Übungsblatt 8

Analysis II

R. Wallisser / Th. Nopper

Aufgabe 29: Sei $\phi \neq A \subseteq \mathbb{R}^n$. Mit \mathring{A} werde die Menge der inneren Punkte von A bezeichnet und

$$\partial A := \{ \vec{x} \in \mathbb{R}^n \mid \forall \varepsilon > 0 : U_{\varepsilon}(\vec{x}) \cap A \neq \phi \text{ und } U_{\varepsilon}(\vec{x}) \cap CA \neq \phi \}$$

sei die Menge der Randpunkte von A. Hierbei sei $CA := \mathbb{R}^n \backslash A$ das Komplement von A. Zeigen Sie:

- 1. \mathring{A} ist offen
- 2. ∂A ist abgeschlossen.

Aufgabe 30: Zeigen Sie: Die Gesamtheit der Intervalle $O_{\alpha} := (0, \alpha), 0 < \alpha < 1$, bildet eine offene Überdeckung des Intervalls (0, 1), die keine endliche Teilüberdeckung besitzt.

Aufgabe 31: Es sei $f: \mathbb{R}^n \to \mathbb{R}^m$ eine lineare Abbildung. Man zeige: f ist gleichmäßig stetig, d.h. für alle $\varepsilon > 0$ gibt es ein $\delta > 0$, so daß für alle $\vec{x}, \vec{y} \in \mathbb{R}^n$ mit $||\vec{x} - \vec{y}||_{\infty} < \delta$ gilt: $||f(\vec{x}) - f(\vec{y})||_{\infty} < \varepsilon$.

Hinweis: Wählen Sie in \mathbb{R}^n und \mathbb{R}^m geeignete Basen und verwenden Sie die diesbezügliche Matrixdarstellung von f.

Aufgabe 32:

- 1. Es seien $f, g : \mathbb{R}^n \to \mathbb{R}$ stetige reelwertige Funktionen. Zeigen Sie, daß f + g und $f \cdot g$ ebenfalls an jeder Stelle des \mathbb{R}^n stetig sind.
- 2. Seien $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m,\ g:E\to\mathbb{R}^l$ stetig und es gelte $f(D)\subseteq E$. Beweisen Sie, daß $g\circ f:D\to\mathbb{R}^l$ ebenfalls stetig ist.

Anleitung: Untersuchen Sie, wie die entsprechenden Beweise für Funktionen $f, g : \mathbb{R} \to \mathbb{R}$ abzuändern sind.

Abgabetermin: Donnerstag, 28. Juni vor der Vorlesung. Bitte geben Sie stets die Nummer Ihrer Übungsgruppe an.