus V^\top
\end{array}$$

Hier kommen die Vertikalen von 9.3.18 her, unten ist die von 9.3.19 gelieferte Abbildung $(\lambda, \bar{\mu}) \mapsto (\lambda, \bar{c} \circ \mu)$ gemeint mit $\bar{c}: \mathbb{C} \to \mathbb{C}$ der komplexen Konjugation, und in der oberen Horizontale die Abbildung, die aus obiger Identifikation $\text{res}_\mathbb{R}^\mathbb{C}(V^\top) \xrightarrow{\sim} (\text{res}_\mathbb{R}^\mathbb{C} V)^\top$ unter der Komplexifizierung entsteht, gefolgt von der Identifikation $(W^\top)_\mathbb{C} \xrightarrow{\sim} (W\mathbb{C})^\top$ aus ??. Der Faktor 2 zu Beginn scheint mir nicht nur angemessen, da er obiges Diagramm zum Kommutieren bringt, sondern auch, da man allgemeiner für jede „endliche separable Körpererweiterung“ vernünftigerweise einen natürlichen Isomorphismus $\text{res}_K^k(V^\top) \xrightarrow{\sim} (\text{res}_K^k V)^\top$ erklärt durch die Vorschrift $\lambda \mapsto S_k^k \circ \lambda$ mit $S_k^k: K \to k$ der Spur aus ??.

Ergänzende Übung 9.3.21. Gegeben ein Körper K erhalten wir eine Isotransformation von Funktoren $\text{Mod}_K \times \text{Mod}_K \to \text{Mod}_K$ vermittels der durch das Dachprodukt gegebenen Abbildungen

$$\bigoplus_{i+j=k} \bigwedge^i V \otimes \bigwedge^j W \xrightarrow{\sim} \bigwedge^k (V \oplus W)$$

Zusammen mit Übung 9.3.18 erhalten wir insbesondere Isotransformationen von Funktoren $\text{Mod}_\mathbb{C} \to \text{Mod}_\mathbb{C}$ alias für komplexe Vektorräume V kanonische Isomorphismen $\bigoplus_{i+j=k} \bigwedge^i V \otimes \bigwedge^j V \xrightarrow{\sim} \bigwedge^k (\mathbb{C} \otimes \mathbb{R} V)$.

Ergänzende Übung 9.3.22. Gegeben Funktoren $F, F': A \to B$ und $G, G': B \to C$ sowie Transformationen $\alpha: F \Rightarrow F'$ und $\beta: G \Rightarrow G'$ gilt die Gleichheit $\beta F' \circ G\alpha = G'\alpha \circ \beta F$ von Transformationen $GF \Rightarrow G'F'$. Wir notieren diese Transformation auch $\alpha * \beta: GF \Rightarrow G'F'$ und nennen sie die **Juxtaposition** unserer beiden Transformationen. Unsere Identität ist auch gleichbedeutend zu der Aussage, daß das Nachschalten einen Funktor $\text{Cat}(B, C) \to \text{Cat}(B^A, C^A)$ liefert, oder auch in ausführlicherer Notation das Vorschalten einen Funktor

$$\text{Cat}(A, B) \to \text{Cat}(\text{Cat}(B, C), \text{Cat}(A, C))$$

268
Übung 9.3.23. Man zeige: Ein Funktor $F : A \to B$ ist genau dann eine Äquivalenz von Kategorien, wenn es eine Äquivalenz von Kategorien in die Gegenrichtung $G : B \to A$ gibt nebst einer Isotransformation $\tau : \text{Id}_A \Rightarrow GF$. Die Äquivalenz G oder genauer das Paar (G, τ) heißt dann ein quasiinverser Funktor zu F. Man zeige weiter: Zu jedem Paar (G, τ) wie eben gibt es genau eine Isotransformation $\eta : FG \Rightarrow \text{Id}_A$ mit $(\eta F) \circ (F \tau) = \text{id}_F$.

Übung 9.3.24. Man zeige: Genau dann ist ein Funktor $F : A \to B$ eine Äquivalenz von Kategorien, wenn es einen Funktor $G : B \to A$ gibt derart, daß FG isomorph ist zum Identitätsfunktor auf B und GF isomorph zum Identitätsfunktor auf A.

Übung 9.3.25. Man zeige: Gegeben eine Äquivalenz von Kategorien $F : A \approx \to B$ und ein Funktor $G : B \to A$ nebst einer Isotransformation $\tau : FG \Rightarrow \text{Id}_A$ ist auch G eine Äquivalenz von Kategorien und (G, τ) quasiinvers zu F.

Übung 9.3.26 (Äquivalenzen von Funktorkategorien). Sind A, B Kategorien und ist $K : A' \approx \to A$ eine Äquivalenz von Kategorien, so liefert das Vorschalten von K eine Äquivalenz von Funktorkategorien

$$\text{Cat}(A, B) \Rightarrow \text{Cat}(A', B)$$

Ist ähnlich $H : B \approx \to B'$ eine Äquivalenz von Kategorien, so liefert das Nachschalten von H eine Äquivalenz von Funktorkategorien

$$\text{Cat}(A, B) \Rightarrow \text{Cat}(A, B')$$

Ergänzende Übung 9.3.27 (Exponentialgesetz für Kategorien). Man zeige, daß man für je drei Kategorien A, B, C einen Isomorphismus von Kategorien

$$\text{Cat}(A, \text{Cat}(B, C)) \Rightarrow \text{Cat}(A \times B, C)$$

erhält durch die Vorschrift $F \mapsto \tilde{F}$ mit $\tilde{F}(A, B) = (F(A))(B)$ auf Objekten und eine vom Leser zu spezifizierende Vorschrift auf Morphismen.

9.4 Natürliche Konstruktionen in der Geometrie

9.4.1 (Kanonische Skalarprodukte als Transformationen). Wir interessieren uns nun für die Kategorie Euk der euklidischen Vektorräume und für Funktoren

$$\text{Euk} \to \text{Mod}_\mathbb{R}$$

Beispiele sind das Vergessen der euklidischen Struktur verg oder das Bilden der Längengerade L oder Tensorpotenzen dieser Funktoren wie etwa $\text{verg} \otimes r$ oder $L \otimes r$. Unsere kanonischen Skalarprodukte sind dann Transformationen

$$\text{verg} \otimes 2 \Rightarrow L \otimes 2$$

von Funktoren alias Morphismen in der Funktorkategorie $\text{Cat}($Euk, Mod$_\mathbb{R})$.

269
9.4.2 (Kanonische Skalarprodukte brauchen Einheiten). Wir betrachten den konstanten Funktor $C_R : 	ext{Euk} \to \text{Mod}_R$, der jedem euklidischen Vektorraum den reellen Vektorraum \mathbb{R} zuordnet und jeder euklidischen linearen Abbildung die Identität. Wir zeigen, daß es außer der Nulltransformation keine Transformation $\text{verg} \otimes 2 \Rightarrow C_R$

gibt. In der Tat ist die Multiplikation mit jeder reellen Zahl $\lambda \neq 0$ für jeden euklidischen Vektorraum V eine euklidische Abbildung $(\lambda \cdot) : V \to V$ und jede bilineare Abbildung $\eta : V \times V \to \mathbb{R}$ mit $\eta(v, w) = \eta(\lambda v, \lambda w) \forall \lambda \in \mathbb{R}$ ist offensichtlich Null. Salopp gesprochen gibt es also „kein kanonisches Skalarprodukt auf euklidischen Räumen mit Werten in den reellen Zahlen“.

9.4.3 (Kanonische Spatprodukte als Transformation). Nun halten wir $n \in \mathbb{N}_{>0}$ fest und interessieren uns für die Kategorie Euk_n der n-dimensionalen euklidischen Vektorräume und die Funktorkategorie $\text{Cat}(\text{Euk}_n, \text{Mod}_R)$. Zu dieser Funktorkategorie gehören etwa die Funktoren $\text{verg} \otimes n : V \mapsto V \otimes n$ und $\text{or}_R \otimes \text{L} \otimes n : V \mapsto \text{or}_R(V) \otimes \text{L}(V) \otimes n$ und eine Transformation $\tau : \text{verg} \otimes n \Rightarrow \text{or}_R \otimes \text{L} \otimes n$ wird gegeben wird durch die Gesamtheit der in ?? konstruierten linearen Abbildungen $\tau_V : V \otimes n \to \text{or}_R(V) \otimes \text{L}(V) \otimes n$ und im Fall $n = 3$ speziell durch unsere kanonischen Spatprodukte

\[\langle \cdot, \cdot \rangle : V \otimes 3 \to \text{or}_R(V) \otimes \text{L}(V) \otimes 3\]

Man überzeugt sich unschwer, daß wir auf diese Weise sogar für jedes n eine Isotransformation $\tau : \wedge^n \text{verg} \Rightarrow \text{or}_R \otimes \text{L} \otimes n$ erhalten.

9.4.4 (Kanonische Kreuzprodukte als Transformation). Das Kreuzprodukt ist eine Transformation $\times : \text{verg} \otimes 2 \Rightarrow \text{verg} \otimes \text{or}_R \otimes \text{L}$ alias ein Morphismus in der Funktorkategorie $\text{Cat}(\text{Euk}_3, \text{Mod}_R)$, der gegeben wird durch die in ?? konstruierten Morphismen

\[\times : V \otimes V \to V \otimes \text{or}_R(V) \otimes \text{L}(V)\]

9.4.5 (Klassifikationsfragen und Gruppenhomomorphismen). Um die Funktorkategorie $\text{Cat}(\text{Euk}_n, \text{Mod}_R)$ für vorgegebenes n besser zu verstehen, mag man von der Erkenntnis ausgehen, daß in der Kategorie Euk_n der n-dimensionalen euklidischen Vektorräume je zwei Objekte isomorph sind und nach 9.2.30 folglich der Einbettungsfunktor eine Äquivalenz

\[\text{[Euk}(\mathbb{R}^n)]] \xrightarrow{\cong} \text{Euk}_n\]

ist. Die Automorphismengruppe des \mathbb{R}^n mit seiner Standardstruktur als euklidischer Raum ist nun die Gruppe $\text{Euk}(\mathbb{R}^n) = \mathbb{R}^\times \text{O}(n)$ aller linearen Ähnlichkeiten. Wir notieren sie $\text{GO}(n) := \mathbb{R}^\times \text{O}(n)$ und können so unsere Äquivalenz von
oben umschreiben zu einer Äquivalenz \([\text{GO}(n)] \xrightarrow{\sim} \text{Euk}_n\). Bezeichnet andererseits \(\text{Mod}^{d\text{-dim}}_R\) die Kategorie der \(d\)-dimensionalen reellen Vektorräume, so erhalten wir ebenso eine Äquivalenz \([\text{Mat}(d; R)] \xrightarrow{\sim} \text{Mod}^{d\text{-dim}}_R\). Mit 9.3.26 erhalten wir so Äquivalenzen von Kategorien

\[
\text{Cat}(\text{Euk}_n, \text{Mod}^{d\text{-dim}}_R) \xrightarrow{\sim} \text{Cat}([\text{GO}(n)], \text{Mod}^{d\text{-dim}}_R) \xleftarrow{\sim} \text{Cat}([\text{GO}(n)], [\text{Mat}(d; R)])
\]

und damit nach 9.2.27 Bijektionen zwischen den jeweiligen Mengen von Isomorphieklassen. Objekte von \(\text{Cat}([\text{GO}(n)], [\text{Mat}(d; R)])\) sind nun Monoidhomomorphismen \(\text{GO}(n) \to \text{Mat}(d; R)\) alias Gruppenhomomorphismen \(\text{GO}(n) \to \text{GL}(d; R)\), und zwei solche Gruppenhomomorphismen \(\phi, \psi\) sind isomorphe Objekte genau dann, wenn es \(A \in \text{GL}(d; R)\) gibt mit \((\text{int } A) \circ \phi = \psi\). So erkennen wir zum Beispiel, daß die Funktoren, die jedem \(n\)-dimensionalen euklidischen Vektorraum einen eindimensionalen Vektorraum zuordnen, klassifiziert werden durch die Menge aller Gruppenhomomorphismen \(\text{GO}(n) \to \mathbb{R}^\times\). Die folgende Tabelle gibt einige Beispiele für solche Funktoren in die Kategorie der eindimensionalen reellen Vektorräume und die zugehörigen Gruppenhomomorphismen.

<table>
<thead>
<tr>
<th>Funktoren</th>
<th>(\text{Euk}n \to \text{Mod}^{1\text{-dim}}\mathbb{R})</th>
<th>Morphismen</th>
<th>(\text{GO}(n) \to \mathbb{R}^\times)</th>
</tr>
</thead>
<tbody>
<tr>
<td>konstanter Funktor</td>
<td>(C_\mathbb{R})</td>
<td>konstanter</td>
<td>1</td>
</tr>
<tr>
<td>Maximalpotenz</td>
<td>(\wedge^n)</td>
<td>Determinante</td>
<td>(\det)</td>
</tr>
<tr>
<td>Orientierungsgerade</td>
<td>(\text{or}_\mathbb{R})</td>
<td>(\det /</td>
<td>\det</td>
</tr>
<tr>
<td>Längengerade</td>
<td>(L)</td>
<td>(\sqrt{</td>
<td>\det</td>
</tr>
</tbody>
</table>

Übungen

Ergänzende Übung 9.4.6. Gibt es für zweidimensionale euklidische Vektorräume \(V\) nichttriviale natürliche Gruppenhomomorphismen \(\text{or}_\mathbb{R}(V) \to \text{O}(V)\) von der Orientierungsgerade in die orthogonale Gruppe?

9.5 Köcher*

9.5.1. Für den Begriff einer Transformation ist eine noch größere Allgemeinheit natürlich und sinnvoll, wie hier kurz skizziert werden soll.

Definition 9.5.2. Ein Köcher ist ein Datum \(Q = (P, E, a, e)\) bestehend aus zwei Mengen \(P, E\) und zwei Abbildungen \(a, e : P \to E\). Wir nennen die Elemente von \(E\) die Ecken oder auch Punkte des Köchers und die Elemente von \(P\) seine Pfeile. Für einen Pfeil \(\vec{p} \in P\) nennen wir \(a(\vec{p})\) seinen Anfangspunkt und \(e(\vec{p})\) seinen
Endpunkt. Ein Morphismus F von unserem Köcher in einen weiteren Köcher (P', E', a', e') ist ein Paar bestehend aus einer Abbildung $F : P \to P'$ und einer Abbildung $F : E \to E'$ derart, daß gilt $Fa = a'F$ und $Fe = e'F$. Wir erhalten so die Kategorie der Köcher

Car

Ähnlich wie bei Kategorien schreiben wir auch gerne abkürzend Q für die Eckenmenge eines Köchers $Q = (P, E, a, e)$ und $Q(x, y)$ für die Menge der Pfeile mit Anfangspunkt x und Endpunkt y.

9.5.3. Auf Englisch sagt man *quiver*, auf Französisch *carquois*. Auf Englisch heißen die Ecken *vertices* und die Pfeile *arrows* oder *edges*.

Ergänzung 9.5.5. Bezeichne \Rightarrow die Kategorie mit zwei Objekten Pf, Ec und vier Morphismen, von denen Zwei die Identitäten sind und Zwei von Pf nach Ec gehen. Dann kann die Kategorie der Köcher verstanden werden als die Funktorkategorie $\text{Cat}(\Rightarrow, \text{Ens})$.

Ergänzung 9.5.6. Eine *Verknüpfung auf einem Köcher* Q ist eine Sammlung von Abbildungen $Q(x, y) \times Q(y, z) \to Q(x, z)$ für alle $x, y, z \in Q$. Einen Köcher mit Verknüpfung nennen wir auch einen *Magmaoid*. Ein *Morphismus von Magmaoiden* ist ein Köchermorphismus, der mit den jeweiligen Verknüpfungen verträglich ist. Eine Kategorie ist in dieser Terminologie Magmaoid, das noch zusätzliche Eigenschaften hat, die man „Assoziativität“ und „Existenz von Identitätspfeilen“ nennen mag.

Definition 9.5.7. Seien Q ein Köcher, B eine Kategorie und $F, G : Q \to B$ Köchermorphismen. Eine Transformation $\tau : F \Rightarrow G$ ist eine Vorschrift, die jeder Ecke $x \in Q$ einen Morphismus $\tau_x \in B(F(x), G(x))$ zuordnet derart, daß für jeden Pfeil $\vec{p} : x \to y$ in unserem Köcher Q das Diagramm

\[
\begin{array}{ccc}
F(x) & \xrightarrow{\tau_x} & G(x) \\
F(\vec{p}) & \Downarrow & \Downarrow G(\vec{p}) \\
F(y) & \xrightarrow{\tau_y} & G(y)
\end{array}
\]
Veranschaulichung eines endlichen Köchers mit 5 Ecken und 6 Pfeilen.
in unserer Kategorie \mathcal{B} kommutiert. Sind alle τ_x Isomorphismen, so heißt τ eine Isotransformation. Die Menge aller Transformationen bezeichnen wir mit $\text{Car}(\mathcal{Q}, \mathcal{B})(F, G)$ oder $\text{Trans}_{\mathcal{Q} \rightarrow \mathcal{B}}(F, G)$ oder abkürzend mit $\text{Trans}_{\mathcal{Q}}(F, G)$ oder auch nur mit $\text{Trans}(F, G)$.

9.5.8. Wie in 9.3.10 die Funktoren bilden für jeden Köcher \mathcal{Q} und jede Kategorie \mathcal{C} die Köchermorphismen $\mathcal{Q} \rightarrow \mathcal{C}$ die Objekte einer Kategorie $\text{Car}(\mathcal{Q}, \mathcal{C})$ mit Transformationen als Morphismen.

Beispiel 9.5.10. Seien K ein Körper und \bigcirc der Köcher mit einem Punkt und einem Pfeil von diesem Punkt zu sich selber. Die Isomorphieklassen in der Kategorie $\text{Car}(\bigcirc, \text{Modf}_K)$ werden zumindest im Fall eines algebraisch abgeschlossenen Körpers K bestimmt durch die Theorie der Jordan’schen Normalform.

Übungen

Übung 9.5.11. Seien A, A' Köcher und B, B' Kategorien. Ist $K : A' \to A$ ein Isomorphismus von Köchern, so liefert das Vorschalten von K einen Isomorphismus von Kategorien $\text{Car}(A, B) \to \text{Car}(A', B)$

Ist ähnlich $H : B \to B'$ eine Äquivalenz von Kategorien, so liefert das Nachschalten von H eine Äquivalenz von Kategorien $\text{Car}(A, B) \to \text{Car}(A, B')$

Übung 9.5.12. Seien C und Q Köcher und $F : C \to Q$ ein Köchermorphismus, der für je zwei Ecken $x, y \in C$ eine Surjektion $C(x, y) \to Q(x, y)$ induziert. Gegeben eine Verknüpfung auf C gibt es höchstens eine Verknüpfung auf Q derart, daß F ein Morphismus von Magmaoiden wird. Wenn es solch eine Verknüpfung gibt, heißt unser Köchermorphismus angepaßt an die Verknüpfung und die fragliche Verknüpfung auf Q die auf Q koinduzierte Verknüpfung. Ist unser Magmaoid C eine Kategorie, so auch der Köcher Q mit der koinduzierten Verknüpfung.

9.6 Produkte und Koprodukte in Kategorien

Definition 9.6.1. Seien C eine Kategorie und X, Y Objekte von C. Ein Produkt von X und Y ist ein Datum (P, p, q) bestehend aus (1) einem Objekt $P \in C$ und
(2) Morphismen $p : P \to X$ und $q : P \to Y$, den sogenannten Projektionen, derart daß gilt: Ist $Z \in \mathcal{C}$ ein Objekt und sind $a : Z \to X$, $b : Z \to Y$ Morphismen, so gibt es genau einen Morphismus $c : Z \to P$ mit $p \circ c = a$ und $q \circ c = b$. Wir notieren diesen Morphismus dann $c = (a, b)$ oder, ganz pedantisch und wenn wir ihn von den Morphismen aus einem Koprodukt absetzen wollen, als Spalte $c = (a, b)^\top$.

9.6.3 (Eindeutigkeit von Produkten). Produkte in Kategorien sind im wesentlichen eindeutig, falls sie existieren. Sind genauer (P, p, q) und $(\tilde{P}, \tilde{p}, \tilde{q})$ zwei mögliche Produkte der Objekte X und Y, so gibt es aufgrund der universellen Eigenschaft von P genau ein $\tilde{c} : \tilde{P} \to P$ mit $\tilde{p} \circ \tilde{c} = p$ und $\tilde{q} \circ \tilde{c} = q$. Weiter gibt es auch genau ein $f : P \to P$ mit $p \circ f = p$ und $q \circ f = q$, und da sowohl $f = id$ als auch $f = c \circ d$ diese Bedingung erfüllen, folgt $c \circ d = id$. Ebenso erhalten wir $d \circ c = id$, mithin sind c und d zueinander inverse Isomorphismen. Aufgrund dieser Eindeutigkeit sprechen wir ab jetzt meist von *dem* Produkt und notieren es

$$(X \times Y, \text{pr}_X, \text{pr}_Y)$$

oder auch noch ausführlicher $X \times^C Y$. Morphismen in das Produkt schreiben wir auch (a, b). Sind schließlich Morphismen $f : X \to X'$, $g : Y \to Y'$ gegeben und existieren die Produkte $X \times Y$ und $X' \times Y'$, so benutzen wir die Abkürzung $(f \circ \text{pr}_X, g \circ \text{pr}_Y) = f \times g$ und nennen diesen Morphismus den **Produktmorphismus**

$$f \times g : X \times Y \to X' \times Y'$$

Definition 9.6.4. Sei $F : \mathcal{A} \to \mathcal{B}$ ein Funktor. Sind in \mathcal{A} Morphismen $p : P \to X$ und $q : P \to Y$ gegeben, so erhalten wir Morphismen $Fp : FP \to FX$ und $Fq : FP \to FY$ in \mathcal{B}. Wenn das Produkt $FX \times FY$ existiert, erhalten wir so auch einen Morphismus $(Fp, Fq) : FP \to FX \times FY$. Wenn schließlich auch das Produkt $X \times Y$ existiert, so erhalten wir, indem wir es als unser P nehmen, in unserer ausführlichen Notation einen natürlichen Morphismus

$$F(X \times^A Y) \to FX \times^B FY$$

9.6.5. Der Morphismus von eben muß im allgemeinen kein Isomorphismus sein. Im Fall des Vergißfunktors von Vektorräumen über einem vorgegebenen Körper zu Mengen ist er jedoch stets ein Isomorphismus von Mengen alias eine bijektive Abbildung.

9.6.7 (Produkte von Mengen, Variante). Allgemeiner als in ??? diskutiert kann man auch für eine beliebige Familie von Mengen \((X_i)_{i \in I}\) eine neue Menge bilden als die Menge aller Tupel \((x_i)_{i \in I}\) mit \(x_i \in X_i\) für alle \(i \in I\). Diese Produktmenge notiert man

\[\prod_{i \in I} X_i \]

und die Projektionsabbildungen werden mit \(\text{pr}_j : \prod_{i \in I} X_i \rightarrow X_j\) oder ähnlich bezeichnet. Wieder können wir für beliebige Abbildungen \(f_i : Z \rightarrow X_i\) eine Abbildung \(f = (f_i)_{i \in I} : Z \rightarrow \prod_{i \in I} X_i\) definieren durch die Vorschrift \(f(z) = (f_i(z))_{i \in I}\) und jede Abbildung von einer Menge \(Z\) in ein Produkt ist von dieser Form mit \(f_i = \text{pr}_i \circ f\). In Formeln ausgedrückt liefert das Nachschalten der Projektionen also für jede Menge \(Z\) eine Bijektion

\[\text{Ens}(Z, \prod_{i \in I} X_i) \rightarrow \prod_{i \in I} \text{Ens}(Z, X_i) \]

\[f \leftrightarrow (\text{pr}_i \circ f) \]

Definition 9.6.8. Seien \(C\) eine Kategorie und \((X_i)_{i \in I}\) eine Familie von Objekten von \(C\). Ein Produkt der \(X_i\) ist ein Datum \((P, (p_i)_{i \in I})\) bestehend aus (1) einem Objekt \(P \in C\) und (2) Morphismen \(p_i : P \rightarrow X_i\), den sogenannten Projektionen, derart daß gilt: Ist \(Y \in C\) ein Objekt und sind \(q_i : Y \rightarrow X_i\) Morphismen, so gibt es genau einen Morphismus \(q : Y \rightarrow P\) mit \(p_i \circ q = q_i \quad \forall i \in I\). Wir notieren diesen Morphismus dann \(q = (q_i)_{i \in I}\) oder ganz pedantisch auch schon mal \(q = (q_i)_{i \in I}^T\).

Beispiele 9.6.9. In der Kategorie der Mengen ist \(P = \prod_{i \in I} X_i\) mit \(p_i\) den üblichen Projektionsabbildungen ein Produkt der \(X_i\). Produkte in der Kategorie der Vektorräume diskutieren wir in 9.7.4.

9.6.10 (Eindeutigkeit von Produkten, Variante). Produkte in Kategorien sind im wesentlichen eindeutig, falls sie existieren. Sind genauer \((P, (p_i))\) und \((\tilde{P}, (\tilde{p}_i))\) zwei mögliche Produkte der Objekte \(X_i\), so gibt es aufgrund der universellen Eigenschaft von \(P\) genau ein \(\tilde{p} : \tilde{P} \rightarrow P\) mit \(p_i \circ \tilde{p} = \tilde{p}_i\) und ebenso genau ein \(p : P \rightarrow \tilde{P}\) mit \(\tilde{p}_i \circ p = p_i\). Weiter gibt es auch genau ein \(f : P \rightarrow \tilde{P}\) mit \(p_i \circ f = p_i\), und da sowohl \(f = \text{id}\) als auch \(\tilde{f} = \tilde{p}\circ p\) diese Bedingung erfüllen, folgt \(\tilde{p} \circ p = \text{id}\). Ebenso erhalten wir \(p \circ \tilde{p} = \text{id}\), mithin sind \(p\) und \(\tilde{p}\) zueinander inverse Isomorphismen. Aufgrund dieser Eindeutigkeit sprechen wir ab jetzt meist von dem Produkt und notieren es

\[\left(\prod_{i \in I} X_i, (\text{pr}_i)_{i \in I} \right) \]
oder im Fall endlicher Familien $X_1 \times \ldots \times X_n$ und benutzen für die Projektionen manchmal auch die Notation pr_{X_i}. Morphismen in das Produkt schreiben wir im Fall endlicher Familien auch (q_1, \ldots, q_n) oder ganz pedantisch als Spalte $(q_1, \ldots, q_n)^\top$.

9.6.11 (Produkte über leere Familien). Das Produkt über eine leere Familie von Mengen erklärt man als „die“ einpunktige Menge, damit das Bilden von Produkten von Mengen „assoziativ“ wird in der Weise, daß wir bei einer Familie $(I_j)_{j \in J}$ von Indexmengen mit disjunktierter Vereinigung $I = \bigcup_j I_j$ stets eine kanonische Bijektion

$$\prod_{i \in I} X_i \cong \prod_{j \in J} \left(\prod_{i \in I_j} X_i \right)$$

haben. Das Produkt über eine leere Familie in einer beliebigen Kategorie C verstehen wir analog als „das“ finale Objekt, da dann die offensichtliche Abbildung auch in diesem Fall Bijektionen $\mathcal{C}(Y, \prod_{i \in I} X_i) \cong \prod_{i \in I} \mathcal{C}(Y, X_i)$ liefert. Wenn wir sagen, eine Kategorie habe Produkte oder auch nur habe endliche Produkte, so fordern wir insbesondere implizit die Existenz eines finalen Objekts.

Definition 9.6.13. Sei C eine Kategorie und $(X_i)_{i \in I}$ eine Familie von Objekten aus C. Ein Koprodukt der X_i ist ein Datum $(K, (\text{in}_i)_{i \in I})$ bestehend aus einem Objekt $K \in C$ und Morphismen $\text{in}_i : X_i \to K$ derart, daß gilt: Ist $Z \in C$ ein Objekt und sind $f_i : X_i \to Z$ Morphismen, so gibt es genau einen Morphismus $f : K \to Z$ mit $f \circ \text{in}_i = f_i \quad \forall i \in I$. Wir notieren diesen Morphismus dann auch $(f_i)_{i \in I}$ und hoffen, daß der Leser aus dem Kontext erschließen kann, wann damit ein Morphismus aus einem Koprodukt und wann ein Morphismus in ein Produkt gemeint ist. Wenn es drauf ankommt, mag ein Morphismus in ein Produkt eben als Spalte mit einem hochgestellten \top notiert werden und ein Morphismus aus einem Koprodukt als Zeile. Wir notieren Koprodukte $\bigsqcup_{i \in I} X_i$, bei endlich vielen Faktoren auch $X_1 \sqcup \ldots \sqcup X_n$. Ein leeres Koprodukt ist dasselbe wie ein initiales Objekt.

Beispiel 9.6.14 (Disjunkte Vereinigungen von Mengen). Das Koprodukt in der Kategorie der Mengen über eine beliebige Familie $(X_i)_{i \in I}$ von Mengen heißt ihre disjunkte Vereinigung

$$\bigsqcup_{i \in I} X_i := \bigcup_{i \in I} (X_i \times \{i\})$$

Das Anhängen der Indizes auf der rechten Seite ist hier nur eine Vorsichtsmaßnahme für den Fall, daß unsere Mengen nicht disjunkt gewesen sein sollten. Jede derartige disjunkte Vereinigung ist versehen mit Inklusionsabbildungen $\text{in}_j : X_j \to
Weiter können wir für beliebige Abbildungen $f_i : X_i \rightarrow Z$ in eine Menge Z die Abbildung $f : \bigcup_{i \in I} X_i \rightarrow Z$ bilden durch die Vorschrift $f(x) = f_i(x)$ für $x \in X_i$, und jede Abbildung der disjunktten Vereinigung in eine Menge Z ist von dieser Form mit $f_i = f \circ i_n$. In Formeln ausgedrückt liefert das Vorschalten der Injektionen also für jede Menge Z eine Bijektion

$$\text{Ens} \left(\bigcup_{i \in I} X_i, Z \right) \xrightarrow{f} \prod_{i \in I} \text{Ens}(X_i, Z)$$

Die disjunktte Vereinigung von endlich vielen Mengen X_1, \ldots, X_n notieren wir auch $X_1 \sqcup \ldots \sqcup X_n$.

9.6.15 (Notationen für disjunkte Vereinigungen). Gegeben eine Menge X und darin eine Familie $(X_i)_{i \in I}$ von Teilmengen schreiben wir statt $\bigcup_{i \in I} X_i$ auch $\bigcap_{i \in I} X_i$, wenn wir zusätzlich andeuten wollen, daß unsere Teilmengen paarweise disjunkt sind. In der Tat ist die Eigenschaft, paarweise disjunkt zu sein, ja gleichbedeutend dazu, daß die offensichtliche Abbildung $\bigcup_{i \in I} X_i \rightarrow X$ eine Bijektion $\bigcap_{i \in I} X_i \cong \bigcup_{i \in I} X_i$ liefert. In derselben Weise verwenden wir bei endlich vielen Teilmengen X_1, \ldots, X_n einer gegebenen Menge die Notation $X_1 \sqcap \ldots \sqcap X_n$. In der Literatur werden statt \sqcup alternativ auch die Symbole \sqcup und \sqcup verwendet.

9.6.17. Wie in 9.6.4 im Fall von zwei Faktoren besprochen erhalten wir für einen Funktor $F : A \rightarrow B$ und eine Familie $(X_i)_{i \in I}$ von Objekten von A, wenn Produkte der X_i und der FX_i existieren, einen natürlichen Morphismus

$$F \left(\prod X_i \right) \rightarrow \prod FX_i$$

Vorschau 9.6.19. Für die algebraisch Gebildeten unter Ihnen sei bemerkt, daß in der Kategorie Kring der kommutativen Ringe das Tensorprodukt über \mathbb{Z} im Sinne
von ein Koprodukt ist, sofern die Multiplikation auf \(A \otimes B \) durch \((a \otimes b)(a' \otimes b') = aa' \otimes bb'\) erklärt wird und die kanonischen Morphismen durch \(a \mapsto a \otimes 1\) und \(b \mapsto 1 \otimes b\).

Übungen

Übung 9.6.20. Man präzisiere und zeige die „Assoziativität“ von Produkten, die die Formel \((X \times Y) \times Z \cong X \times (Y \times Z)\) andeutet.

Übung 9.6.21. Man zeige, daß in der Kategorie der kommutativen Monoide das Produkt \(M \times N\) zusammen mit \(\text{in}_1 : M \rightarrow M \times N, m \mapsto (m, 0)\) und \(\text{in}_2 : N \rightarrow M \times N, m \mapsto (0, n)\) ein Koprodukt ist.

9.7 Produkte und Summen von Vektorräumen*

Definition 9.7.1. Gegeben eine Familie \((V_i)_{i \in I}\) von Vektorräumen über einem Körper \(K\) bilden wir zwei neue \(K\)-Vektorräume, ihr \textbf{Produkt} \(\prod V_i\) und ihre \textbf{direkte Summe} oder kurz \textbf{Summe} \(\bigoplus V_i\) durch die Regeln

\[
\prod_{i \in I} V_i := \{ (v_i)_{i \in I} \mid v_i \in V_i \}
\]

\[
\bigoplus_{i \in I} V_i := \{ (v_i)_{i \in I} \mid v_i \in V_i \text{ und nur endlich viele } v_i \text{ sind nicht null} \}
\]

Die Vektorraumstruktur ist dabei komponentenweise zu verstehen. Dieselben Konstruktionen sind auch im Fall von Gruppen sinnvoll, wenn wir „null“ als das jeweilige neutrale Element verstehen, und wir werden beide Konstruktionen auch in diesem Kontext verwenden.

9.7.2. Für eine endliche Familie von Gruppen oder Vektorräumen \(V_1, \ldots, V_s\) stimmen die direkte Summe und das Produkt überein. Wir benutzen dann alternativ die beiden Notationen

\[
V_1 \oplus \ldots \oplus V_s = V_1 \times \ldots \times V_s
\]

Wir zeigen im folgenden, daß die direkte Summe ein Koprodukt in der Kategorie der Vektorräume ist. Die allgemeine Notation \(\biguplus\) für Koprodukte benutzen wir für Vektorräume aber nur ungern und verwenden sie in konkreten Situationen vorzugsweise für das Koprodukt von Mengen alias deren disjunkte Vereinigung.

Beispiel 9.7.3 (Summe und Produkt konstanter Familien). Im Fall der konstanten Familie \((K)_{x \in X}\) erhalten wir einen Isomorphismus des freien Vektorraums über \(X\) im Sinne von mit unserer direkten Summe

\[
K \langle X \rangle \cong \bigoplus_{x \in X} K
\]

279
vermittels der Abbildungsvorschrift $\sum_{x \in X} a_x x \mapsto (a_x)_{x \in X}$. Auch im Fall einer allgemeineren konstanten Familie $(V)_x \in X$ erhalten wir einen Vektorraumisomorphismus

$$\text{Ens}(X, V) \cong \prod_{x \in X} V$$

vermittels der Abbildungsvorschrift $f \mapsto (f(x))_{x \in X}$.

9.7.4 (Universelle Eigenschaften von Summe und Produkt). Das Produkt beziehungsweise die Summe haben im Fall von Vektorräumen oder allgemeiner von abelschen Gruppen die folgenden Eigenschaften: Die offensichtlichen Einbettungen und Projektionen sind Homomorphismen

$$\text{in}_i : V_i \hookrightarrow \bigoplus_{i \in I} V_i \quad \text{beziehungsweise} \quad \text{pr}_i : \bigcap_{i \in I} V_i \twoheadrightarrow V_i$$

und ist V ein weiterer K-Vektorraum, so induzieren die durch Vorschalten der in_i beziehungsweise Nachschalten der pr_i gegebenen Abbildungen Bijektionen, ja sogar Isomorphismen

$$\text{Hom}_K \left(\bigoplus_{i \in I} V_i, V \right) \cong \bigcap_{i \in I} \text{Hom}_K(V_i, V) \quad f \mapsto (f \circ \text{in}_i)_{i \in I}$$

$$\text{Hom}_K \left(V, \bigcap_{i \in I} V_i \right) \cong \bigcap_{i \in I} \text{Hom}_K(V, V_i) \quad f \mapsto (\text{pr}_i \circ f)_{i \in I}$$

Im Fall nichtabelscher Gruppen ist nur die Zweite dieser Abbildungen eine Bijektion. Ich gebe zu, daß das Symbol in_i nun in zweierlei Bedeutung verwendet wird: Einmal bei Mengen für die Einbettung in eine disjunkte Vereinigung und ein andermal bei Vektorräumen für die Einbettung in eine direkte Summe. Was jeweils gemeint ist, muß aus dem Kontext erschlossen werden. Betrachten wir im Fall des ersten Isomorphismus speziell den Fall $V = K$, so erhalten wir einen Isomorphismus zwischen dem Dualraum einer direkten Summe und dem Produkt der Dualräume der Summanden.

9.7.5. Gegeben eine Familie $(V_i)_{i \in I}$ von Untervektorräumen eines Vektorraums V bezeichnet man den von ihrer Vereinigung erzeugten Untervektorraum auch als ihre Summe und notiert ihn $\sum_{i \in I} V_i$. Diese Summe kann auch interpretiert werden als das Bild des natürlichen Homomorphismus $\bigoplus_{i \in I} V_i \rightarrow V$ von der direkten Summe nach V. Ist dieser Homomorphismus injektiv, so sagen wir, die Summe der Untervektorräume V_i sei direkt.

9.7.6. Untervektorräume V_1, V_2 eines Vektorraums V sind komplementär als Untervektorräume genau dann, wenn die durch die Einbettungen gegebene lineare
Abbildung aus ihrem Koprodukt in der Kategorie der Vektorräume alias ihrer direkten Summe ein Isomorphismus \(V_1 \sqcup V_2 = V_1 \oplus V_2 \rightarrow V \) ist. Da Koprodukte eh nur wohlbestimmt sind bis auf eindeutigen Isomorphismus, schreiben wir im Fall komplementärer Untervektorräume auch abkürzend \(V_1 \oplus V_2 = V \).

Übungen

Ergänzende Übung 9.7.7 (Basis einer direkten Summe). Ist \((V_i)_{i \in I}\) eine Familie von Vektorräumen und \(B_i \subset V_i\) jeweils eine Basis, so ist die Vereinigung \(\bigcup_{i \in I} \mathrm{im}(B_i)\) der Bilder ihrer Basen eine Basis der direkten Summe \(\bigoplus_{i \in I} V_i\). Diese Basis ist auch in offensichtlicher Bijektion zur disjunkten Vereinigung von Basen \(\bigcup_{i \in I} B_i\).

Ergänzende Übung 9.7.8. Man zeige, daß für jeden Endomorphismus \(f\) eines Vektorraums \(V\) über einem Körper \(K\) die Einbettungen der Haupträume eine Injektion

\[\bigoplus_{\lambda \in K} \mathrm{Hau}(f; \lambda) \hookrightarrow V \]

liefern. Der Hauptraum \(\mathrm{Hau}(f; \lambda)\) ist hier im Fall, daß \(\lambda\) kein Eigenwert von \(f\) ist, als der Nullraum zu verstehen.

Ergänzende Übung 9.7.9. Ich erinnere daran, daß ein Endomorphismus eines Vektorraums nach ?? diagonalisierbar heißt, wenn unser Vektorraum von den Eigenvektoren des besagten Endomorphismus erzeugt wird. Man zeige, daß ein Endomorphismus \(f\) eines Vektorraums \(V\) über einem Körper \(K\) genau dann diagonalisierbar ist, wenn \(V\) in die Summe seiner Eigenräume zerfällt, in Formeln

\[\bigoplus_{\lambda \in K} \mathrm{Eig}(f; \lambda) \cong V \]

wobei der Eigenraum \(\mathrm{Eig}(f; \lambda)\) in dem Fall, daß \(\lambda\) kein Eigenwert ist, als der Nullraum zu verstehen ist.

Ergänzende Übung 9.7.10. Seien \(V\) ein Vektorraum und \(T \subset \mathrm{End} V\) ein endlichdimensionaler Untervektorraum seines Endomorphismenraums, der aus diagonalisierbaren und paarweise kommutierenden Endomorphismen besteht. So besitzt \(V\) unter \(T\) eine simultane Eigenraumzerlegung

\[V = \bigoplus_{\lambda \in \mathcal{T}} V_{\lambda} \]

in die simultanen Eigenräume \(V_{\lambda} := \{ v \in V \mid xv = \lambda(x)v \forall x \in T\}\). Hinweis: Sei \(x_0, \ldots, x_n\) eine Basis von \(T\). Da \(x_0\) diagonalisierbar ist, zerfällt \(V\) in Eigenräume unter \(x_0\). Da die \(x_i\) für \(i \geq 1\) mit \(x_0\) kommutieren, stabilisieren sie dessen Eigenräume. Nach ?? sind die \(x_i\) auch auf diesen Eigenräumen diagonalisierbar. Eine Induktion beendet den Beweis.
Ergänzende Übung 9.7.11. Gegeben ein Vektorraum \(V \) und eine Familie von Vektorräumen \((W_i)_{i \in I}\) liefert die kanonische Abbildung stets einen Isomorphismus
\[
V \otimes \left(\bigoplus W_i \right) \cong \bigoplus (V \otimes W_i)
\]
Analoges gilt für den anderen Tensorfaktor. Für jeden \(K \)-Vektorraum \(V \) ist in anderen Worten der Funktor \(V \otimes : \text{Mod}_K \to \text{Mod}_K \) verträglich mit beliebigen Koprodukten.

Ergänzende Übung 9.7.12. Gegeben ein Vektorraum \(V \) und eine Familie von Vektorräumen \((W_i)_{i \in I}\) liefert die kanonische Abbildung stets eine Injektion
\[
V \otimes \left(\bigcap W_i \right) \hookrightarrow \bigcap (V \otimes W_i)
\]
Sie ist jedoch im allgemeinen kein Isomorphismus. Genauer ist sie nur dann ein Isomorphismus, wenn entweder \(V \) endlichdimensional ist oder wenn nur für endlich viele \(i \) der zugehörige Vektorraum \(W_i \) von Null verschieden ist. Diese Übung sagt insbesondere, daß für jeden \(K \)-Vektorraum \(V \) der Funktor \(V \otimes : \text{Mod}_K \to \text{Mod}_K \) mit endlichen Produkten verträglich ist, und daß für jeden endlichdimensionalen \(K \)-Vektorraum \(V \) der Funktor \(V \otimes : \text{Mod}_K \to \text{Mod}_K \) mit beliebigen Produkten verträglich ist. Hinweis: Man folgere aus ?? die Injektivität der Komposition \(V \otimes W \to V^\otimes \otimes W \to \text{Hom}(V^\otimes, W) \) und bette beide Seiten verträglich ein in \(\bigcap \text{Hom}(V^\otimes, W_i) \to \text{Hom}(V^\otimes, \bigcap W_i) \).

9.8 Algebren*

9.8.1. Sei \(K \) ein Körper. Ganz allgemein bezeichnet man einen \(K \)-Vektorraum \(A \) mit einer bilinearen Verknüpfung \(A \times A \to A \) als eine \(K \)-Algebra und versteht unter einem \textbf{Algebrenhomomorphismus} in eine weitere \(K \)-Algebra eine \(K \)-lineare Abbildung, die mit den jeweiligen Verknüpfungen verträglich ist. Gegeben zwei \(K \)-Algebren \(A, B \) bezeichnen wir mit \(\text{Alg}_K(A, B) \) die Menge der Algebrenhomomorphismen von \(A \) nach \(B \).

Eine Algebra ist also genau dann assoziativ und unitär, wenn die zugrundeliegende Menge mit der Vektorraum-Addition als Addition und der bilinearen Verknüpfung als Multiplikation ein Ring ist. Ich schlage deshalb vor, derartige Algebren \textbf{Ringalgebren} und im Fall, daß sie auch noch kommutativ sind, \textbf{Kringalgebren} zu nennen. Unter einem \textbf{Homomorphismus von Ringalgebren} versteht man einen Algebrenhomomorphismus, der auch ein Ringhomomorphismus

282
ist. Wir können diese Abbildungen sowohl charakterisieren als Algebrenhomomorphismen, die das Einselement auf das Einselement werfen, als auch als Ringhomomorphismen, die über dem Grundkörper linear sind. Wir vereinbaren für die Menge der Ringalgebrenhomomorphismen von einer K-Ringalgebra A in eine K-Ringalgebra B die Notation $\text{Ralg}_{K}(A, B)$. Sind beide beteiligten Algebren sogar K-Ringalgebren, so schreiben wir für diese Menge auch $\text{Kralg}_{K}(A, B)$.

9.8.6. Sei V ein Vektorraum. Die direkte Summe

$$\bigwedge V = \bigoplus_{r \geq 0} \bigwedge^{r} V$$

der äußeren Potenzen von V wird mit dem „bilinearen erweiterten“ Dachprodukt aufgrund der Assoziativität des Dachprodukts eine Ringalgebra mit Eins-Element $1 \in K = \bigwedge^{0} V$. Sie heißt die äußere Algebra oder auch Graßmann-Algebra des Vektorraums V. Die offensichtliche Identifikation $V \xrightarrow{\sim} \bigwedge^{1} V$ notieren wir kurzerhand $v \mapsto v$ und behandeln sie auch sprachlich als Gleichheit. Gegeben $v \in V$ gilt in $\bigwedge^{2} V$ wegen $v \otimes v \in J_{2}$ natürlich $v \wedge v = 0$. Mit ?? folgt daraus in der Graßmann-Algebra die Identität

$$v \wedge w = -w \wedge v \quad \forall v, w \in V$$
Unsere Abbildungen $\bigwedge^r f : \bigwedge^r V \to \bigwedge^r W$ liefern in ihrer Gesamtheit einen Ringhomomorphismus

$$\bigwedge f : \bigwedge V \to \bigwedge W$$

Natürlich gilt auch $\bigwedge (f \circ g) = (\bigwedge f) \circ (\bigwedge g)$ und $\bigwedge (\text{id}) = \text{id}$.

Ergänzung 9.8.7. Sei V ein Vektorraum über einem Körper K. Eine weitere Ringalgebra, die man jedem K-Vektorraum in natürlicher Weise zuordnen kann, ist die sogenannte Tensoralgebra $T_K V$ über V. Sie ist definiert als

$$T(V) = T_K V = \bigoplus_{r \geq 0} V^\otimes r = K \oplus V \oplus (V \otimes V) \oplus (V \otimes V \otimes V) \oplus \ldots$$

mit der K-bilinearen Multiplikation „Zusammentensorieren“, die festgelegt wird durch die Vorschrift $(v_1 \otimes \ldots \otimes v_r) \cdot (w_1 \otimes \ldots \otimes w_t) := (v_1 \otimes \ldots \otimes v_r \otimes w_1 \otimes \ldots \otimes w_t)$. Für die K-lineare Einbettung $\tau : V \hookrightarrow T_K V$ des zweiten Summanden gilt dabei die folgende universelle Eigenschaft: Ist A eine K-Ringalgebra und $\varphi : V \to A$ eine K-lineare Abbildung, so gibt es genau einen Homomorphismus von K-Ringalgebren $\hat{\varphi} : T_K V \to A$ mit $\varphi = \hat{\varphi} \circ \tau$, im Diagramm

$$V \xrightarrow{\tau} T_K V \xrightarrow{\varphi} A$$

In der Tat sieht man leicht, daß die Vorschrift $\hat{\varphi}(v_1 \otimes \ldots \otimes v_r) := \varphi(v_1) \ldots \varphi(v_r)$ das einzig mögliche $\hat{\varphi}$ liefert. In wieder anderen Worten liefert also das Vorschalten der kanonischen Einbettung für jede K-Ringalgebra A eine Bijektion

$$\operatorname{Ralg}_K(T_K V, A) \xrightarrow{\phi \tau} \operatorname{Hom}_K(V, A)$$

Ist $(x_\lambda)_{\lambda \in \Lambda}$ eine Basis von V, so bilden nach ?? die „nichtkommutierenden Monome in den x_λ“ alias die Tensoren $x_{\lambda(1)} \otimes \ldots \otimes x_{\lambda(r)}$ für beliebige $r \in \mathbb{N}$ und beliebige Abbildungen $\lambda : \{1, 2, \ldots, r\} \to \Lambda$ eine K-Basis der Tensoralgebra TV. Das „leere Monom“ mit $r = 0$ steht dabei für das Einselement. In diesem Sinne kann man die Tensoralgebra also salopp gesprochen auch als einen „Polynomring in nichtkommutierenden Variablen“ auffassen. Mehr dazu wird in ?? erklärt.

Vorschau 9.8.8. Es gibt noch eine dritte Ringalgebra, die man jedem Vektorraum V in natürlicher Weise zuordnen kann. Diese sogenannte „symmetrische Algebra“ SV diskutieren wir in ??, in ?? diskutieren wir auch die Beschreibung der Graßmann-Algebra vom höheren Standpunkt als „Quotient der Tensoralgebra TV nach dem von allen $v \otimes v$ mit $v \in V$ erzeugten Ideal“.

284
Übungen

Ergänzende Übung 9.8.9. Sei K ein Körper. Man zeige, daß in der Kategorie der K-Kringalgebren das Tensorprodukt ein Koprodukt ist, sofern die Multiplikation auf $A \otimes B$ durch $(a \otimes b)(a' \otimes b') = aa' \otimes bb'$ erklärt wird und die kanonischen Morphismen durch $a \mapsto a \otimes 1$ und $b \mapsto 1 \otimes b$. Man zeige weiter, daß die analoge Aussage in der Kategorie der K-Ringalgebren nicht richtig ist.

Ergänzende Übung 9.8.10. Sei K ein Körper. Man zeige, daß der auf Objekten durch $X \mapsto \text{Ens}(X, K)$ gegebene Funktor

$$\{\text{Endliche Mengen}\} \to \{\text{K-Kringalgebren}\}^{\text{opp}}$$

verträglich ist mit endlichen Produkten.

9.9 Yonedalemma*

9.9.1. Einen Funktor von einer Kategorie C in eine Kategorie von Mengen nennen wir kurz einen **Mengenfunktor auf C**. Gegeben ein Mengensystem \mathfrak{U} und eine \mathfrak{U}-Kategorie bildet die Menge aller Funktoren $C \to \mathfrak{U}\text{Ens}$ mit den Transformationen als Morphismen eine Kategorie $\text{Cat}(\mathcal{C}, \mathfrak{U}\text{Ens})$. Jedes Objekt $X \in \mathcal{C}$ liefert einen derartigen Mengenfunktor $\tilde{X} = X^\vee$ gegeben durch $\tilde{X} : A \mapsto \mathcal{C}(X, A)$.

Proposition 9.9.2 (Yoneda-Lemma). Seien \mathfrak{U} ein Mengensystem, C eine \mathfrak{U}-Kategorie, $X \in \mathcal{C}$ ein Objekt und $F : \mathcal{C} \to \mathfrak{U}\text{Ens}$ ein Mengenfunktor auf C. So liefert die Abbildungsvorschrift $\tau \mapsto \tau_X(id_X)$ eine Bijektion

$$\text{Cat}(\mathcal{C}, \mathfrak{U}\text{Ens})(\tilde{X}, F) \to F(X)$$

zwischen der Menge aller Transformationen $\tilde{X} \Rightarrow F$ und der Menge $F(X)$.

9.9.3. Die zur Kategorie dieser Mengenfunktoren auf C opponierte Kategorie

$$C^\vee = C^\vee_{\mathfrak{U}} := \text{Cat}(\mathcal{C}, \mathfrak{U}\text{Ens})^{\text{opp}}$$

kann man als eine „Vervollständigung“ von C interpretieren. In der Tat liest sich unser Yoneda-Lemma in dieser Notation als eine Bijektion $C^\vee(F, \tilde{X}) \cong F(X)$. Spezialisieren wir zu $F = \tilde{Y}$, so erhalten wir eine Bijektion $C^\vee(\tilde{Y}, \tilde{X}) \cong C(Y, X)$, von der man leicht zeigt, daß sie zur offensichtlichen Abbildung $C(Y, X) \to C^\vee(\tilde{Y}, \tilde{X})$ invers ist. So folgt, daß die Vorschrift $X \mapsto \tilde{X}$ einen volltreuen Funktor $\mathcal{C} \cong C^\vee$ induziert, die **Yoneda-Einbettung**. Im weiteren lassen wir das Mengensystem \mathfrak{U} wieder in den Hintergrund treten und ignorieren es meist in unserer Notation.
9.9.4 (Diskussion der Notation). Die hier verwendeten Notationen C^\lor und das in 9.9.10 eingeführte C^\land sind genau umgekehrt wie in [KS90]. Dafür stimmt die Notation C^\land dann mit der in [Gro72] verwendeten Notation überein, und auch die Autoren von [KS90] verwenden in [KS00] letztere Notation, die mit der unseren übereinstimmt.

Beweis. Wir konstruieren zunächst eine Abbildung in die andere Richtung. Für beliebiges $a \in F(X)$ betrachten wir dazu die Abbildungen

$$\tau_Y : C(X,Y) \to F(Y), \quad f \mapsto (Ff)(a)$$

Man prüft ohne Schwierigkeiten, daß sie eine Transformation $\tau : \check{X} \Rightarrow F$ bilden, die wir mit $\check{\tau}(a)$ bezeichnen. Jetzt gilt es nur noch zu zeigen, daß die Abbildung $a \mapsto \check{\tau}(a)$ invers ist zu unserer Abbildung $\tau \mapsto \check{\alpha}(\tau) := \tau_X(\text{id}_X)$ aus der Proposition. Dafür müssen wir also prüfen, daß gilt $a = \check{\alpha}(\check{\tau}(a))$ für alle $a \in F(X)$ und $\tau = \check{\tau}(\check{\alpha}(\tau))$ für alle Transformationen $\tau : \check{X} \Rightarrow F$. Das überlassen wir dem Leser.

Defined 9.9.6.

1. Diejenigen Mengenfunktoren auf C, die isomorph sind zu Mengenfunktoren im Bild von $C \to C^\lor$, heißen _darstellbare Funktoren_.

2. Ist genauer ein Mengenfunktor $F : C \to \text{Ens}$ isomorph zu $\check{X} = C(X, \)$ für ein $X \in C$, so sagen wir, der _Funktor F werde dargestellt durch das Objekt X_.

3. Ist noch genauer $F : C \to \text{Ens}$ ein Mengenfunktor und $X \in C$ ein Objekt und $a \in F(X)$ ein Element, das unter der Bijektion aus dem Yoneda-Lemma einer Isotransformation $C(X, \) \Rightarrow F$ entspricht, so sagen wir, der _Funktor F werde strikt dargestellt durch das Paar (X, a)_. Ausgeschrieben bedeutet das, daß die Vorschrift $f \mapsto (Ff)(a)$ für alle $Y \in C$ eine Bijektion $C(X,Y) \Rightarrow F(Y)$ liefert. Oft lassen wir das „strikt“ aber auch weg.

Beweis 9.9.7. Der Vergißfunktor $\text{Mod}_K \to \text{Ens}$ von den K-Vektorräumen in die Mengen wird dargestellt durch das Paar $(K, 1)$ oder auch durch jeden anderen eindimensionalen Vektorraum zusammen mit einem beliebigen von Null verschiedenen Element.

286
Beispiel 9.9.8. Der Vergißfunktor \(\text{Grp} \to \text{Ens} \) von den Gruppen in die Mengen wird strikt dargestellt durch das Paar \((\mathbb{Z}, 1)\) oder auch durch jedes andere Paar \((\mathbb{Z}, e)\) bestehend aus einer unendlich zyklischen Gruppe und einem Erzeuger derselben.

Beispiel 9.9.9 (Das Tensorprodukt als Darstellung eines Funktors). Seien \(K \) ein Körper und \(V, W \) zwei \(K \)-Vektorräume. Der Funktor der bilinearen Abbildungen \(\text{Mod}_K \to \text{Ens}, L \mapsto \text{Hom}_K^{(2)}(V \times W, L) \) wird strikt dargestellt durch das Paar \((V \otimes W, \tau)\) mit \(\tau : V \times W \to V \otimes W \) der kanonischen bilinearen Abbildung aus ???. Diese Aussage ist eine Umformulierung der universellen Eigenschaft des Tensorprodukts aus ???.

9.9.10. In derselben Weise kann man für jede \(\mathfrak{U} \)-Kategorie \(C \) auch die Kategorie
\[
\mathcal{C}^\wedge = C^\wedge_\mathfrak{U} := \text{Cat}(C^{\text{opp}}, \mathfrak{U}\text{Ens})
\]
aller kontravarianten Funktoren \(C \to \mathfrak{U}\text{Ens} \) betrachten und erhält mit \(X \mapsto \mathcal{C}(, X) \) eine volltreue Einbettung \(C \hookrightarrow \mathcal{C}^\wedge \), die Ko-Yoneda-Einbettung. Wieder heißen die Funktoren im Bild dieser Einbettung darstellbare Funktoren oder, wenn wir es ganz genau nehmen wollen, kodarstellbare Funktoren. Die Objekte von \(\mathcal{C}^\wedge \) werden Sie später vielleicht einmal unter der Bezeichnung als „mengenwertige Prägarben auf \(\mathcal{C}^\wedge \)“ wiedertreffen. Notieren wir wieder zu \(X \in \mathcal{C} \) mit \(X \in \mathcal{C}^\wedge \) den zugehörigen Funktor \(\tilde{X} : A \mapsto \mathcal{C}(A, X) \), so liefert diesmal das Auswerten auf \(\text{id}_X \) eine Bijektion \(\mathcal{C}^\wedge(\tilde{X}, F) \sim F(X) \).

9.9.11. Gegeben eine Kategorie \(C \) kann man leicht explizite Isomorphismen von Kategorien \((C^\vee)^{\text{opp}} \sim (C^{\text{opp}})^\wedge \) und \((C^\wedge)^{\text{opp}} \sim (C^{\text{opp}})^\vee \) angeben. In diesem Sinne sind unsere beiden Konzepte zueinander dual.

Vorschau 9.9.12. Gegeben eine Kategorie \(C \) ist die volltreue Einbettung \(C \hookrightarrow \mathcal{C}^\wedge \) verträglich mit Produkten, wann immer diese in \(C \) existieren. Ebenso ist die volltreue Einbettung \(C \hookrightarrow \mathcal{C}^\vee \) verträglich mit Koprodukten, wann immer diese in \(C \) existieren. Mehr dazu wird in ?? diskutiert.

Vorschau 9.9.13. Ein Zugang zu der von Grothendieck konstruierten Kategorie der Schemata ist es, diese Kategorie zu realisieren als volle Unterkategorie der Kategorie \(\text{Kring}^\vee \), die wir erhalten, wenn wir die Kategorie der kommutativen Ringe mit der nötigen Sorgfalt bei Fragen der Mengenlehre in der oben erklärten Weise vervollständigen. Der affine Raum der Dimension \(n \) wird dann zum Beispiel definiert als der Funktor, der jedem kommutativen Ring \(R \) die Menge \(R^n \) zuordnet, und der projektive Raum der Dimension \(n \) als der Funktor, der jedem kommutativen Ring \(R \) die Menge derjenigen direkten Summanden \(D \) des \(R \)-Moduls \(R^{n+1} \) zuordnet, die „vom Rang Eins“ sind in dem Sinne, daß „bei jedem Primideal \(p \subset R \) ihre Lokalisierung \(D_p \) ein freier \(R_p \)-Modul vom Rang Eins

287
ist“. Man kann mit Schemata so effizient und geometrisch arbeiten, daß sie mittlerweile zum eigentlichen Arbeitspferd der sogenannten „algebraischen Geometrie“ geworden sind.

Übungen

Übung 9.9.14 (Eindeutigkeit darstellender Objekte). Wird ein Mengenfunktor $F : \mathcal{C} \to \text{Ens}$ strikt dargestellt durch das Paar (X, a) und durch das Paar (Y, b), so gibt es genau einen Isomorphismus $i : X \to Y$ mit der Eigenschaft $F(i) : a \mapsto b$.

Übung 9.9.15. Welche Mengenfunktoren werden durch finale und initiale Objekte dargestellt oder kodargestellt?

Ergänzende Übung 9.9.18. Welchen Mengenfunktor stellt das Produkt im Sinne von 9.9.6 dar?

Ergänzende Übung 9.9.19. Seien K ein endlicher Körper und Mat_K die Matrixkategorie aus 9.1.6 und \mathfrak{U} eine Menge derart, daß Mat_K eine \mathfrak{U}-Kategorie ist. Gilt $X \in \mathfrak{U} \Rightarrow |X| < \infty$, so liefert der offensichtliche Funktor

\[
\text{Mat}_K \to \text{Mat}_K^{\wedge} = \text{Cat}(\text{Mat}_K^{\text{opp}}, \mathfrak{U}\text{Ens})
\]
eine Äquivalenz von Mat_K mit der vollen Unterkategorie aller mit endlichen Produkten verträglichen Funktoren. Gibt es zwar unendliche, aber keine überabzählbaren Mengen $X \in \mathfrak{U}$, so ist die volle Unterkategorie aller mit endlichen Produkten verträglichen Funktoren aus Mat_K^{\wedge} äquivalent zur Kategorie aller abzählbaren K-Vektorräume. Analoge Aussagen gelten für andere Kardinalitäten und mutatis mutandis auch für unendliche Körper.

9.10 Universen*

Ergänzung 9.10.2. Baut man die Mengenlehre im Rahmen der Logik systematisch auf, vergleiche etwa [Ebb94], so verwendet man statt unserem „Mengel“ schlicht das Wort Menge. Aufgrund der Vereinbarung, daß zwei Mengen gleich sind genau
dann, wenn sie dieselben Elemente haben, kann es dann nur eine einzige Menge geben, die kein Element hat. Man notiert sie wieder \emptyset.

Definition 9.10.3. Ein Universum ist eine Menge \mathcal{U} mit den folgenden Eigen-
schaften:

1. $x \in M$ und $M \in \mathcal{U}$ implizieren $x \in \mathcal{U}$;
2. $x \in \mathcal{U} \Rightarrow \{x\} \in \mathcal{U}$;
3. $A \in \mathcal{U} \Rightarrow \mathcal{P}(A) \in \mathcal{U}$;
4. Gegeben $I \in \mathcal{U}$ und eine Abbildung $f : I \to \mathcal{U}$ gilt $(\bigcup_{i \in I} f(i)) \in \mathcal{U}$.

Ergänzung 9.10.4 (Diskussion der Terminologie). Diese Definition steht fast ge-
näuso bei Grothendieck [Gro72, Exposé I]. Abweichend will Grothendieck nur
die leere Menge nicht als Universum zulassen und fordert statt unserer zweiten
Bedingung scheinbar stärker $x,y \in \mathcal{U} \Rightarrow \{x,y\} \in \mathcal{U}$. Da jedoch für jedes nicht-
leere Universum gilt $\emptyset \in \mathcal{U}$ und folglich $\{\emptyset\} \in \mathcal{U}$ und $\{\emptyset, \{\emptyset\}\} \in \mathcal{U}$, ergibt sich das
wegen $\{x,y\} = \{x\} \cup \{y\}$ aus dem letzten Axiom, angewandt auf die Abbildung
$f : \{\emptyset, \{\emptyset\}\} \to \mathcal{U}$ mit $f(\emptyset) = \{x\}$ und $f(\{\emptyset\}) = \{y\}$.

9.10.5 (Elemente eines Universums versus Teilmengen eines Universums).
Gegeben ein Universum \mathcal{U} gilt es genau zu unterscheiden zwischen Mengeln
$x \in \mathcal{U}$, die Elemente des Universums sind, die also in unserer Terminologie ??
zurinem Universum gehören, und Mengeln $M \subseteq \mathcal{U}$, die nur Teilmengen des
Universums sind. Nach dem ersten Axiom ist jedes Element eines Universums,
wen es denn eine Menge ist, auch eine Teilmenge besagten Universums, aber
das Umgekehrte gilt nicht. Die Formel $M := \{x \in \mathcal{U} \mid x \notin x\}$ definiert dann
eine Teilmenge $M \subseteq \mathcal{U}$, die kein Element von \mathcal{U} zu sein braucht, und die Formel
$A := \{M \subseteq \mathcal{U} \mid M \notin M\}$ definiert eine Menge A, die nicht Teilmenge von \mathcal{U}
zu sein braucht, so daß keine dieser beiden Formeln auf den in ?? beschriebenen
Widerspruch führt.

9.10.6 (Stabilitäten eines Universums). Wenn wir mit Kuratowski $(x,y) :=
\{x,\{y\}\}$ setzen, erhalten wir sofort $x,y \in \mathcal{U} \Rightarrow (x,y) \in \mathcal{U}$. Das Produkt von
je zwei Mengen, die Elemente unseres Universums sind, ist auch selbst Element
unseres Universums, zum Beispiel indem wir die Vereinigung erst über alle $x \in X$
dann über alle $y \in Y$ der Mengen $\{(x,y)\}$ bilden. Weiter ist mit je zwei Men-
gen $X,Y \in \mathcal{U}$ auch die Menge der Abbildungen $\text{Ens}(X,Y)$ Element von \mathcal{U}
dasselbe gilt für jedes Produkt $\prod_{i \in I} X_i$ mit $I \in \mathcal{U}$ und $X_i \in \mathcal{U}$ für alle $i \in I$.
Ebenso folgt, daß jede Teilmenge eines Elements unseres Universums wieder ein
Element unseres Universums ist.
9.10.7 (Existenz von Universen). Die Annahme, daß jede Menge Element eines Universums ist, müssen wir der Mengenlehre als zusätzliches Axiom hinzufügen. Es scheint nicht auf Widersprüche zu führen, hat aber die bemerkenswerte Konsequenz, daß es zu jeder Menge ein kleinstes Universum gibt, zu dem sie als Element gehört, eben den Schnitt aller Universen, zu denen sie als Element gehört. Insbesondere ist natürlich auch jedes Universum Element eines Universums. Gegeben ein Körper k und ein Universum \mathfrak{U} mit $k \in \mathfrak{U}$ können wir dann auf der Kategorie $k \cdot \mathfrak{U}\text{-Mod}$ der k-Vektorräume, deren zugrundeliegende Menge zu \mathfrak{U} gehört, in der Tat den Dualraumfunktor erklären.

9.10.8. Das kleinste Universum, das die leere Menge als Element enthält, besteht aus endlichen Mengen.
10 Danksagung

Für Korrekturen zu vorläufigen Versionen danke ich vielen Freiburger Hörern und Mitarbeitern, insbesondere Gregor Fritz, Gerald Höhn, Stephan Wehrheim, Isolde Adler, Olaf Schnürer, Matthias Ansorge, David Stotz, Balthasar Burgenmeister,
Literatur

[LA1] *Skriptum Lineare Algebra 1*.

Indexvorwort

Hier werden die Konventionen zum Index erläutert. Kursive Einträge bedeuten, daß ich die fragliche Terminologie oder Notation in der Literatur gefunden habe, sie aber selbst nicht verwende. Bei den Symbolen habe ich versucht, sie am Anfang des Index mehr oder weniger sinnvoll gruppiert aufzulisten. Wenn sie von ihrer Gestalt her einem Buchstaben ähneln, wie etwa das \cup dem Buchstaben u oder das \subset dem c, so liste ich sie zusätzlich auch noch unter diesem Buchstaben auf. Griechische Buchstaben führe ich unter den ihnen am ehesten entsprechenden deutschen Buchstaben auf, etwa ζ unter z und ω unter o.
Index

kokartesisches Diagramm, 154
kartesisches Diagramm, 152
⇒ Transformation, 208, 263
C \times X freies Objekt von \mathcal{C} über X, 243
→ Morphismus in Kategorie, 131, 251
⇒ Isotransformation, 209, 263
⇒ Isomorphismus in Kategorie, 254
von Kategorien, 208, 260
⇒ Äquivalenz von Kategorien, 208, 260
↪ volltreuer Funktor, 260
⟨⟨⟩⟩ Erzeugnis als Normalteiler, 186
| Polyeder eines Simplicialkomplexes, 173
C(X) := C(X, X), 253
[M] Einobjektkategorie, 253
[Ω] Einpunktköcher, 272
C^\circ Funktorkategorie, 242, 287
\bar{M} Abschluß von M, 26
\bar{X} Funktor C(X,), 285
\jmath^{-1} inverer Morphismus, 134, 256
G^\circ Einskomponente, 89
M^\circ Inneres von M, 59
\jmath^\circ in opponierter Struktur opponierter Morphismus, 149, 258
X^\circ Funktor C(X,), 285
C^\circ Funktorkategorie, 240, 285
\jmath^1 Vorschub von Fundamentalgruppe, 120
\cong homöomorph, 110
⊣ Adjunktion, 225, 242
* Juxtaposition, 268
◦ Verknüpfung von Morphismen, 131, 250
⊕ direkte Summe
⊕ Summe von Familie, 279
von komplementären Untervektorräumen, 281
C \times X freies Objekt von \mathcal{C} über X, 243
Y^X statt C(X, Y), 99
\mathcal{B}^A Funktorkategorie, 210, 266
\bigcap Produkt in Kategorie, 277
von Mengen, 276
don Vektorräumen, 279
\bigcap Schnitt
\bigcap von Mengenfamilie, 21
\emptyset abgeschlossen in metrischem Raum, 17
topologischem Raum, 25, 57
\Subset offen in metrischem Raum, 17
topologischem Raum, 22, 55
\uplus disjunkte Vereinigung, 278
\uplus disjunkte Vereinigung, 278
∪ Vereinigung
∪ von Mengenfamilie, 21
\prod Koprodukt, 150
\prod von Familie, 150
disjunkte Vereinigung, 278
\prod disjunkte Vereinigung
∪ von Mengenfamilie, 277
von Teilmengen, 278
\boxtimes Isomorphismen in \mathcal{C}, 255
\times Produkt von Kategorien, 259
\times Produkt in Kategorie, 277
\times_B Faserprodukt, 152
\times_H balanciertes Produkt, 245
\boxtimes Isomorphismenkategorie, 255
+ Verschieben von Punkt um Richtungsvektor, 41
\mathcal{G}^{ab} Abelisierung, 142
Ab abelsche Gruppen
Kategorie, 252
Abbildungsgrad
bei Kreislinie, 144
Abelisierung, 142
abgeschlossen
Abbildung, 71
in metrischem Raum, 17
produktfest, 105
topologisch, 25, 57
universell, 105
Ableitung
komplexe, 32
von Brüchen, komplex, 33
von Umkehrfunktion
komplex, 33
Abschluß
in metrischem Raum, 20
topologischer, 26, 59
abstrakter Faserfunktor, 230
Abzählbarkeitsaxiom
erstes, 62
adjungiert
Funktor, 242
Adjunktion
opponierte, 229
von Funktoren, 225
Ähnlichkeit
lineare, 270
äquivalent
Normen, 44
Äquivalenz
von Funktoren, 209, 264
von Kategorien, 206, 260
äquivariant, 267
Abbildung, 193
äußere Algebra, 283
Aff Kategorie der affinen Räume, 257
affin
Abbildung, 42
Raum, 40
Raum, normierter, 43
Raum, über Vektorraum, 42
unabhängig, 169
Alexander
gehörnte Sphäre, 111
Alexandroff-Topologie, 58
Alg Algebrenhomomorphismen, 282
Alg Kategorie der Algebren, 252
Algebra, 282
Algebrenhomomorphismus, 282
amalgamiertes Produkt, 168
Aneinanderhängung
von Wegen, 115
Anfangspunkt
von Pfeil in Köcher, 271
Augmentierung
von Simplicialkomplex, 176
Ausgangskategorie, 133, 257
Automorphismus
in Kategorie, 255
\(B(V, W) \) beschränkte Operatoren, 46
\(B_{\mathbb{R}}(V, W) \) beschränkte Operatoren, 47
\(B(x; \varepsilon) \) Ball in metrischem Raum, 10
Bahnenraum
topologischer, 90
balanciertes Produkt, 245
Ball, 10
Basis
von Faserbündel, 218
Basis einer Topologie, 73
Basispunkt, 117, 134
Basiswechsel
für Untergruppen, 155
mengentheoretischer, 155
bepunkteter Raum, 117
Berührungspunkt, 17, 60
beschränkt
Abbildung, 16
metrischer Raum, 16
Operator, 46
Betragstabstand, 8
Blätterzahl, 192
Borsuk-Ulam, 147
Bouquet von Kreislinien, 187
braid group, 232
Brouwer, Fixpunktsatz
 für die Kreisscheibe, 125
Bündelatlas, 218
Bündelkarte, 218
Butterbrot mit Schinken
 Satz vom, 147
\(C(X,Y) \) Raum stetiger Abbildungen, 53, 99
\(C(X,\mathbb{R}) \) stetige reellwertige Funkti-
 onen auf \(X \), 47
Car Kategorie der Köcher, 272
Car(\(\mathbb{Q}, \mathbb{C} \)), 274
carquois, 272
Cat, 156
Cat Kategorienkategorie, 261
Cat(\(A,B \)), 210, 266
Cl_X(M) Abschluß von \(M \), 20, 26, 59
closure, 59
CW-Komplex, 78
\(\partial M = \partial X M \)
topologischer Rand von \(M \subset X \), 59
\(\Delta(\mathcal{K}) \) Polyeder eines Simplizialkom-
 plexes, 171
darstellbarer Funktor, 241, 242, 286, 287
Darstellung
 eines Köchers, 272
de Morgan'sche Regeln, 23
Deckbewegung, 198
Decktransformation, 198, 199
derivierte Gruppe, 142
Diagramm
 in Kategorie, 272
Diagrammschema, 272
Dimension
 eines affinen Raums, 41
diene, Satz von, 52
direkte Summe
 von Vektorräumen, 279
disjunkte Vereinigung, 277
diskret
 Kategorie, 254
teilmenge von topologischem Raum,
 66
 Topologie, 23, 56
Drehsinn
 als Funktor, 143
 zu einer Orientierung, 144
Dreiecksidentität, 228
Dreiecksungleichung
 bei metrischen Räumen, 8
Ecke
 von Köcher, 271
Ecken, 171
Eckenreduktion, 182
eckenzahl, 182
edge of quiver, 272
Eigenschaft, 100
eigentlich
 Gruppenwirkung, 106
 stetige Abbildung, 105
eigentlich diskontinuierlich, 195
Ein-Objekt-Kategorie, 253
Ein-Punkt-Kompaktifizierung, 72
Einbettung, 68
topologische, 68, 78
einfach
 zusammenhängend, 201
 zusammenhängend, wegweise, 118
Einhheit
 einer Adjunktion, 227
Einparameteruntergruppe
von topologischer Gruppe, 88
Einpunktköcher, 272
Einpunktkompaktifizierung, 72
Einpunktverbindung, 150
Eins-Element
einer Algebra, 282
Einskomponente
einer topologischen Gruppe, 89
Einszusammenhangskomponente
einer topologischen Gruppe, 89
em_{x} Morphismus aus finalem Objekt, 256
endlich
Köcher, 272
Endomorphismen
in Kategorie, 253
Endpunkt
der Pfeil in Köcher, 272
ens einelementige Menge, 256
Ens Kategorie der Mengen, 132, 252
Ens(X, Y) Abbildungen X → Y, 132
Ens^* bepunkte Mengen, 252
Ens^x(Z) Bijektionen Z → Z, 214
Ens^{b} beschränkte Abbildungen, 16
erzeugt
Topologie, 72
essentiell surjektiv
Funktor, 260
étale
stetige Abbildung, 192
Euk Kategorie der euklidischen Vek-
torräume, 257
Exp(t) := exp(2πit), 122
Exponentialgesetz
topologisches, 103
topologisches schwaches, 101
Fahne
vollständige, 96
Fahnenmannigfaltigkeit, 96
Faserbündel, 218
Faserfunktur
abstrakter, 229
bei Überlagerung, 214
Faserprodukt
in Kategorie, 152
Faserwirkungsvergleich, 215
feiner gleich
Topologie, 72
fin final, 256
fin(C) finales Objekt, 255
final
Objekt, 255
produktfest, 90
stetige Abbildung, 74
Finaltopologie, 73
Fixpunktsatz von Brouwer
für die Kreisscheibe, 125
Flächenwort, 178
Fläche
nichtorientierbare, 113
orientierbare, 113
folgenabgeschlossen, 61
folgenkompakt, 50
frei
Objekt über Menge, 243
Operation, 195
Produkt von Gruppen, 168
Frolik-Tychonoff, 106
Fundamentalgruppe, 118
basispunktfreie, 143
Fundamentalgruppe der Kreislinie, 121
Fundamentalsatz der Algebra, 39
Funktionentheorie, 34
Funktor, 133, 256
darstellbarer, 241, 242, 286, 287
kodarstellbarer, 287
kontravarianter, 259
linksadjungierter, 242
partiell definierter, 243
quasiinverser, 211, 269
rechtsadjungierter, 242
Funktorkategorie, 210, 266
Galois
 Überlagerung, 199
gehörnte Sphäre, 111
geometrische Realisierung
eines Simplicialkomplexes, 171
Geschlecht, 113
geschlossen
 Weg, 115
geschlossene Fläche, 111
geschlossene kombinatorische Fläche, 175
geschlossene Mannigfaltigkeit, 111
gleichmäßig stetig
 Abbildung metrischer Räume, 39
GO(\(p,q\)), 92
Graßmann-Algebra, 283
Grenzwert
 von Folge
 in metrischem Raum, 14
 von Funktion, 28
grober Modulraum, 243
gröber
 Topologie, 72
größergleich
 Topologie, 72
großen Diagonale, 232
groupe de tresses, 232
Grp Kategorie der Gruppen, 252
Grp \(X\) freie Gruppe über \(X\), 162
Gruppe
 Erzeugende und Relationen, 186
 freie, 162
Gruppenweg
 in topologischer Gruppe, 88
Gruppenwege
 in normiertem Vektorraum, 47
Gruppoid, 133, 254
 fundamentales, 133
Häufungspunkt
 von topologischem Raum, 27
zu topologischem Raum, 28
Halbnorm, 42
Hausdorff, 60
Hausdorff, relativ, 109
Hausdorff-Raum, 28
Hausdorffgruppe, 87
Heine-Borel, 38
Henkelelimination, 184
Hochhebung, 122, 196
holomorph, 34
homöomorph, 58
 für Teilmengen des \(\mathbb{R}^n\), 110
Homöomorphismus, 58
 für Teilmengen des \(\mathbb{R}^n\), 110
Homomorphisms
 von Ringalgebren, 282
homotop, 129
 mit festen Randpunkten, 116, 129
Homotopie
 relative, 129
 von Abbildungen, 129
Homotopieäquivalenz
 topologische, 132
Homotopiekategorie
 topologische bepunktete, 134
Homotopieklasse, 130
Hopf-Faserung, 95
h\(\text{Top}\) Homotopiekategorie
 h\(\text{Top}\) topologische bepunktete, 134
topologische, 130
Id Identitätsfunktor, 257
identische Transformation, 210, 266
Identität auf \(X\), 131, 250
Identitätsfunktor, 257
Igel, Satz vom, 127
in, Morphismus in Koprodukt, 280
induzierte Metrik, 10
induzierte Topologie, 24, 56
ini(\(\mathcal{C}\)) initiales Objekt, 256
initial
 Objekt, 255
stetige Abbildung, 78
Initialtopologie, 78
$\text{Inn}_X(M)$ Inneres von M, 59
innerer Punkt einer Teilmenge
 eines topologischen Raums, 60
Inneres, in topologischem Raum, 59
interior, 59
invers
 Morphismus, 134, 256
 Weg, 115
Iso
 in Kategorie, 132, 254
isomorph
 Funktoren, 209, 264
 in Kategorie, 132, 254
Isomorphieklaasse, 254
Isomorphismenklasse, 255
Isomorphismus
 in Kategorie, 132, 254
 von Funktoren, 209, 264
 von Kategorien, 208, 260
Isotransformation, 209, 263, 274
Juxtaposition, 268

kanonisch
 Abbildung, 209, 265
 Isomorphismus, 209, 265
kartesisch
 Diagramm, 151
 Produkt
 von beliebig vielen Mengen, 276
Kategorie, 130, 250
 \mathfrak{L}-Kategorie, 240, 261
diskrete, 254
Kettenregel
 in einer Veränderlichen
 komplex, 33
Klassifikationsprobleme, 254
Klein’sche Flasche, 111
kleinergleich
 Topologie, 72
Klumpentopologie, 23, 56
Ko-Yoneda-Einbettung, 287
dodarstellbarer Funktor, 287
Kodimension
 einer Untermannigfaltigkeit, 237
Köcher, 271
Koeinheit
 einer Adjunktion, 227
koinduziert
 G-Menge, 245
kokartesisch
 Diagramm, 154
kombinatorische Fläche, 173
kombinatorische Fläche ohne Rand, 175
Kommotor
 in Gruppe, 142
kompakt
 erzeugt, 103
 metrischer Raum, 37
 relativ, 69
 topologischer Raum, 50, 69
kompakt-offene Topologie, 99
Kompaktum, 37
komplex differenzierbar, 31
Komponente
 Wegzusammenhangskomponente, 64
Komponentengruppe, 93
Konjugationsklassen
 von Untergruppen, 193
konservativ
 Funktor, 258
konstant
 Weg, 115
kontravariant Funktor, 259
Morphismen über X, 151
Morphismus
G-Morphismus, 193
in Kategorie, 131, 250

natürlich
Topologie, 55
natürliche Topologie auf reellen Raum, 46
dichtere endliche Schnitte, 71
nichtöffnen
Punkt, 28
Niveauflächen, 6
Niveaulinien, 6
Norm
auf reelem Vektorraum, 42
von multilinearer Abbildung, 48
normal
homogener Raum, 193
Überlagerung, 199
Normalisator
don Untergruppe, 194
Normalteiler erzeugt von, 186
normiert
Raum, 43
Vektorraum, 42
nullhomotop, 133

$O(p, 1)^+$, 93
$O(p, q)$, 92
Objekt einer Kategorie, 130, 250
Objekte über, 151
Objekte unter, 151
offen
Abbildung, 75
in topologischem Raum, 22, 55
Kern, 59
metrisch, 17
offene Überdeckung, 27, 50, 58
Operation
stetige, 90

Operator
beschränkter, 46
stetiger, 47
Operatormatrix, 46
F^{opp} für Funktor F, 259
opponiert
Adjunktion, 229
Kategorie, 149, 258
Ord Kategorie der geordneten Mengen, 252
Ordnungstopologie, 58
orientierbar
Fläche, 113
$\Omega(X, y, x)$ Menge von Wegen, 115

$\pi_0(Y)$ Menge der Wegzusammenhangskomponenten, 117
$\pi_1(X, y, x)$ Homotopieklasse von Wegen, 117
$\pi_1(X)_{ab}$ basispunktfreie Fundamentalgruppe, 143
$\pi_1(X, x)$ Fundamentalgruppe, 118
$\pi_0(X)$ Menge der Wegzusammenhangskomponenten von X, 134

$\pi_1(f) = f_\sharp$, 120
partiell definiert
Funktor, 243
Pfeile, 271
Poincaré-Vermutung, 120
Polyeder
eines Simplicialkomplexes, 171
pr Projektion aus Produkt, 277
pr, Projektion aus Produkt, 280
Produkt
balanciertes, 245
in Kategorie
von Familie, 276
von zwei Objekten, 149, 274
von Kategorien, 259
von Mengen, 276
von Vektorräumen, 279
produktfest
final, 90
Produktmetrik, 13
Produktmorphismus, 149, 275
Produktnorm, 43
Produktregel
für komplexe Funktionen, 32
Produkttopologie, 83
Projektion
in Kategorie, 149, 275, 276
projektiver Raum
topologisch, 94
propre, 105
pt = pt(\mathcal{C}) finales Objekt von \mathcal{C}, 255
pull-back, 152
pull-back-Diagramm, 151
Punkt
nichtoffener, 28
von Köcher, 271
punktierter Raum, 117
push-out-Diagramm, 154
quasiinverser Funktor, 211, 227, 269
quasikompakt, 50, 69
Abbildung, 105
Quetschlemma, 31
quiver, 272
Quotientenregel
im Komplexen, 33
Quotiententopologie, 74
Ralg
Kategorie der Ringalgebren, 252
Ringalgebrhomomorphismen, 283
Rand
topologischer, 59
Randkante, 175
Randpunkt, 60
Rang
von freier Gruppe, 166
Raum
affiner, 40
normierter, 43
reeller, 42
Realisierung
eines Diagrammschemas, 272
Realisierungsfunktor, 257
rechtsadjungierter Funktor, 242
reell
Raum, 42
Vektorraum, 42
regul"r
Überlagerung, 199
relativ
kompakt, 69
relativ Hausdorff, 109
Reskalierung
von Translationen, 41
Retraktion, 125
Richtungsraum, 41
Richtungsvektor, 41
Ring Kategorie der Ringe, 252
Ringalgebra, 282
Rng Kategorie der nicht unitären Ring-
ge, 252
Rückzug
von Morphismus, 152
S^n die n-Sphäre, 110
Schema, 287
Schleifenraum, 117
Schnitt
stetiger, 74
von Mengenfamilie, 21
Schönflies
Satz von, 111
Schottky-Gruppe, 166
Seifert-van Kampen, 156
Seifert-van Kampen für das fundamen-
tale Gruppoid, 158
separiert
stetige Abbildung, 108
topologischer Raum, 60
Simplex
voller, 169, 173
von Simplicialkomplex, 171
simplizial
Abbildung, 173
Simplicialkomplex, 169
abstrakter augmentierter, 175
maximaler, 171
Sinuskurve des Topologen, 66
Skelett, 79
SO(\(p, 1\)), 93
SO(\(p, q\)), 92
Sphäre, 110
Spurtopologie, 24, 56
Standardtransformation
or ⇒ dreh, 144
stetig
Abbildung bei Punkt, 61
bei topologischen Räumen, 56
für metrische Räume, 10
für topologische Räume, 22
Operation einer topologischen Gruppe, 90
Struktur
\((S, v)\)-Struktur, 262
Subbasis, 73
Summe
von Untervektorräumen, 280
von Vektorräumen, 279
Summenregel, 32
Supremumsnorm, 43
System von Teilmengen, 21, 55
\(T_K V\) Tensoralgebra, 284
Tate-Twist von \(\mathbb{Z}\), 121
Teilsystem, 21, 55
Teilüberdeckung, 48
\(\text{Ten}_R V\) Tensoralgebra, 284
Tensoralgebra, 284
top einelementiger Raum, 256
Top topologische Räume, 252
Top(\(X, Y\) stetige Abbildungen, 99
Top* bepunktetete topologische Räume, 252
Topologie, 21, 55
als homogener Raum, 91
feiner, 72
gröber, 72
größergleich, 72
induzierte, 24, 56
kleiner gleich, 72
natürliche, 46, 55
schwache, auf \(U(\mathcal{H})\), 89
starke, auf \(U(\mathcal{H})\), 89
topologisch
Abbildung, 58
frei, Operation
von diskreter Gruppe, 195
Gruppe, 87
Magma, 87
Mannigfaltigkeit, 68
Monoid, 87
Schiefkörper, 89
topologische Summe, 74
topologischer Raum, 22, 55
Torus
Fläche, 111
total unzusammenhängend, 64
Totalraum
von Überlagerung, 190
trans, 41
Trans Transformationen, 210, 266, 274
Transformation
von Funktoren, 208, 263
von Köchermorphismen, 272
Translation
von affinem Raum, 41
Transport durch Wegeliften, 212
treu
Funktor, 206, 260
Triangulierung, 175
trivial
Überlagerung, 190
Trivialisierung
von Überlagerung, 190

Koprodukt, 277
Überdeckung, 48
einer Teilmenge, 51
überdeckungskompakt, 50
Überlagerung, 190
bepunktet universelle, 199
durch-190
unverzweigte, 190
\mathfrak{M}ens Mengen X \in \mathfrak{M}, 132, 251
\mathfrak{M}-Kategorie, 240, 261
Umgebung
\varepsilon-Umgebung, 10
in metrischem Raum, 10
in topologischem Raum, 22, 60
Umgebungsbasis
in topologischem Raum, 62
Umlaufzahl
eines Weges
auf der Kreisscheibe, 121
in der Zahlenebene, 137
\mathfrak{M}\text{Mod}_K, 252
\mathfrak{M}\text{Mod}_K, Vektorräume V \in \mathfrak{M}, 253
universell
bepunktet, Überlagerung, 199
universelle Überlagerung
einer topologischen Gruppe, 206
Universum, 289
Unteralgebra, 283
Unterkategorie, 255
Unterringalgebra, 283
\mathfrak{M}\text{Top} topologische Räume X \in \mathfrak{M}, 131
Vektorraum
reeller, 42
Vereinigung
von Mengenfamilie, 21

Vergiß-Funktor, 259
Verklebung
von topologischer Fläche, 176
Verknüpfung
auf Köcher, 272
toinduzierte, 274
von Morphismen, 131, 250
von Wegen, 115
vertex of quiver, 272
verträglich mit Produkten
Funktor, 150
Vieleck, 176
voll
Funktor, 260
Simplex, 176
Unterkategorie, 255
Vollkugel, 110
volltreu, Funktor, 206, 260

Weg
inverser, 115
konstanter, 115
Wegeliftungoperation, 214
Wegraum, 117
Wegzusammenhang, 62
Wegzusammenhangskomponente, 64
Winkel
spezielles Diagramm, 152
Winkeldiagramm, 152

Yoneda-Einbettung, 285
\mathbb{Z}(1) Tate-Twist von \mathbb{Z}, 121
Zelle
von CW-Komplex, 79
Zerschneidung, 176
Zielkategorie, 133, 257
Zopfgruppe, 232
abstrakte, 236
Zopfrelation, 233
Zus(X) Menge der Zusammenhangs-
komponenten von X, 91
zusammenhängend
einfach, 201
Grupoid, 160
topologischer Raum, 62
wegweise, 62
wegweise einfach, 118
Zusammenhangskomponente
eines topologischen Raums, 65
von GL(n; \mathbb{R}), 98
zusammenziehbar
topologischer Raum, 133
Weg, 116
Zweig des Logarithmus, 34