Beispiel 12.12. Sei $(M,g)=(\mathbb{R}^2,\delta)$. In kartesischen Koordinaten x_1,x_2 sind die $g_{ij}=\delta_{ij}$ konstant. Daraus folgt: $\Gamma_{ij}^k = 0$ In diesem Fall sind einfach die Koeffizientenfunktionen zu differenzieren:

$$\begin{split} \nabla_{\frac{\partial}{\varphi}} \frac{\partial}{\partial \varphi} &= \nabla_{-x^2 \frac{\partial}{\partial x^1} + x^1 \frac{\partial}{\partial x_2}} \left(-x^2 \frac{\partial}{\partial x^1} + x^1 \frac{\partial}{\partial x_2} \right) \\ &= \left(-x^2 \frac{\partial}{\partial x^1} + x^1 \frac{\partial}{\partial x_2} \right) (-x^2) \frac{\partial}{\partial x^1} + \left(-x^2 \frac{\partial}{\partial x^1} + x^1 \frac{\partial}{\partial x_2} \right) (x^1) \frac{\partial}{\partial x^2} \\ &= -x^1 \frac{\partial}{\partial x^1} - x^2 \frac{\partial}{\partial x^2} = -r \frac{\partial}{\varphi}. \end{split}$$

In Polarkoordinaten (r, φ) ergibt sich:

$$(g_{ij})(r,\varphi) = \begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}, \quad (g^{ij})(r,\varphi) = \begin{pmatrix} 1 & 0 \\ 0 & r^{-2} \end{pmatrix}.$$

Die Christoffel-Symbole sind dann:

$$\Gamma_{11}^1 = \frac{1}{2}(1 \cdot (0 + 0 - 0) + 0 \cdot (\cdots)) = 0.$$

Analog: $\Gamma^i_{11} = \Gamma^2_{11} = \Gamma^1_{12} = \Gamma^1_{21} = \Gamma^2_{22} = 0$. Außerdem

$$\Gamma_{12}^2 = \Gamma_{21}^2 = \frac{1}{2} \left(\frac{1}{r^2} \left(\frac{\partial g_{12}}{\partial \varphi} + \frac{\partial g_{22}}{\partial r} - \frac{\partial g_{12}}{\partial \varphi} \right) + 0 \cdot \dots \right) = \frac{1}{r}, \quad \Gamma^{22} = -r.$$

Daraus folgt:

$$\nabla_{\frac{\partial}{\varphi}} \frac{\partial}{\partial \varphi} = \Gamma^1 22 \frac{\partial}{\partial r} + \Gamma_{22}^2 = -r \frac{\partial}{\partial r}.$$

Die kovariante Ableitung längs c ist in Definition 12.6 definiert . Ist $\widetilde{X}(t) = \widetilde{\xi}^i e_i(c(t), \text{ dann ist } \frac{D}{dt}\widetilde{X}(t))$ lokal durch

$$\frac{D}{dt}\widetilde{X} = (\frac{d}{dt}\widetilde{\xi}^k + \gamma'^i\widetilde{\xi}^j\Gamma^k_{ij} \circ c)e_k \circ c_{|_t},$$

wobei $c'(t) = \gamma'^{i}(t)e_{i}(c(t))$ local ist. Hierbei sind $\gamma^{i} = x^{i}(c(t))$.

Beispiel 12.13. Nochmal in der $(M,g)=(\mathbb{R}^2,\delta)$. Wir betrachten die Kreislinie $c(t)=(\cos t,\sin t)$ und ihr Geschwindigkeitfeld $\xi(t)=c'(t)=-\sin t\frac{\partial}{\partial x^1}|_{c(t)}+\cos t\frac{\partial}{\partial x^2}|_{c(t)}$. In kartesischen Koordinaten x_1,x_2 sind die Christof-Symbole $\Gamma^k_{ij}=0$. Die kovariante Ableitung

längs c ist

$$\frac{D}{dt}\xi(t) = \frac{D}{dt}c'(t) = \left(\frac{d}{dt}\xi^{i}\right)\frac{\partial}{\partial x^{i}}|_{c(t)} = -\cos t\frac{\partial}{\partial x^{1}}|_{c(t)} - \sin t\frac{\partial}{\partial x^{2}}|_{c(t)}.$$

In Polarkoordinaten (r, φ) , ist die Kreslinie $c(t) = (c^1(t), c^2(t))$ mit $c^1(t) = r(t) = 1$ und $c^2(t) = \varphi(t) = t$. Ihr Geschwindigkeitfeld $\xi(t) = \frac{\partial}{\partial \varphi}|_{c(t)}$. Die drei nichtverschwindenden Christoffel-Symbole für die Polarkoordinated der euklischen Ebene lauten

$$\Gamma_{12}^2 = \Gamma_{21}^2 = \frac{1}{r}, \quad \Gamma_1^{22} = -r.$$

Also ist

$$\begin{split} \frac{D}{dt}\xi &= \dot{c}^t(t)\xi^j(t)\Gamma^1_{ij}(r(t),\varphi(t))\frac{\partial}{\partial r}\big|_{c(t)} + \dot{c}^t(t)\xi^j(t)\Gamma^2_{ij}(r(t),\varphi(t))\frac{\partial}{\partial \varphi}\big|_{c(t)} \\ &= \dot{(}c)^2\xi^2(t)(-r(t))\frac{\partial}{\partial r}\big|_{c(t)} + \left(\dot{c}^1\xi^2\frac{1}{r} + \dot{c}^2\xi^1\frac{1}{r}\right)\frac{\partial}{\partial \varphi}\big|_{c(t)} \\ &= 1\cdot 1\cdot (-1)\frac{\partial}{\partial r}\big|_{c(t)} + (0\cdot 1\cdot 1 + 1\cdot 0\cdot 1)\frac{\partial}{\partial \varphi}\big|_{c(t)} \\ &= -\frac{\partial}{\partial r}\big|_{c(t)}. \end{split}$$

Definition 12.14 (Parallelverschiebung). Sei (M, g) eine Riemannsche Mannigfaltigkeit, sei $c: I \to M$ eine C^1 -Kurve. Ein C^1 -Vektorfeld ξ längs c heisst parallel, falls

$$\frac{D}{dt}\xi \equiv 0.$$

Beispiel 12.15. Sei $(M,g)=(\mathbb{R}^n,\delta)$. In kartesischen Koordinaten gilt:

$$\begin{split} \xi(t) &= \xi^j(t) \frac{\partial}{\partial x^j} \big|_{c(t)} \text{ ist parallel} \\ \iff & \dot{\xi}^j(t) = 0 \text{ für alle } t \in I \\ \iff & \text{Die } \xi^j \text{ sind konstant.} \end{split}$$

Beispiel 12.16. Sei $(M,g)=(\mathbb{R}^2,\delta)$. In Polarkoordinaten (r,φ) gilt: Die drei nichtverschwindenden Christoffel-Symbole für die Polarkoordinated der euklischen Ebene lauten

$$\Gamma_{12}^2 = \Gamma_{21}^2 = \frac{1}{r}, \quad \Gamma_1^{22} = -r.$$

Dann gilt:

$$\xi(t) = \xi^{1}(t)\frac{\partial}{\partial r}\big|_{c(t)} + \xi^{2}(t)\frac{\partial}{\partial \varphi}\big|_{c(t)} \text{ ist parallel}$$

$$\iff 0 = \frac{\nabla}{dt}\xi$$

$$= \xi^{1}\frac{\partial}{\partial r} + \xi^{1}\nabla_{\dot{c}^{1}}\frac{\partial}{\partial r} + \dot{c}^{2}\frac{\partial}{\partial \varphi}\frac{\partial}{\partial r} + \dot{\xi}^{2}\frac{\partial}{\partial \varphi} + \xi^{2}\nabla_{\dot{c}^{1}}\frac{\partial}{\partial r} + \dot{c}^{2}\frac{\partial}{\partial \varphi}\frac{\partial}{\partial \varphi}$$

$$= \dot{\xi}^{1}\frac{\partial}{\partial r} + \left(\dot{c}^{1} \cdot 0 + \dot{c}^{2}\frac{1}{c^{1}}\frac{\partial}{\partial \varphi}\right) + \dot{\xi}^{2}\frac{\partial}{\partial \varphi} + \xi^{2}\left(\dot{c}^{1}\frac{1}{c^{1}}\frac{\partial}{\partial \varphi} + \dot{c}^{2}(-c^{1})\frac{\partial}{\partial r}\right)$$

$$= (\dot{\xi}^{1} - c^{2}\dot{c}^{2})\frac{\partial}{\partial r} + \left(\dot{\xi}^{2} + \frac{\dot{c}^{2}}{c^{1}} + \frac{\dot{c}^{1}}{c^{1}}\xi^{2}\right)\frac{\partial}{\partial \varphi}$$

$$\iff \dot{\xi}^{1} - c^{2}\dot{c}^{2} = 0, \quad \dot{\xi}^{2} + \frac{\dot{c}^{2}}{c^{1}} + \frac{\dot{c}^{1}}{c^{1}}\xi^{2} = 0$$

$$\iff \dot{\xi}^{2} = \left(0 - c^{2}\dot{c}^{2}\right)\frac{\partial}{\partial \varphi}\left(\xi^{2}\right)$$

Dies ist ein lineares System gewöhnlicher Differentialgleichungen erster Ordnung für (ξ^1, ξ^2) .

Lemma 12.17. Sei (M, g) eine Riemannsche Manngigfaltigkeit, sei $c: I \to M$ eine C^1 -Kurve, sei $t_0 \to I$. Zu $\xi(0) \to T_{c(t0)}M$ gibt es genau ein paralleles Vektorfeld ξ längs c mit $\xi(t_0) = \xi_0$.

Proof. Sei c(I) in einer Karte enthalten. Sei (x,U) eine solche Karte. Dann ist die Bedinung $\frac{\nabla}{dt}\xi=0$ äquivalent zu

$$\dot{\xi}^k = (\Gamma^k_{ij} \circ x)\dot{c}^i \cdot \xi^j, \quad \forall k = 1, 2, \cdots, n$$

was ein lineares gewöhnlicher Differentialgleichungensystem erster Ordnung ist. Es exisiert also eine eindeutige Lösung mit der Anfangsbedingung

$$(\xi^1(t_0), \cdots, \xi^n(t_0)) = (\xi_0^1, \cdots, \xi_0^n).$$

Wegen der Linearität des Systems ist die Lösung auf ganz I definiert.

Sei c(I) in einer Karte enthalten. Wegen der Eindeutigkeit kann mann nach ganz I fortsetzen.

Definition 12.18. Seien $t_0, t_1 \in I$. Die Abbildung

$$P_{c,t_0,t_1}: T_{c(t_0)}M \to T_{c(t_1)}M, \quad \xi_0 \to \xi(t_1)$$

heißt Parallelverschiebung längs c, wobei $\xi(t)$ das parallele Vektorfeld ldirangs c ist mit $\xi(t_0) = \xi_0$.

Theorem 12.19. Für die Parallelverschiebung gilt:

- (a) $P_{c,t_0,t_1}: (T_{c(t_0)}M, g|_{c(t_0)}) \to (T_{c(t_1)}M, g|_{c(t_1)})$ ist eine lineare Isometrie.
- (b) $P_{c,t_0,t_2} = P_{c,t_1,t_2} \circ P_{c,t_0,t_1}$.

Proof. (a) Übung. (b) folgt aus der Eideutigkeit lineares gewöhnlicher Differentialgleichungensystems.

Bemerkung 12.20. Zu $\xi_0 \in T_{c(t0)}M$ ist das parallele Vektorfeld ξ mit $\xi(t_0) = \xi_0$ gegeben durch

$$\xi(t) = P_{c,t_0,t_1}(\xi_0).$$

Wir haben eine geometrischer Struktur:

Riemannsche Metrik \leadsto kovariante Ableitung $\nabla \leadsto$ Parallelverschiebung P

Man kann ∇ aus P rekonstruieren:

Theorem 12.21. Sei (M,g) eine Riemannsche Mannigfaltigkeit, sei $c:I\to M$ eine C^1 -Kurve, sei $t_0\in I$. Dann gilt für jedes C^1 -Vektorfeld ξ längs c:

$$\frac{D}{dt}\xi\big|_{t_0} = \lim_{t \to t_0} \frac{P_{c,t,t_0}(\xi(t)) - \xi(t_0)}{t - t_0}.$$

Proof. Sei $e_1(t_0), \dots, e_n(t_0)$ eine Basis von $T_{c(t_0)}M$. Seien $e_1(t), \dots, e_n(t)$ die zugehörigen parallelen Vektorfelder längs c. Dann folgt aus der Proposition 12.19 (a), dass $e_1(t), \dots, e_n(t)$ eine Basis von $T_{c(t)}M$ ist für alle $t \in I$. Schreibe $\xi(t) = \xi^j(t)e_j(t)$. Dann

$$\frac{P_{c,t,t_0}(\xi(t)) - \xi(t_0)}{t - t_0} = \frac{\xi^{j}(t) P_{c,t,t_0}(e_j(t)) - \xi^{j}(t_0) e_j(t_0)}{t - t_0}$$

$$= \frac{\xi^{j}(t) - \xi^{j}(t_0)}{t - t_0} e_j(t_0)$$

$$\xrightarrow{t \to t_0} \quad \dot{\xi}^{j}(t_0) e_j(t_0),$$

wobei wir $P_{c,t,t_0}(e_j(t)) = e_j(t_0)$ benutzen haben.

Andererseits gilt

$$\begin{split} \frac{\nabla}{dt} \xi \big|_{t_0} &= = \frac{\nabla}{dt} \Big(\xi^j e_j \Big) \\ &= \dot{\xi}^j(t_0) e_j(t_0) + \xi^j(t_0) \frac{\nabla}{dt} e_j \big|_{t_0} \\ &= \dot{\xi}^j(t_0) e_j(t_0), \end{split}$$

 $\operatorname{denn} \frac{\nabla}{dt} e_j|_{t_0} = 0.$

Bemerkung 12.22. Ist $\psi: M \to \widetilde{M}$ eine lokale Isometrie (d.h. $\psi^* \tilde{g} = g$) und ist $c: I \to M$ eine C^1 -Kurve, so setze $\tilde{c} := \psi \circ c$. Dann gilt für jedes C^1 -Vektorfeld ξ längs c:

 ξ parallel längs $c \iff \tilde{\xi} := d\psi(\xi)$ parallel längs \tilde{c} .

Insbesondere kommutiert das Diagramm:

$$T_{c(t_0)}M \xrightarrow{P_{c,t_0,t_1}} T_{c(t_1)}M$$

$$d\psi|_{c(t_0)} \downarrow \qquad \qquad \downarrow d\psi|_{c(t_1)}$$

$$T_{\tilde{c}(t_0)}\widetilde{M} \xrightarrow{P_{\tilde{c},t_0,t_1}} T_{\tilde{c}(t_1)}\widetilde{M}$$

Bemerkung 12.23. Im Allgemeinen ist $P_{c,t_0,t_1} \neq P_{\tilde{c},s_0,s_1}$, auch wenn $c(t_0) = \tilde{c}(s_0)$ und $c(t_1) = \tilde{c}(s_1)$.

13. Geodätische

Wir untersuchen die Geodätische noch mal.

Sei (M, g) eine Riemannsche Mannigfaltigkeit, sei $c:[a,b]\to M$ eine glatte Kurve. Ihre Energie ist definiert durch

$$E[c] := \frac{1}{2} \int_{a}^{b} g(c'(t), c'(t)) dt = \frac{1}{2} \int_{a}^{b} \|c'(t)\|_{g}^{2} dt.$$

Frage. Gibt es Kurven minimaler Energie zu vorgegebenen Endpunkten (oder allgemeiner: stationärer Energie)?

Definition 13.1 (die Variation, das Variationsvektorfeld). Sei M eine differenzierbare Mannigfaltigkeit, sei $c:[a,b] \to M$ eine glatte Kurve. Eine *Variation* von c ist eine glatte Abbildung

$$c:(\varepsilon,\varepsilon)\times [a,b]\to M$$

mit c(0,t)=c(t) für alle t[a,b]. Falls c(s,a)=c(a) und c(s,b)=c(b) für alle $s(\varepsilon,\varepsilon)$, so heißt c(s,t) Variation mit festen Endpunkten.

Das Vektorfeld $\xi(t) := \frac{\partial c}{\partial s}(0,t)$ heißt das *Variationsvektorfeld*. Es ist klar, dass das Variationsvektorfeld ξ einer Variation mit festen Endpunkten erfüllt:

$$\xi(a) = 0$$
 und $\xi(b) = 0$.

Theorem 13.2 (Erste Variation der Energie). Sei (M,g) eine Riemannsche Mannigfaltigkeit, sei $c:[a,b]\to M$ eine glatte Kurve, sei $c:(\varepsilon,\varepsilon)\times[a,b]\to M$ eine Variation dieser Kurve. Schreibe $c_s(t)=c(s,t)$. Sei ξ das Variationsvektorfeld. Dann gilt

$$\frac{d}{ds}E[c_s]\big|_{s=0} = -\int_a^b g(\xi(t), \frac{\nabla}{dt}c'(t)dt + g(\xi(b), c'(b))g(\xi(a), c'(a)).$$

Proof.

$$\begin{split} \frac{d}{ds}E[c_s]\big|_{s=0} &= \frac{1}{2}\frac{d}{ds}\int_a^b g(c_s'(t),c_s'(t))dt \\ &= \frac{1}{2}\int_a^b \int_a^b \frac{d}{ds}g(c_s'(t),c_s'(t))dt \\ &= \frac{1}{2}\int_a^b 2g(\frac{\nabla}{\partial s}\frac{\partial c}{\partial t}(0,t),\frac{\partial c}{\partial t})dt \\ &\stackrel{(*)}{=} \int_a^b g(\frac{\nabla}{\partial t}\frac{\partial c}{\partial s}(0,t),\frac{\partial c}{\partial t})dt \\ &= \int_a^b g(\frac{\nabla}{\partial t}\xi,c'(t))dt \\ &= \int_a^b \left[\frac{d}{dt}g(\xi(t),c'(t))-g(\xi,\frac{\nabla}{dt}c'(t))\right]dt \\ &= g(\xi(b),c'(b))-g(\xi(a),c'(a))-\int_a^b g(\xi,\frac{\nabla}{dt}c'(t))dt \end{split}$$

Dabei folgt (*) aus der Torsionsfreiheit des Levi-Civita-Zusammenhangs.

Lemma 13.3. Es gilt

$$\frac{\nabla}{\partial s} \frac{\partial c}{\partial t}(0, t) = \frac{\nabla}{\partial t} \frac{\partial c}{\partial s}(0, t).$$

Proof. Übung.

Korollar 13.4. Ist ξ das Variationsvektorfeld einer Variation mit festen Endpunkten, so gilt

$$\frac{d}{ds}E[c_s]\big|_{s=0} = -\int_a^b g(\xi(t), \frac{\nabla}{dt}c'(t))dt.$$

Lemma 13.5. Sei $c : [a,b] \to M$ eine glatte Kurve, sei ξ ein glattes Vektorfeld längs c. Dann existiert eine Variation von c mit Variationsvektorfeld ξ . Falls $\xi(a) = 0$ und $\xi(b) = 0$, so kann die Variation mit festen Endpunkten gewählt werden.

Proof. (a) Betrachte den Fall, dass supp (ξ) in einer Karte (x, U) enthalten ist, das heißt $c(t) \in U$, falls $\xi \neq 0$. Schreibe $\xi(t) = \xi^j(t) = \frac{\partial}{\partial x^j}|_{c(t)}$. Setze

$$c(s,t) := \begin{cases} x^{-1}(c^1(t), \cdots, c^n(t)) + s(\xi^1(t), \cdots, \xi^n(t)), & \text{falls } c(t) \in U \\ c(t), & \text{falls } c(t) \notin U. \end{cases}$$

Hierbei sind $c^j(t) = x^j(c(t))$ für $j = 1, \dots, n$ die Komponenten von c unter der Karte x. Dann gilt für das zugehörige Variationsvektorfeld:

$$\begin{split} \left(\frac{\partial c}{\partial s}(0,t)\right)^j &= dx^j \left(\frac{\partial c}{\partial s}(0,t)\right) \\ &= \left.\frac{\partial (x^j \circ c)}{\partial s}(0,t)\right. \\ &= \left.\frac{\partial (c^j(t) + s\xi^j(t))}{\partial s}\right|_{s=0} \\ &= \left.\xi^j(t)\right. \end{split}$$

(b) Im allgemeinen Fall überdecke die kompakte Menge c([a,b]) durch endlich viele Karten und konstruiere die Variation stückweise.

Notation. Sei M eine differenzierbare Mannigfaltigkeit, seien $p,q \in M$. Dann setze

$$\Omega_{p,q}(M) := \{ \text{glatte Kurven } c : [a,b] \to M \text{ mit } c(a) = p \text{ und } c(b) = q \}.$$

Korollar 13.6. Ist $c \in \Omega_{p,q}(M)$ ein kritischer Punkt des Energiefunktionals, das heißt

$$\left. \frac{d}{ds} E[c_s] \right|_{s=0} = 0,$$

für alle Variationen c_s von c mit festen Endpunkten, dann gilt

$$\frac{\nabla}{dt}c'(t) = 0$$

 $f\ddot{u}r$ alle $t \in [a, b]$.

Proof. Übung. (mit Lemma 13.5)

Definition 13.7 (Geodätische). Eine glatte Kurve c mit $\frac{\nabla}{dt}c'=0$ heißt Geodätische.

Beispiel 13.8. Sei $(M,g)=(\mathbb{R}^n,\delta)$. In kartesischen Koordinaten x_1,\cdots,x_n gilt:

$$\frac{\nabla}{dt}c' = 0 \Leftrightarrow \ddot{c}^1 = 0, \dots, \ddot{c}^n = 0$$

$$\Leftrightarrow c^j(t) = p^j + tv^j$$

$$\Leftrightarrow c(t) = p + tv$$

 \Leftrightarrow c ist eine Gerade, parametrisiert mit konstanter Geschwindigkeit.

Theorem 13.9 (Existenz und Eindeutigkeit von Geodätischen). Sei (M, g) eine Riemannsche Mannigfaltigkeit. Zu $p \in M$ und $\xi T_p M$ existieren ein offenes Intervall I mit $0 \in I$ und eine Geodätische $c: I \to M$ mit c(0) = p und $c'(0) = \xi$.

Sind $c: I \to M$ und $\tilde{c}: I \to M$ zwei solche Geodätische mit $c(0) = \tilde{c}(0)$ und $c'(0) = \tilde{c}'(0)$, dann stimmen c und \tilde{c} auf dem gemeinsamen Definitionsbereich $I \cap \tilde{I}$ überein.

Proof. In der Karte (x, U) um p lautet die Geodätengleichung

$$\frac{\nabla}{dt}c'(t) = 0 \iff \ddot{c}^k + \Gamma^k_{ij}\dot{c}^i\dot{c}^j = 0, \forall k = 1, 2 \cdots, n$$

und $c^k = x^k \circ c$. Dies ist ein gewöhnliches Differentialgleichungssystem zweiter Ordnung für c(t). Mit dem Satz von Picard-Lindelöf folgt die Behauptung.

Lemma 13.10. (1) Für Geodätische c ist q(c', c') konstant.

(2) Ist $\psi: M \to M$ eine lokale Isometrie (d.h. $\varphi^*\tilde{g} = g$) und ist $c: I \to M$ ist geodätische genau dann, wenn $\tilde{c}: \psi \circ$ geodätische ist.

Definition 13.11. Sei $\psi: M \to M$ ein Diffeomorphismus. Dann heißt

$$Fix (\psi) := \{ p \in M | \psi(p) = p \}$$

die Fixpunktmenge von ψ .

Proposition 13.12. Sei (M,g) eine Riemannsche Mannigfaltigkeit, sei $\psi \in Isom(M,g)$. Dann verläuft für $p \in Fix(\psi)$ und $\xi \in T_pM$ mit $d\psi|_p(\xi) = \xi$ die Geodätische $c: I \to M$ mit c(0) = p und $c'(0) = \xi$ ganz in $Fix(\psi)$, das heißt für alle $t \in I$ ist $c(t) \in Fix(\psi)$.

Proof. Setze $\tilde{c}(t) := \psi \circ c(t)$. Da ψ eine Isometrie ist, ist \tilde{c} ebenfalls eine Geodätische. Es gilt:

$$\tilde{c}(0) = \psi(c(0)) = \psi(p) = p = c(0)$$

und

$$\tilde{c}'(0) = d\psi\big|_{c(0)}(c'(0)) = d\psi\big|_{p}(\xi) = \xi = c'(0).$$

Der Eindeutigkeitsteil von Satz 13.9 liefert:

$$c(t) = \tilde{c}(t) = \psi(c(t)), \quad \forall t \in I$$

Das heißt: $c(t) \in \text{Fix}(\psi)$ für alle $t \in I$.

Beispiel 13.13. Sei $(M,g)=(\mathbb{S}^n,g_{std})$. Seien $p\in\mathbb{S}^n,\ \xi\in T_p\mathbb{S}^n\subset\mathbb{R}^{n+1}$. (n=2) Sei $E\subset\mathbb{R}^{n+1}$ der zweidimensionale Untervektorraum, der von p und ξ aufgespannt wird. Sei $A:\mathbb{R}^{n+1}\to\mathbb{R}^{n+1}$ die Spiegelung an E. Dann ist $A\in O(n+1)$. $\varphi:=A|_{\mathbb{S}^n}\in Isom(\mathbb{S}^n,g_{std})$. Dann gilt:

$$\operatorname{Fix}(A) = E \Longrightarrow \operatorname{Fix}(\varphi) = E \cap \mathbb{S}^n(\operatorname{Großkreis}).$$

Mit der Proposition 13.12 folgt dann, dass $c(t) \in E \cap \mathbb{S}^n$ für alle t. Wir parametrisieren den Großkreis proportional zur Bogenlänge.

$$c(t) = p \cdot \cos(\alpha t) + \frac{\xi}{|\xi|} \cdot \sin(\alpha t).$$

Es müssen die Anfangsbedingungen erfüllt sein: c(0) = p ist erfüllt.

$$\frac{d}{dt}c(0) = \frac{\xi}{|\xi|}\alpha \Longrightarrow \alpha = |\xi|.$$

Dann erhalten wir: $\frac{d}{dt}c(0) = \xi$, das heißt $c'(0) = \xi$. Daraus folgt:

$$c(t) = p \cdot \cos(|\xi|t) + \frac{\xi}{|\xi|} \cdot \sin(|\xi|t).$$

Bemerkung 13.14. Sei (M, g) eine Riemannsche Mannigfaltigkeit, sei $p \in M$. Zu $\xi \in T_pM$ sei c_{ξ} die Geodätische mit $c_{\xi}(0) = p$ und $c'_{\xi}(0) = \xi$.

Zu $\alpha \in \mathbb{R}$ setze $\tilde{c}(t) := c_{\xi}(\alpha t)$. Dann ist \tilde{c} ebenfalls eine Geodätische mit $\tilde{c}(0) = c(0) = p$ und $\tilde{c}'(0) = \alpha \xi$. Deshalb gilt: $\tilde{c} = c_{\alpha \xi}$. Insbesondere, $c_{\xi}(\alpha) = c_{\alpha \xi}(1)$. (Übung)

Definition 13.15 (Riemannsche Exponentialabbildung). Zu $\xi \in T_pM$ setze $\exp_p(\xi) := c(1)$, falls der maximale Definitionsbereich von c die 1 enthält. Setze ferner

$$D_p := \{ \xi \in T_p M | 1 \text{ ist im maximalen Definitionsbereich von } c \}.$$

Dann heißt $\exp_p: D_p \to M$ Riemannsche Exponentialabbildung (im Punkt p).

Bemerkung 13.16. (1) $\exp_p(t\xi) = c_{t\xi}(1) = c_{\xi}(t)$. Daraus folgt, dass $t \mapsto \exp_p(t\xi)$ die Geodätische ist mit den Anfangswerten p und ξ .

- $(2) \exp_p(0) = p.$
- (3) D_p ist sternförmig bezüglich 0, denn: Sei $\xi \in D_p$. Sei $0 \le \alpha \le 1$. Dann ist c_{ξ} auf [0,1] definiert und gilt $c\alpha\xi(t) = c_{\xi}(\alpha t)$. Daraus folgt $c_{\alpha\xi}$ ist auf $[0,\frac{1}{\alpha}] \supset [0,1]$ definiert, da $\alpha \le 1$. Also $\alpha\xi \in D_p$.
- (4) Setze $D := \bigcup_{p \in M} D_p \subset T_M$ und $\exp : D \to M$, $\exp(\xi) := \exp_{\pi(\xi)}(\xi)$. Aus der Theorie der gewöhnlichen Differentialgleichungen folgt, dass D offen und exp eine glatte Abbildung ist. Insbesondere ist $D_p = D \cap T_p M$ offen in $T_p M$.

Beispiel 13.17. (1) Sei $(M,g) = (\mathbb{R}^n, \delta)$. Dann gilt:

$$\exp_p(\xi) = p + 1 \cdot \xi = p + \xi \quad \text{mit } D_p = T_p \mathbb{R}^n.$$

- (2) Sei $(M, g) = (\mathbb{R}^2 \{0\}, \delta)$. Dann: $D_p = T_p M \{-t \cdot p | t \ge 1\}$.
- (3) Sei $(M,g) = (\mathbb{S}^n, g_{std})$. Dann:

$$\exp_p(\xi) = p \cdot \cos(\|\xi\|) + \frac{\xi}{\|\xi\|} \cdot \sin(\|\xi\|), \quad D_p = T_p M.$$

Lemma 13.18. Das Differential der Abbildung $\exp_p: D_p \to M$ im Punkt 0 ist gegeben durch den kanonischen Isomorphismus

$$d\exp_p \Big|_0 = id : T_0 D_p = T_0 T_p M \to T_p M.$$

Proof. Sei $\xi \in T_pM$. Dann gilt:

$$d \exp_p |_0(\xi) = d \exp_p |_0(\frac{d}{dt}(t\xi)|_{t=0}) = \frac{d}{dt} \exp_p(t\xi)|_{t=0} = \xi,$$

denn $c(t) = \exp_p(t\xi)$ ist die Geodätische mit $c'(0) = \xi$.

Korollar 13.19. Zu $p \in M$ existiert eine offene Umgebung $V_p' \subset D_p \subset T_pM$ von θ , so dass

$$\exp_p\big|_{V_p'}:V_p'\to\exp_p(V_p')=:U_p$$

ein Diffeomorphismus ist.

Proof. Die Aussage folgt aus Lemma 13.18 $(d \exp_p |_0)$ ist invertierbar) und dem Umkehrsatz.

Bemerkung 13.20. Im Allgemeinen ist $\exp_p: D_p \to \exp_p(D_p) \subset M$ kein Diffeomorphismus, denn $d\exp_p|_{xi}$ ist im Allgemeinen nicht invertierbar.

Wir konstruieren nun gut an die Geometrie angepasste Koordinaten und wählen dazu eine verallgemeinerte Orthonormalbasis E_1, \dots, E_n von T_pM bezüglich $g|_p$, das heißt

$$g|_{p}(E_{i},E_{j})=\delta_{ij}.$$

Wir erhalten einen linearen Isomorphismus $A: \mathbb{R}^n \to T_pM$, $(\alpha_1, \dots, \alpha_n) \mapsto \sum_{i=1}^n \alpha_i E_i$.

$$T_p M \supset V_p' \xrightarrow{\exp_p} U_p \subset M$$

$$A \triangleq \qquad \approx$$

$$\mathbb{R}^n \supset V_p$$

wobei $V_p:=A^{-1}(V_p')$, also: $\exp_p\circ A:V_p\to U_p$ ist ein Diffeomorphismus. Setze $x:=(\exp_p\circ A)^{-1}$. Dann ist $x:U_p\to V_p$ eine Karte.

Definition 13.21 (Riemannschen Normalkoordinaten). Die so erhaltenen Koordinaten nennt man die Riemannschen Normalkoordinaten um den Punkt p.

Inwiefern sind diese Koordinaten gut an die Geometrie angepasst?

Proposition 13.22. Seien $g_{ij}: V_p \to \mathbb{R}$ und $\Gamma^k_{ij}: V_p \to \mathbb{R}$ die zu den Riemannschen Normalkoordinaten x um p gehörigen g_{ij} bzw. Christoffel-Symbole. Dann gilt:

$$x(p) = 0, \quad g_{ij}(0) = \delta_{ij}, \quad \Gamma_{ij}^{k}(0) = 0.$$

Proof. (a)
$$x(p) = A^{-1}(\exp_p^{-1}(p)) = A^{-1}(0) = 0.$$

(b) Seien e_1, \dots, e_n die Standardbasis des \mathbb{R}^n . Dann

$$g_{ij}(0) = g|_{p}(dx^{-1}|_{0}(e_{i}), dx^{-1}|_{0}(e_{j}))$$

$$= g|_{p}(d(\exp_{p} \circ A)|_{0}(e_{i}), d(\exp_{p} \circ A)|_{0}(e_{i}))$$

$$= g|_{p}(d\exp_{p}|_{0}(E_{i}), d\exp_{p}|_{0}(E_{j}))$$
Lemma 13.18
$$= g|_{p}(E_{i}, E_{j}) = \delta_{ij}.$$

(c) Sei $v = (v_1, \dots, v_n) \in \mathbb{R}^n$. Dann ist $c(t) = x^{-1}(tv) = \exp_p(tAv)$ eine Geodätische mit c(0) = p und c'(0) = Av. In Riemannschen Normalkoordinaten lautet die Geodätengleichung für diese Geodätische

$$0 = \ddot{c}^k(t) + \Gamma_{ij}^k(c^1(t), \cdots, c^n(t)) \cdot \dot{c}^i(t) \cdot \dot{c}^j(t).$$

Hierbei ist $c^k(t) = x^k(c(t)) = tv^k$, $\dot{c}^k(t) = v^k$ und $\ddot{c}^k(t) = 0$. Für t = 0 ergibt sich

$$0 = 0 + \Gamma_{ij}^k(0, \cdots, 0) \cdot v^i \cdot v^j.$$

Dann ist β^k , definiert durch $\beta^k(y,z) := \sum_{i,j=1}^n \Gamma^k_{ij}(0) y^i z^j$, eine symmetrische Bilinearform auf \mathbb{R}^n , denn:

$$\beta^k(z,y) = \Gamma^k_{ij}(0)z^i y^j = \Gamma^k_{ji}(0)z^j y^i = \Gamma^k_{ij}(0)z^j y^i = \Gamma^k_{ij}(0)y^i z^j.$$

Daher gilt $\beta^k(v,v) = 0$ für alle $v \in \mathbb{R}^n$ und daher $\beta^k(y,z) = 0$ für alle $y,z \in \mathbb{R}^n$. Daraus folgt:

$$\Gamma_{ij}^k(0) = 0$$
 für alle i, j, k .

Korollar 13.23. In Riemannschen Normalkoordinaten gilt für die Taylorentwicklung um 0 von $g_{i,j}$: $V_p \to \mathbb{R}$:

$$g_{ij}(x) = \delta_{ij} + O(||x||^2).$$

Proof.

$$g_{ij}(x) = g_{ij}(0) + \frac{\partial g_{ij}}{\partial x^k}(0) \cdot x^k + O(\|x\|^2)$$
$$\frac{\partial g_{ij}}{\partial x^k}(0) = \Gamma_{ki}^l(0)g_{lj}(0) + \Gamma_{kj}^l(0)g_{il}(0) = 0$$