8.3. Fortsetzbarkeitssätze.

In glatten beschränkten Gebieten lassen sich $W^{k,p}(\Omega)$ -Funktionen nach \mathbb{R}^n als $W^{k,p}(\mathbb{R}^n)$ -Funktionen mit kompaktem Träger fortsetzen, so dass deren Norm durch die ursprüngliche Norm abgeschätzt bleibt.

Theorem 8.3.1 (Fortsetzungssatz). Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt, $\partial \Omega \in C^1$. Sei $V \subset \mathbb{R}^n$ offen und beschränkt, $\Omega \subseteq V$. Dann gibt es eine beschränkte lineare Abbildung

$$E: W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^n), \quad 1 \le p \le \infty,$$

so dass für $u \in W^{1,p}(\Omega)$ folgendes gilt

- Eu = u fast überall in Ω ,
- $supp(Eu) \subset V$,
- $||Eu||_{W^{1,p}(\mathbb{R}^n)} \le c(p,\Omega,V) \cdot ||u||_{W^{1,p}(\Omega)}$

Die Funktion Eu heißt Fortsetzung von u auf \mathbb{R}^n .

Beweis.

(i) Sei $x_0 \in \partial \Omega$. Nehme zunächst an, dass lokal $\partial \Omega \subset \{x^n = 0\}$ gilt. Dann gibt es r > 0, so dass ohne Einschränkung

$$B^{+} := B_{r}(x_{0}) \cap \{x^{n} \ge 0\} \subset \overline{\Omega},$$

$$B^{-} := B_{r}(x_{0}) \cap \{x^{n} \le 0\} \subset \mathbb{R}^{n} \setminus \Omega.$$

(ii) Nehme zunächst an, dass $u\in C^{\infty}\left(\overline{\Omega}\right)$ gilt. Definiere eine Spiegelung von höherer Ordnung durch

$$\overline{u}(x) := \begin{cases} u(x), & x \in B^+, \\ -3u(x^1, \dots, x^{n-1}, -x^n) + 4u(x^1, \dots, x^{n-1}, -\frac{1}{2}x^n), & x \in B^-. \end{cases}$$

(iii) Wir behaupten zunächst, dass $\overline{u} \in C^1(B_r(x_0))$ ist. Definiere dazu $u^- := \overline{u}|_{B^-}$ und $u^+ := \overline{u}|_{B^+}$. Für die Normalableitungen erhalten wir

$$\frac{\partial u^{-}}{\partial x^{n}} = 3 \frac{\partial u}{\partial x^{n}} \left(x^{1}, \dots, x^{n-1}, -x^{n} \right) - 2 \frac{\partial u}{\partial x^{n}} \left(x^{1}, \dots, x^{n-1}, -\frac{1}{2} x^{n} \right).$$

Somit gilt auf $\{x^n = 0\} \cap B_r(x_0)$ für die Normalenableitungen $u_{x^n}^- = u_{x^n}^+$. Auf der Menge $\{x^n = 0\} \cap B_r(x_0)$ stimmen die Funktionswerte von u^+ und u^- und damit auch die Tangentialableitungen überein. Somit ist $\overline{u} \in C^1(B_r(x_0))$.

(iv) Es gilt

$$\|\overline{u}\|_{W^{1,p}(B_r(x_0))} \le c \cdot \|u\|_{W^{1,p}(B^+)},$$

da in der Definition der Spiegelung höherer Ordnung nie weiter als bisher von $\{x^n=0\}$ entfernt ausgewertet wird. Da die Spiegelung eine Linearkombination von $W^{1,p}$ -Funktionen ist und da das neue Argument die Norm höchstens um eine Konstante vergrößert, folgt die Behauptung.

- (v) Ist der Rand nicht eben/flach, so biegt man den Rand zunächst flach, setzt dann fort und transformiert anschließend zurück.
- (vi) Da sich der Rand nicht mit einer solchen Umgebung überdecken läßt, zerlegt man die Funktion zunächst mit einer geeigneten Zerlegung der Eins und baut das Resultat anschließend wieder zusammen.
- (vii) Durch Multiplikation mit einer Abschneidefunktion, die Null wird bevor man Stellen erreicht, an denen u nicht mehr von der Klasse C^1 ist, stellt man sicher, dass der Träger der fortgesetzten Funktion nicht zu groß wird.
- (viii) Wir erhalten also die Abschätzung

$$\|\overline{u}\|_{W^{1,p}(\mathbb{R}^n)} \le c \cdot \|u\|_{W^{1,p}(\Omega)},$$

falls $u \in C^{\infty}(\overline{\Omega})$ ist. Die Details zu den letzten Schritten sind eine Übung.

(ix) Seien nun $1 \leq p < \infty$ und $u \in W^{1,p}(\Omega)$. Wir approximieren u durch Funktionen $u_m \in C^\infty$ (\overline{u}) in $W^{1,p}(\Omega)$. Nach Übergang zu einer Teilfolge dürfen wir $u_m \to u$ fast überall in Ω annehmen. Damit folgt später Eu = u in Ω . Die Abbildung $v \mapsto Ev := \overline{v}$ ist ein linearer Operator. Die Stetigkeit folgt dabei aus der obigen Abschätzung für glatte Funktionen. Diese Abschätzung liefert aber auch

$$||Eu_m - Eu_l||_{W^{1,p}(\mathbb{R}^n)} \le c \cdot ||u_m - u_l||_{W^{1,p}(\Omega)}.$$

Daher ist Eu_m eine Cauchyfolge in $W^{1,p}(\mathbb{R}^n)$. Wir definieren nun $\overline{u} = Eu$ als den Grenzwert dieser Folge. Eu ist von der Wahl der approximierenden Folge unabhängig und die gesuchte Fortsetzung.

(x) Der Fall $p = \infty$ ist ebenfalls eine Übung.

Bemerkung 8.3.2. Für $\partial\Omega \in C^2$ funktioniert die obige Konstruktion auch noch für $W^{2,p}(\Omega)$ -Funktionen. Dabei bleibt eine C^2 -Funktion jedoch nicht in dieser Klasse.

Mit Hilfe von Spiegelungen höherer Ordnung kann man analog aber auch Fortsetzungsoperatoren für die Räume $W^{k,p}$ konstruieren. Dies bleibt als Übung.

8.4. **Spuren von Sobolevfunktionen.** Wir wollen Randwerte von $W^{1,p}$ -Funktionen definieren. Diese Funktionen sind i. a. nicht stetig und $\partial\Omega$ ist eine Nullmenge.

Sei Ω beschränkt. Ist $u \in W^{1,p}(\Omega)$ mit $\partial \Omega \in C^1$, $1 \leq p < \infty$, so besitzt u Randwerte als L^p -Funktion.

Theorem 8.4.1. Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt, $\partial \Omega \in C^1$ und $1 \leq p < \infty$. Dann gibt es einen beschränkten linearen Operator

$$T: W^{1,p}(\Omega) \to L^p(\partial\Omega),$$

so dass $Tu = u|_{\partial\Omega}$, falls $u \in W^{1,p}(\Omega) \cap C^0(\overline{\Omega})$ ist und

$$||Tu||_{L^p(\partial\Omega)} \le c(p,\Omega) \cdot ||u||_{W^{1,p}(\Omega)}$$

 $f\ddot{u}r\ u\in W^{1,p}(\Omega)\ gilt.$

Beweis.

(i) Nehme zunächst an, dass $u \in C^1(\overline{\Omega})$ ist, dass $\partial\Omega$ in der Nähe eines Randpunktes $x_0 \in \partial\Omega$ flach ist, lokal also $\partial\Omega \subset \{x^n=0\}$ gilt. Wähle nun r>0 so, dass $B_r(x_0) \cap \Omega = B_r(x_0) \cap \{x^n>0\}$ gilt. Definiere $\hat{B} := B_{r/2}(x_0)$ und $B := B_r(x_0)$. Setze weiterhin $\Gamma := \partial\Omega \cap \{x^n=0\} \cap \hat{B}$ und $(x^1, \ldots, x^{n-1}) = \hat{x} \in \mathbb{R}^{n-1} = \{x^n=0\}$, wobei das letzte Gleichheitszeichen die Identifikation der beiden Mengen andeutet.

Sei $\zeta \in C_c^{\infty}(B)$, $\zeta \geq 0$ und $\zeta = 1$ in \hat{B} . Setze $B^+ := B \cap \Omega$. Wir erhalten die Abschätzung

$$\int_{\Gamma} |u|^p d\hat{x} \le \int_{\{x^n = 0\}} \zeta \cdot |u|^p d\hat{x}$$

$$= -\int_{B^+} (\zeta |u|^p)_{x^n} dx \quad (\text{Hauptsatz})$$

$$\le \int_{B^+} |D\zeta| \cdot |u|^p + p|u|^{p-1} |Du|\zeta$$

(für p=1 erhält man dieselbe obere Aschätzung mit $\pm \zeta u$ punktweise und integriert dann in \hat{x})

$$\leq c \cdot \int_{R^+} |u|^p + |Du|^p \quad \left(\text{Young, } \frac{p-1}{p} + \frac{1}{p} = 1 \right).$$

(ii) Für ein allgemeines C^1 -Gebiet Ω , eine kleine Umgebung Γ von $x_0 \in \partial \Omega$ in $\partial \Omega$ erhält man durch Aufbiegen ebenfalls

$$\int_{\Gamma} |u|^p \le c \cdot \int_{\Omega} |u|^p + |Du|^p.$$

(iii) Überdecke nun $\partial\Omega$ mit solchen Randstücken Γ , zerlege mit Hilfe einer Zerlegung der Eins und erhalte

$$||u||_{L^p(\partial\Omega)} \le c \cdot ||u||_{W^{1,p}(\Omega)},$$

falls $u \in C^1(\overline{\Omega})$ ist. Definiere $Tu := u|_{\partial\Omega}$ für $u \in C^1(\overline{\Omega})$. Es folgt

$$||Tu||_{L^p(\partial\Omega)} \le c \cdot ||u||_{W^{1,p}(\Omega)},$$

falls $u \in C^1(\overline{\Omega})$ ist. Wir bemerken, dass T ein linearer Operator ist.

(iv) Sei nun $u \in W^{1,p}(\Omega)$ beliebig. Sei $u_m \in C^{\infty}(\overline{\Omega})$ eine approximierende Folge, also $u_m \to u$ in $W^{1,p}(\Omega)$. Wir erhalten

$$||Tu_m - Tu_l||_{L^p(\partial\Omega)} \le c \cdot ||u_m - u_l||_{W^{1,p}(\Omega)}.$$

Daher ist Tu_m eine Cauchyfolge in $L^p(\partial\Omega)$. Wir definieren also

$$Tu := \lim_{m \to \infty} Tu_m \text{ in } L^p(\partial\Omega).$$

Diese Definition ist unabhängig von der approximierenden Folge u_m .

(v) Sei schließlich $u \in W^{1,p}(\Omega) \cap C^0(\overline{\Omega})$. Die in Theorem 8.2.5 konstruierte Folge ist so definiert, dass sie in diesem Falle auf ganz $\overline{\Omega}$ gleichmäßig gegen u konvergiert. Daher folgt hier $Tu = u|_{\partial\Omega}$. Da der Grenzwert aber von der approximierenden Folge unabhängig ist, gilt dies auch, wenn man andere approximierende Folgen verwendet.

Theorem 8.4.2. Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt, $\partial \Omega \in C^1$ und $1 \leq p < \infty$. Sei $u \in W^{1,p}(\Omega)$. Dann gilt

$$u \in W_0^{1,p}(\Omega) \iff Tu = 0 \text{ auf } \partial\Omega.$$

Beweis.

" \Longrightarrow ": Sei zunächst $u \in W_0^{1,p}(\Omega)$. Dann gibt es nach Definition der $W_0^{1,p}(\Omega)$ -Funktionen eine Folge von Funktionen $u_m \in C_c^{\infty}(\Omega)$, so dass $u_m \to u$ in $W^{1,p}(\Omega)$. Für alle Folgenglieder gilt $Tu_m = 0$ auf $\partial \Omega$. Da $T: W^{1,p}(\Omega) \to L^p(\partial \Omega)$ ein stetiger linearer Operator ist, folgt auch Tu = 0 auf $\partial \Omega$.

$$u_m \to u \text{ in } W^{1,p}\left(\mathbb{R}^n_+\right),$$

$$Tu_m = u_m|_{\mathbb{R}^{n-1}} \to 0 \text{ in } L^p\left(\mathbb{R}^{n-1}\right).$$

Sei nun $\hat{x} \in \mathbb{R}^{n-1}$ und $x^n \geq 0$. Mit Hilfe des Hauptsatzes der Differential- und Integralrechnung erhalten wir

$$|u_m(\hat{x}, x^n)| \le |u_m(\hat{x}, 0)| + \int_0^{x^n} |u_{m, x^n}(\hat{x}, t)| dt.$$

Wir betrachten die p-te Potenz dieser Ungleichung und schätzen mit Hilfe der Hölderschen Ungleichung mit den Exponenten p und $\frac{p}{p-1}$ ab

$$\int_{\mathbb{R}^{n-1}} |u_m(\hat{x}, x^n)|^p d\hat{x} \le c(p) \cdot \int_{\mathbb{R}^{n-1}} |u_m(\hat{x}, 0)|^p d\hat{x}
+ c(p) \cdot \int_{\mathbb{R}^{n-1}} \left(\int_{0}^{x^n} 1 \cdot |Du(\hat{x}, t)| dt \right)^p d\hat{x}
\le c(p) \cdot \int_{\mathbb{R}^{n-1}} |u_m(\hat{x}, 0)|^p d\hat{x}
+ c(p) \cdot (x^n)^{p-1} \cdot \int_{0}^{x^n} \int_{\mathbb{R}^{n-1}} |Du_m(\hat{x}, t)|^p d\hat{x} dt.$$

Für $m \to \infty$ gilt $u_m \to 0$ in $L^p(\partial \mathbb{R}^n_+)$ und $u_m \to u$ in $W^{1,p}(\mathbb{R}^n_+)$. Daher folgt

$$\int_{\mathbb{R}^{n-1}} |u(\hat{x},t)|^p d\hat{x} \le c(p)t^{p-1} \int_{0}^{t} \int_{\mathbb{R}^{n-1}} |Du(\hat{x},\tau)|^p d\hat{x} d\tau.$$

Wir integrieren dies bezüglich t und erhalten

(8.1)
$$\int_{0}^{x^n} \int_{\mathbb{R}^{n-1}} |u(\hat{x},t)|^p d\hat{x} dt \le c(p) \int_{0}^{x^n} t^{p-1} \int_{0}^{t} \int_{\mathbb{R}^{n-1}} |Du(\hat{x},\tau)|^p d\hat{x} d\tau dt.$$

Definiere nun die approximierenden Funktionen mit Randwerten Null. Sei $\zeta \in C^{\infty}(\mathbb{R}_+)$ mit $0 \le \zeta \le 1$ und

$$\begin{cases} \zeta \equiv 1 & \text{in } [0, 1], \\ \zeta \equiv 0 & \text{in } \mathbb{R}_+ \setminus [0, 2]. \end{cases}$$

Definiere für $x \in \mathbb{R}^n_+$ Funktionen

$$\zeta_m(x) := \zeta(mx^n)$$

und

$$w_m(x) := u(x)(1 - \zeta_m).$$

Es folgt

$$w_{m,x^n} = u_{x^n}(1 - \zeta_m) - mu\zeta'$$

und

$$D_{\hat{x}}w_m = D_{\hat{x}}u(1-\zeta_m).$$

Zeige nun, dass $w_m \to u$ in $W^{1,p}(\mathbb{R}^n_+)$ konvergiert. Es gilt $w_m \to u$ in L^p aufgrund der Stetigkeit des Integrals bezüglich des Integrationsgebietes. Wir schätzen wie folgt ab

$$\int_{\mathbb{R}^{n}_{+}} |Dw_{m} - Du|^{p} \le c(p) \int_{\mathbb{R}^{n}_{+}} |\zeta_{m}|^{p} |Du|^{p} + c(p, \zeta) m^{p} \int_{0}^{2/m} \int_{\mathbb{R}^{n-1}} |u|^{p} \equiv A + B.$$

Wir benutzen nochmals die Stetigkeit bezüglich des Integrationsgebietes (oder den Satz von der dominierenden Konvergenz mit entsprechend "abgeschnittenen" Funktionen) und erhalten $A \to 0$ für $m \to \infty$. Das zweite Integral schätzen wir mit Hilfe von (8.1) ab

$$B \le c \cdot m^{p} \int_{0}^{2/m} t^{p-1} \int_{0}^{t} \int_{\mathbb{R}^{n-1}} |Du(\hat{x}, \tau)|^{p} d\hat{x} d\tau dt$$

$$\le c \cdot m^{p} \left(\int_{0}^{2/m} t^{p-1} dt \right) \cdot \left(\int_{0}^{2/m} \int_{\mathbb{R}^{n-1}} |Du(\hat{x}, t)|^{p} d\hat{x} dt \right)$$

$$\leq c \cdot \int_{0}^{2/m} \int_{\mathbb{R}^{n-1}} |Du(\hat{x}, t)|^p d\hat{x} dt$$

$$\to 0$$

für $m \to \infty$. Wir erhalten also $w_m \to u$ in $W^{1,p}(\mathbb{R}^n_+)$. Andererseits gilt $w_m = 0$ für $0 < x^n < 1/m$. Daher erhält man durch Mollifizierung der w_m eine Folge $u_m \in C_c^{\infty}(\mathbb{R}^n_+)$ mit $u_m \to u$ in $W^{1,p}(\mathbb{R}^n_+)$ und es gilt (wie behauptet) $u \in W_0^{1,p}(\mathbb{R}^n_+)$.

9. Anwendungen

9.1. Die Direkte Methode.

Zunächst brauchen wir die Poincaré-Ungleichung

Lemma 9.1.1 (Poincaré-Ungleichung). Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt. Es gibt eine Konstante $c_0 = c_0(\Omega)$ mit

$$\int_{\Omega} |u|^2 \le c_0^2 \int_{\Omega} |\nabla u|^2, \quad \forall u \in H_0^1(\Omega).$$

Proof. Mit Approximationsargument brauchen wir die Ungleichung nur für $u \in C_c^{\infty}(\Omega)$ zu zeigen. OBdA nehmen wir an, dass $\Omega \subset [a,b] \times \mathbb{R}^{n-1}$. Da $u \in C_c^{\infty}(\Omega)$ ist, setzen wir u trivialerweise auf ganzem \mathbb{R}^n fort. Für $x = (x_1, x_2, \cdots, x_n) \in \Omega$ setze $x_a = (a, x_2, \cdots, x_n)$. Nach dem Hauptsatz gilt

$$|u(x)|^{2} = |u(x) - u(x_{a})|^{2} = \left| \int_{a}^{x_{1}} \partial_{x_{1}} u(s, x_{2}, \dots, x_{n}) \right|^{2}$$

$$\leq (b - a) \int_{a}^{b} |\partial_{x_{1}} u(s, x_{2}, \dots, x_{n})|^{2}$$

$$\leq (b - a) \int_{a}^{b} |\nabla u(s, x_{2}, \dots, x_{n})|^{2}.$$

Integriere erste über x_1 und dann über die Reste

$$\int_{\Omega} |u(x)|^2 \leq (b-a)^2 \int_{\Omega} |\nabla u|^2.$$

Die Konstante c_0 kann man $c_0=d=\mathrm{diam}\,(\Omega)$ wählen, da in den Beweis kann mann $b-a=\mathrm{diam}\,+\varepsilon$ für jede $\varepsilon>0$ wählen.

Die Poincaré-Ungleichung gilt auch für L^p , d.h., $||u||_{L^p(\Omega)} \leq c(p,\Omega)||\nabla u||_{L^p(\Omega)}$, $\forall u \in W_0^{1,p}(\Omega)$.

Korollar 9.1.2. Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt. Der Raum $H^1_0(\Omega) = W^{1,2}_0(\Omega)$ mit der Norm

$$||u||_{H_0^1(\Omega)} := (\int_{\Omega} |\nabla u|^2)^{\frac{1}{2}}$$

ist äquivalent zu $(H_0^1(\Omega), \|\cdot\|_{W^{1,2}(\Omega)})$.

Proof. Nach Lemma 9.1.1 gilt

$$||u||_{H_0^1(\Omega)} \le ||u||_{W^{1,2}(\Omega)} \le C||u||_{H_0^1(\Omega)}, \quad \forall u \in H_0^1(\Omega),$$

womit folgt, dass $||u||_{H_0^1(\Omega)}$ eine Norm ist, die zu $||\cdot||_{W^{1,2}(\Omega)}$ äquivalent ist.

Für den Raum $H_0^1(\Omega)$ benutzt man normalerweise die Norm $\|u\|_{H_0^1(\Omega)}$. Das zugehörige Skalarprodukt ist

$$\langle u, v \rangle_{H_0^1} := \int_{\Omega} \langle \nabla u, \nabla v \rangle.$$

 $(H_0^1(\Omega), \langle \cdot, \cdot \rangle_{H_0^1})$ ist ein Hilbertraum.

Als Anwendung zeigen wir (vergleichen Sie Theorem 7.2.7)

Theorem 9.1.3. Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt. Weiter ist $f \in L^2(\Omega)$. Dann besitzt dads Funktional

$$J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 + \int_{\Omega} fu$$

einen Minimum.

Proof. Sei $\{u_k\}_{k\in\mathbb{N}}$ eine Minimalfolge von J, d.h., $u_k\in H_0^1(\Omega)$ mit

$$J(u_k) \to \inf_{u \in H_0^1(\Omega)} J(u) =: \alpha.$$

OBdA kdironnen wir annehmen, dass $J(k) \leq \alpha + 1$ für alle u_k . Mit Cauchy-Schwarz und Poincaré haben wir

$$\int_{\Omega} fu \leq \|f\|_{L^{2}} \|u\|_{L^{2}}
\leq c_{0} \|f\|_{L^{2}} \|\nabla u\|_{L^{2}}
\leq c_{0} \left\{ c_{0} \|f\|_{L^{2}}^{2} + \frac{1}{4} \frac{1}{c_{0}} \|\nabla u\|_{L^{2}}^{2} \right\}
\leq c_{0}^{2} \|f\|_{L^{2}}^{2} + \frac{1}{4} \|\nabla u\|_{L^{2}}^{2}, \quad \forall u \in H_{0}^{1}(\Omega).$$

Daraus folgt

$$\alpha + 1 \ge J(u_k) \ge \frac{1}{4} \int_{\Omega} |\nu|^2 - c_0^2 ||f||_{L^2}^2.$$

Damit ist $\{u_k\}_{k\in\mathbb{N}}$ in $H_0^1(\Omega)$ beschränkt. Nach Theorem 7.2.4 gibt es eine Teilfolge $\{u_k\}_{k\in\mathbb{N}}$, die schwach gegen $u_0\in H_0^1(\Omega)$ konvergiert. da die Norm $\|\cdot\|_{H_0^1}$ unterhalbstetig bzlg. der schachen Konvergenz, gilt

$$\int_{\Omega} |\nabla u_0|^2 \le \liminf_{k \to \infty} \int_{\Omega} |\nabla u_k|^2 = \alpha.$$

Andererseits gilt

$$\lim_{k \to \infty} \int_{\Omega} f u_k = \int_{\Omega} f u_0,$$

denn u_k ist schwach konvergent in $H_0^1(\Omega)$, und dann in $L^2(\Omega)$. Insgesammt gilt

$$J(u) \le \liminf J(u_k) = \alpha$$
,

also
$$J(u) = \alpha = \inf_{u \in H_0^1(\Omega)} J(u)$$
.

Da u_0 ein Minimum von J in $H_0^1(\Omega)$ ist, erfüllt die Funktion u_0

(9.1)
$$\int_{\Omega} \nabla u \nabla \varphi + u f = 0, \quad \forall \varphi \in H_0^1(\Omega).$$

Der Beweis folgt direkt von die Berechung

$$0 = \frac{d}{dt}_{|t=0} J(u + t\varphi).$$

Falls zusätzlich $u_0 \in C^2(\bar{\Omega})$ und $f \in C^0(\Omega)$ sind, gilt nach Gauss und dem Fundamentallemma von Variationsrechnung

$$(9.2) -\Delta u + f = 0$$

mit dem Dirichletrandwert

$$u = 0$$
 auf $\partial \Omega$.

D.h., u ist eine (klassische) Lösung von (9.2) mit dem Dirichletrandwert. Allgemeiner heißt eine Funktion $u \in H_0^1(\Omega)$, die (9.1) erfüllt, eine schwache Lösung von (9.2). (9.1) ist eine schwache Formulierung von der Gleichung (9.2).

Also, wir haben

Korollar 9.1.4. Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt. Weiter ist $f \in L^2(\Omega)$. Dann besitzt (9.2) eine schwache Lösung.

Unter geeigneter Regularitätsbedingung von $\partial\Omega$ und f kann man zeigen, dass u auch regular ist und somit ist eine klassische Lösung von (9.2). Die Regularitätstheorie ist die haupte Aufgabe von der Vorlesung "partielle Differentialgleichungen".

9.2. Satz von Lax-Milgram.

Als eine Folgerung von Darstellungssatz von Riesz (Satz 5.2.5) haben wir

Theorem 9.2.1 (Darstellung von Bilinearformen). Sei $B: X \times X \to \mathbb{K}$ beschränkte Sesquilinearform auf dem Hilbertraum X, d.h., für alle $x, y, z \in X$ und $\alpha, \beta \in \mathbb{K}$

(i)
$$B(\alpha x + \beta y, z) = \alpha B(x, z) + \beta B(y, z)$$

(ii)
$$B(z, \alpha x + \beta y) = \bar{\alpha}B(z, x) + \bar{\beta}B(z, x)$$

 $mit \|B\| = \sup_{\|x\|, \|y\|=1} |B(x,y)| < \infty.$ Dann gibt es genau ein $T = T_B \in L(X,X)$ mit

$$B(y,x) = \langle y, Tx \rangle$$
 für alle $x, y \in X$.

Außerdem gilt ||T|| = ||B||.

Proof. Definiere

$$\mathcal{R}_B: X \to X^*, \quad (\mathcal{R}_B x)(y) = B(x, y).$$

Nach Voraussetzung (i) ist $B: X \times X \to \mathbb{K}$ stetig. Also ist $\mathcal{R}_B: X \to X^*$ auch stetig nach Proposition 2.2.10. Nach dem Darstellungssatz von Riesz (Satz 5.2.5) existiert für jede $\mathcal{R}_B x \in X^*$ ein $Tx \in X$ mit

$$\mathcal{R}_B x(y) = \langle y, Tx \rangle, \quad \forall x \in X$$

und

$$\|\mathcal{R}_B x\| = \|Tx\|.$$

Nach der Bezeichung von Theorem 5.2.5 gilt $Tx = I(\mathcal{R}_B x)$, wobei $I: X^* \to X$ bijektiv, isometrisch und konjugiert linear ist.

Es ist leicht nachzuprüfen alle Aussagen über T.

Theorem 9.2.2 (Satz von Lax-Milgram). Sei $B: X \times X \to \mathbb{K}$ beschränkte Bilinearform auf dem reellen Hilbertraum X, und B sei koerziv:

(9.3)
$$\Re B(x,x) \ge \lambda ||x||^2 \quad \forall x \in X, \text{ mit einem } \lambda > 0.$$

Dann ist die Abbildung

$$\mathcal{R}_B: X \to X^*, \quad (\mathcal{R}_B x)(y) = B(x, y)$$

invertierbar (insbesondere surjektiv) und

$$\|\mathcal{R}_B^{-1}\| \le \frac{1}{\lambda}.$$

Zusatz. Sei B symmetrisch. Dann ist $\mathcal{R}_B^{-1}\varphi = x_0$ die eindeutig bestimmte Minimalstelle des Funktionals

$$Q(x) = \frac{1}{2}B(x,x) - \Re\varphi(x),$$

 $f\ddot{u}r \ \varphi \in X^*$.

Proof. Aus dem Riesz'schen Darstellungssatz Satz, Theorem 5.2.5 (sehen Theorem 9.2.1 oben), gibt $T=T_B\in L(X,X)$ mit

$$B(y,x) = \langle y, Tx \rangle$$
 für alle $x, y \in X$.

Außerdem gilt, nach der Koerzivitätsbedingung (9.3),

$$\lambda \|x\|^2 \le \Re B(x, x) = \Re \langle x, Tx \rangle \le \|x\| \|Tx\|, \quad \forall x \in X,$$

also

$$(9.4) \lambda ||x|| \le ||Tx||, \quad \forall x \in X,$$

woraus folgt, dass $N(T) = \{0\}$ ist. Außderm gilt, dass der Bildraum R(T) abgeschlossen ist. Das können wir so zeigen: für $x_k, y \in X$ mit $Tx_k \to y$ ist Tx_k eine Cauchyfogle:

$$||x_k - x_l|| \le \frac{1}{\lambda} ||Tx_k - Tx_l||,$$

woraus konvegiert x_k gegen $x \in X$. Aus der Stetigkeit von T folgt $Tx_k \to Tx$, also y = Ax. Zu zeigen bleibt R(T) = X. Falls $R(T) \neq X$, nach dem Projektionssatz (genauer Korollar 5.2.4) gilt $y \in R(T)^{\perp}$, d.h.

$$\langle Tx, y \rangle = 0, \quad \forall x \in X.$$

Daraus folgt

$$0 = \Re \langle Ty, y \rangle = \Re \langle y, Ty \rangle \le \lambda ||y||^2 > 0,$$

ein Widerspruch. Damit ist T bijektiv. Aus (9.4) folgt dann $||T^{-1}|| \leq \frac{1}{\lambda}$. Da $T = I \circ \mathcal{R}_B$ ist, folgt

$$\|\mathcal{R}_B^{-1}\| \le \frac{1}{\lambda},$$

denn I ist bijektiv und isometrisch.

Für $\varphi \in X^*$, ist $x_0 = \mathcal{R}_B^{-1} \varphi \in X$. Bei Definition gilt

$$\varphi(y) = \mathcal{R}_B x_0(y) = B(x_0, y), \quad \forall y \in X.$$

Für $y \in X$ ist

$$Q(y) - Q(x_0) = \frac{1}{2}(B(y,y) - B(x_0,x_0)) - \Re\varphi(y - x_0)$$

$$= \frac{1}{2}(B(y,y) - B(x_0,x_0)) - \Re B(x_0,y_{-0})$$

$$= \frac{1}{2}(B(y,y) - B(y,x_0) - B(x_0,y)) + B(x_0,x_0))$$

$$= \frac{1}{2}B(y - x_0, y - x_0) \ge \frac{1}{2}\lambda \|y - x_0\|^2.$$

Aslo ist x_0 ein Minimier.

Sei $\Omega \subset \mathbb{R}^n$ offen, $a \in L^{\infty}(\Omega, M_n(\mathbb{R}))$, $a = (a_{\alpha\beta})_{1 < \alpha, \beta < n}$ und sei L ein Operator

$$Lv = -\operatorname{div}(aDv) = -\sum_{\alpha,\beta=1}^{n} \partial_{\alpha}(a_{\alpha\beta}\partial_{\beta}v).$$

Definition 9.2.3. Die L zugeordnete Bilinearform auf dem Hilbertraum $W_0^{1,2}(\Omega)$ ist

$$B(u,v) = \int_{\Omega} \langle Du, aDv \rangle = \int_{\Omega} a_{\alpha\beta} \partial_{\alpha} u \partial_{\beta} v$$

B ist beschränkt.

Definition 9.2.4. Wir fassen L auf als Operator

$$L: W_0^{1,2}(\Omega) \to W_0^{1,2}(\Omega)', \quad (Lu)(v) = \int_{\Omega} a_{\alpha\beta} \partial_{\alpha} u \partial_{\beta} v = B(u,v).$$

L ist stetig.

Wir interessieren uns nun dafür, obLsurjektiv ist. Wir wollen den Satz von Lax-Milgram verwenden.

Frage: ist B koerziv auf $W_0^{1,2}(\Omega)$?

Lemma 9.2.5. Sei L elliptisch mit Konstante $\mu > 0$, d.h.,

$$\langle \xi, a(x)\xi \rangle \ge \mu |\xi|^2$$
 für alle $x \in \Omega, \xi \in \mathbb{R}^n$.

Dann ist die zugeordnete Bilinearform B auf $W_0^{1,2}(\Omega)$ koerziv mit Konstante $\lambda = \frac{\mu}{(1+d)^2}$, $d = \operatorname{diam} \Omega$.

Theorem 9.2.6. Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt, und $a \in L^{\infty}(\Omega, M_n(\mathbb{R}))$ sei elliptisch mit Konstante $\mu > 0$. Dann ist $L : W_0^{1,2}(\Omega) \to W_0^{1,2}(\Omega)'$ invertierbar und $\|L^{-1}\| \leq \frac{1}{\mu}$.

Beispiel 9.2.7. Sei $f \in L^2(\Omega)$. Definiere $\varphi \in W_0^{1,2}(\Omega)'$,

$$\varphi(u) = \int fu.$$

Die Operator Norm von φ ist

$$\begin{aligned} \|\varphi\| &= \sup_{u \in W_0^{1,2}(\Omega), \|u\|_{W_0^{1,2} = 1}} \int uf \leq \sup_{u \in W_0^{1,2}(\Omega), \|u\|_{W_0^{1,2} = 1}} \|f\|_{L^2} \|u\|_{L^2} \\ &\leq d^2 \|f\|_{L^2}, \end{aligned}$$

wobei $d=\operatorname{diam}\Omega$. Nach dem Satz von Lax-Milgram existiert $v\in W^{1,2}_0(\Omega)$ Lösung von $Lv=\varphi$. Dann gilt

$$\int \langle Du, aDv \rangle = \int fu \quad \forall u \in W^{1,2}_0(\Omega)$$

mit $v \in W_0^{1,2}(\Omega)$ und

$$||v||_{W_0^{1,2}(\Omega)} \le \frac{1}{\mu} ||\varphi|| \le \frac{d^2}{\mu} ||f||_{L^2}.$$

v heißt schwache Lösung des Randwertproblems

$$Lv = f$$
 in Ω , $v = 0$ auf $\partial\Omega$.

Beispiel 9.2.8. Sei $g \in L^2(\Omega, \mathbb{R}^n)$. Definiere $\gamma \in W^{1,2}_0(\Omega)'$

$$\gamma(u) = -\int_{\Omega} \langle Du, g \rangle.$$

Man kann zeigen, dass gilt $\|\gamma\| \le \|g\|_{L^2}$. Sei $v \in W^{1,2}(\Omega)$ Lösung von $Lv = \gamma$. Wir haben

$$||v||_{W^{1,2}} \le \frac{1}{u} ||g||_{L^2}$$

und
$$\int \langle Du,aDv\rangle = -\int \langle Du,g\rangle, \quad \forall u\in W^{1,2}_0(\Omega)$$
 v ist schwache Lösung des Randwertproblems

$$Lv = \operatorname{div} g \text{ in } \Omega, \quad v = 0 \text{ auf } \partial \Omega.$$