Übungsblatt 5

Analysis III

R. Wallisser / Th. Nopper

Aufgabe 17: Sei M eine nicht-leere Menge. Unter einer Metrik auf M versteht man eine Abbildung $d: M \times M \to \mathbb{R}$ mit den folgenden Eigenschaften:

- (i): Es gilt d(x, y) = 0 genau dann, wenn x = y.
- (ii): Für alle $x, y \in M$ gilt d(x, y) = d(y, x).
- (iii): Für alle $x, y, z \in M$ gilt $d(x, z) \leq d(x, y) + d(y, z)$.

Ein metrischer Raum ist ein Paar (M,d), bestehend aus einer nicht-leeren Menge M und einer Metrik d. Eine Folge $(f_n)_{n\geq 1}\subseteq M$ heißt konvergent gegen $f_0\in M$, falls $\lim_{n\to\infty}d(f_n,f_0)=0$ gilt. Eine Folge $(f_n)_{n\geq 1}\subseteq M$ heißt Cauchy-Folge in (M,d), falls es zu jedem $\varepsilon>0$ ein $n_0(\varepsilon)$ gibt, so daß für alle $n,m>n_0(\varepsilon)$ gilt: $d(f_n,f_m)<\varepsilon$.

- 1. Zeigen Sie: $(C[a,b],d_{\infty})$ mit $d_{\infty}(f_1,f_2):=\int_a^b|f_1-f_2|$ ist ein metrischer Raum.
- 2. Zeigen Sie: In einem metrischen Raum ist jede konvergente Folge eine Cauchy-Folge. Gilt in $(C[a,b],d_{\infty})$ auch die Umkehrung?

Aufgabe 18:

1. Es werde $f: \mathbb{R} \to \mathbb{R}$ definiert durch

$$f(x) := x + \frac{1}{1 + e^x}.$$

Zeigen Sie: Für alle $x_1, x_2 \in \mathbb{R}$ gilt $|f(x_1) - f(x_2)| < |x_1 - x_2|$. Hat f einen Fixpunkt? Wie ist der Zusammenhang mit dem Banachschen Fixpunktsatz?

2. Es werde die Abbildung $\Omega: (C[0,1], d_{\infty}) \to (C[0,1], d_{\infty})$ definiert durch

$$(\Omega f)(x) := \int_0^x f(t) dt, \quad x \in [0, 1].$$

Ist Ω kontrahierend? Ist $\Omega \circ \Omega$ kontrahierend?

Aufgabe 19: Es sei $f:(0,\infty)\to\mathbb{R}$. Unter der Laplace-Transformation L(f)=:F auf $(0,\infty)$ versteht man das Integral

$$F(s) := \int_0^\infty e^{-sx} f(x) \ dx,$$

wenn es für s > 0 existiert.

- 1. Berechnen Sie $L(f_i)$, i = 1, 2 für $f_1(x) := x^n$, $n \ge 0$ und $f_2(x) := \sin x$.
- 2. Zeigen Sie: Falls $L(f^{(n)})$ für alle $n \in \{0,1,2\}$ existiert, so gilt

$$L(f')(s) = sL(f)(s) - f(0)$$

$$L(f'')(s) = s^{2}L(f)(s) - sf(0) - f'(0).$$

3. Lösen Sie mit Hilfe von 2. das Anfangswertproblem

$$f'' + f = x$$
, $f(0) = 0$, $f'(0) = 2$.

Aufgabe 20: Es sei

$$\varphi(y) := \int_0^\infty e^{-x^2} \cos(xy) \ dx.$$

1. Zeigen Sie, daß φ der Differentialgleichung

$$\varphi' + \frac{1}{2}y \cdot \varphi = 0$$

genügt.

2. Berechnen Sie mit Hilfe von 1. das obige Integral.

Abgabetermin: Donnerstag, 22. November vor der Vorlesung. Bitte geben Sie stets die Nummer Ihrer Übungsgruppe an.