Beispiele 9.17. Wir vergleichen die äußere Ableitung mit klassscher Opratoren.

- (1) Wir bezeichnen die Funktionen $f \in C^1(M)$ als 0-Formen. $df = \frac{\partial f}{\partial x^j} dx^j$.
- (2) Sei X Vektorfeld, ω k-Form auf M. Wir definieren eine k-1-Form durch

$$(X \sqcup \omega)(X_1, \cdots, X_{k-1}) = \omega(X, X_1, \cdots, X_{k-1}), \quad \forall X_1, \cdots, X_{k-1} \in TM.$$

Für $M=U\subset\mathbb{R}^k$ offen, ist es leicht nachzuprüfen, dass gilt lokal mit $X=\xi^i\frac{\partial}{\partial x^i}$

$$X \sqcup (dx^1 \wedge dx^k) = \sum_{i=1}^k (-1)^{i-1} \xi^i dx^1 \wedge \dots \wedge dx^i \wedge \dots \wedge dx^k$$
$$d(X \sqcup (dx^1 \wedge dx^k)) = (\operatorname{div} X) dx^1 \wedge \dots \wedge dx^k.$$

Hierbei ist div $X = \sum_{i=1}^{n} \frac{\partial}{\partial x^i} \xi^i$.

(3) Sei $X \in C^1(U, \mathbb{R}^3)$ mit $U \subset \mathbb{R}^3$, und $X = \xi^i \frac{\partial}{\partial x^i}$. Sei $\omega = \sum_{i=1}^3 \omega_i dx^i$ mit $\omega_i = \xi^i$ für i = 1, 2, 3. Dann gilt

$$d\omega = d(\sum_{i=1}^{3} \omega_{i} dx^{i})$$

$$= (\partial_{2}\omega_{3} - \partial_{3}\omega_{2})dx^{2} \wedge dx^{3} + (\partial_{3}\omega_{1} - \partial_{1}\omega_{3})dx^{3} \wedge dx^{1} + (\partial_{1}\omega_{2} - \partial_{2}\omega_{1})dx^{1} \wedge dx^{2}$$

$$= (\operatorname{rot} X) \cup (dx^{1} \wedge dx^{2} \wedge dx^{3}),$$

wobei ist rot $X = (\partial_2 \xi^3 - \partial_3 \xi^2, \partial_3 \xi^1 - \partial_1 \xi^3, \partial_1 \xi^2 - \partial_2 \xi^1)$. Insbesondere gilt:

$$d^2\omega = 0 \iff \operatorname{div}(\operatorname{rot} X) = 0$$

 $d^2f = 0 \iff \operatorname{rot}(\operatorname{grad} f) = 0.$

Theorem 9.18. Für $f \in C^2(M, N)$ und eine k-Form η auf N gilt

$$d(f^*\eta) = f^*d\eta.$$

Proof. In lokaler Koordinaten (y, U') von N gilt

$$f^*\eta = \sum_{\beta \in I(k,n)} \eta_\beta \circ f df^{\beta_1} \wedge \dots \wedge df^{\beta_k},$$

aus Folgerung 9.12. Es folgt mit Satz 9.16 für $f \in C^2(M, N)$

$$d(f^*\eta) = \sum_{\beta \in I(k,n)} d(\eta_{\beta} \circ f) df^{\beta_1} \wedge \dots \wedge df^{\beta_k}$$

$$= \sum_{\beta \in I(k,n)} f^*(d\eta_{\beta}) \wedge f^*(dy^{\beta_1}) \wedge \dots \wedge f^*(dy^{\beta_k})$$

$$= f^*(\sum_{\beta \in I(k,n)} d\eta_{\beta} \wedge dy^{\beta_1} \wedge \dots \wedge dy^{\beta_k})$$

$$= f^*(dn).$$

Definition 9.19. Sei M eine Mannigfaltigkeit . Wir definieren den folgenden Räume:

- (1) $\Omega^k(M) = \{C^{\infty} \text{Schnitte von } \wedge^k(TM)\}, \text{ die Menage aller } k\text{-Form. } \Omega^{\bullet} = \bigoplus_{k=0}^n \Omega^k(M).$
- (2) $Z^k(M) = \{ \omega \in \Omega^k(M) \mid d\omega = 0 \}$, die Menge der geschlossenen k-Formen.
- (3) $B^k(M) = \{d\eta \mid \eta \in \Omega^{k-1}(M)\},$ die Menge der exakten k-Formen.

Es ist klar, dass B^k eine Unterraum von $Z^k(M)$ ist, da $d(d\eta) = 0$.

Definition 9.20. Sei M eine Mannigfaltigkeit . Der Quotientenvektorraum

$$H^k(M) = Z^k(\Omega)/B^k(\Omega)$$

heißt de Rham-Kohomologie der Dimension k von M. Insbesondere heißt

$$b_k(M) = \dim H^k(M)$$

k-te Bettizahl von M und

$$\chi(M) = \sum_{k=0}^{n} (-1)^k b_k(M)$$

das Euler-Charakteristikum von M.

Für M kompakt werden wir dim $H^k(M) < \infty$ zeigen, so dass die Bettizahlen und das Euler-Charakteristikum wohldefiniert sind.

Bemerkung 9.21. Für glatte Abbildung $f: M \to N$, nach Theorem 9.18 gilt

$$f^*(Z^k(N)) \subset Z^k(M)$$
 und $f^*(B^k(N)) \subset B^k(M)$.

Damit induziert f^* eine lineare Abbildung von $H^k(N)$ nach $H^k(M)$.

Beispiele 9.22. (1) $B^0(M) = \{0\}, Z^0(M) = \{f \in C^{\infty}(M) \mid f \text{ lokal konstant}\}.$ Also $Z^0(M)/B^0(M) \cong \mathbb{R}^{b_0}$ mit $b_0 = \sharp\{\text{Komponenten von } M\}.$

(2) $I \in \mathbb{R}$ offenes Intervall, $x_0 \in I$. Es gilt

$$\Omega^{1}(I) = \{\alpha = a(x)dx \mid a \in C^{\infty}(I)\}\$$

 $B^{1}(I) = \{du = u'(x)dx \mid u \in C^{\infty}(I)\}\$

Es gilt $\Omega^1(I) = B^1(I)$ wegen a(x)dx = u'(x)dx mit $u(x) = \int_{x_0}^x a(t)dt$. Insbesondere gilt $H^1(I) = \{0\}$.

Wir wollen nun den pullback unter Abbildungen betrachten, die von einen Parameter abhängen. Sei M dine n-dimenaional Mannigfaltigkeit mit Karte (x, U), und

$$\bar{\varphi}: [0,1] \times U \to [0,1] \times M, \quad \bar{\varphi}(t,p) = (t,\varphi(p)).$$

Die k-Formen auf $[0,1] \times U$ haben eine Basis der From

$$\{dt \wedge dx^{\lambda} \mid \lambda \in I(k-1,n)\} \cup \{dx^{\mu} \mid \mu \in I(k,n)\}$$

Also has $\eta \in \Omega^k([0,1]) \times M$) eine lokale Darstellung

$$\eta(t,p) = dt \wedge \alpha(t,p) + \beta(t,p) \quad \text{ mit } \alpha(t,\cdot) \in \Omega^{k-1}(M), \beta(t,\cdot) \in \Omega^k(M), \forall t \in [0,1]$$

Diese Darstellung gilt sogar global, denn

$$\alpha = \frac{\partial}{\partial t} \Box \eta$$
 und $\beta = \eta - dt \wedge \alpha$.

Sei $d_x = \sum_{j=1}^n dx^j \wedge \frac{\partial}{\partial x^j}$ die "partielle" äußere Ableitung bzgl. der x-Koordinaten. Wir berechnen

$$d\eta = dt \wedge \frac{\partial \eta}{\partial t} + d_x \eta = dt \wedge \frac{\partial \beta}{\partial t} - dt \wedge d_x \alpha + d_x \beta$$

Es folgt

$$\frac{\partial}{\partial t} \Box d\eta = -d_x \alpha + \frac{\partial \beta}{\partial t}, \quad \frac{\partial}{\partial t} \Box \eta = \alpha.$$

Damit haben wir

(9.2)
$$\frac{\partial}{\partial t} \Box d\eta + d(\frac{\partial}{\partial t} \Box \eta) = \frac{\partial}{\partial t} \Box d\eta + d_x (\frac{\partial}{\partial t} \Box \eta) + dt \wedge \frac{\partial}{\partial t} (\frac{\partial}{\partial t} \Box \eta)$$

$$= \frac{\partial \beta}{\partial t} + dt \wedge \frac{\partial}{\partial t} \alpha$$

$$= \frac{\partial \eta}{\partial t}.$$

Sei nun $i_t: M \to [0,1] \times M, \ i_t(p) = (t,p).$ Wir definieren die abbildung $I: \Omega^k([0,1] \times M) \to \Omega^{k-1}(M),$

$$I(\eta)(p)(v_1,\cdots,v_{k-1}) = \int_0^1 \eta(t,p)(\frac{\partial}{\partial t},v_1,\cdots,v_{k-1})dt,$$

wobei $v_1, \dots, v_{k-1} \in T_p(M) \subset T_{(t,p)}([0,1] \times M)$. Wir können das auch schreiben als

$$I(\eta)(p) = \int_0^1 i_i^* \left(\frac{\partial}{\partial t} \Box \eta \right)(p) dt \in \wedge^{k-1}(T_p M).$$

Wir berechnen mit Parameterdifferentiation

$$d(I(\eta)) = \sum_{j=1}^{n} dx^{j} \wedge \frac{\partial}{\partial x^{j}} \int_{0}^{1} i_{t}^{*} (\frac{\partial}{\partial t} \Box \eta) dt$$
$$= \int_{0}^{1} di_{t}^{*} (\frac{\partial}{\partial t} \Box \eta) dt$$
$$= \int_{0}^{1} i_{t}^{*} d(\frac{\partial}{\partial t} \Box \eta) dt.$$

Anderseits ist

$$I(d\eta) = \int_0^1 i_t^* \left(\frac{\partial}{\partial t} \bot d\eta\right)(p) dt.$$

Mit (9.2) erhalten wir

$$d(I(\eta)) + I(d\eta) = \int_0^1 i_t^* (\frac{\partial \eta}{\partial t}) dt.$$

Nun gilt

$$i_{t_0}^*(\frac{\partial \eta}{\partial t})(p)(v_1, \dots v_{k-1}) = \frac{\partial \eta}{\partial t}(t_0, p)(v_1, \dots v_{k-1})$$
$$= \frac{\partial}{\partial t} \eta(t, p)(v_1, \dots v_{k-1})|_{t=t_0}.$$

Also haben wir

(9.3)
$$d(I(\eta)) + I(d\eta) = i_1^* \eta - i_0^* \eta.$$

Theorem 9.23. Sei $f \in C^{\infty}([0,1] \times M, N)$. Dann gilt für $\omega \in \Omega^k(M)$

$$f_1^*\omega - f_0^*\omega = d(I(f^*\omega)) + I(f^*d\omega),$$

wobei $f_t = f(t, \cdot)$ ist.

Proof. Wende (9.3) an auf $\eta = f^*\omega$:

$$i_t^* \eta = i_t^* f^* \omega = (f \circ i_t)^* \omega = f_t^* \omega.$$

Korollar 9.24. Sind $f_0, f_1 \in C^{\infty}(M, N)$ glatt homotop, so sind die induzierte Abbildungen $f_0^*, f_1^* : H^*(N) \to H^*(M)$ gleich.

Proof. Sei
$$f \in C^{\infty}([0,1] \times M, N)$$
 mit $f_0 = f(0,\cdot)$ und $f_1 = f(1,\cdot)$. Sei $\omega \in Z^k(N)$. Dann folgt
$$[f_1^*\omega] = [f_0^*\omega + dI(f^*\omega)] = [f_0^*\omega].$$

Korollar 9.25 (Lemma von Poincaré). Ist $U \subset \mathbb{R}^n$ sternförmig, so gilt

$$H^k(U) = \begin{cases} \mathbb{R}, & \text{für } k = 0\\ 0, & \text{sonst.} \end{cases}$$

Proof. Sei $f_0: U \to U$, $f_0(x) = x_0$, und $f_1(x) = x$ für alle $x \in U$. Dann sind f_0 , f_1 glatt homotop durch

$$f(t,x) = (1-t)f_0(x) + tf_1(x),$$

da U sternförmig ist. Es folgt $H^k(U) = \text{Bild } f_1^* = \text{Bild } f_0^* = \{0\}$ für $k \geq 1$. Genauer erhalten wir für $\omega \in \Omega^k(U)$ mit $d\omega = 0$ die Gleichung $\omega = d(I(f^*\omega))$, wobei

$$I(f^*\omega)(x)(v_1,\dots,v_{k-1}) = \int_0^1 (f^*\omega)(t,x)(\frac{\partial}{\partial t},v_1,\dots,v_{k-1})dt$$

$$= \int \omega((1-t)x_0+tx)(f_1(x)-f_0(x),tv_1,\dots,tv_{k-1})dt$$

$$= \int_0^1 t^{k-1}\omega((1-t)x_0+tx)(f_1(x)-f_0(x),v_1,\dots,v_{k-1})dt$$

bzw, anders

$$I(f^*\omega) = \int_0^1 t^{k-1}(x - x_0) \omega((1 - t)x_0 + tx) dt.$$

10. Der Laplaceoperator auf Diiferentialformen

Im Folgener sei M ein n-dimensionale Differenzierbare Mannigfaltigkeit und $g = g_{ij}dx^i \otimes dx^j$ Riemannsche Metrik auf M. Wir arbeiten hier in der C^{∞} -Kategorie, später können wir die Regulärität noch spezifizieren. Mit der Metrik haben wir den Riesz-Isomorphismus

$$TM \to T^*M, \quad X \mapsto g(\cdots, X) = g_{jk}X^k dx^j := X^{\flat},$$

für $X=X^j\frac{\partial}{\partial x^j}.$ Die Umkehrabbildung lautet

$$T^*M \to TM, \quad \eta \mapsto g^{ij}\eta_i \frac{\partial}{\partial x^j} =: \eta^{\natural},$$

für $\eta = \eta_i dx^j$. Wir bemerken hier, dass (g^{ij}) die Inverse von (g_{ij}) . In der tat gilt

$$(X^{\flat})^{\natural} = g^{ij}g_{jk}X^{k}\frac{\partial}{\partial x^{i}} = X^{i}\frac{\partial}{\partial x^{i}} = X.$$

Weiter haben wir auf 1-Formen das Skalarprodukt

$$g(\xi,\eta) = g(\xi^{\natural},\eta^{\natural}) = g_{ij}g^{ik}\xi_kg^{jl}\eta_l = g^{kl}\xi_k\eta_l.$$

Auf dem Raum $\otimes^l(TM)$ der l-linear Formen auf TM erhalten wir ein induziertes Skalarprodukt

$$g(\xi,\eta) = g^{i_1j_1} \cdots g^{i_lj_l} \xi_{i_1\cdots i_l} \eta_{j_1\cdots j_l}.$$

Dieses Skalarprodukt ist unabhängig von der gewhlten Basis, denn es gilt

$$g(\xi_1 \otimes \cdots \otimes \xi_l, \eta \otimes \cdots \otimes \eta_l) = g^{i_1 j_1} \cdots g^{i_l j_l} (\xi_1)_{i_1} \cdots (\xi_l)_{i_l} (\eta_1)_{j_1} \cdots (\eta_l)_{j_l}$$
$$= g(\xi_1, \eta_1) \cdots g(\xi_l, \eta_l).$$

Der Raum $\wedge^l(TM)$ der alternierenden l-Formen ist Unterraum von $\times^l(TM)$, durch Einschränkung von $g(\cdot,\cdot)$ erhalten wir ein Skalarprodukt auf $\wedge^l(TM)$. Es ist aber blich, forgende Normierung zu wählen:

$$\langle \xi, \eta \rangle = \frac{1}{l!} g(\xi, \eta) \quad \text{für } \xi, \eta \in \wedge^l(TM).$$

Zu dieser Normierung brachte nach Definition von ALT

(10.1)
$$\xi_1 \wedge \cdots \wedge \xi_l = \sum_{\sigma \in S_l} (\operatorname{sign} \sigma) \xi_{\sigma(1)} \otimes \cdots \otimes \xi_{\sigma(l)} \quad (\xi_i \in T^*M).$$

Berechne damit für $\xi_i, \eta_i \in T^*M$

$$\langle \xi_{1} \wedge \cdots \wedge \xi_{l}, \eta_{1} \wedge \cdots \wedge \eta_{l} \rangle = \frac{1}{l!} \sum_{\sigma, \tau \in S_{l}} \operatorname{sign}(\sigma \tau) g(\xi_{\sigma(1)} \otimes \cdots \otimes \xi_{\sigma(l)}, \eta_{\tau(1)} \otimes \cdots \otimes \eta_{\tau(l)})$$

$$= \frac{1}{l!} \sum_{\sigma, \tau \in S_{l}} \operatorname{sign}(\sigma \tau) g(\xi_{\sigma(1)}, \eta_{\tau(1)}) \cdots g(\xi_{\sigma(l)}, \eta_{\tau(l)})$$

$$= \frac{1}{l!} \sum_{\sigma \in S_{l}} \sum_{\tau \in S_{l}} \operatorname{sign}(\sigma \tau) g(\xi_{\sigma(1)}, \eta_{\tau(1)}) \cdots g(\xi_{\sigma(l)}, \eta_{\tau(l)})$$
Substituiere $\tau(i) = j$, also $\sigma(i) = (\sigma \circ \tau^{-1})(j)$

$$= \frac{1}{l!} \sum_{\sigma \in S_{l}} \sum_{\tau \in S_{l}} \operatorname{sign}(\sigma \tau^{-1}) g(\xi_{\sigma(\tau^{-1}(1))}, \eta_{1}) \cdots g(\xi_{\sigma(\tau^{-1}(l))}, \eta_{l})$$

$$= \det(g(\xi_{i}, \eta_{j})).$$

Wir haben fest:

$$(10.2) \langle \xi_1 \wedge \cdots \wedge \xi_l, \eta_1 \wedge \cdots \wedge \eta_l \rangle = \det(q(\xi_i, \eta_i)) \text{für } \xi_i, \eta_i \in T^*M.$$

Insbesondere: iast $\omega^1, \dots, \omega^n$ Orthonormalbasis von T^*M , so ist $\omega^\alpha = \omega^{\alpha_1} \wedge \dots \wedge \omega^{\alpha_k}$ für $\alpha \in I(k, n)$ eine Orthonormalbasis von $\wedge^k(TM)$ bzgl $\langle \cdot, \cdot \rangle$. Als nächstes brauchen wir das Integral von Funktionen auf M. Wir fassen nun hier kurz, denn die Sache ist ziemlich klar.

Lemma 10.1. Sei (M,g) Riemannsche Mannigfaltigkeit . Es gibt ein eindeutig bestimmetes Ma β μ_g mit

$$\mu_g(E) = \int_{x(E)} \sqrt{\det(G \circ x^{-1})},$$

wobei $G = (g_{ij})$, für jede Karte $x : U \to x(U)$ und $E \subset U$ messbar.

Bemerkung 10.2. μ_g heißt Volumenmaß auf M bzgl g. Eine Menge $E \subset M$ haißt messbar, wenn $x(E \cap U)$ Lebesguemessbar ist für alle Karte (x, U). Das ist wohldefiniert, da die Kartenwechsel Diffeimorohismus sind.

Bewei von Lemma 10.1. Sei (y, U') andere Karte mit $E \subset U'$.

$$x(U \cap U') \xrightarrow{x^{-1}} y$$

$$x(U \cap U') \xrightarrow{F := y \circ x^{-1}} y(U \cap U')$$

Das Transformationsgesetz der Metrik g lautet:

$$g_{ij}^x \circ x^{-1} = g_{kl}^y \circ x^{-1} \frac{\partial y^k}{\partial x_i} \frac{\partial y^l}{\partial x_j}, \quad \text{auf } x(U \cap U'),$$

wobei $g = g_{ij}^x dx^i dx^j$ auf U und $g = g_{ij}^y dy^i dy^j$ auf U'. Somit gilt

(10.3)
$$G^{x} \circ x^{-1} = (DF)^{T} G^{y} \circ x^{-1} DF.$$

Aus dem Tranformationssatz folgt nun

$$\int_{x(E)} \sqrt{\det(G^x \circ x^{-1})(x)} dx = \int_{x(E)} \sqrt{\det(G^y \circ y^{-1})(F(x))} |\det DF(x)| dx$$
$$= \int_{y^{-1}(E)} \sqrt{\det(G^y \circ y^{-1})(y)} dy$$

Somit ist μ_g wohldefiniert auf Mengen E, die in einen Kartegebiet erhalten sind. Allgemein zerlege M in messbare Mengen $E_j, j \in I$, und definiere

$$\mu_g(E) = \sum_{i \in I} \mu_g(E \cap E_i).$$

Wir haben auf $\Omega^l(M)$ nun das L^2 -Skalarprodukt

(10.4)
$$\langle \xi, \eta \rangle = \int_{M} \langle \xi, \eta \rangle d\mu_{g}$$

Theorem 10.3 (Divergenz auf Formen). Es gibt auf (M,g) genau eine (lineare) Abbildung

$$d_a^*: \Omega^{k+1}(M) \to \Omega^k(M)$$

mit der Eigenschaft

(10.5)
$$\langle d_a^* \omega, \eta \rangle_{L^2} = \langle \omega, d\eta \rangle_{L^2}, \quad \text{für alle } \eta \in \Omega_c^k(M).$$

Bemerkung 10.4. Man schreibt d_g^* auch mit δ . Der Operator wird auch als Kodifferential bezeichnet. Die Eigenschaft (10.5) bedeutet, dass d_g^* der zu g formel adjungierte Operator bzgl. des L^2 -Skalarprodukts ist. Der zusatz "formal" grenzt ab von der Definition des adjungiertern Operator in der Hilbertraumtheorie. Grundsätzlich kann zu jedem linearen Differentialoperator L ein formal adjungierter Operator L^* bestimmt werden durch partielle Integration. So gehen wir auch hier vor.

Bweis von Satz 10.3. Zuerst zeigen wir die Eindeutigkeit: Sinf δ_1, δ_2 Abbildungen mit (10.5), so gilt

$$\langle \delta_1 \omega - \delta_2 \omega, \eta \rangle = 0$$
 für alle $\eta \in \Omega_c^k(M)$.

Das Fundamentallemma der Variationsrechnung impliziert $\delta_1 \omega = \delta_2 \omega$ und somit $\delta_1 = \delta_2$.

Nun betrachten wir die Existenz: Es reicht, den Operator d_g^* auf den Gebiet U einer Karte (x, U) zu definieren. Wegen der Eideutigkeit stimmen die Definitionen auf dem Overlap von zwei Katengebieten überein, also ist d_g^* dann global definiert (wie im Beweis vom Satz 9.16.) Sei nun

$$g^{\alpha\beta} = \langle dx^{\alpha}, dx^{\beta} \rangle$$
 für $\alpha, \beta \in I(k, n)$.

Wir berechnen in lokaler Koordinaten

$$\langle \omega, d\eta \rangle \sqrt{\det G} = \frac{\partial \eta_{\beta}}{\partial x^{j}} \langle \omega, \ dx^{j} \wedge \eta \rangle \sqrt{\det G}$$
$$= \frac{\eta_{\beta}}{\partial x^{j}} (\eta \langle \omega, \ dx^{j} \wedge \eta \rangle \sqrt{\det G}) - \eta_{\beta} \frac{\partial}{\partial x^{j}} (\langle \omega, \ dx^{j} \wedge \eta \rangle \sqrt{\det G})$$

Bei Integration fällt der erste Term weg für $\eta \in \Omega_c^k(U)$. Wir brauchen also

$$\int_{U} g^{\beta\gamma} \eta_{\beta}(d_{g}^{*}\omega)_{\gamma} \sqrt{\det g}) = -\int_{U} \eta_{\beta} \frac{\partial}{\partial x^{j}} (\langle \omega, dx^{j} \wedge \eta \rangle \sqrt{\det g}).$$

Von jetzt an schreiben wir det g für det G. Die Matrix $g^{\alpha\beta}$ ist die gramsche Matrix der Basis dx^{α} , $\alpha \in I(k,n)$, bezälich des Skalarproduktes $\langle \cdot, \cdot \rangle$. Somit existiert die inverse Matrx, die wir mit $g_{\alpha\beta}$ bezeichnen. Wir definieren nun

$$(10.6) (d_g^*\omega)_{\alpha} = -\frac{1}{\sqrt{\det g}} g_{\alpha\beta} \frac{\partial}{\partial x^l} \left(\langle \omega, dx^l \wedge dx^{\beta} \rangle \sqrt{\det g} \right).$$

Dann folgt wie gewünscht

$$g^{\beta\gamma}(d_g^*\omega)_{\gamma}\sqrt{\det g} = -g^{\beta\gamma}g_{\gamma\alpha}\frac{\partial}{\partial x^l}(\langle \omega, dx^l \wedge dx^\beta \rangle \sqrt{\det g})$$
$$= -\frac{\partial}{\partial x^l}(\langle \omega, dx^l \wedge dx^\beta \rangle \sqrt{\det g}).$$

Damit ist der Satz bewiesen.

Beispiel 10.5. Für eine 1-Form $\omega = \omega_i dx^j$ folgt

$$d_g^*\omega = -\frac{1}{\sqrt{\det g}} \frac{\partial}{\partial x^l} (g^{lj} \sqrt{\det g} \omega_j)$$

Die Formel (10.6) für die Divergenz kann weiter bearbeiten werden.

Bemerkung 10.6. Sei ξ 1-Form. Dann gilt $g(\omega, \xi \wedge \eta) = g(\xi^{\natural} \cup \omega, \eta)$.

Da die Gleichung in ξ, η, ω linear ist, können wir für eine Orthonormalbasis e_1, \cdots, e_n annehmen:

$$\omega = e^{\alpha_0} \wedge \dots \wedge e^{\alpha_l} \quad (\alpha \in I(l+1,n))$$

$$\eta = e^{\gamma_1} \wedge \dots \wedge e^{\gamma_l} \quad (\gamma \in I(l,n))$$

$$\xi = e^k \qquad k \in \{1, \dots, n\}$$

Es gilt dann

$$(\xi^{\natural}\omega)(e_{\gamma_{1}},\cdots,e_{\gamma_{l}}) = (e^{\alpha_{0}} \wedge \cdots \wedge e^{\alpha_{l}})(e_{k},e_{\gamma_{1}},\cdots,e_{\gamma_{l}})$$

$$= \begin{cases} 0, & \text{falls } \{\alpha_{0},\cdots,\alpha_{l}\} \neq \{k,\gamma_{1},\cdots,\gamma_{l}\} \\ (-1)^{i-1} & \text{falls } \alpha = (\gamma_{1},\cdots,\gamma_{i-1},k,\gamma_{i},\cdots,\gamma_{l}) \end{cases}$$

$$= g(\omega,\xi \wedge \eta).$$

Daraus folgt die Darstellung, mit $e_l = (dx^l)^{\natural}$

(10.7)
$$(d_g^*\omega)_{\alpha} = -\frac{1}{\sqrt{\det g}} g_{\alpha\beta} \frac{\partial}{\partial x^l} \left(g(e_l \sqcup \omega, dx^{\beta}) \sqrt{\det g} \right).$$

Definition 10.7 (Laplace-Operator). Für eine Riemannsche Mannigfaltigkeit (M, g) ist der Laplace-operator auf k-Formen definiert durch

$$\Delta_g \omega = (dd_g^* + d_g^* d)\omega.$$

Beispiel 10.8. Für eine Funktion $u: M \to \mathbb{R}$ ist nach Definition $d_g^* u = 0$ und folglich (vgl. Divergenz auf 1-Formen in Beispiel 10.5)

$$\Delta_g u = d_g^* du = -\frac{1}{\sqrt{\det g}} \frac{\partial}{\partial x^i} (g^{ij} \sqrt{\det g} \frac{\partial u}{\partial x^j})$$

Beispiel 10.9. Wir berechnen jetzt den Laplaceoperator auf Formen in \mathbb{R}^n mit der Standardmetrik $\langle \cdot, \cdot \rangle$. Es ergibt sich

$$(d_g^* d\omega)_\alpha = -\frac{\partial}{\partial x^k} \langle e_k \lfloor (dx^i \wedge \frac{\partial \omega}{\partial x^j}), dx^\alpha \rangle$$

oder

$$d_g^* d\omega = -e_k \lfloor (dx^i \wedge \frac{\partial^2 \omega}{\partial x^i \partial x^k}).$$

Andererseits

$$dd_g^*\omega = dx^i \wedge \frac{\partial}{\partial x^j} \left(-\langle e_k \lfloor \frac{\partial w}{\partial x^k} \rangle dx^\alpha \right)$$

oder

$$dd_g^*\omega = -dx^i \wedge (e_k - \frac{\partial^2 \omega}{\partial x^i \partial x^k}).$$

Wir behaupten

$$dx^{i} \wedge (e_{k} \perp \eta) + e_{k} \perp (dx^{i} \wedge \eta) = \delta_{ik} \eta.$$

Sei dazu $\omega = dx^{\alpha_1} \wedge \cdots \wedge dx^{\alpha_l}$.

Fall 1. i = k.

Fall 1a. $\alpha = (\alpha_1, \dots, \alpha_{r-1}, i, \alpha_{r+1}, \alpha_l).$

In diesen Fall haben wir $e_i \perp \omega = (-1)^{r-1} dx^{\alpha_1} \wedge \cdots \wedge dx^{\alpha_r} \wedge \cdots \wedge dx^{\alpha_l}, dx^i \wedge \omega = 0 \text{ und } dx^i \wedge (e_i \perp \omega) = \omega.$

Fall 1b. $\alpha_{r-1} < i < \alpha_r$ für $r = 1, \dots, l+1$.

In diesen Fall gilt $e_i \perp \omega = 0$, $dx^i \wedge \omega = (-1)^{r-1} dx^{\alpha_1} \wedge \cdots \wedge dx^{\alpha_{r-1}} \wedge dx^i \wedge \cdots \wedge dx^{\alpha_l}$, und $e_i \perp (dx^i \wedge \omega) = \omega$.

Fall 2. $i \neq k$.

Fall 2a. α enthielt weder i nock k.

Dann leifert innere Multiplikation \sqsubseteq mit e_i bzw e_k Null.

Fall 2b. α enthielt i und k.

Dann liefert Dachprodukt mit dx^i bzw dx^k Null.

Fall 2c. $i \notin \alpha, k \in \alpha$.

Dann gibt es ein m mit

$$\omega = dx^{\alpha_1} \wedge \cdots \wedge dx^{\alpha_{r-1}} \wedge dx^k \wedge \cdots \wedge dx^{\alpha_l}, \quad \alpha_{m-1} < i < \alpha_m.$$

Es ist leicht to prüfen, dass

$$e_k \perp \omega = (-1)^{r-1} dx^{\alpha_1} \wedge \cdots \wedge dx^{\alpha_{r-1}} \wedge d\hat{x}^r \wedge \cdots \wedge dx^{\alpha_l}.$$

und

$$dx^{i} \wedge (e_{k} \sqcup \omega) = \begin{cases} (-1)^{r-1} (-1)^{m-1} dx^{\alpha_{1}} \wedge \cdots \wedge dx^{i} \wedge \cdots \wedge d\hat{x}^{\alpha_{r}} \wedge \cdots \wedge dx^{\alpha_{l}}, & \text{falls } m \leq r \\ (-1)^{r-1} (-1)^{m} dx^{\alpha_{1}} \wedge \cdots \wedge d\hat{x}^{\alpha_{r}} \wedge \cdots \wedge dx^{i} \wedge \cdots \wedge dx^{\alpha_{l}}, & \text{falls } m > r \end{cases}$$

Entsprechend berechnen wir $dx^i \wedge \omega = (-1)^{m-1} dx^{\alpha_i} \wedge \cdots \wedge dx^i \wedge \cdots \wedge dx^{\alpha_l}$ und

$$e_k \sqcup (dx^i \wedge \omega) = \begin{cases} (-1)^{m-1} (-1)^{r-1} dx^{\alpha_1} \wedge \cdots \wedge d\hat{x}^{\alpha_r} \wedge \cdots \wedge dx^i \wedge \cdots \wedge dx^{\alpha_l}, & \text{falls } r < m \\ (-1)^m (-1)^r dx^{\alpha_1} \wedge \cdots \wedge dx^i \wedge \cdots \wedge d\hat{x}^{\alpha_r} \wedge \cdots \wedge dx^{\alpha_l}, & \text{falls } r \ge m \end{cases}$$

Addition ergibt die Behauptung.

Also folgt in \mathbb{R}^n

$$(dd^* + d^*d)\omega = -\delta_{ik}\frac{\partial^2\omega}{\partial x^i\partial x^k} = -\Delta_{\mathbb{R}^n}\omega.$$

Im \mathbb{R}^n ist der Laplaceoperator auf Formen gleich minus Standardlaplace auf den Koeffizientenfunktionen.

Definition 10.10. Seien $E, F \to M$ Vektorbündel über M mir Rang n bzw. m. Wir bezeichnen die glatten Schnitt von E bzw. F mit $\mathbb{C}^{\infty}_{id}(E)$ bzw. $C^{\infty}_{id}(F)^{1}$. Ein linear Abbildung

$$L: C_{id}^{\infty}(E) \to C_{id}^{\infty}(F)$$

heißt linearer Pifferentialoperator der Ordung $r \in \mathbb{N}_0$, wenn für jede Karte (x, U) von M und lokale Trivialiesierungen von E und F gilt:

$$L\varphi(p) = \sum_{|\alpha| \le r} A_{\alpha}(x) D^{\alpha} \varphi(x), \quad \text{mit } A_{\alpha}(x) \in \mathbb{R}^{m \times n} \quad (x = x(p)).$$

Für $\xi \in T_n^*M$ heißt die lineare Abbildung

$$\sigma_L(\xi): E_p \to F_p, \quad \sigma_L(\xi) = \sum_{|\alpha|=r} A_{\alpha}(x)\xi^a, \quad (x = x(p))$$

das Symbol (genauer:Hauptsimbol) von L

¹Üblich ist $\Gamma(E)$ und $\Gamma(F)$, abr damit kann man die Regularität nicht notieren

Bemerkung 10.11. Sei sei $\chi \in C^{\infty}(M)$ mit $\chi(p) = 0$ und $d\chi(p) = \xi$, und sei $\varphi \in C^{\infty}_{id}(E)$ mit $\varphi(p) = v$. Dann gilt

$$\sigma_L(\xi) = \frac{1}{r!} L(\chi^r \varphi)(p).$$

Denn es gilt

$$L(\chi^{r}\varphi)(p) = \sum_{|\alpha| \le r} A_{\alpha}(x) D^{\alpha}(\chi^{r}\varphi)(x)$$

$$= r! \sum_{|\alpha| = r} A_{\alpha}(x) \partial_{1}^{\alpha_{1}} \chi \cdots \partial_{n}^{\alpha_{n}} \chi \varphi(x)$$

$$= r! \sigma_{L}(\mathcal{E}) v.$$

Insbesondere ist $\sigma_L(\xi)$ unabhängig von der Wahl der Karte und der lokalen Trivialisierungen.

Definition 10.12. Ein linearer Differentialoperator L der Ordnung r heißt *elliptisch*, falls $\sigma_L(\xi)$ invertierbar ist für alle $0 \neq \xi \in T^*(M)$.

Beispiel 10.13. Wähle zu $p \in (M, g)$ lokale Karte (x, U) mit $g_{ij}(p) = \delta_{ij}$. (Das kann man immer machen.) Der Laplaceoperator auf Formen hat dann due Darstellung

$$\Delta_g \omega(p) = -\sum_{i=1}^n \partial_i^2 \omega + \sum_{i=1}^n b^i \partial_i \omega + c\omega.$$

Denn in Termen mit zweiten Ableitungen treten keine Ableitungen der Mertik auf. Wegen $g_{ij}(p) = \delta_{ij}$ müssen diese Termen wie im \mathbb{R}^n sein. Das Symbol von Δ_g ist also

$$\sigma_{\Delta_g}(\xi)\omega = -(\sum_{i=1}^n \xi_i^2)\omega = -\|\xi\|_g^2\omega.$$

Somit ist Δ_g elliptisch.

Beispiel 10.14. Berechne $\mathcal{D} = d + d_g^* : \Omega^*(M) \to \Omega^*(M)$ mit $\Omega^*(M) = \bigoplus_{k=1}^n (M)$. Das Symbol von \mathcal{D} ist

$$\sigma_{\mathcal{D}}(\xi)\omega = \xi \wedge \omega - \xi^{\natural} \omega.$$

 $\sigma_{\mathcal{D}}(\xi)$ ist invertierbar für alle $\xi \neq 0$. (Übung) Also ist \mathcal{D} ein elliptischer Operator. \mathcal{D} heiß *Diracoperator* auf Differentialformen; Es gilt

$$\mathcal{D}^{2} = (d + d_{q}^{*})^{2} = dd_{q}^{*} + d_{q}^{*}d = \Delta_{g}.$$

Denn $d^2=(d_g^*)^2=0$. Insbesondere gilt auf einer kompakten Mannigfaltigkeit

$$\int_{M} \langle \Delta_{g} \omega, \omega \rangle d\mu_{g} = \int_{M} \langle (dd_{g}^{*} + d_{g}^{*}d)\omega, \omega \rangle d\mu_{g}$$

$$= \int_{M} (\|d\omega\|_{g}^{2} + \|d_{g}^{*}\omega\|_{g}^{2}) d\mu_{g}$$

$$= \int_{M} \|\mathcal{D}\omega\|^{2} d\mu_{g}$$

Also gilt für M kompakt

$$\Delta_g \omega = 0 \iff d\omega = 0, \& d_q^* \omega = 0 \iff \mathcal{D}\omega = 0.$$

Wir können \mathcal{D} auch als Operator von den geraden in die ungraden Formen betrachten

$$\mathcal{D}:\Omega^{gerade}(M)\to\Omega^{ungerade}(M).$$

Die Dimensionen dieser Räume sind gleich, wenn dim M gerade ist.

11. DER STAZ VON HODGE

Als erstes definieren wir Sobolevräume auf Mannigfaltigkeit

Definition 11.1 (schwache Abbildung). Sei $\Omega \subset \mathbb{R}^n$ offen und $u \in L^1_{loc}(\Omega)$. Dann definieren wir

$$\partial_i u = g \in L^1_{loc}(\Omega) \iff \int_{\Omega} u \partial_i \eta = \int_{\Omega} g \eta \quad \text{ für alle } \eta \in C_c^{\infty}(\Omega).$$

g heißt die i-te schwache Ableitung von u und ist mit $\partial_i u$ bezechnet. Die schwache Ableitung ist, wenn existent, eindeutig. Das folgt aus dem Fundamentallemma der Variationsrechnung. Weiter setzen wir für $p \in [1, \infty]$

$$W_{loc}^{1,p}(\Omega) = \{ u \in L_{loc}^p(\Omega) \mid \partial_i u \in L_{loc}^p(\Omega) \, \forall i = 1, \cdots, n \}$$

Definition 11.2 $(W^{1,p}_{loc}(M))$. Sei M eine n-dimensionale differezierbare Mannigfaltigkeit . $W^{1,p}_{loc}(M)$ ist die Menge aller $u: \mathcal{M} \to \mathbb{R}$ messbar mit

$$u \circ x^{-1} \in W^{1,p}_{loc}(x(U)),$$
 für jede Karte (x, U) .

Sei M kompakt. Dann gibt es einen Atlas (x_i, U_i) , $(1 \le i \le N)$ endlich, und $V_i \in x_i(U_i)$ mit $M = \bigcup_{i=1}^n x_i^{-1}(V_i)$. Dann setzen wir

$$||u||_{W^{1,p}} := \sum_{i=1}^{N} ||u \circ x^{-1}||_{W^{1,p}(V_i)} < \infty.$$

Es ist leich zu sehen, dass dies eine Norm ist; wir schreiben $W^{1,p}(M)$ statt $W^{1,p}_{loc}(M)$.

Betrache einen anderen Atlas $(\tilde{x}_j, \widetilde{U}_j)$ $(1 \leq j \in \widetilde{N})$ mit $\widetilde{V}_j \in \tilde{x}(\widetilde{U}_j)$ und $M = \bigcup_{j=1}^{\widetilde{N}} \tilde{x}_j^{-1}(\widetilde{V}_j)$. Dann gilt

$$\|u \circ \tilde{x}_{j}^{-1}\|_{W^{1,p}(\widetilde{V}_{j})} \leq \sum_{i=1}^{N} \|u \circ x^{-1} \circ (x_{i} \circ \tilde{x}_{j}^{-1})\|_{W^{1,p}(\widetilde{V}_{j} \cap (\bar{x}_{j} \circ x^{-1})(V_{i}))}$$

$$\leq C \sum_{i=1}^{N} \|u \circ x^{-1}\|_{W^{1,p}(V_{i})}$$

Wir können also die Kettenregel anwenden (genauer die Sobolev-Kettenregel, wenn die Funktion $u: M \to \mathbb{R}$ nicht C^1 ist).

Also sind die Norm $||u||_{W^{1,p}(M)}$ äuivelent, die Konstante hnagt von der beiden Atlas ab. $W^{1,p}(M)$ ist mit einer solchen Norm ein Banachraum, ein Hilbertraum (p=2)

$$\langle u, v \rangle_{W^{1,2}} = \sum_{i=1}^{N} \langle u \circ x^{-1}, v \circ x^{-1} \rangle_{W^{1,2}}$$

Theorem 11.3 (Rellich). Sei $1 \le p < \infty$ und $u_k \in W^{1,2}(M)$ Folge mit $||u_k||_{W^{1,p}} \le C$. Dann gilt nach Wahl einer Teilfolge

$$u_k \to u$$
 in $L^p(M)$.

Bemerkung 11.4. Im Fall p > 1 gibt außerdem $u \in W^{1,p}(M)$ und

$$Du_k \to Du$$
 schwach in $L^p(M)$.

Im Fall = 1 kann man das nicht erwarten.

Bemerkung 11.5. $C^{\infty}(M)$ ist dicht in $W^{1,p}(m)$ für $1 \leq p < \infty$. Im \mathbb{R}^n zeigt man das durch Glättung. Auf M kann man $u = \sum_{i \in I} \eta_i u$ zerlegen mit einer Teilung der Eins, und auf $\eta_i u$ der Regularität im \mathbb{R}^n verwenden.

Die obige Definitionen lassen sich auf Schnitte ω in einem Vektorbündel E verallgemeinern. Es ist $\omega \in W^{1,2}_{loc}(E)$, wenn in jeder lokalen Trivialisierung $\Phi_{\alpha} : \pi^{-1}(U) \to U \times \mathbb{R}^r$, r = Rang E, gibt:

$$\Phi_{\alpha}(\omega(p)) = (p, \omega_a(p) \quad \text{mit } \omega_{\alpha} \in W^{1,p}_{loc}(U, \mathbb{R}^r).$$

Die Definition von $W^{1,p}(E)$ für M kompakt und von $\|\omega\|_{W^{1,p}(M)}$ ist analog zu oben.

Wir kommen jetzt zurülk zum Laplaceoperator auf Formen. Als erstes brauchen wir eine Konsequent der Elliptizität des Operator Δ_q .

Lemma 11.6. Sei g Riemannsche Metrik der Klasse C^1 auf M. Dann gibt es zu $p \in m$ eine Karte (x, U) mit $x : U \to B_1(0)$, x(p) = 0, so dass für $\omega \in W^{1,2}(\wedge^k TM)$ mit spt $\omega \in U$ gibt:

$$\int_{U} (\|d\omega\|^{2} + \|d_{g}^{*}\omega\|^{2}) d\mu_{g} \ge \frac{1}{2} \int_{B_{1}(0)} |D\omega|^{2} dx - C\|\omega\|_{L_{g}^{2}}.$$

Proof. Auf der rechten Seite bezeichnet $D\omega$ die Koordinatenableitungen $\frac{\partial \omega_{\alpha}}{\partial x^{i}}$ mit $\alpha \in I(k, n)$, $i = 1, \dots, n$. Die Ungleichung wird manchmal als Gardingsche Ungleichung bezeichnet. Allerdings gilt jene für allgemeinere elliptische Operatoren. Der Beweis erfolgt in 4 Schritten.

Schritt 1. Wähle ein Karte mit $g_{ij} = \delta_{ij}$ Dann gilt mit $d^* = d^*_{\mathbb{R}^n}$

$$d_q^*\omega + d^*\omega = A(G) \cdot D\omega + B(G)DG\omega,$$

mit $A, B: GL(\mathbb{R}, n) \to \mathbb{R}^N$ glatt und $A(E_n) = 0$.

Wir haben eine Darstellung der Form

$$(d_g^*\omega)_\beta = a_{\beta\gamma} \frac{\partial}{\partial x^k} (b^{k\gamma\alpha}(G)\omega_\alpha).$$

Es folgt

$$(d^*\omega)_{\beta} = a_{\beta\gamma}(E_n) \frac{\partial}{\partial x^k} (b^{k\gamma\alpha}(E_n)\omega_a).$$

Somit durch Substraktion und Differenzieren haben wir

$$(d_g^*\omega)_{\beta} - (d^*\omega)_{\beta} = (a_{\beta\gamma}(G)b^{k\gamma_{\alpha}}(G) - a_{\beta\gamma}(E_n)b^{k\gamma_{\alpha}}(E_n))\frac{\partial\omega_{\alpha}}{\partial x^k} + a_{\beta\gamma}(G)\frac{\partial b^{k\gamma_{\alpha}}}{\partial g_{ij}}\frac{\partial g_{ij}}{\partial x^k}\omega_{\alpha}$$
$$=: A_{\beta}(G)\frac{\partial\omega_{\alpha}}{\partial x^k} + B_{\beta}(G)\partial x^k\omega_{\alpha}.$$

Offenbar haben A(G), B(G) die gewünschten Eigenschaften.

Schritt 2. Sei $g := (g_{ij})$ Riemannsche Metrik auf $U \subset \mathbb{R}^n$ mit

(11.1)
$$||g_{ij} - \delta_{ij}||_{C^0(U)} + ||Dg||_{C^0(U)} \le \delta.$$

Ist $\delta \leq \delta_0$, so folgt für $\omega \in C_c^1(U, \wedge^k \mathbb{R}^n)$

$$\int_{U} |D\omega|^{2} \le C(\delta) \int_{U} (\|d\omega\|_{g}^{2} + \|d^{*}\omega\|_{g}^{2} + \|\omega\|_{g}^{2}) d\mu_{g}$$

wobei $C(\delta) \to 1$ mit $\delta \to 0$.

Für eine k-Form $\omega \in C_c^1(U, \wedge \mathbb{R}^n)$ gilt

$$\int \|\omega\|_g^2 d\mu_g - \int |\omega|^2 dx = \int (g^{\alpha\beta} \sqrt{\det g} - \delta^{\alpha\beta}) \omega_\alpha \omega_\beta \quad (g^{\alpha\beta} = \det(g^{\alpha_i \beta_j}))$$
$$=: \int a_1(g) \omega \cdot \omega \quad \text{mit } a_1(E_n) = 0.$$

Insbesondere,

$$\int \|d\omega\|_g^2 d\mu_g - \int |d\omega|^2 dx = \int a_1(g) d\omega \cdot d\omega,$$

$$\int \|d_g^* \omega\|_g^2 d\mu_g - \int |d^* \omega|^2 dx = \int a_1(g) d_g^* \omega \cdot d_g^* \omega.$$

Weiter haben wir

$$\int ||d_g^*\omega||^2 d\mu_g - \int |d^*\omega|^2 dx = \int |d^*\omega + A(G) \cdot D\omega + B(G)DG\omega|^2 - \int |d^*\omega|^2 dx$$
$$= \int C_1(g, Dg)D\omega \cdot D\omega + C_2(g, Dg)D\omega \cdot \omega + C_3(g, Dg)\omega \cdot \omega,$$

wobei C(g, Dg) glatt mit $C_i(E_n, 0) = 0$ (i = 1, 2, 3). Weiter berechnen wir ähnlich

$$\int a_1(g)d_g^*\omega \cdot d_g^*\omega - \int a_1(g)d\omega \cdot d\omega = \int a_1(g)(d^*\omega + A(G) \cdot D\omega + B(G)DG\omega)^2 - \int a_1(g)d\omega \cdot d\omega$$
$$= \int C_1'(g,Dg)D\omega \cdot D\omega + C_2'(g,Dg)D\omega \cdot \omega + C_3'(g,Dg)\omega \cdot \omega,$$

wobei C'(g, Dg) glatt mit $C'_i(E_n, 0) = 0$ (i = 1, 2, 3). Insgesamt haben wir

$$\int (\|d\omega\|_g^2 + \|d_g^*\omega\|_g^2) d\mu_g - \int (|d\omega|^2 + |d^*\omega|^2) dx$$

$$= \int C_1''(g, Dg) D\omega \cdot D\omega + C_2''(g, Dg) D\omega \cdot \omega + C_3''(g, Dg) \omega \cdot \omega,$$

wobe
i $C^{\prime\prime}(g,Dg)$ glatt mit $C_i^\prime(E_n,0)=0$ (i=1,2,3). Setze nun

$$\varepsilon(\delta) = \max\{\sum_{i=1}^{3} |C_i''(A, B)| |A - E_n| \le \delta, |B| \le \delta\}.$$

Dann folgt $\varepsilon(\delta) \setminus 0$ mit $\delta \setminus 0$

$$\int (\|d\omega\|_g^2 + \|d_g^*\omega\|_g^2) d\mu_g - \int (|d\omega|^2 + |d^*\omega|^2) dx \le C\varepsilon(\delta) \int (|D\omega|^2 + |\omega|^2)$$

Andererseits gilt, da ω komapkter Träger in U hat, zumindest wenn ω von der Klasse C^2 ,

$$\int_{U} (|d\omega|^{2} + |d^{*}\omega|^{2}) dx = \int_{U} \langle (dd^{*} + d^{*}d)\omega\omega\rangle
= \int_{U} \langle \sum \frac{\partial^{2}\omega}{\partial x^{i}\partial x^{i}}, \omega\rangle
= \int_{U} |D\omega|^{2}.$$

Also

$$\int (\|d\omega\|_g^2 + \|d_g^*\omega\|_g^2) d\mu_g \geq \int_U |D\omega|^2 - C\varepsilon(\delta) \int (|D\omega|^2 + |\omega|^2)$$

$$\geq (1 - C\varepsilon(\delta)) \int_U |D\omega|^2 - C\varepsilon(\delta) \int |\omega|^2.$$

Schritt 3. Beweis für $\omega \in W^{1,p}(\wedge^k TM)$ mit spt $\omega \in U$.

Es ist nur zu zeigen, dass

$$\int_{U} (|d\omega|^2 + |d^*\omega|^2) = \int_{U} |D\omega|^2.$$

Die Identität gilt für glatte Formen. Für $\omega \in W^{1,p}(\wedge^k TM)$ benutzen wir die Glättung: Sei $U = \mathbb{R}^n$. Wir definieren

$$\omega_{\varepsilon}(x) = \int \eta_{\varepsilon}(x-y)\omega(y)dy = \int \eta_{\varepsilon}(z)\omega(x-z)dz,$$

wobei $\eta_{\varepsilon}(z) = \varepsilon^{-n} \eta(\frac{z}{\varepsilon})$ und $\eta \in C_c^1(B_1(0))$ mit $\int \eta(z) dz = 1$. Es ist klar, dass $\omega_{\varepsilon} \in C_c^1$. Es gilt dann $D_i(\omega_{\varepsilon}) = (\partial_i \omega)_{\varepsilon}$,

wobei $\partial_i \omega$ die schwache Ableitung on ω ist. Denn

$$\int D_{i}(\omega_{\varepsilon})\varphi = -\int \omega_{\varepsilon}\partial_{i}\varphi \quad (Gauss)$$

$$= -\int \int \eta_{\varepsilon}(x-y)\omega(y)dy\partial_{i}\varphi dx$$

$$= -\int \omega(y)\int \eta_{\varepsilon}(x-y)\partial_{i}\varphi(x)dxdy$$

$$= -\int \omega(y)(\partial_{i}\varphi)_{\varepsilon}(y)dy \quad (\eta(-z) = \eta(z))$$

$$= -\int \omega(y)\partial_{i}(\varphi_{\varepsilon})(y)dy \quad (Parameterabhängige Integration)$$

$$= \int \partial_{i}\omega\varphi_{\varepsilon}(y)dy \quad (Definition schwacher Ableitung)$$

$$= \int (\partial_{i}\omega)_{\varepsilon}\varphi.$$

Es folgt $\partial_i(\omega_{\varepsilon}) = (\partial_i \omega)_{\varepsilon} \to \partial_i \omega$ in L^2 für $\omega \in W^{1,2}(\wedge^k TM)$. also können wir inder Identität ω_{ε} einsetzen und $\varepsilon \searrow o$ gehen lassen.

Schritt 4. Für eine Riemannsche Mannigfaltigkeit M können wir eine passende Überdeckung $(U_{\alpha})_{\alpha \in \mathcal{A}}$ mit (11.1) um Lemma zu zeigen.

Lemma 11.7. Sei M kompakt und g Metrik der Klasse C^1 . Dann gilt für $\omega \in W^{1,2}(\wedge kTM)$ die Abschätzung

$$\|\omega\|_{W^{1,2}(M)} \le C \int_M (\|d\omega\|^2 + \|d_g^*\omega\|^2 + \|\omega\|^2) d\mu_g.$$

Proof. Sehe Schritt 2 in den Beweis von Lemma 11.6 and Benutze die Teilung der Eins. \Box

Wir betrachten nun Δ_q als stetigen linearen Opeartor

$$\Delta_g: W^{1,2}(\wedge^k TM) \to W^{1,2}(\wedge^k TM)' =: W^{-1,2}(\wedge^k TM),$$
$$\langle \Delta_g \omega, \eta \rangle = \int (\langle d\omega, d\eta \rangle + \langle d_g^* \omega, d_g^* \eta \rangle) d\mu_g.$$

 Δ_g ist stetig, da gilt

$$|\langle \Delta_g \omega, \eta \rangle| \le C \|\omega\|_{W^{1,2}} \|\eta\|_{W^{1,2}}.$$

Für $\omega \in W^{2,2}(\wedge^k TM)$ gilt

$$\int_{M} (\langle d\omega, d\eta \rangle + \langle d_g^*\omega, d_g^*\eta \rangle) d\mu_g = \int_{M} \langle \Delta_g \omega, \eta \rangle d\mu_g = \langle \Delta_g \omega, \eta \rangle,$$

also ist die Definition konsistent.

Theorem 11.8. Sei kompakte Mannigfaltigkeit mit Riemannscher Matrik g der Klasse C^1 . Dann ist der Vektorraum harmonischer Differentialformen

$$H^k(M) = \{\omega \in W^{1,2}(\wedge^k TM) \,|\, \Delta_g \omega = 0\}$$

endlich dimensional.

Bemerkung 11.9. Fdirur $\omega \in H^k(M)$ gilt

$$0 = \langle \Delta_g \omega, \omega \rangle = \int_M (\|d\omega\|^2 + \|d_g^* \omega\|) d\mu_g,$$

also $d\omega = 0$ und $d_q^*\omega = 0$.

Beweis vom Satz 11.8. Mit $\langle \cdot, \cdot \rangle_{L^2}$ ist $H^(M)$ Hilbertraum. Wäre dim $H^k(M) = \infty$, so gibt es eine lineare unabhängige Filge ω_k Mit Gram-Schmidt können wir annehmen:

$$\langle \omega_k, \omega \rangle_{L_q^2} = \delta_{kl}.$$

Aus Lamma 11.7 folgt wegen $d\omega_k = d_q^*\omega = 0$

$$\|\omega_k\|_{W^{1,2}} \le C\|\omega\|_{L^2} \le C.$$

Nach Rellich gibt es eine Teilfolge, die in L^2 konvergiert. Wiederspruch zu $\|\omega_k - \omega_l\|_{L^2} = \sqrt{2}$ für $k \neq l$.

Lemma 11.10. Sei M kompakt mit Riemannscher Metrik g der Klasse C^1 . Dann gibt es eine Konstant $\lambda > 0$ mit

$$\int_{M} (\|d\omega\|^2 + \|d_g^*\omega\|^2) \delta\mu_g \ge \lambda \|\omega\|_{L^2}$$

für alle $\omega \in W^{1,2}(\wedge^k TM)$ mit $\omega \perp_{L^2} H^k(M)$.

Proof. Angenommen es gilt zu $k \in \mathbb{N}$ ein $\omega_k \in W^{1,2}(\wedge^k TM)$, $\omega_k \perp_{L^2} H^k(M)$. mit

$$\int_{M} (\|d\omega_{k}\|^{2} + \|d_{g}^{*}\omega_{k}\|^{2}) \delta\mu_{g} < \frac{1}{k} \|\omega_{k}\|_{L^{2}}.$$

Durch Normierung können wir $\|\omega\|_{L^2}=1$ annehmen. Aus Lemma 11.7 folgt

$$\|\omega_k\|_{W^{1,2}(M)} \le C$$

. Nach Rellich gibt nach Wahl einer Teilfolge $\omega_k \to \omega$ in L^2 , also

$$\|\omega\|_{L^2} = 1$$
 und $\omega \perp_{L^2} H^k(M)$.

Weiter folgt für glatte Formen η

$$\langle \omega, d\eta \rangle_{L^2} = \lim_{k \to \infty} \langle \omega_k, d\eta \rangle_{L^2} = \lim_{k \to \infty} \langle d_g^* \omega_k, \eta \rangle_{L^2} = 0$$
$$\langle \omega, d_g^* \eta \rangle_{L^2} = \lim_{k \to \infty} \langle \omega_k, d_g^* \eta \rangle_{L^2} = \lim_{k \to \infty} \langle d\omega_k, \eta \rangle_{L^2} = 0$$

Es gibt also $d\omega = 0$ und $d_g^*\omega = 0$ in dem schwachen Sinne. Aber nach Auswahlsatz im Hilbertraum können wir annehmen, dass

$$\omega_k \to \omega$$
 schwach $inW^{1,2}$

. Damit gilt tatsächlich $\omega \in H^k(M)$, und somit

$$0 = \langle \omega, \omega \rangle_{L^2} = \|\omega\|_{L^2}^2 = 1,$$

Wiederspruch.