Übungsblatt 9

Analysis II

R. Wallisser / Th. Nopper

Aufgabe 33:

- 1. Es sei $A \subseteq \mathbb{R}^n$ eine abgeschlossene Teilmenge, die jede rationale Zahl r mit $r \in [0, 1]$ enthält. Zeigen Sie: $[0, 1] \subseteq A$.
- 2. Beweisen Sie: Jede abgeschlossene Teilmenge $A\subseteq\mathbb{R}^n$ einer kompakten Menge $K\subseteq\mathbb{R}^n$ ist kompakt.

Aufgabe 34:

- 1. Es sei $A \subseteq \mathbb{R}^n$ abgeschlossen und $\vec{x} \notin A$. Man zeige: Es gibt ein d > 0, so daß für alle $\vec{y} \in A$ gilt: $||\vec{x} \vec{y}|| \ge d$.
- 2. Es sei $A \subseteq \mathbb{R}^n$ abgeschlossen, $K \subseteq \mathbb{R}^n$ kompakt und $A \cap K = \phi$. Man zeige: Es gibt ein d > 0, so daß für alle $\vec{x} \in A$ und $\vec{y} \in K$ gilt: $||\vec{x} \vec{y}|| \ge d$.
- 3. Gilt die Aussage in 2. auch dann, wenn weder A noch K kompakt sind?

Aufgabe 35: Für $n \geq 3$ sei $f(\vec{x}) := ||\vec{x}||_2^{2-n}, \ \vec{x} \in \mathbb{R}^n \setminus \{\vec{0}\}$. Zeigen Sie:

$$\sum_{i=1}^{n} f_{x_j x_j}(\vec{x}) = 0.$$

Aufgabe 36: Es sei $\vec{v} \in \mathbb{R}^n$, $||\vec{v}||_2 = 1$, $\vec{a} \in \mathbb{R}^n$, $D_f \subseteq \mathbb{R}^n$ und $f: D_f \to \mathbb{R}$. Existiert der Grenzwert

$$\frac{\partial f}{\partial \vec{v}}(\vec{a}) := \lim_{t \to 0} \frac{f(\vec{a} + t\vec{v}) - f(\vec{a})}{t},$$

so heißt $\frac{\partial f}{\partial \vec{v}}(\vec{a})$ die Richtungsableitung von fnach \vec{v} in $\vec{a}.$

- 1. Es werde $f: \mathbb{R}^3 \to \mathbb{R}$ definiert durch $f(x, y, z) := x^3y + 3xz + 4z$. Bestimmen Sie $\frac{\partial f}{\partial \vec{v}}(\vec{a})$ für $\vec{v} := (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0)$.
- 2. Es sei $g:\mathbb{R}^n\to\mathbb{R}$ an der Stelle $\vec{x_0}$ differenzierbar und $\vec{v}\in\mathbb{R}^n$ mit $||\vec{v}||_2=1$. Zeigen Sie:

$$\frac{\partial g}{\partial \vec{v}}(\vec{x_0}) = \langle (\operatorname{grad} g)(\vec{x_0}), \vec{v} \rangle.$$

3. Sei f die Funktion aus 1. Für welche Richtung \vec{v} hat $\frac{\partial f}{\partial \vec{v}}(1,1,1)$ einen maximalen Wert?

Abgabetermin: Donnerstag, 5. Juli vor der Vorlesung. Bitte geben Sie stets die Nummer Ihrer Übungsgruppe an.